1
|
Kibe A, Buck S, Gribling-Burrer AS, Gilmer O, Bohn P, Koch T, Mireisz CNM, Schlosser A, Erhard F, Smyth RP, Caliskan N. The translational landscape of HIV-1 infected cells reveals key gene regulatory principles. Nat Struct Mol Biol 2025:10.1038/s41594-024-01468-3. [PMID: 39815046 DOI: 10.1038/s41594-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Human immunodeficiency virus-1 (HIV-1) uses a number of strategies to modulate viral and host gene expression during its life cycle. To characterize the transcriptional and translational landscape of HIV-1 infected cells, we used a combination of ribosome profiling, disome sequencing and RNA sequencing. We show that HIV-1 messenger RNAs are efficiently translated at all stages of infection, despite evidence for a substantial decrease in the translational efficiency of host genes that are implicated in host cell translation. Our data identify upstream open reading frames in the HIV-1 5'-untranslated region as well as internal open reading frames in the Vif and Pol coding domains. We also observed ribosomal collisions in Gag-Pol upstream of the ribosome frameshift site that we attributed to an RNA structural fold using RNA structural probing and functional analysis. Antisense oligonucleotides designed to alter the base of this structure decreased frameshift efficiency. Overall, our data highlight the complexity of HIV-1 gene regulation and provide a key resource for decoding of host-pathogen interactions upon HIV-1 infection. Furthermore, we provide evidence for a RNA structural fold including the frameshift site that could serve as a target for antiviral therapy.
Collapse
Affiliation(s)
- Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Stefan Buck
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Orian Gilmer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Tatyana Koch
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
| | - Chiara Noemi-Marie Mireisz
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Florian Erhard
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany
- Institute of Molecular and Cellular Biology (CNRS), UPR 9002, University of Strasbourg, Strasbourg, France
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Würzburg, Germany.
- Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Molnar SM, Kim Y, Wieczorek L, Williams A, Patil KA, Khatkar P, Santos MF, Mensah G, Lorico A, Polonis VR, Kashanchi F. Extracellular vesicle isolation methods identify distinct HIV-1 particles released from chronically infected T-cells. J Extracell Vesicles 2024; 13:e12476. [PMID: 38978287 PMCID: PMC11231049 DOI: 10.1002/jev2.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
The current study analyzed the intersecting biophysical, biochemical, and functional properties of extracellular particles (EPs) with the human immunodeficiency virus type-1 (HIV-1) beyond the currently accepted size range for HIV-1. We isolated five fractions (Frac-A through Frac-E) from HIV-infected cells by sequential differential ultracentrifugation (DUC). All fractions showed a heterogeneous size distribution with median particle sizes greater than 100 nm for Frac-A through Frac-D but not for Frac-E, which contained small EPs with an average size well below 50 nm. Synchronized and released cultures contained large infectious EPs in Frac-A, with markers of amphisomes and viral components. Additionally, Frac-E uniquely contained EPs positive for CD63, HSP70, and HIV-1 proteins. Despite its small average size, Frac-E contained membrane-protected viral integrase, detectable only after SDS treatment, indicating that it is enclosed in vesicles. Single particle analysis with dSTORM further supported these findings as CD63, HIV-1 integrase, and the viral surface envelope (Env) glycoprotein (gp) colocalized on the same Frac-E particles. Surprisingly, Frac-E EPs were infectious, and infectivity was significantly reduced by immunodepleting Frac-E with anti-CD63, indicating the presence of this protein on the surface of infectious small EPs in Frac-E. To our knowledge, this is the first time that extracellular vesicle (EV) isolation methods have identified infectious small HIV-1 particles (smHIV-1) that are under 50 nm. Collectively, our data indicate that the crossroads between EPs and HIV-1 potentially extend beyond the currently accepted biophysical properties of HIV-1, which may have further implications for viral pathogenesis.
Collapse
Affiliation(s)
- Sebastian M. Molnar
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Lindsay Wieczorek
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Kajal Ashok Patil
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Victoria R. Polonis
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| |
Collapse
|
3
|
Sid Ahmed S, Bajak K, Fackler OT. Beyond Impairment of Virion Infectivity: New Activities of the Anti-HIV Host Cell Factor SERINC5. Viruses 2024; 16:284. [PMID: 38400059 PMCID: PMC10892966 DOI: 10.3390/v16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Members of the serine incorporator (SERINC) protein family exert broad antiviral activity, and many viruses encode SERINC antagonists to circumvent these restrictions. Significant new insight was recently gained into the mechanisms that mediate restriction and antagonism. In this review, we summarize our current understanding of the mode of action and relevance of SERINC proteins in HIV-1 infection. Particular focus will be placed on recent findings that provided important new mechanistic insights into the restriction of HIV-1 virion infectivity, including the discovery of SERINC's lipid scramblase activity and its antagonism by the HIV-1 pathogenesis factor Nef. We also discuss the identification and implications of several additional antiviral activities by which SERINC proteins enhance pro-inflammatory signaling and reduce viral gene expression in myeloid cells. SERINC proteins emerge as versatile and multifunctional regulators of cell-intrinsic immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
| | - Kathrin Bajak
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 38124 Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 38124 Heidelberg, Germany
| |
Collapse
|
4
|
Johnson MM, Jones CE, Clark DN. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Viruses 2022; 15:107. [PMID: 36680147 PMCID: PMC9861436 DOI: 10.3390/v15010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
HIV/AIDS mortality has been decreasing over the last decade. While promising, this decrease correlated directly with increased use of antiretroviral drugs. As a natural consequence of its high mutation rate, treatments provide selection pressure that promotes the natural selection of escape mutants. Individuals may acquire drug-naive strains, or those that have already mutated due to treatment. Even within a host, mutation affects HIV tropism, where initial infection begins with R5-tropic virus, but the clinical transition to AIDS correlates with mutations that lead to an X4-tropic switch. Furthermore, the high mutation rate of HIV has spelled failure for all attempts at an effective vaccine. Pre-exposure drugs are currently the most effective drug-based preventatives, but their effectiveness is also threatened by viral mutation. From attachment and entry to assembly and release, the steps in the replication cycle are also discussed to describe the drug mechanisms and mutations that arise due to those drugs. Revealing the patterns of HIV-1 mutations, their effects, and the coordinated attempt to understand and control them will lead to effective use of current preventative measures and treatment options, as well as the development of new ones.
Collapse
Affiliation(s)
- Madison M. Johnson
- Department of Microbiology, Weber State University, Ogden, UT 84408, USA
| | | | | |
Collapse
|
5
|
Lentiviral Nef Proteins Differentially Govern the Establishment of Viral Latency. J Virol 2022; 96:e0220621. [PMID: 35266804 DOI: 10.1128/jvi.02206-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the clinical importance of latent human immunodeficiency virus type 1 (HIV-1) infection, our understanding of the biomolecular processes involved in HIV-1 latency control is still limited. This study was designed to address whether interactions between viral proteins, specifically HIV Nef, and the host cell could affect latency establishment. The study was driven by three reported observations. First, early reports suggested that human immunodeficiency virus type 2 (HIV-2) infection in patients produces a lower viral RNA/DNA ratio than HIV-1 infection, potentially indicating an increased propensity of HIV-2 to produce latent infection. Second, Nef, an early viral gene product, has been shown to alter the activation state of infected cells in a lentiviral lineage-dependent manner. Third, it has been demonstrated that the ability of HIV-1 to establish latent infection is a function of the activation state of the host cell at the time of infection. Based on these observations, we reasoned that HIV-2 Nef may have the ability to promote latency establishment. We demonstrate that HIV-1 latency establishment in T cell lines and primary T cells is indeed differentially modulated by Nef proteins. In the context of an HIV-1 backbone, HIV-1 Nef promoted active HIV-1 infection, while HIV-2 Nef strongly promoted latency establishment. Given that Nef represents the only difference in these HIV-1 vectors and is known to interact with numerous cellular factors, these data add support to the idea that latency establishment is a host cell-virus interaction phenomenon, but they also suggest that the HIV-1 lineage may have evolved mechanisms to counteract host cell suppression. IMPORTANCE Therapeutic attempts to eliminate the latent HIV-1 reservoir have failed, at least in part due to our incomplete biomolecular understanding of how latent HIV-1 infection is established and maintained. We here address the fundamental question of whether all lentiviruses actually possess a similar capacity to establish latent infections or whether there are differences between the lentiviral lineages driving differential latency establishment that could be exploited to develop improved latency reversal agents. Research investigating the viral RNA/DNA ratio in HIV-1 and HIV-2 patients could suggest that HIV-2 indeed has a much higher propensity to establish latent infections, a trait that we found, at least in part, to be attributable to the HIV-2 Nef protein. Reported Nef-mediated effects on host cell activation thus also affect latency establishment, and HIV-1 vectors that carry different lentiviral nef genes should become key tools to develop a better understanding of the biomolecular basis of HIV-1 latency establishment.
