1
|
Adam L, Tchitchek N, Todorova B, Rosenbaum P, Joly C, Poux C, Chapon C, Spetz AL, Ustav M, Le Grand R, Martinon F. Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2020; 204:3375-3388. [PMID: 32385135 DOI: 10.4049/jimmunol.1900517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1aint-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.
Collapse
Affiliation(s)
- Lucille Adam
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Biliana Todorova
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Pierre Rosenbaum
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candie Joly
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candice Poux
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; and
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France;
| |
Collapse
|
2
|
Li W, Li T, Liu Y, Gao Y, Yang S, Feng N, Sun H, Wang S, Wang L, Bu Z, Xia X. Genetic characterization of an isolate of canine distemper virus from a Tibetan Mastiff in China. Virus Genes 2014; 49:45-57. [PMID: 24691820 PMCID: PMC7089258 DOI: 10.1007/s11262-014-1062-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 11/30/2022]
Abstract
Canine distemper (CD) is a highly contagious, often fatal, multisystemic, and incurable disease in dogs and other carnivores, which is caused by canine distemper virus (CDV). Although vaccines have been used as the principal means of controlling the disease, CD has been reported in vaccinated animals. The hemoagglutinin (H) protein is one of the most important antigens for inducing protective immunity against CD, and antigenic variation of recent CDV strains may explain vaccination failure. In this study, a new CDV isolate (TM-CC) was obtained from a Tibetan Mastiff that died of distemper, and its genome was characterized. Phylogenetic analysis of the H gene revealed that the CDV-TM-CC strain is unique among 20 other CDV strains and can be classified into the Asia-1 group with the Chinese strains, Hebei and HLJ1-06, and the Japanese strain, CYN07-hV. The H gene of CDV-TM-CC shows low identity (90.4 % nt and 88.9 % aa) with the H gene of the classical Onderstepoort vaccine strain, which may explain the inability of the Tibetan Mastiff to mount a protective immune response. We also performed a comprehensive phylogenetic analysis of the N, P, and F protein sequences, as well as potential N-glycosylation sites and cysteine residues. This analysis shows that an N-glycosylation site at aa 108-110 within the F protein of CDV-TM-CC is specific for the wild-type strains (5804P, A75/17, and 164071) and the Asia-1 group strains, and may be another important factor for the poor immune response. These results provide important information for the design of CD vaccines in the China region and elsewhere.
Collapse
Affiliation(s)
- Weike Li
- Wildlife Resources College, Northeast Forestry University, Harbin, 150040 China
| | - Tiansong Li
- College of Chemistry and Biology, Beidhua University, Jinlin, 132013 China
| | - Yuxiu Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Heting Sun
- Wildlife Resources College, Northeast Forestry University, Harbin, 150040 China
| | - Shengle Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Lei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001 China
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Liuying Xilu, Jingyue Economic Development Zone, Changchun, 130122 China
| |
Collapse
|
3
|
Lee HS, Kim YJ, Yang J, Yoon HS, Kim ST, Kim K. Alternative purification method for recombinant measles viral nucleoprotein expressed in insect cells by ion-exchange chromatography. J Virol Methods 2014; 197:55-62. [DOI: 10.1016/j.jviromet.2013.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
4
|
van Drunen Littel-van den Hurk S, Hannaman D. Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 2014; 9:503-17. [DOI: 10.1586/erv.10.42] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Wu Y, Zhang F, Ma W, Song J, Huang Q, Zhang H. A Plasmid Encoding Japanese Encephalitis Virus PrM and E Proteins Elicits Protective Immunity in Suckling Mice. Microbiol Immunol 2013; 48:585-90. [PMID: 15322338 DOI: 10.1111/j.1348-0421.2004.tb03555.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A plasmid encoding Japanese encephalitis virus (JEV) prM and E proteins was constructed, and its efficacy as a candidate vaccine against JEV was evaluated in suckling mice. Groups of 10 BALB/c mice (5-7 days old) were immunized twice via muscular injection with this DNA vaccine, an empty vector or PBS at an interval of 3 weeks, and were challenged with a lethal dose of JEV 3 weeks after the second inoculation. Both cellular and humoral immune responses were examined before the challenge. Two animals from each group were sacrificed to detect the JEV-specific cytotoxic T lymphocyte activity. JEV-specific lactate dehydrogenase release in the DNA vaccine, empty vector and PBS groups was 37.5%, 18% and 8.5% respectively. JEV-specific antibody was detected in 8 of 10 animals in DNA vaccine group with a geometrical mean titer of 1: 28.3. The pooled serum from the same group also showed a neutralizing activity. Six of 8 mice in the DNA vaccine group survived the challenge, with a protection rate of 75%, but all the mice died in the two control groups. These results show that this JEV prM and E DNA vaccine is immunogenic and protective against JEV infection in the mouse model.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Antibodies, Viral/blood
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Immunization
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Plasmids/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Yushui Wu
- Department of Microbiology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
6
|
Han L, Zhen YH, Liang AX, Zhang J, Riaz H, Xiong JJ, Guo AZ, Yang LG. Oral vaccination with inhibin DNA delivered using attenuated Salmonella choleraesuis for improving reproductive traits in mice. J Basic Microbiol 2013; 54:962-8. [PMID: 24123188 DOI: 10.1002/jobm.201300052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/29/2013] [Indexed: 01/11/2023]
Abstract
The objective of this study was to examine the efficacy and safety of a novel inhibin vaccine containing inhibin α (1-32) fragments in mice. A recombinant plasmid pVAX-asd-IS was constructed by inserting recombinant inhibin α (1-32) and the hepatitis B surface antigen S into the plasmid in which the asd gene, rather than the kanamycin gene, was a selection marker. Ninety Kuming mice were divided into six groups consisting of 15 mice each. First group was (C1) injected with 200 µl of PBS, second (C2) received 1 × 10(10) CFU of crp(-) /asd(-) C500/pVAX-asd and served as vector control, third did not receive any treatment (C3), while fourth, fifth, and sixth group received 1 × 10(10) , 1 × 10(9) , 1 × 10(8) CFU of the recombinant inhibin vaccine crp(-) /asd(-) C500/pVAX-asd-IS (group T1, T2, T3), respectively. Western blotting demonstrated that recombinant expressed inhibin protein possessed immune function and that this plasmid could replicate for up to 40 generations stably. Vaccination with this strain at a dose of 1 × 10(10) CFU/200 µl per mouse induced high anti-inhibin antibody levels, significantly increased large-follicle production in T1 group (p < 0.05) and average litter size (p > 0.05) compared with control groups. Integration studies showed no evidence of inhibin fusion gene integrated into mice's genome 2-month after immunization. These results suggest that the vaccine described in the present study may provide a safe method to improve reproductive traits in animals. A trend towards increased litter size and significant increase in large follicle population depict that this vaccine may have direct application in large animal industry.