Collapse
|
6
|
Proulx J, Borgmann K, Park IW. Post-translational modifications inducing proteasomal degradation to counter HIV-1 infection. Virus Res 2020; 289:198142. [PMID: 32882242 DOI: 10.1016/j.virusres.2020.198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) are integral to regulating a wide variety of cellular processes in eukaryotic cells, such as regulation of protein stability, alteration of celluar location, protein activity modulation, and regulation of protein interactions. HIV-1, like other eukaryotic viruses, and its infected host exploit the proteasomal degradation system for their respective proliferation and survival, using various PTMs, including but not limited to ubiquitination, SUMOylation, NEDDylation, interferon-stimulated gene (ISG)ylation. Essentially all viral proteins within the virions -- and in the HIV-1-infected cells -- interact with their cellular counterparts for this degradation, utilizing ubiquitin (Ub), and the Ub-like (Ubl) modifiers less frequently, to eliminate the involved proteins throughout the virus life cycle, from the entry step to release of the assembled virus particles. Such interplay is pivotal for, on the one hand, the cell to restrict proliferation of the infecting virus, and on the other, for molecular counteraction by the virus to overcome this cellular protein-imposed restriction. Recent reports indicate that not only viral/cellular proteins but also viral/viral protein interactions play vital roles in regulating viral protein stability. We hence give an overview of the molecular processes of PTMs involved in proteasomal degradation of the viral and cellular proteins, and the viral/viral and viral/cellular protein interplay in restriction and competition for HIV-1 vs. host cell survival. Insights in this realm could open new avenues for developing therapeutics against HIV-1 via targeting specific steps of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - In-Woo Park
- Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
7
|
Lehmann MH, Lehmann JM, Erfle V. Nef-induced CCL2 Expression Contributes to HIV/SIV Brain Invasion and Neuronal Dysfunction. Front Immunol 2019; 10:2447. [PMID: 31681324 PMCID: PMC6803470 DOI: 10.3389/fimmu.2019.02447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
C-C motif chemokine ligand 2 (CCL2) is a chemoattractant for leukocytes including monocytes, T cells, and natural killer cells and it plays an important role in maintaining the integrity and function of the brain. However, there is accumulating evidence that many neurological diseases are attributable to a dysregulation of CCL2 expression. Acquired immune deficiency syndrome (AIDS) encephalopathy is a severe and frequent complication in individuals infected with the human immunodeficiency virus (HIV) or the simian immunodeficiency virus (SIV). The HIV and SIV Nef protein, a progression factor in AIDS pathology, can be transferred by microvesicles including exosomes and tunneling nanotubes (TNT) within the host even to uninfected cells, and Nef can induce CCL2 expression. This review focuses on findings which collectively add new insights on how Nef-induced CCL2 expression contributes to neurotropism and neurovirulence of HIV and SIV and elucidates why adjuvant targeting of CCL2 could be a therapeutic option for HIV-infected persons.
Collapse
Affiliation(s)
- Michael H Lehmann
- Institute of Virology, Technische Universität München, Munich, Germany.,Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonas M Lehmann
- Department of Informatics, Technische Universität München, Munich, Germany
| | - Volker Erfle
- Institute of Virology, Technische Universität München, Munich, Germany
| |
Collapse
|
8
|
Rojas VK, Park IW. Role of the Ubiquitin Proteasome System (UPS) in the HIV-1 Life Cycle. Int J Mol Sci 2019; 20:ijms20122984. [PMID: 31248071 PMCID: PMC6628307 DOI: 10.3390/ijms20122984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023] Open
Abstract
Given that the ubiquitin proteasome system (UPS) is the major protein degradation process in the regulation of a wide variety of cellular processes in eukaryotic cells, including alteration of cellular location, modulation of protein activity, and regulation of protein interaction, it is reasonable to suggest that the infecting HIV-1 and the invaded hosts exploit the UPS in a contest for survival and proliferation. However, to date, regulation of the HIV-1 life cycle has been mainly explained by the stage-specific expression of HIV-1 viral genes, not by elimination processes of the synthesized proteins after completion of their duties in the infected cells, which is also quintessential for understanding the molecular processes of the virus life cycle and thereby HIV-1 pathogenesis. In fact, several previous publications have indicated that the UPS plays a critical role in the regulation of the proteasomal degradation of viral and cellular counterparts at every step of the HIV-1 life cycle, from the virus entry to release of the assembled virus particles, which is integral for the regulation of survival and proliferation of the infecting HIV-1 and to replication restriction of the invading virus in the host. However, it is unknown whether and how these individual events taking place at different stages of the HIV-1 life cycle are orchestrated as an overall strategy to overcome the restrictions conferred by the host cells. Thus, in this review, we overview the interplay between HIV-1 viral and cellular proteins for restrictions/competitions for proliferation of the virus in the infected cell, which could open a new avenue for the development of therapeutics against HIV-1 via targeting a specific step of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Vivian K Rojas
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| | - In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
9
|
Goodsell DS, Jewett A, Olson AJ, Forli S. Integrative modeling of the HIV-1 ribonucleoprotein complex. PLoS Comput Biol 2019; 15:e1007150. [PMID: 31194731 PMCID: PMC6592547 DOI: 10.1371/journal.pcbi.1007150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/25/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
A coarse-grain computational method integrates biophysical and structural data to generate models of HIV-1 genomic RNA, nucleocapsid and integrase condensed into a mature ribonucleoprotein complex. Several hypotheses for the initial structure of the genomic RNA and oligomeric state of integrase are tested. In these models, integrase interaction captures features of the relative distribution of gRNA in the immature virion and increases the size of the RNP globule, and exclusion of nucleocapsid from regions with RNA secondary structure drives an asymmetric placement of the dimerized 5’UTR at the surface of the RNP globule. The genome of HIV-1 is composed of two strands of RNA that are packaged in the mature virion as a condensed ribonucleoprotein complex with nucleocapsid, integrase, and other proteins. We have generated models of the HIV-1 ribonucleoprotein that integrate experimental results from multiple structural and biophysical experiments, exploring several hypotheses about the state of the RNA before condensation, and the role of crosslinking by integrase. The models suggest that the 5’UTR, which shows extensive secondary structure, has a propensity to be placed on the surface of the condensed globule, due to reduced binding of nucleocapsid to double-stranded regions within the 5’UTR. This unexpected localization of the 5’UTR may have consequences for the subsequent structural transitions that occur during the process of reverse transcription.
Collapse
Affiliation(s)
- David S. Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for Integrative Proteomics Research, Rutgers State University, Piscataway, New Jersey, United States of America
- * E-mail:
| | - Andrew Jewett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Arthur J. Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
10
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
11
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
12
|
Luo X, Fan Y, Park IW, He JJ. Exosomes are unlikely involved in intercellular Nef transfer. PLoS One 2015; 10:e0124436. [PMID: 25919665 PMCID: PMC4412529 DOI: 10.1371/journal.pone.0124436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Several recent studies including ours have demonstrated that Nef can be transferred to neighboring cells and alters the function of these cells. However, how the intercellular Nef transfer occurs is in dispute. In the current study, we attempted to address this important issue using several complementary strategies, a panel of exosomal markers, and human CD4+ T lymphocyte cell line Jurkat and a commonly used cell line 293T. First, we showed that Nef was transferred from Nef-expressing or HIV-infected Jurkat to naïve Jurkat and other non-Jurkat cells and that the transfer required the membrane targeting function of Nef and was cell density-dependent. Then, we showed that Nef transfer was cell-cell contact-dependent, as exposure to culture supernatants or exosomes from HIV-infected Jurkat or Nef-expressing Jurkat and 293T led to little Nef detection in the target cells Jurkat. Thirdly, we demonstrated that Nef was only detected to be associated with HIV virions but not with acetylcholinesterase (AChE+) exosomes from HIV-infected Jurkat and not in the exosomes from Nef-expressing Jurkat. In comparison, when it was over-expressed in 293T, Nef was detected in detergent-insoluble AChE+/CD81low/TSG101low exosomes, but not in detergent-soluble AChE-/CD81high/TSG101high exosomes. Lastly, microscopic imaging showed no significant Nef detection in exosomal vesicle-like structures in and out 293T. Taken together, these results show that exosomes are unlikely involved in intercellular Nef transfer. In addition, this study reveals existence of two types of exosomes: AChE+/CD81low/TSG101low exosomes and AChE-/CD81high/TSG101high exosomes.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - Yan Fan
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - In-Woo Park
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - Johnny J. He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
- * E-mail:
| |
Collapse
|
13
|
Saxena R, Gupta S, Singh K, Mitra K, Tripathi AK, Tripathi RK. Proteomic profiling of SupT1 cells reveal modulation of host proteins by HIV-1 Nef variants. PLoS One 2015; 10:e0122994. [PMID: 25874870 PMCID: PMC4395413 DOI: 10.1371/journal.pone.0122994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/26/2015] [Indexed: 01/14/2023] Open
Abstract
Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1) through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01) in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1), VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61) and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein expression in T cells by HIV-1 Nef variants.
Collapse
Affiliation(s)
- Reshu Saxena
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Sudipti Gupta
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Kavita Singh
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Kalyan Mitra
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Anil Kumar Tripathi
- Department of Medicine, King George’s Medical University, Chowk, Lucknow, India
| | - Raj Kamal Tripathi
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
- * E-mail:
| |
Collapse
|
14
|
Gallerano D, Ndlovu P, Makupe I, Focke-Tejkl M, Fauland K, Wollmann E, Puchhammer-Stöckl E, Keller W, Sibanda E, Valenta R. Comparison of the specificities of IgG, IgG-subclass, IgA and IgM reactivities in African and European HIV-infected individuals with an HIV-1 clade C proteome-based array. PLoS One 2015; 10:e0117204. [PMID: 25658330 PMCID: PMC4319756 DOI: 10.1371/journal.pone.0117204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/20/2014] [Indexed: 02/05/2023] Open
Abstract
A comprehensive set of recombinant proteins and peptides of the proteome of HIV-1 clade C was prepared and purified and used to measure IgG, IgG-subclass, IgA and IgM responses in HIV-infected patients from Sub-Saharan Africa, where clade C is predominant. As a comparison group, HIV-infected patients from Europe were tested. African and European patients showed an almost identical antibody reactivity profile in terms of epitope specificity and involvement of IgG, IgG subclass, IgA and IgM responses. A V3-peptide of gp120 was identified as major epitope recognized by IgG1>IgG2 = IgG4>IgG3, IgA>IgM antibodies and a C-terminal peptide represented another major peptide epitope for the four IgG subclasses. By contrast, gp41-derived-peptides were mainly recognized by IgG1 but not by the other IgG subclasses, IgA or IgM. Among the non-surface proteins, protease, reverse transcriptase+RNAseH, integrase, as well as the capsid and matrix proteins were the most frequently and strongly recognized antigens which showed broad IgG subclass and IgA reactivity. Specificities and magnitudes of antibody responses in African patients were stable during disease and antiretroviral treatment, and persisted despite severe T cell loss. Using a comprehensive panel of gp120, gp41 peptides and recombinant non-surface proteins of HIV-1 clade C we found an almost identical antibody recognition profile in African and European patients regarding epitopes and involved IgG-sublass, IgA- and IgM-responses. Immune recognition of gp120 peptides and non-surface proteins involved all four IgG subclasses and was indicative of a mixed Th1/Th2 immune response. The HIV-1 clade C proteome-based test allowed diagnosis and monitoring of antibody responses in the course of HIV-infections and assessment of isotype and subclass responses.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Kerstin Fauland
- Institute of Molecular Biosciences—Structural Biology, Karl Franzens University, Graz, Austria
| | - Eva Wollmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Walter Keller
- Institute of Molecular Biosciences—Structural Biology, Karl Franzens University, Graz, Austria
| | - Elopy Sibanda
- Asthma, Allergy and Immune Dysfunction Clinic, Parirenyatwa University Teaching Hospital, Harare, Zimbabwe
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
15
|
Harada K, Takamune N, Shoji S, Misumi S. Clearly different mechanisms of enhancement of short-lived Nef-mediated viral infectivity between SIV and HIV-1. Virol J 2014; 11:222. [PMID: 25519983 PMCID: PMC4310179 DOI: 10.1186/s12985-014-0222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background One of the major functions of Nef is in the enhancement of the infectivity of the human and simian immunodeficiency viruses (HIV and SIV, respectively). However, the detailed mechanism of the enhancement of viral infectivity by Nef remains unclear. Additionally, studies of mechanisms by which Nef enhances the infectivity of SIV are not as intensive as those of HIV-1. Methods We generated short-lived Nef constructed by fusing Nef to a proteasome-mediated protein degradation sequence to characterize the Nef role in viral infectivity. Results The apparent expression level of the short-lived Nef was found to be extremely lower than that of the wild-type Nef. Moreover, the expression level of the short-lived Nef increased with the treatment with a proteasome inhibitor. The infectivity of HIV-1 with the short-lived Nef was significantly lower than that with the wild-type Nef. On the other hand, the short-lived Nef enhanced the infectivity of SIVmac239, an ability observed to be interestingly equivalent to that of the wild-type Nef. The short-lived Nef was not detected in SIVmac239, but the wild-type Nef was, suggesting that the incorporation of Nef into SIVmac239 is not important for the enhancement of SIVmac239 infectivity. Conclusions Altogether, the findings suggest that the mechanisms of infectivity enhancement by Nef are different between HIV-1 and SIVmac239. Lastly, we propose the following hypothesis: even when the expression level of a protein is extremely low, the protein may still be sufficiently functional.
Collapse
Affiliation(s)
- Keisuke Harada
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-ku, Kumamoto, 8620973, Japan.
| | - Nobutoki Takamune
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-ku, Kumamoto, 8620973, Japan. .,Innovative Collaboration Organization, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 8608555, Japan.
| | - Shozo Shoji
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-ku, Kumamoto, 8620973, Japan.
| | - Shogo Misumi
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University, 5-1Oe-Honmachi, Chuo-ku, Kumamoto, 8620973, Japan.
| |
Collapse
|
16
|
Johnson GT, Goodsell DS, Autin L, Forli S, Sanner MF, Olson AJ. 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discuss 2014; 169:23-44. [PMID: 25253262 PMCID: PMC4569901 DOI: 10.1039/c4fd00017j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology.
Collapse
|
17
|
Basmaciogullari S, Pizzato M. The activity of Nef on HIV-1 infectivity. Front Microbiol 2014; 5:232. [PMID: 24904546 PMCID: PMC4033043 DOI: 10.3389/fmicb.2014.00232] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022] Open
Abstract
The replication and pathogenicity of lentiviruses is crucially modulated by “auxiliary proteins” which are expressed in addition to the canonical retroviral ORFs gag, pol, and env. Strategies to inhibit the activity of such proteins are often sought and proposed as possible additions to increase efficacy of the traditional antiretroviral therapy. This requires the acquisition of an in-depth knowledge of the molecular mechanisms underlying their function. The Nef auxiliary protein is expressed uniquely by primate lentiviruses and plays an important role in virus replication in vivo and in the onset of AIDS. Among its several activities Nef enhances the intrinsic infectivity of progeny virions through a mechanism which remains today enigmatic. Here we review the current knowledge surrounding such activity and we discuss its possible role in HIV biology.