Collapse
Affiliation(s)
- Li Han
- Laboratory of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; College of Animal Science and Technology and College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fowler VL, Barnett PV. Progress in the development of DNA vaccines against foot-and-mouth disease. Expert Rev Vaccines 2012; 11:481-93. [PMID: 22551033 DOI: 10.1586/erv.11.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA vaccines are, in principle, the simplest yet most versatile methods of inducing protective humoral and cellular immune responses. Research involving this type of vaccine against veterinary diseases began in the early 1990s and has since seen the evaluation of more than 30 important viral pathogens, including the economically important foot-and-mouth disease. With the demonstration that DNA vaccines protect against foot-and-mouth disease in sheep and pigs, and the advantages these DNA vaccines have over the conventional formulations, this approach may provide a better solution to the control of this disease. In this review, we provide a comprehensive overview of DNA vaccination strategies for foot-and-mouth disease reported in the literature, in which we highlight the studies that have reported protection in the key target species.
Collapse
Affiliation(s)
- Veronica L Fowler
- Institute for Animal Health, Pirbright Laboratory, Surrey GU24 0NF, UK.
| | | |
Collapse
|
8
|
Lobanova LM, Eng NF, Satkunarajah M, Mutwiri GK, Rini JM, Zakhartchouk AN. The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles. Vaccine 2012; 30:3061-7. [PMID: 22406109 DOI: 10.1016/j.vaccine.2012.02.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/09/2012] [Accepted: 02/25/2012] [Indexed: 10/28/2022]
Abstract
Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses. The recombinant protein was purified from the culture supernatant of stably transfected HEK293T cells secreting a tagged version of the protein. Two subcutaneous immunizations with the purified recombinant protein alone resulted in the production of MV-specific serum IgG and neutralizing antibodies in mice. Formulation of the protein with adjuvants (polyphosphazene or alum) further enhanced the humoral immune response and in addition resulted in the induction of cell-mediated immunity as measured by the production of MV H-specific interferon gamma (IFN-γ) and interleukin 5 (IL-5) by in vitro re-stimulated splenocytes. Furthermore, the inclusion of polyphosphazene into the vaccine formulation induced a mixed Th1/Th2-type immune response. In addition, the purified recombinant protein retained its immunogenicity even after storage at 37°C for 2 weeks.
Collapse
Affiliation(s)
- Liubov M Lobanova
- Vaccine and Infectious Disease Organization - International Vaccine Center, University of Saskatchewan, Saskatoon, SK, S7N 5E3 Canada
| | | | | | | | | | | |
Collapse
|
9
|
Yang Y, Zhang Z, Yang J, Chen X, Cui S, Zhu X. Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge. Vaccine 2010; 28:2735-42. [PMID: 20105428 DOI: 10.1016/j.vaccine.2010.01.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/30/2009] [Accepted: 01/13/2010] [Indexed: 01/12/2023]
Abstract
We have previously reported that Ts87 is an immunodominant antigen that induces protective immunity against Trichinella spiralis larval challenge. In this study, the Ts87 gene was cloned into an expression plasmid, pVAX1, and the recombinant Ts87 DNA was transformed into attenuated Salmonella typhimurium strain SL7207. Oral immunization of mice with Ts87 DNA delivered in S. typhimurium elicited a significant local mucosal IgA response and a systemic Th1/Th2 immune response. Cytokine profiling also showed a significant increase in the Th1 (IFN-gamma) and Th2 (IL-5, 6, 10) responses in splenocytes of immunized mice upon stimulation with Ts87 antigen. An immunofluorescence assay performed with antisera revealed that the recombinant Ts87 protein was expressed in mesenteric lymph nodes of immunized mice. The mice immunized with Salmonella-delivered Ts87 DNA displayed a statistically significant 29.8% reduction in adult worm burden and a 34.2% reduction in muscle larvae following challenge with T. spiralis larvae, compared with mice immunized with empty Salmonella or a PBS control. Our results demonstrate that Ts87 DNA delivered by attenuated live S. typhimurium elicits a local IgA response and a balanced Th1/Th2 immune response and produces partial protection against T. spiralis infection in mice.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, Beijing 100069, China
| | | | | | | | | | | |
Collapse
|
10
|
Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. Editorial: DNA Vaccination: A Simple Concept with Challenges Regarding Implementation. Int Rev Immunol 2009; 25:51-81. [PMID: 16818365 DOI: 10.1080/08830180600743008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper. Vaccine 2009; 27:5178-83. [DOI: 10.1016/j.vaccine.2009.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/09/2009] [Accepted: 06/22/2009] [Indexed: 11/18/2022]
|
12
|