Collapse
Affiliation(s)
- Stéphane Basmaciogullari
- Hôpital Necker-Enfants Malades, Sorbonne Paris Cité, Université Paris Descartes Paris, France ; INSERM U845 Paris, France
| | - Massimo Pizzato
- Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
18
|
The Nef-like effect of murine leukemia virus glycosylated gag on HIV-1 infectivity is mediated by its cytoplasmic domain and depends on the AP-2 adaptor complex. J Virol 2014; 88:3443-54. [PMID: 24403584 DOI: 10.1128/jvi.01933-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) Nef enhances the infectivity of progeny virions. However, Nef is dispensable for the production of HIV-1 virions of optimal infectivity if the producer cells are superinfected with certain gammaretroviruses. In the case of the ecotropic Moloney murine leukemia virus (M-MLV), the Nef-like effect is mediated by the glycosylated Gag (glycoGag) protein. We now show that the N-terminal intracellular domain of the type II transmembrane protein glycoGag is responsible for its effect on HIV-1 infectivity. In the context of a fully active minimal M-MLV glycoGag construct, truncations of the cytoplasmic domain led to a near total loss of activity. Furthermore, the cytoplasmic domain of M-MLV glycoGag was fully sufficient to transfer the activity to an unrelated type II transmembrane protein. Although the intracellular region of glycoGag is relatively poorly conserved even among ecotropic and xenotropic MLVs, it was also fully sufficient for the rescue of nef-deficient HIV-1 when derived from a xenotropic virus. A mutagenic analysis showed that only a core region of the intracellular domain that exhibits at least some conservation between murine and feline leukemia viruses is crucial for activity. In particular, a conserved YXXL motif in the center of this core region was critical. In addition, expression of the μ2 subunit of the AP-2 adaptor complex in virus producer cells was essential for activity. We conclude that the ability to enhance HIV-1 infectivity is a conserved property of the MLV glycoGag cytoplasmic domain and involves AP-2-mediated endocytosis. IMPORTANCE The Nef protein of HIV-1 and the entirely unrelated glycosylated Gag (glycoGag) protein of a murine leukemia virus (MLV) similarly enhance the infectiousness of HIV-1 particles by an unknown mechanism. MLV glycoGag is an alternative version of the structural viral Gag protein with an extra upstream region that provides a cytosolic domain and a plasma membrane anchor. We now show for the first time that the cytosolic domain of MLV glycoGag contains all the information needed to enhance HIV-1 infectivity and that this function of the cytosolic domain is conserved despite limited sequence conservation. Within the cytosolic domain, a motif that resembles a cellular sorting signal is critical for activity. Furthermore, the enhancement of HIV-1 infectivity depends on an endocytic cellular protein that is known to interact with such sorting signals. Together, our findings implicate the endocytic machinery in the enhancement of HIV-1 infectivity by MLV glycoGag.
Collapse
|
19
|
Usami Y, Göttlinger H. HIV-1 Nef responsiveness is determined by Env variable regions involved in trimer association and correlates with neutralization sensitivity. Cell Rep 2013; 5:802-12. [PMID: 24209751 DOI: 10.1016/j.celrep.2013.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/19/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022] Open
Abstract
HIV-1 Nef and the unrelated murine leukemia virus glycoGag similarly enhance the infectivity of HIV-1 virions. We now show that the effects of Nef and glycoGag are similarly determined by variable regions of HIV-1 gp120 that control Env trimer association and neutralization sensitivity. Whereas neutralization-sensitive X4-tropic Env proteins conferred high responsiveness to Nef and glycoGag, particles bearing neutralization-resistant R5-tropic Envs were considerably less affected. The profoundly different Nef/glycoGag responsiveness of a neutralization-resistant and a neutralization-sensitive R5-tropic Env could be switched by exchanging their gp120 V1/V2 regions, which also switches their neutralization sensitivity. Within V1/V2, the same determinants governed Nef/glycoGag responsiveness and neutralization sensitivity, indicating that these phenotypes are mechanistically linked. The V1/V2 and V3 regions, which form an apical trimer-association domain, together determined the Nef and glycoGag responsiveness of an X4-tropic Env. Our results suggest that Nef and glycoGag counteract the inactivation of Env spikes with relatively unstable apical trimer-association domains.
Collapse
Affiliation(s)
- Yoshiko Usami
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
20
|
Könnyű B, Sadiq SK, Turányi T, Hírmondó R, Müller B, Kräusslich HG, Coveney PV, Müller V. Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput Biol 2013; 9:e1003103. [PMID: 23754941 PMCID: PMC3675044 DOI: 10.1371/journal.pcbi.1003103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/01/2013] [Indexed: 12/19/2022] Open
Abstract
Proteolytic processing of Gag and Gag-Pol polyproteins by the viral protease (PR) is crucial for the production of infectious HIV-1, and inhibitors of the viral PR are an integral part of current antiretroviral therapy. The process has several layers of complexity (multiple cleavage sites and substrates; multiple enzyme forms; PR auto-processing), which calls for a systems level approach to identify key vulnerabilities and optimal treatment strategies. Here we present the first full reaction kinetics model of proteolytic processing by HIV-1 PR, taking into account all canonical cleavage sites within Gag and Gag-Pol, intermediate products and enzyme forms, enzyme dimerization, the initial auto-cleavage of full-length Gag-Pol as well as self-cleavage of PR. The model allows us to identify the rate limiting step of virion maturation and the parameters with the strongest effect on maturation kinetics. Using the modelling framework, we predict interactions and compensatory potential between individual cleavage rates and drugs, characterize the time course of the process, explain the steep dose response curves associated with PR inhibitors and gain new insights into drug action. While the results of the model are subject to limitations arising from the simplifying assumptions used and from the uncertainties in the parameter estimates, the developed framework provides an extendable open-access platform to incorporate new data and hypotheses in the future.
Collapse
Affiliation(s)
- Balázs Könnyű
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - S. Kashif Sadiq
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Tamás Turányi
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Rita Hírmondó
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Peter V. Coveney
- Centre for Computational Science, Christopher Ingold Laboratories, University College London, London, United Kingdom
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Research Group of Theoretical Biology and Evolutionary Ecology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
21
|
Chandrasekaran P, Buckley M, Moore V, Wang LQ, Kehrl JH, Venkatesan S. HIV-1 Nef impairs heterotrimeric G-protein signaling by targeting Gα(i2) for degradation through ubiquitination. J Biol Chem 2012; 287:41481-98. [PMID: 23071112 DOI: 10.1074/jbc.m112.361782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV Nef protein is an important pathogenic factor that modulates cell surface receptor trafficking and impairs cell motility, presumably by interfering at multiple steps with chemotactic receptor signaling. Here, we report that a dominant effect of Nef is to trigger AIP4 E3 ligase-mediated Gα(i2) ubiquitination, which leads to Gα(i2) endolysosomal sequestration and destruction. The loss of the Gα(i2) subunit was demonstrable in many cell types in the context of gene transfection, HIV infection, or Nef protein transduction. Nef directly interacts with Gα(i2) and ternary complexes containing AIP4, Nef, and Gα(i2) form. A substantial reversal of Gα(i2) loss and a partial recovery of impaired chemotaxis occurred following siRNA knockdown of AIP4 or NEDD4 or by inhibiting dynamin. The N-terminal myristoyl group, (62)EEEE(65) motif, and (72)PXXP(75) motif of Nef are critical for this effect to occur. Nef expression does not affect a Gq(i5) chimera where the five C-terminal residues of Gq are replaced with those of Gα(i2). Lysine at position 296 of Gα(i2) was identified as the critical determinant of Nef-induced degradation. By specifically degrading Gα(i2), Nef directly subverts leukocyte migration and homing. Impaired trafficking and homing of HIV Nef-expressing lymphocytes probably contributes to early immune dysfunction following HIV infection.
Collapse
Affiliation(s)
- Prabha Chandrasekaran
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
22
|
Epitope targeting and viral inoculum are determinants of Nef-mediated immune evasion of HIV-1 from cytotoxic T lymphocytes. Blood 2012; 120:100-11. [PMID: 22613796 DOI: 10.1182/blood-2012-02-409870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The impact of HIV-1 Nef-mediated HLA-I down-regulation on CD8(+) cytotoxic T lymphocytes (CTLs) varies by epitope, but the determining factors have not been elucidated. In the present study, we investigated the impact of Nef on the antiviral efficiency of HIV-1-specific CTLs targeting 17 different epitopes to define properties that determine susceptibility to Nef. The impact of Nef was not correlated with the presenting HLA-I type or functional avidity of CTLs, but instead was related directly to the kinetics of infected cell clearance. Whereas Gag-specific CTLs generally were less susceptible to Nef than those targeting other proteins, this was determined by the ability to eliminate infected cells before de novo synthesis of viral proteins, which was also observed for CTLs targeting a Nef epitope. This very early clearance of infected cells depended on virus inoculum, and the required inoculum varied by epitope. These results suggest that whereas Gag-specific CTLs are more likely to recognize infected cells before Nef-mediated HLA-I down-regulation, this varies depending on the specific epitope and virus inoculum. Reduced susceptibility to Nef therefore may contribute to the overall association of Gag-specific CTL responses to better immune control if a sufficient multiplicity of infection is attained in vivo, but this property is not unique to Gag.