de Vries RD, Stittelaar KJ, Osterhaus ADME, de Swart RL. Measles vaccination: new strategies and formulations. Expert Rev Vaccines 2008; 7:1215-23. [PMID: 18844595 DOI: 10.1586/14760584.7.8.1215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measles is a highly contagious viral disease. With 1 million deaths reported in 1996, measles was the leading cause of vaccine-preventable deaths. However, in recent years, significant progress has been made in measles control, reducing deaths attributed to measles to 454,000 in 2004 and 242,000 in 2006. The main strategy behind this reduction has been the improvement of vaccination coverage and implementation of a second opportunity for immunization with the live-attenuated measles vaccine. The Measles Initiative, a partnership between the American Red Cross, CDC, UNICEF, WHO and UN Foundation, has had a significant role in this achievement. Here, we provide an overview of old and new vaccination strategies, and discuss changes in the route of administration of the existing live-attenuated vaccine, the development of new-generation nonreplicating measles virus vaccine candidates and attempts to use recombinant measles virus as a vector for vaccination against other pathogens.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Abstract
Isolation of measles virus in tissue culture by Enders and colleagues in the 1960s led to the development of the first measles vaccines. An inactivated vaccine provided only short-term protection and induced poor T cell responses and antibody that did not undergo affinity maturation. The response to this vaccine primed for atypical measles, a more severe form of measles, and was withdrawn. A live attenuated virus vaccine has been highly successful in protection from measles and in elimination of endemic measles virus transmission with the use of two doses. This vaccine is administered by injection between 9 and 15 months of age. Measles control would be facilitated if infants could be immunized at a younger age, if the vaccine were thermostable, and if delivery did not require a needle and syringe. To these ends, new vaccines are under development using macaques as an animal model and various combinations of the H, F, and N viral proteins. Promising studies have been reported using DNA vaccines, subunit vaccines, and virus-vectored vaccines.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Rm E5132 Baltimore, MD 21205, USA.
| | | |
Collapse
|
14
|
van Drunen Littel-van den Hurk S, Luxembourg A, Ellefsen B, Wilson D, Ubach A, Hannaman D, van den Hurk J. Electroporation-based DNA transfer enhances gene expression and immune responses to DNA vaccines in cattle. Vaccine 2008; 26:5503-9. [DOI: 10.1016/j.vaccine.2008.07.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/16/2008] [Accepted: 07/19/2008] [Indexed: 11/25/2022]
|
15
|
Feng GH, Liu N, Zhou Y, Zhai YZ, Li XM, Dou XG. Immunologic Analysis Induced by DNA Vaccine Encoding E Protein of Beijing-1 Strain Derived from Japanese Encephalitis Virus. Intervirology 2006; 50:93-8. [PMID: 17139185 DOI: 10.1159/000097395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 07/03/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We have compared the gene expression and DNA immunization efficacy encoding prME and E proteins of a different strain (JaGAr-01) derived from Japanese encephalitis virus. This study aimed to construct a recombinant encoding E protein of the Beijing-1 strain derived from Japanese encephalitis virus and analyze the humoral, cellular and protective immunity induced by the above recombinant. METHODS The recombinant pJBE containing E (1,500 bps) gene from the Beijing-1 strain of Japanese encephalitis virus was constructed and then transfected into the HepG2 cell line by liposome fusion. The expression of E (about 53 kD) protein in transfected cells was analyzed by Western blot using a specific anti-JEV-E antibody. BALB/c mice were vaccinated with 3 microg of pJBE by the gene-gun technique. JaGAr-01 and Beijing-1 strains (10(5) PFU/100 microl) of Japanese encephalitis virus were given to BALB/c mice by intraperitoneal injection 3 weeks after double DNA immunization with a lethal virus challenge. BALB/c mice were observed for 21 days after challenge. An 80% plaque reduction neutralization test was performed to titrate the neutralization antibody before and after viral challenge. A lactate dehydrogenase activity release test was used to examine cytotoxic T lymphocyte activity after double DNA immunization. RESULTS The expression of about 53 kD protein associated with pJBE was determined in transfected HepG2 cells with specific anti-JEV-E antibody. A higher level of neutralization antibodies and the cytotoxicity effect were induced with pJBE immunization using the gene-gun technique, and were similar to those induced with inactivated vaccine derive from the Beijing-1 strain of Japanese encephalitis virus. Balb/c mice immunized with pJBE survived the challenge with the different strains of Japanese encephalitis virus; however, Balb/c mice immunized with inactivated vaccine did not survive the challenge with the JaGAr-01 strain of Japanese encephalitis virus at all. CONCLUSIONS DNA vaccine containing the E protein gene derived from Japanese encephalitis virus can provide not only better efficacy including humoral and cellular immunity, but also cross-protection against infection with homologous and heterologous Japanese encephalitis virus.
Collapse
Affiliation(s)
- Guo-he Feng
- Department of Infectious Diseases, Second Affiliated Hospital of China Medical University, Shenyang, China.