Collapse
|
23
|
Vermeire J, Vanbillemont G, Witkowski W, Verhasselt B. The Nef-infectivity enigma: mechanisms of enhanced lentiviral infection. Curr HIV Res 2012; 9:474-89. [PMID: 22103831 PMCID: PMC3355465 DOI: 10.2174/157016211798842099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022]
Abstract
The Nef protein is an essential factor for lentiviral pathogenesis in humans and other simians. Despite a multitude of functions attributed to this protein, the exact role of Nef in disease progression remains unclear. One of its most intriguing functions is the ability of Nef to enhance the infectivity of viral particles. In this review we will discuss current insights in the mechanism of this well-known, yet poorly understood Nef effect. We will elaborate on effects of Nef, on both virion biogenesis and the early stage of the cellular infection, that might be involved in infectivity enhancement. In addition, we provide an overview of different HIV-1 Nef domains important for optimal infectivity and briefly discuss some possible sources of the frequent discrepancies in the field. Hereby we aim to contribute to a better understanding of this highly conserved and therapeutically attractive Nef function.
Collapse
Affiliation(s)
- Jolien Vermeire
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium
| | | | | | | |
Collapse
|
24
|
Role of HIV-1 Nef protein for virus replication in vitro. Microbes Infect 2009; 12:65-70. [PMID: 19770068 DOI: 10.1016/j.micinf.2009.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022]
Abstract
The Nef protein of primate lentiviruses (simian and human immunodeficiency viruses; SIV/HIVs) appears to be multi-functional and plays a pivotal role in viral persistence and pathogenesis in vivo. Of its numerous functions reported to date, the ability to enhance virion infectivity in indicator cell lines and to augment viral replication in peripheral blood mononuclear cells (PBMCs) and lymphocytes (PBLs) is very well conserved among various SIV/HIVs. This review summarizes and organizes current knowledge of HIV-1 Nef with respect to this particularly virological activity for understanding the basis of its in vivo function.
Collapse
|
25
|
Jesus da Costa L, Lopes Dos Santos A, Mandic R, Shaw K, Santana de Aguiar R, Tanuri A, Luciw PA, Peterlin BM. Interactions between SIVNef, SIVGagPol and Alix correlate with viral replication and progression to AIDS in rhesus macaques. Virology 2009; 394:47-56. [PMID: 19748111 DOI: 10.1016/j.virol.2009.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 05/26/2009] [Accepted: 08/12/2009] [Indexed: 11/25/2022]
Abstract
Infection with Simian Immunodeficiency Virus (SIV) leads to high viral loads and progression to Simian AIDS (SAIDS) in rhesus macaques. The viral accessory protein Nef is required for this phenotype in monkeys as well as in HIV-infected humans. Previously, we determined that HIVNef binds HIVGagPol and Alix for optimal viral replication in cells. In this study, we demonstrated that these interactions could correlate with high viral loads leading to SAIDS in the infected host. By infecting rhesus macaques with a mutant SIV(mac239), where sequences in the nef gene that are required for these interactions were mutated, we observed robust viral replication and disease in two out of four monkeys, where they reverted to the wild type genotype and phenotype. These two rhesus macaques also died of SAIDS. Two other monkeys did not progress to disease and continued to harbor mutant nef sequences. We conclude that interactions between Nef, GagPol and Alix contribute to optimal viral replication and progression to disease in the infected host.
Collapse
|
26
|
Abstract
The HIV genome encodes several accessory proteins (Vif, Vpr, Vpx, Vpu, and Nef) unique to primate lentiviruses, in addition to the structural (Gag, Pol, and Env) and regulatory (Tat and Rev) proteins. Early studies showed that deletion of accessory proteins has a small or no effect on virus replication in cell cultures. However, recent studies have clearly demonstrated that these proteins are essential for efficient viral replication, dissemination, pathogenicity, and disease progression. Here, we summarize the current knowledge of HIV accessory proteins and their cellular targets, and discuss the functional roles of these biologically unique and important viral proteins for virus replication in vitro and in vivo.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto, Tokushima 770-8503, Japan
| | | |
Collapse
|
27
|
Leiherer A, Ludwig C, Wagner R. Influence of extended mutations of the HIV-1 transframe protein p6 on Nef-dependent viral replication and infectivity in vitro. Virology 2009; 387:200-10. [PMID: 19269660 DOI: 10.1016/j.virol.2009.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/06/2009] [Accepted: 01/29/2009] [Indexed: 11/15/2022]
Abstract
The HIV-1 transframe protein p6 known to modulate HIV-1 protease activation has been suggested to interact with the viral pathogenicity factor Nef. However, a potential interaction site in p6 has not been mapped so far. To evaluate effects of p6 modification on viral replication in light of Nef function, clustered substitutions were introduced into the central p6 region of the infectious provirus NL4-3 and virus growth and composition of the various mutants was analyzed in different cell cultures in the presence or absence of Nef. Whereas clustered p6 substitutions did neither affect particle incorporation of Nef, nor precursor maturation or viral infectivity, a simultaneous substitution of 40 of the total 56 p6 residues significantly diminished viral infectivity and replication in a Nef-independent manner. Furthermore, this extended modification was not capable of rescuing the negative effects of a transdominant Nef mutant on particle production suggesting that the proposed target for Nef interaction in Gag-Pol is located outside the modified p6 region. In sum these data strongly argue against a functional connection of the central p6 region and Nef during viral life cycle.
Collapse
Affiliation(s)
- Andreas Leiherer
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Straubeta Allee 11, D-93053 Regensburg, Germany
| | | | | |
Collapse
|
28
|
Timing and evolution of the most recent common ancestor of the Korean clade HIV subtype B based on nef and vif sequences. J Microbiol 2009; 47:85-90. [PMID: 19229495 DOI: 10.1007/s12275-008-0240-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/05/2008] [Indexed: 01/26/2023]
Abstract
Molecular phylogenetic studies of the HIV-1 isolated from Koreans have suggested the presence of the so-called "Korean clade", which can be defined as a cluster free of foreign isolates. The Korean clade accounts for more than 60% of Korean isolates and exerts characteristic amino acid sequences. Thus, it is merited to estimate when this Korean clade first emerged in order to understand the evolutionary pattern of the Korean clade. We analyzed and reconstructed the most recent common ancestor (MRCA) sequences from nef (n=229) and vif (n=179) Korean clade sequences. Linear regression analyses of sequence divergence estimates were plotted against sampling years to infer the year in which there was zero divergence from the MRCA sequences. MRCA sequences suggested the Korean clade was first emerged around 1984, before the first detection of HIV-1 in Korea in 1985. Further studies on synonymous and nonsynonymous substitution rates suggested positive selection event for the Korean clade, while other subtype B had undergone negative to neutral evolution.
Collapse
|
29
|
Carlson LA, Briggs JAG, Glass B, Riches JD, Simon MN, Johnson MC, Müller B, Grünewald K, Kräusslich HG. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 2009; 4:592-9. [PMID: 19064259 DOI: 10.1016/j.chom.2008.10.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/05/2008] [Accepted: 10/02/2008] [Indexed: 01/03/2023]
Abstract
Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release--akin to its role in vesicle formation--and is not restricted to severing the thin membrane tether.
Collapse
|
30
|
Arhel NJ, Kirchhoff F. Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr Top Microbiol Immunol 2009; 339:147-75. [PMID: 20012528 DOI: 10.1007/978-3-642-02175-6_8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The HIV and SIV Nef accessory proteins are potent enhancers of viral persistence and accelerate progression to AIDS in HIV-1-infected patients and non-human primate models. Although relatively small (27-35 kD), Nef can interact with a multitude of cellular factors and induce complex changes in trafficking, signal transduction, and gene expression that together converge to promote viral replication and immune evasion. In particular, Nef recruits several immunologically relevant cellular receptors to the endocytic machinery to reduce the recognition and elimination of virally infected cells by the host immune system, while simultaneously interacting with various kinases to promote T cell activation and viral replication. This review provides an overview on selected Nef interactions with host cell proteins, and discusses their possible relevance for viral spread and pathogenicity.
Collapse
Affiliation(s)
- Nathalie J Arhel
- Institute of Virology, Universitätsklinikum Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
31
|
Laguette N, Benichou S, Basmaciogullari S. Human immunodeficiency virus type 1 Nef incorporation into virions does not increase infectivity. J Virol 2009; 83:1093-104. [PMID: 18987145 PMCID: PMC2612363 DOI: 10.1128/jvi.01633-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/26/2008] [Indexed: 11/20/2022] Open
Abstract
The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
32
|
Dafonseca S, Coric P, Gay B, Hong SS, Bouaziz S, Boulanger P. The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB) is counteracted by Vif and requires its Zinc-binding domain. Virol J 2008; 5:162. [PMID: 19105849 PMCID: PMC2628355 DOI: 10.1186/1743-422x-5-162] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/23/2008] [Indexed: 01/02/2023] Open
Abstract
Background DSB, the 3-O-(3',3'dimethylsuccinyl) derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag), which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9), DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP). In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium. Results Wild-type Vif (Vifwt) restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD) formed by the four H108C114C133H139 coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone. Conclusion The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway.