| | | | | | | | | | | |
Collapse
|
16
|
Dahl L, Jensen TH, Gottschalck E, Karlskov-Mortensen P, Jensen TD, Nielsen L, Andersen MK, Buckland R, Wild TF, Blixenkrone-Møller M. Immunization with plasmid DNA encoding the hemagglutinin and the nucleoprotein confers robust protection against a lethal canine distemper virus challenge. Vaccine 2004; 22:3642-8. [PMID: 15315843 DOI: 10.1016/j.vaccine.2004.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 03/04/2004] [Accepted: 03/15/2004] [Indexed: 10/26/2022]
Abstract
We have investigated the protective effect of immunization of a highly susceptible natural host of canine distemper virus (CDV) with DNA plasmids encoding the viral nucleoprotein (N) and hemagglutinin (H). The combined intradermal and intramuscular routes of immunization elicited high virus-neutralizing serum antibody titres in mink (Mustela vison). To mimic natural exposure, we also conducted challenge infection by horizontal transmission from infected contact animals. Other groups received a lethal challenge infection by administration to the mucosae of the respiratory tract and into the muscle. One of the mink vaccinated with N plasmid alone developed severe disease after challenge. In contrast, vaccination with the H plasmid together with the N plasmid conferred solid protection against disease and we were unable to detect CDV infection in PBMCs or in different tissues after challenge. Our findings show that DNA immunization by the combined intradermal and intramuscular routes can confer solid protective immunity against naturally transmitted morbillivirus infection and disease.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/biosynthesis
- Antigens, Viral/immunology
- Distemper/immunology
- Distemper/prevention & control
- Distemper/virology
- Distemper Virus, Canine/immunology
- Dogs
- Female
- Genes, Viral/genetics
- Genes, Viral/immunology
- Hemagglutinins/immunology
- Injections, Intradermal
- Injections, Intramuscular
- Mink/immunology
- Neutralization Tests
- Nucleoproteins/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Lotte Dahl
- Laboratory of Virology and Immunology, Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, Stigbøjlen 7, DK 1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhu W, Thomas CE, Sparling PF. DNA immunization of mice with a plasmid encoding Neisseria gonorrhea PorB protein by intramuscular injection and epidermal particle bombardment. Vaccine 2004; 22:660-9. [PMID: 14741158 DOI: 10.1016/j.vaccine.2003.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunogenicity of a DNA vaccine encoding PorB from Neisseria gonorrhoeae strain FA1090 was analyzed in BALB/C mice immunized by intramuscular needle injection or epidermal gene gun bombardment. Both delivery routes generated measurable specific antibodies although the gene gun response was slower. Antibody isotypes were indicative of Th2 activation following gene gun immunization and of Th1 activation following intramuscular injection. In both immunization protocols, boosting with either renatured recombinant (rr) PorB protein or PorB expressed from Venezuelan equine encephalitis virus replicon particles (VRPs) significantly increased anti-PorB antibody levels. Boosting with rrPorB protein had little effect on antibody isotypes, while boosting with VRPs expressing PorB-enhanced a Th1 type response. Whole cell binding experiments showed that a portion of the antibodies recognized the surface of the homologous N. gonorrhoeae strain. Serum from groups with high antibody levels showed some opsonization of the homologous strain using human neutrophils. These results showed the potential of DNA vaccination for the purpose of priming an antibody response against PorB of N. gonorrhoeae. When combined with a protein or VRP boost, DNA priming resulted in high-titer and long-lasting responses. Based on different prime-boost protocols, we could polarize immune responses to predominantly Th1 or Th2, which should enable future studies of the types of immune responses that are protective in mouse models of gonorrhea.
Collapse
Affiliation(s)
- W Zhu
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, CB 7031, 8431 Medicine and Biomolecular Research Building, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
18
|
Abstract
Despite the extensive media exposure that viruses such as West Nile, Norwalk, and Ebola have received lately, and the emerging threat that old pathogens may reappear as new agents of terrorism, measles virus (MV) persists as one of the leading causes of death by infectious agents worldwide, approaching the annual mortality rate of human immunodeficiency virus (HIV)-1. For most MV victims, fatality is indirect: Virus-induced transient immunosuppression predisposes the individual to opportunistic infections that, left untreated, can result in mortality. In rare cases, MV may also cause progressive neurodegenerative disease. During the past five years (1998-2002), development of animal models and the application of reverse genetics and immunological assays have collectively contributed to major progress in our understanding of MV biology and pathogenesis. Nevertheless, questions and controversies remain that are the basis for future research. In this review, major advances and current debates are discussed, including MV receptor usage, the cellular basis of immunosuppression, the suspected role of MV in "nonviral" diseases such as multiple sclerosis and Paget's disease, and the controversy surrounding MV vaccine safety.
Collapse
Affiliation(s)
- Glenn F Rall
- Division of Basic Science, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
19
|
Pütz MM, Bouche FB, de Swart RL, Muller CP. Experimental vaccines against measles in a world of changing epidemiology. Int J Parasitol 2003; 33:525-45. [PMID: 12782053 DOI: 10.1016/s0020-7519(03)00062-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccination with the current live attenuated measles vaccine is one of the most successful and cost-effective medical interventions. However, as a result of persisting maternal antibodies and immaturity of the infant immune system, this vaccine is poorly immunogenic in children <9 months old. Immunity against the live vaccine is less robust than natural immunity and protection less durable. There may also be some concern about (vaccine) virus spread during the final stage of an eventual measles eradication program. Opinions may differ with respect to the potential threat that some of these concerns may be to the World Health Organisation goal of measles elimination, but there is a consensus that the development of new measles vaccines cannot wait. Candidate vaccines are based on viral or bacterial vectors expressing recombinant viral proteins, naked DNA, immune stimulating complexes or synthetic peptides mimicking neutralising epitopes. While some of these candidate vaccines have proven their efficacy in monkey studies, aerosol formulated live attenuated measles vaccine are evaluated in clinical trials.
Collapse
Affiliation(s)
- Mike M Pütz
- Department of Immunology, Laboratoire National de Santé, 20A Rue Auguste Lumière, 1950 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
20
|
Webster DE, Cooney ML, Huang Z, Drew DR, Ramshaw IA, Dry IB, Strugnell RA, Martin JL, Wesselingh SL. Successful boosting of a DNA measles immunization with an oral plant-derived measles virus vaccine. J Virol 2002; 76:7910-2. [PMID: 12097606 PMCID: PMC136403 DOI: 10.1128/jvi.76.15.7910-7912.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Accepted: 04/26/2002] [Indexed: 11/20/2022] Open
Abstract
Despite eradication attempts, measles remains a global health concern. Here we report results that demonstrate that a single-dose DNA immunization followed by multiple boosters, delivered orally as a plant-derived vaccine, can induce significantly greater quantities of measles virus-neutralizing antibodies than immunization with either DNA or plant-derived vaccines alone. This represents the first demonstration of an enhanced immune response to a prime-boost vaccination strategy combining a DNA vaccine with edible plant technology.
Collapse
Affiliation(s)
- Diane E Webster
- Department of Medicine, Monash University Medical School, Alfred Hospital, Prahran, Victoria 3181, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stittelaar KJ, de Swart RL, Vos HW, van Amerongen G, Sixt N, Wild TF, Osterhaus ADME. Priming of measles virus-specific humoral- and cellular-immune responses in macaques by DNA vaccination. Vaccine 2002; 20:2022-6. [PMID: 11972970 DOI: 10.1016/s0264-410x(02)00048-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the currently used live attenuated measles vaccines are safe and effective, they are dependent on cold chain maintenance and are often ineffective in young infants due to interference by maternal antibody. Therefore, besides vector-based vaccines, different new generation non-replicating candidate measles vaccines are being considered, including nucleic acid vaccines. We have vaccinated cynomolgus macaques transdermally with DNA plasmids encoding measles virus (MV) proteins. Following two vaccinations, low serum antibody responses were detected. Wild-type measles virus challenge 1 year after vaccination showed reduced viraemia in some animals. However, accelerated humoral- and cellular-immune responses were observed in all vaccinated macaques, demonstrating successful priming by the DNA vaccines.
Collapse
Affiliation(s)
- Koert J Stittelaar
- Institute of Virology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Pahar B, Sharma B, Goel AC. Effect of immunization with plasmid DNA encoding for rinderpest virus matrix protein on systemic rinderpest virus infection in rabbits. Vet Res Commun 2002; 26:227-37. [PMID: 12090294 DOI: 10.1023/a:1015257721988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmid vaccine pBK-CMVMPILC113 expressing the matrix (M) gene of rinderpest virus was assessed for its potential to protect rabbits against a lethal viral challenge. Rabbits immunized with plasmids expressing the M gene were not protected when challenged with lapinized rinderpest virus, despite the production of anti-M antibodies, while rabbits immunized with rinderpest tissue culture vaccine were completely protected from a lethal challenge with lapinized rinderpest virus. The plasmid vaccine also had no significant effect on the lymphopenia in challenged rabbits. The results indicate that rinderpest M protein does not have a protective role in rinderpest infection.
Collapse
Affiliation(s)
- B Pahar
- National Project on Rinderpest Eradication, Division of Biochemistry and Food Sciences, Indian Veterinary Research Institute, Izatnagar.
| | | | | |
Collapse
|
23
|
Rocha-Zavaleta L, Alejandre JE, Garcia-Carranca A. Parenteral and oral immunization with a plasmid DNA expressing the human papillomavirus 16-L1 gene induces systemic and mucosal antibodies and cytotoxic T lymphocyte responses. J Med Virol 2002; 66:86-95. [PMID: 11748663 DOI: 10.1002/jmv.2115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The association of human papillomavirus (HPV) infection and cervical cancer has been demonstrated. The development of a prophylactic vaccine to protect against primary HPV infection may therefore be an efficient means to reduce the incidence of this cancer worldwide. To assess the capacity of a plasmid DNA that expresses the L1 gene of HPV type 16 to induce a protective immune response, mice were immunized by parenteral and oral routes. Animals that received the DNA vaccine intramuscularly, subcutaneously and orally, developed systemic anti-L1 IgG antibodies. Antibodies developed in mice vaccinated subcutaneously were detectable twelve months post-immunization. Specific IgA antibodies were also found in vaginal washes from immunized mice. Both systemic and local antibodies proved effective in a surrogate neutralization assay. Splenic T cells extracted from experimental mice showed cytotoxic T lymphocytes (CTL) activity mediated by CD8 + cells. Mice were challenged with a syngeneic melanoma cell line, engineered to express the HPV16-L1 protein, tumours in vaccinated animals showed slower growth rate, correlated directly with a longer survival of mice. The results suggest that the L1-based DNA vaccine may be useful for the prevention of primary infections by HPV16.
Collapse
Affiliation(s)
- Leticia Rocha-Zavaleta
- Department of Molecular Biology, Institute of Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| | | | | |
Collapse
|
24
|
Green TD, Newton BR, Rota PA, Xu Y, Robinson HL, Ross TM. C3d enhancement of neutralizing antibodies to measles hemagglutinin. Vaccine 2001; 20:242-8. [PMID: 11567770 DOI: 10.1016/s0264-410x(01)00266-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Measles remains a major cause of worldwide infant mortality despite the use of current live attenuated vaccines. New approaches to measles virus (MV) vaccine development are critical to interrupt the spread of MV. In this study, we report the results using a DNA vaccine expressing a fusion of the measles hemagglutinin (H) protein and the complement component, C3d, to enhance the titers of neutralizing antibody. Plasmids were generated that expressed a secreted (s) form of H and the same form fused to three tandem copies of the murine homologue of C3d (sH-3C3d). Analysis of titers of the antibody raised in vaccinated mice indicated that immunizations with the DNA expressing sH-3C3d had higher titers of anti-H antibodies compared to serum from mice vaccinated with DNA expressing sH only. In addition, sH-3C3d elicited higher neutralizing antibody titers that inhibited MV induced plaque formation.