Collapse
Affiliation(s)
- Sandrina Dafonseca
- Université de Lyon I-Claude Bernard, Faculté de Médecine Laënnec, Laboratoire de Virologie & Pathologie Humaine, CNRS FRE-3011, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
33
|
Nef can enhance the infectivity of receptor-pseudotyped human immunodeficiency virus type 1 particles. J Virol 2008; 82:10811-9. [PMID: 18715908 DOI: 10.1128/jvi.01150-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.
Collapse
|
34
|
Qi M, Aiken C. Nef enhances HIV-1 infectivity via association with the virus assembly complex. Virology 2008; 373:287-97. [PMID: 18191978 DOI: 10.1016/j.virol.2007.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/12/2007] [Accepted: 12/01/2007] [Indexed: 11/24/2022]
Abstract
The HIV-1 accessory protein Nef enhances virus infectivity by facilitating an early post-entry step of infection. Nef acts in the virus producer cell, leading to a beneficial modification to HIV-1 particles. Nef itself is incorporated into HIV-1 particles, where it is cleaved by the viral protease during virion maturation. To probe the role of virion-associated Nef in HIV-1 infection, we generated a fusion protein consisting of the host protein cyclophilin A (CypA) linked to the amino terminus of Nef. The resulting CypA-Nef protein enhanced the infectivity of Nef-defective HIV-1 particles and was specifically incorporated into the virions via association with Gag during particle assembly. Pharmacologic or genetic inhibition of CypA-Nef binding to Gag prevented incorporation of CypA-Nef into virions and inhibited infectivity enhancement. Our results indicate that infectivity enhancement by Nef requires its association with a component of the assembling HIV-1 particle.
Collapse
Affiliation(s)
- Mingli Qi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232-2363, USA
| | | |
Collapse
|
35
|
Stangler T, Tran T, Hoffmann S, Schmidt H, Jonas E, Willbold D. Competitive displacement of full-length HIV-1 Nef from the Hck SH3 domain by a high-affinity artificial peptide. Biol Chem 2007; 388:611-5. [PMID: 17552908 DOI: 10.1515/bc.2007.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We studied the interaction of the artificial 12-aa proline-rich peptide PD1 with the SH3 domain of the hematopoietic cell kinase Hck and the peptide's potency in competitively displacing HIV-1 Nef from the Hck SH3 domain. PD1 was obtained from a phage display screen and exhibits exceptional affinity for the Hck SH3 domain (K(d)=0.23 microM). Competition experiments using NMR spectroscopy demonstrate that the peptide even displaces Nef from Hck SH3 and allow for estimation of the Nef-Hck SH3 dissociation constant (K(d)=0.44 microM), the strongest SH3 ligand interaction known so far. Consequences of this study for novel antiviral concepts are discussed.
Collapse
Affiliation(s)
- Thomas Stangler
- Institut für Physikalische Biologie and BMFZ, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Sacha JB, Chung C, Reed J, Jonas AK, Bean AT, Spencer SP, Lee W, Vojnov L, Rudersdorf R, Friedrich TC, Wilson NA, Lifson JD, Watkins DI. Pol-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells prior to Nef-mediated major histocompatibility complex class I downregulation. J Virol 2007; 81:11703-12. [PMID: 17699580 PMCID: PMC2168778 DOI: 10.1128/jvi.00926-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells.
Collapse
Affiliation(s)
- Jonah B Sacha
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lech P, Somia NV. Isolation and characterization of human cells resistant to retrovirus infection. Retrovirology 2007; 4:45. [PMID: 17608937 PMCID: PMC1925114 DOI: 10.1186/1742-4690-4-45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 07/03/2007] [Indexed: 11/25/2022] Open
Abstract
Background Identification of host cell proteins required for HIV-1 infection will add to our knowledge of the life cycle of HIV-1 and in the development of therapeutics to combat viral infection. We and other investigators have mutagenized rodent cells and isolated mutant cell lines resistant to retrovirus infection. Since there are differences in the efficiency of single round infection with VSVG pseudotyped HIV-1 on cells of different species, we conducted a genetic screen to isolate human cells resistant to HIV-1 infection. We chemically mutagenized human HeLa cells and validated our ability to isolate mutants at test diploid loci. We then executed a screen to isolate HeLa cell mutants resistant to infection by an HIV-1 vector coding for a toxic gene product. Results We isolated two mutant cell lines that exhibit up to 10-fold resistance to infection by HIV-1 vectors. We have verified that the cells are resistant to infection and not defective in gene expression. We have confirmed that the resistance phenotype is not due to an entry defect. Fusion experiments between mutant and wild-type cells have established that the mutations conferring resistance in the two clones are recessive. We have also determined the nature of the block in the two mutants. One clone exhibits a block at or before reverse transcription of viral RNA and the second clone has a retarded kinetic of viral DNA synthesis and a block at nuclear import of the preintegration complex. Conclusion Human cell mutants can be isolated that are resistant to infection by HIV-1. The mutants are genetically recessive and identify two points where host cell factors can be targeted to block HIV-1 infection.
Collapse
Affiliation(s)
- Patrycja Lech
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nikunj V Somia
- Dept. of Genetics, Cell Biology and Development and the Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
38
|
Rakotobe D, Tardy JC, André P, Hong SS, Darlix JL, Boulanger P. Human Polycomb group EED protein negatively affects HIV-1 assembly and release. Retrovirology 2007; 4:37. [PMID: 17547741 PMCID: PMC1899515 DOI: 10.1186/1742-4690-4-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 06/04/2007] [Indexed: 11/30/2022] Open
Abstract
Background The human EED protein, a member of the superfamily of Polycomb group (PcG) proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA), the integrase enzyme (IN) and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells. Results During the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm. Conclusion Our data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic RNA packaging and virus assembly, resulting possibly from a mistrafficking of viral genomic RNA (gRNA) or gRNA/Gag complex. Nef reversed the EED negative effect on virus production, a function which required the integrity of the Nef N-terminal domain, but not its N-myristoyl group. The antagonistic effect of Nef correlated with a cellular redistribution of both EED and Nef.
Collapse
Affiliation(s)
- Dina Rakotobe
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Jean-Claude Tardy
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
- Laboratoire de Virologie Médicale-Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 103, Grand'Rue de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | - Patrice André
- Laboratoire de Virologie Médicale-Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 103, Grand'Rue de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | - Saw See Hong
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Jean-Luc Darlix
- LaboRétro, Unité de Virologie Humaine, INSERM U-758 & IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Pierre Boulanger
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
- Laboratoire de Virologie Médicale, Hospices Civils de Lyon, CBPE, 59, Boulevard Pinel, 69677 Bron Cedex, France
| |
Collapse
|
39
|
Pizzato M, Helander A, Popova E, Calistri A, Zamborlini A, Palù G, Göttlinger HG. Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. Proc Natl Acad Sci U S A 2007; 104:6812-7. [PMID: 17412836 PMCID: PMC1871867 DOI: 10.1073/pnas.0607622104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nef is a virulence factor of HIV-1 and other primate lentiviruses that is crucial for rapid progression to AIDS. In cell culture, Nef increases the infectivity of HIV-1 progeny virions by an unknown mechanism. We now show that dynamin 2 (Dyn2), a key regulator of vesicular trafficking, is a binding partner of Nef that is required for its ability to increase viral infectivity. Dominant-negative Dyn2 or the depletion of Dyn2 by small interfering RNA potently inhibited the effect of Nef on HIV-1 infectivity. Furthermore, in Dyn2-depleted cells, this function of Nef could be rescued by ectopically expressed Dyn2 but not by Dyn1, a closely related isoform that does not bind Nef. The infectivity enhancement by Nef also depended on clathrin, because it was diminished in clathrin-depleted cells and profoundly inhibited in cells expressing the clathrin-binding domain of AP180, which blocks clathrin-coated pit formation but not clathrin-independent endocytosis. Together, these findings imply that the infectivity enhancement activity of Nef depends on Dyn2- and clathrin-mediated membrane invagination events.