Collapse
Affiliation(s)
- T D Green
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Brody Health Sciences Building, 600 Moye Boulevard, Greenville, NC 27858-4354, USA
| | | | | | | | | | | |
Collapse
|
25
|
Andersson C, Vasconcelos NM, Sievertzon M, Haddad D, Liljeqvist S, Berglund P, Liljeström P, Ahlborg N, Ståhl S, Berzins K. Comparative immunization study using RNA and DNA constructs encoding a part of the Plasmodium falciparum antigen Pf332. Scand J Immunol 2001; 54:117-24. [PMID: 11439157 DOI: 10.1046/j.1365-3083.2001.00951.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of nucleic acid-based vaccines against parasitic diseases shows great promise, although certain concerns about safety aspects of conventional DNA vaccines have been raised. This study presents a comparison of antibody responses induced in mice by DNA and RNA-based immunization with vectors encoding a part of the P. falciparum antigen Pf332. Two types of plasmids were used, one conventional DNA plasmid containing a cytomegalovirus promoter and one suicidal DNA plasmid encoding the Semliki Forest virus (SFV) replicase. RNA, encoding the SFV replicase and the relevant antigen, was delivered either as naked RNA or packaged in SFV suicide particles. In general, the antibody responses induced by the DNA plasmids were low and peaking after three injections, the conventional plasmid giving the highest responses. Also the RNA delivered in SFV particles consistently induced antibody responses, although comparatively low. Analyses of the ratio of immunoglobulin (Ig)G1/IgG2a subclasses in the responses indicated that all plasmids resulted in a bias for a Th2-type of response, while the SFV-particles elicited a Th1 type of response. Importantly, all these immunogens induced an immunological memory, which could be efficiently activated by a booster injection with the corresponding protein, with unchanged patterns of IgG subclasses.
Collapse
Affiliation(s)
- C Andersson
- Department of Biotechnology, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- H L Robinson
- Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
27
|
Abstract
This chapter discusses the virus infections of the central nervous system (CNS) and DNA vaccines. Mild central nervous system (CNS) symptoms, such as headache and drowsiness, can result from systemically elevated cytokine levels and therefore are common in many virus infections, even in the absence of the infection of the CNS. CNS infection is quite unusual and is initiated either as a result of the viremia or, more rarely, as a result of neural spread. The poliovirus infects the anterior horn motor neurons of the spinal cord, causing poliomyelitis, the disease for which the virus is named. DNA vaccination is a relatively new entrant in the vaccine sweepstakes, but is viewed with optimism, for a number of reasons. DNA vaccines encoding the nucleoprotein from lymphocytic choriomeningitis virus can confer protection against the normally lethal intracranial challenge. In rabies, in a mouse model, immunization with plasmids encoding the rabies glycoprotein conferred complete protection against subsequent viral challenge. Several virus-induced CNS diseases may be explained by their triggering of autoimmunity. Experimental autoimmune encephalomyelitis is a well-characterized CNS disease induced by the administration of certain CNS proteins.
Collapse
Affiliation(s)
- J L Whitton
- Department of Neuropharmacology, CVN-9, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
28
|
Wang L, Menting JG, Black CG, Stowers A, Kaslow DC, Hoffman SL, Coppel RL. Differences in epitope recognition, isotype and titer of antisera to Plasmodium falciparum merozoite surface protein 4 raised by different modes of DNA or protein immunization. Vaccine 2000; 19:816-24. [PMID: 11115704 DOI: 10.1016/s0264-410x(00)00245-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasmodium falciparum merozoite surface protein 4 (MSP4) is being developed as a component of a subunit vaccine against asexual stages of malaria. Three DNA constructs were produced that induced expression of MSP4 either in the cytoplasm of transfected cells or secreted from cells under the control of the human tissue plasminogen activator (TPA) signal or the native P. falciparum MSP4 signal. Only the construct containing the TPA signal induced detectable antibodies in mice, although gene expression was demonstrated in all constructs and MSP4 was shown to be secreted using either signal by in vitro transient transfection of COS cells. Two recombinant MSP4 proteins that encoded the same sequence as the plasmid DNA were produced in E. coli (EcMSP4-His) and S. cerevisiae (yMSP4-His) and used to raise antibodies in mice. Comparison of the antibodies elicited by these various antigen formulations showed differences in titer, isotype and epitope recognition. The titer of antibodies induced by DNA vaccination was lower than that induced by yMSP4-His, which in turn was lower than that induced by EcMSP4-His. The isotype profiles of the antibodies were also different, the plasmid DNA induced predominantly IgG(2a) responses whereas the two proteins induced predominantly IgG(1) responses. The antibodies induced by DNA and yMSP4-His recognized predominantly the C-terminal epidermal growth factor (EGF)-like domain of the protein, whereas EcMSP4-His induced antibodies recognizing all domains of the protein equally. The antibodies induced by DNA vaccination were directed almost extensively to conformational epitopes so that reactivity with native MSP4 was abolished after disulfide bonds in the protein were disrupted. Antibodies induced by recombinant proteins recognized linear epitopes as well and reactivity to native MSP4 was preserved after reduction and alkylation of parasite proteins.
Collapse
Affiliation(s)
- L Wang
- Department of Microbiology, Monash University, Vic., 3800, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Spreng S, Gentschev I, Goebel W, Weidinger G, ter Meulen V, Niewiesk S. Salmonella vaccines secreting measles virus epitopes induce protective immune responses against measles virus encephalitis. Microbes Infect 2000; 2:1687-92. [PMID: 11137042 DOI: 10.1016/s1286-4579(00)01325-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study we describe a live vaccine against measles virus (MV) infection on the basis of attenuated Salmonella typhimurium aroA secreting MV antigens via the Escherichia coli alpha-hemolysin secretion system. Two well-characterized MV epitopes, a B-cell epitope of the MV fusion protein (amino acids 404-414) and a T-cell epitope of the MV nucleocapsid protein (amino acids 79-99) were fused as single or repeating units to the C-terminal secretion signal of the E. coli hemolysin and expressed in secreted form by the attenuated S. typhimurium aroA SL7207. Immunization of MV-susceptible C3H mice revealed that S. typhimurium SL7207 secreting these antigens provoked a humoral and a cellular MV-specific immune response, respectively. Mice vaccinated orally with a combination of both recombinant S. typhimurium strains showed partial protection against a lethal MV encephalitis after intracerebral challenge with a rodent-adapted, neurotropic MV strain.
Collapse
Affiliation(s)
- S Spreng
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften, Am Hubland, D-97074, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Vidalin O, Fournillier A, Renard N, Chen M, Depla E, Boucreux D, Brinster C, Baumert T, Nakano I, Fukuda Y, Liljeström P, Trépo C, Inchauspé G. Use of conventional or replicating nucleic acid-based vaccines and recombinant Semliki forest virus-derived particles for the induction of immune responses against hepatitis C virus core and E2 antigens. Virology 2000; 276:259-70. [PMID: 11040118 DOI: 10.1006/viro.2000.0566] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Replicating and nonreplicating nucleic acid-based vaccines as well as Semliki Forest-recombinant Viruses (rSFVs) were evaluated for the development of a vaccine against hepatitis C virus (HCV). Replicating SFV-DNA vaccines (pSFV) and rSFVs expressing HCV core or E2 antigens were compared with classical CMV-driven plasmids (pCMV) in single or bimodal vaccine protocols. In vitro experiments indicated that all vaccine vectors produced the HCV antigens but to different levels depending on the antigen expressed. Both replicating and nonreplicating core-expressing plasmids induced, upon injection in mice, specific comparable CTL responses ranging from 10 to 50% lysis (E:T ratio 100:1). Comparison of different injection modes (intramuscular versus intraepidermal) and the use of descalating doses of DNA (1-100 microgram) did not show an increased efficacy of the core-SFV plasmid compared with the CMV-driven one. Surprisingly, rSFVs yielded either no detectable anticore CTL or very low anti-E2 antibody titers following either single or bimodal administration together with CMV-expressing counterparts. Prime-boost experiments revealed, in all cases, the superiority of DNA-based only vaccines. The anti-E2 antibody response was evaluated using three different assays which indicated that all generated anti-E2 antibodies were targeted at similar determinants. This study emphasizes the potential of DNA-based vaccines for induction of anti-HCV immune responses and reveals an unexpected and limited benefit of SFV-based vaccinal approaches in the case of HCV core and E2.
Collapse
Affiliation(s)
- O Vidalin
- INSERM U271-151, Cours Albert Thomas, 69424 Lyon Cedex 03, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Polack FP, Lee SH, Permar S, Manyara E, Nousari HG, Jeng Y, Mustafa F, Valsamakis A, Adams RJ, Robinson HL, Griffin DE. Successful DNA immunization against measles: neutralizing antibody against either the hemagglutinin or fusion glycoprotein protects rhesus macaques without evidence of atypical measles. Nat Med 2000; 6:776-81. [PMID: 10888926 DOI: 10.1038/77506] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measles remains a principal cause of worldwide mortality, in part because young infants cannot be immunized effectively. Development of new vaccines has been hindered by previous experience with a formalin-inactivated vaccine that predisposed to a severe form of disease (atypical measles). Here we have developed and tested potential DNA vaccines for immunogenicity, efficacy and safety in a rhesus macaque model of measles. DNA protected from challenge with wild-type measles virus. Protection correlated with levels of neutralizing antibody and not with cytotoxic T lymphocyte activity. There was no evidence in any group, including those receiving hemagglutinin-encoding DNA alone, of 'priming' for atypical measles.
Collapse
Affiliation(s)
- F P Polack
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stittelaar KJ, Boes J, Kersten GF, Spiekstra A, Mulder PG, de Vries P, Roholl PJ, Dalsgaard K, van den Dobbelsteen G, van Alphen L, Osterhaus AD. In vivo antibody response and in vitro CTL activation induced by selected measles vaccine candidates, prepared with purified Quil A components. Vaccine 2000; 18:2482-93. [PMID: 10775782 DOI: 10.1016/s0264-410x(00)00026-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Semipurified Quil A and purified Quil A were used to prepare well-characterized subunit vaccine candidates against measles. Variation in the relative amounts of the measles virus (MV) fusion (F) protein, Quil A-components and lipids did not influence induction of antibody responses in mice, but had a pronounced effect on the capacity to induce cytotoxic T cell (CTL) activity of a CD8(+) MV F-protein specific human T cell clone in vitro. A characteristic MV iscom preparation based on the combined use of HPLC-purified Quil A-components QA-3 and QA-22 (QA-3/22) efficiently induced CTL activity in vitro. Comparable results were obtained by mixing beta-propiolactone inactivated MV with iscom-matrix QA-3/22 or free QA-22. On the basis of the data presented it was concluded that these three preparations are interesting MV vaccine candidates for further evaluation in pre-clinical experiments in a primate model.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/isolation & purification
- Animals
- Antibodies, Viral/biosynthesis
- Cells, Cultured
- Chlorocebus aethiops
- Chromatography, High Pressure Liquid
- Cytotoxicity, Immunologic
- Hemagglutinins, Viral/immunology
- Humans
- ISCOMs/chemistry
- ISCOMs/immunology
- Lymphocyte Activation
- Measles Vaccine/chemistry
- Measles Vaccine/immunology
- Measles virus/drug effects
- Measles virus/immunology
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron
- Propiolactone/pharmacology
- Quillaja Saponins
- Saponins/chemistry
- Saponins/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, Attenuated/immunology
- Vero Cells
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
- K J Stittelaar
- Laboratory for Vaccine Research, Institute of Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang YY, Taylor MG, Gregoriadis G, McCrossan MV, Bickle QD. Immunogenicity of plasmid DNA encoding the 62 kDa fragment of Schistosoma japonicum myosin. Vaccine 2000; 18:2102-9. [PMID: 10715524 DOI: 10.1016/s0264-410x(99)00564-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The recombinant Schistosoma mansoni 62 kDa myosin fragment, rIrV-5, is highly protective in experimental animals, however, vaccination of mice and rats with the recombinant Schistosoma japonicum homologue, rSj62, did not induce significant resistance against S. japonicum infection. To explore alternative ways of presenting this antigen, we further constructed a plasmid (VRSj62) which encodes Sj62 using the VR1020 vector and tested it in vaccination experiments. Four immunisations with 10 microg VRSj62 DNA alone were sufficient to induce high and progressively increasing levels of IgG antibodies against rSj62 with increasing numbers of injections in CBA/Ca mice (IgG titre > or =1:25000), and three injections with 50 microg VRSj62 DNA alone induced significant IgG responses in C57Bl/6 mice (IgG titre, 1:1600). However, vaccination with plasmid DNA entrapped in cationic liposomes or together with pUC19 DNA as a source of CpG motifs, both of which have been reported to enhance immune responses, did not enhance specific antibody production. In spite of the stimulation of specific antibodies against rSj62 with the naked DNA construct no resistance to challenge was demonstrated.