Collapse
Affiliation(s)
- Massimo Pizzato
- *Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padua, I-35121 Padua, Italy; and
- Department of Infectious Diseases, Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
- To whom correspondence may be addressed. E-mail: or
| | - Anna Helander
- *Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Elena Popova
- *Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Arianna Calistri
- *Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padua, I-35121 Padua, Italy; and
| | - Alessia Zamborlini
- *Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padua, I-35121 Padua, Italy; and
| | - Giorgio Palù
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padua, I-35121 Padua, Italy; and
| | - Heinrich G. Göttlinger
- *Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
40
|
Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way. BMC Biotechnol 2006; 6:52. [PMID: 17192195 PMCID: PMC1769370 DOI: 10.1186/1472-6750-6-52] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/27/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of cell lines releasing fluorescent viral particles can significantly support a variety of investigations, including the study of virus-cell interaction and the screening of antiviral compounds. Regarding HIV-1, the recovery of such biologic reagents represents a very hard challenge due to the intrinsic cytotoxicity of many HIV-1 products. We sought to overcome such a limitation by using a cell line releasing HIV-1 particles in an inducible way, and by exploiting the ability of a HIV-1 Nef mutant to be incorporated in virions at quite high levels. RESULTS Here, we report the isolation and characterization of a HIV-1 packaging cell line, termed 18-4s, able to release valuable amounts of fluorescent HIV-1 based Virus-Like Particles (VLPs) in an inducible way. 18-4s cells were recovered by constitutively expressing the HIV-1 NefG3C mutant fused with the enhanced-green fluorescent protein (NefG3C-GFP) in a previously isolated inducible HIV-1 packaging cell line. The G3C mutation creates a palmitoylation site which results in NefG3C-GFP incorporation into virions greatly exceeding that of the wild type counterpart. Upon induction of 18-4s cells with ponasterone A and sodium butyrate, up to 4 mug/ml of VLPs, which had incorporated about 150 molecules of NefG3C-GFP per viral particle, were released into the culture supernatant. Due to their intrinsic strong fluorescence, the 18-4s VLPs were easily detectable by a novel cytofluorometric-based assay developed here. The treatment of target cells with fluorescent 18-4 VLPs pseudotyped with different glycoprotein receptors resulted in these becoming fluorescent as early as two hours post-challenge. CONCLUSION We created a stable cell line releasing fluorescent HIV-1 based VLPs upon induction useful for several applications including the study of virus-cell interactions and the screening of antiviral compounds.
Collapse
|
41
|
Qi M, Aiken C. Selective restriction of Nef-defective human immunodeficiency virus type 1 by a proteasome-dependent mechanism. J Virol 2006; 81:1534-6. [PMID: 17108041 PMCID: PMC1797497 DOI: 10.1128/jvi.02099-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) infectivity by facilitating an early postentry step in the virus life cycle. We report here that the addition of MG132 or lactacystin, each a specific inhibitor of cellular proteasome activity, preferentially enhances cellular permissiveness to infection by Nef-defective versus wild-type HIV-1. Pseudotyping by the glycoprotein of vesicular stomatitis virus rendered Nef-defective HIV-1 particles minimally responsive to the enhancing effects of proteasome inhibitors. These results suggest that Nef enhances the infectivity of HIV-1 particles by reducing their susceptibility to proteasomal degradation in target cells.
Collapse
Affiliation(s)
- Mingli Qi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | |
Collapse
|
42
|
Quaranta MG, Mattioli B, Giordani L, Viora M. The immunoregulatory effects of HIV‐1 Nef on dendritic cells and the pathogenesis of AIDS. FASEB J 2006; 20:2198-208. [PMID: 17077296 DOI: 10.1096/fj.06-6260rev] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DC) play a crucial role in the generation and regulation of immunity, and their interaction with HIV is relevant in the pathogenesis of AIDS favoring both the initial establishment and spread of the infection and the development of antiviral immunity. HIV-1 Nef is an essential factor for efficient viral replication and pathogenesis, and several studies have been addressed to assess the possible influence of endogenous or exogenous Nef on DC biology. Our findings and other reported data described in this review demonstrate that Nef subverts DC biology interfering with phenotypical, morphological, and functional DC developmental programs, thus representing a viral tool underlying AIDS pathogenesis. This review provides an overview on the mechanism by which Nef, hijacking DC functional activity, may favor both the replication of HIV-1 and the escape from immune surveillance. Overall, the findings described here may contribute to the understanding of Nef function, mechanism of action, and cellular partners. Further elucidation of genes induced through Nef signaling in DC could reveal pathways used by DC to drive HIV spread and will be critical to identify therapeutic strategies to bias the DC system toward activation of antiviral immunity instead of facilitating virus dissemination.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
43
|
Costa LJ, Chen N, Lopes A, Aguiar RS, Tanuri A, Plemenitas A, Peterlin BM. Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology 2006; 3:33. [PMID: 16764724 PMCID: PMC1526754 DOI: 10.1186/1742-4690-3-33] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 06/09/2006] [Indexed: 12/13/2022] Open
Abstract
Background Nef is an accessory protein of primate lentiviruses, HIV-1, HIV-2 and SIV. Besides removing CD4 and MHC class I from the surface and activating cellular signaling cascades, Nef also binds GagPol during late stages of the viral replicative cycle. In this report, we investigated further the ability of Nef to facilitate the replication of HIV-1. Results To this end, first the release of new viral particles was much lower in the absence of Nef in a T cell line. Since the same results were obtained in the absence of the viral envelope using pseudo-typed viruses, this phenomenon was independent of CD4 and enhanced infectivity. Next, we found that Nef not only possesses a consensus motif for but also binds AIP1 in vitro and in vivo. AIP1 is the critical intermediate in the formation of multivesicular bodies (MVBs), which play an important role in the budding and release of viruses from infected cells. Indeed, Nef proliferated MVBs in cells, but only when its AIP1-binding site was intact. Finally, these functions of Nef were reproduced in primary macrophages, where the wild type but not mutant Nef proteins led to increased release of new viral particles from infected cells. Conclusion We conclude that by binding GagPol and AIP1, Nef not only proliferates MVBs but also contributes to the egress of viral particles from infected cells.
Collapse
Affiliation(s)
- Luciana J Costa
- Molecular Virology Laboratory, Dep. of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nan Chen
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California at San Francisco, San Francisco, CA, USA
| | - Adriana Lopes
- Molecular Virology Laboratory, Dep. of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato S Aguiar
- Molecular Virology Laboratory, Dep. of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Molecular Virology Laboratory, Dep. of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Plemenitas
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - B Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Roeth JF, Collins KL. Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol Mol Biol Rev 2006; 70:548-63. [PMID: 16760313 PMCID: PMC1489538 DOI: 10.1128/mmbr.00042-05] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Nef protein of primate lentiviruses is a unique protein that has evolved in several ways to manipulate the biology of an infected cell to support viral replication, immune evasion, pathogenesis, and viral spread. Nef is a small (25- to 34-kDa), myristoylated protein that binds to a collection of cellular factors and acts as an adaptor to generate novel protein interactions to accomplish specific functions. Of the many biological activities attributed to Nef, the reduction of surface levels of the viral receptor (CD4) and antigen-presenting molecules (major histocompatibility complex class I) has been intensely examined; recent evidence demonstrates that Nef utilizes multiple, distinct pathways to affect these proteins. To accomplish this, Nef promotes the formation of multiprotein complexes, recruiting host adaptor proteins to commandeer intracellular vesicular trafficking routes. The altered trafficking of several other host molecules has also been reported, and an emerging theory suggests that Nef generates pleiotrophic effects in the secretory and endocytic pathways that reprogram intracellular protein trafficking and may ultimately provide an efficient platform for viral assembly. This review critically discusses some of the major findings regarding the impact of human immunodeficiency virus type 1 Nef on host protein transport and addresses some emerging directions in this area of human immunodeficiency virus biology.
Collapse
Affiliation(s)
- Jeremiah F Roeth
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
45
|
Fackler OT, Moris A, Tibroni N, Giese SI, Glass B, Schwartz O, Kräusslich HG. Functional characterization of HIV-1 Nef mutants in the context of viral infection. Virology 2006; 351:322-39. [PMID: 16684552 DOI: 10.1016/j.virol.2006.03.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 12/19/2005] [Accepted: 03/28/2006] [Indexed: 11/27/2022]
Abstract
Nef is an important pathogenesis factor of HIV-1 with a multitude of effector functions. We have designed a broad panel of isogenic viruses encoding defined mutants of HIV-1(SF2) Nef and analyzed their biological activity in the context of productive HIV-1 infection. Analysis of subcellular localization, virion incorporation, downregulation of cell surface CD4 and MHC-I, enhancement of virion infectivity and facilitation of HIV replication in primary human T lymphocytes mostly confirmed the mapping of Nef determinants previously reported upon isolated expression of Nef. However, reduced activity in downregulation of CD4, infectivity enhancement and virion incorporation of a Nef variant (Delta12-39) lacking an amphipatic helix required for binding of a cellular kinase complex and the association of Nef with MHC-I/AP-1 suggested a novel role of this N-terminal motif. The SH3 binding motif of Nef was partially required for infectivity enhancement and replication but not for receptor downmodulation. In contrast to previous results obtained using other Nef alleles, non-myristoylated SF2-Nef was only partly defective when expressed during HIV infection and was present in HIV-1 particles. Importantly, incorporation of Nef into HIV-1 virions was not required for any of the tested Nef activities. Altogether, this study provides a broad characterization and mapping of multiple Nef activities in HIV-infected cells. The results emphasize that multiple activities govern Nef's effects on HIV replication and argue against a role of virion incorporation for Nef's activity as pathogenicity factor.
Collapse
Affiliation(s)
- Oliver T Fackler
- Department of Virology, University of Heidelberg, INF 324, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Saeed MF, Kolokoltsov AA, Davey RA. Novel, rapid assay for measuring entry of diverse enveloped viruses, including HIV and rabies. J Virol Methods 2006; 135:143-50. [PMID: 16584792 DOI: 10.1016/j.jviromet.2006.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/10/2006] [Accepted: 02/20/2006] [Indexed: 11/29/2022]
Abstract
Entry is the first and essential step in virus replication and is a target for therapeutic intervention. However, current knowledge on entry mechanism for the majority of viruses is poor, partly due to lack of a simple, sensitive and accurate entry assay that can be applied to diverse viruses. To overcome this obstacle, a novel contents-mixing-based virus entry assay is described that can be broadly applied to many enveloped viruses. By fusing firefly luciferase to the HIV Nef protein, luciferase was directly packaged into HIV particles pseudotyped with envelope proteins of diverse viruses including HIV, rabies and others. Upon cell entry, the luciferase-fusion protein was released into the cell cytoplasm, reacted with its substrates and was detected by light emission. The assay was validated by demonstrating its versatility in measuring virus entry. Entry was detected much more rapidly (in real-time) with higher sensitivity (a multiplicity of infection <0.1 gives a robust signal) and lower background (signal/noise ration >1000) than other comparable assays. In addition to its utility in studying virus entry mechanisms, the assay will aid in screening potential entry/fusion inhibitors and in diagnosis of virus infections.
Collapse
Affiliation(s)
- Mohammad F Saeed
- Department of Microbiology and Immunology, and Western Regional Center for Excellence in Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
47
|
Dennis CA, Baron A, Grossmann JG, Mazaleyrat S, Harris M, Jaeger J. Co-translational myristoylation alters the quaternary structure of HIV-1 Nef in solution. Proteins 2006; 60:658-69. [PMID: 16021629 DOI: 10.1002/prot.20544] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have studied the solution properties of Nef, a 24-kDa cotranslationally myristoylated protein produced by HIV-1 and other primate lentiviruses. Nef is found in the cytosol and also in association with cytoplasmic membranes, the latter, mediated in part by the myristoyl group attached to the N-terminal glycine. Recombinant Nef was coexpressed in Escherichia coli in tandem with N-myristoyl-transferase and is fully myristoylated. Analysis by circular dichroism showed the myristoylated form to contain a greater alpha-helical content than the nonmyristoylated form. Analysis of modified and unmodified Nef in solution using small angle X-ray scattering, dynamic laser light scattering and analytical ultracentrifugation consistently showed differences in the oligomeric states of the two forms of Nef. Myristoylated Nef is predominantly monomeric and small oligomers which are also present, can be converted to the monomeric form under reducing conditions. By contrast, the nonmyristoylated form exists as a stable hexadecamer in solution which disassociates into tetramers upon addition of reducing agents. Shape reconstructions from small angle scattering curves of nonmyristoylated Nef are compatible with a large disc-like structure in the hexadecameric oligomer consisting of four Nef tetramers. From these findings, we hypothesize that Nef undergoes a substantial conformational change from an "open" into a "closed" form whereby the myristate group is sequestered in a hydrophobic pocket. The myristoylated protein can switch to the open conformation by association of the N-terminal region of molecule with membranes. These changes would allow Nef to carry out various functions depending on the conformational and oligomeric states.
Collapse
Affiliation(s)
- Caitríona A Dennis
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Vincent P, Priceputu E, Kay D, Saksela K, Jolicoeur P, Hanna Z. Activation of p21-activated kinase 2 and its association with Nef are conserved in murine cells but are not sufficient to induce an AIDS-like disease in CD4C/HIV transgenic mice. J Biol Chem 2005; 281:6940-54. [PMID: 16407193 DOI: 10.1074/jbc.m512710200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A well conserved feature of human immunodeficiency virus, type 1 (HIV-1) and simian immunodeficiency virus (SIV) Nef is the interaction with and activation of the human p21-activated kinase 2 (PAK2). The conservation of this interaction in other species and its significance for Nef pathogenesis in vivo are poorly documented. In the present study, we measured these parameters in Nef-expressing thymocytes, macrophages, and dendritic cells of a transgenic (Tg) mouse model of AIDS (CD4C/HIV). We found that Nef binds to and activates PAK2, but not PAK1 and -3, in these three cell subsets. Nef associates with only a small fraction of PAK2. The Nef-PAK2 complex also comprises beta-PIX-COOL. The impact of the Nef-PAK2 association on disease development was also analyzed in Tg mice expressing 10 different Nef mutant alleles. CD4C/HIV Tg mice expressing Nef alleles defective in Nef-PAK2 association (P69A, P72A/P75A, R105A/R106A, Delta56-66, or G2A (myristoylation site)) failed to develop disease of the non-lymphoid organs (kidneys and lungs). Among these, only Tg mice expressing Nef(P69A) and Nef(G2A) showed some depletion of CD4(+) T cells, although a down-regulation of the CD4 surface protein was documented in all these Tg lines, except those expressing Nef(Delta56-66). Among other Tg mice expressing Nef mutants having conserved the Nef-PAK2 association (RD35AA, D174K, P147A/P150A, Delta8-17, and Delta25-65), only Tg mice expressing Nef(Delta8-17) develop kidney and lung diseases, but all showed partial CD4(+) T cell depletion despite some being defective for CD4 down-regulation (RD35AA and D174K). Therefore, Nef can activate murine PAK2 and associate with a small fraction of it, as in human cells. Such activation and binding of PAK2 is clearly not sufficient but may be required to induce a multiorgan AIDS-like disease in Tg mice.
Collapse
Affiliation(s)
- Patrick Vincent
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Peretti S, Schiavoni I, Pugliese K, Federico M. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles. Virology 2005; 345:115-26. [PMID: 16271741 DOI: 10.1016/j.virol.2005.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/12/2005] [Accepted: 09/22/2005] [Indexed: 01/11/2023]
Abstract
We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies.
Collapse
Affiliation(s)
- Silvia Peretti
- AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
50
|
Peretti S, Schiavoni I, Pugliese K, Federico M. Cell death induced by the herpes simplex virus-1 thymidine kinase delivered by human immunodeficiency virus-1-based virus-like particles. Mol Ther 2005; 12:1185-96. [PMID: 16095973 DOI: 10.1016/j.ymthe.2005.06.474] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022] Open
Abstract
HIV-1 Nef incorporates into virions at low levels, likely about 10 molecules per viral particle. Here, we describe a Nef mutant (Nef7) apparently showing more than 100-fold higher efficiency of virion incorporation. Interestingly, Nef7 can act as a cargo molecule for protein delivery into the cells, as its virion incorporation appeared conserved even upon C-terminal fusion with proteins of up to 30 kDa. This was demonstrated first by assessing the intracellular fluorescence of cells challenged with lentivirus-based virus-like particles (VLPs) pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G) and incorporating Nef7 fused with the green fluorescent protein. Furthermore, the biologic activity of products delivered by Nef7-based VLPs was demonstrated by tagging Nef7 with the herpes simplex virus-1 thymidine kinase (HSV-1 TK). In fact, we observed that both cell lines and primary human macrophages challenged with (VSV-G) Nef7/TK VLPs died after 5 to 7 days of treatment with ganciclovir (GCV). In sum, our findings support the notion that Nef7-based VLPs can be considered platforms for original systems of protein delivery. In particular, the here- described Nef7/TK VLPs represent a first applicative example opening the way toward new HSV-1 TK/GCV-based cell suicide therapies circumventing cell gene engineering procedures.
Collapse
Affiliation(s)
- Silvia Peretti
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|