Collapse
MESH Headings
- Animals
- Antibodies, Helminth/biosynthesis
- Antibodies, Helminth/immunology
- Antigen-Antibody Reactions
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- CpG Islands
- DNA, Recombinant/genetics
- Female
- Helminth Proteins/administration & dosage
- Helminth Proteins/genetics
- Helminth Proteins/immunology
- Immunization, Secondary
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/immunology
- Liposomes/administration & dosage
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Microscopy, Immunoelectron
- Muscles/immunology
- Muscles/ultrastructure
- Myosins/genetics
- Myosins/immunology
- Plasmids/genetics
- Schistosoma japonicum/genetics
- Schistosoma japonicum/immunology
- Schistosoma japonicum/ultrastructure
- Schistosomiasis japonica/prevention & control
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Y Y Zhang
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | | | | | | | | |
Collapse
|
34
|
Kovarik J, Martinez X, Pihlgren M, Bozzotti P, Tao MH, Kipps TJ, Wild TF, Lambert PH, Siegrist CA. Limitations of in vivo IL-12 supplementation strategies to induce Th1 early life responses to model viral and bacterial vaccine antigens. Virology 2000; 268:122-31. [PMID: 10683334 DOI: 10.1006/viro.1999.0159] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The limited induction of Th1 and cytotoxic immune responses is regarded as the main reason for the increased susceptibility to intracellular microorganisms in early life. Recently, in vitro IL-12 supplementation was shown to enhance the limited IFN-gamma release of measles-specific infant T cells. Using a series of IL-12 delivery systems, we show here that in vivo IL-12 supplementation may enhance early life murine Th1 responses to two model vaccine antigens, measles virus hemagglutinin and tetanus toxin peptide. However, this required multiple repeat injections of recombinant rIL-12, which were poorly tolerated in young mice. Local IL-12 delivery by an IL-12 expressing canarypox vector proved safe but failed to modulate vaccine responses. An IL-12 DNA plasmid or a CD40L DNA plasmid efficiently enhanced neonatal Th1 responses to measles hemagglutinin DNA vaccine. However, both plasmids only enhanced Th1 responses to DNA and not to peptide, protein, or live viral vaccines. Thus, inducing adult-like Th1 responses may be achieved in vivo by inducing (CD40L) or substituting for (IL-12 supplementation) optimal activation of neonatal APC. However, these immunomodulatory effects appear limited to certain antigen-presentation approaches and may not be broadly applicable to vaccines.
Collapse
Affiliation(s)
- J Kovarik
- World Health Organization Collaborating Centre for Neonatal Vaccinology, University of Geneva Medical School, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aberle JH, Aberle SW, Allison SL, Stiasny K, Ecker M, Mandl CW, Berger R, Heinz FX. A DNA Immunization Model Study with Constructs Expressing the Tick-Borne Encephalitis Virus Envelope Protein E in Different Physical Forms. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
We have conducted a DNA immunization study to evaluate how the immune response is influenced by the physical structure and secretion of the expressed Ag. For this purpose, we used a series of plasmid constructs encoding different forms of the envelope glycoprotein E of the flavivirus tick-borne encephalitis virus. These included a secreted recombinant subviral particle, a secreted carboxyl-terminally truncated soluble homodimer, a nonsecreted full-length form, and an inefficiently secreted truncated form. Mice were immunized using both i.m. injection and Gene Gun-mediated application of plasmids. The functional immune response was evaluated by determining specific neutralizing and hemagglutination-inhibiting Ab activities and by challenging the mice with a lethal dose of the virus. As a measure for the induction of a Th1 and/or Th2 response, we determined specific IgG subclasses and examined IFN-γ, Il-4, and Il-5 induction. The plasmid construct encoding a secreted subviral particle, which carries multiple copies of the protective Ag on its surface, was superior to the other constructs in terms of extent and functionality of the Ab response as well as protection against virus challenge. As expected, the type of Th response was largely dependent on the mode of application (i.m. vs Gene Gun), but our data show that it was also strongly influenced by the properties of the Ag. Most significantly, the plasmid encoding the particulate form was able to partially overcome the Th2 bias imposed by the Gene Gun, resulting in a balanced Th1/Th2 response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rudolf Berger
- †Ludwig Boltzmann Institute for Cytokine Research, University of Vienna, Vienna, Austria
| | | |
Collapse
|
36
|
Abstract
Recently, there has been a great deal of interest in polynucleotide vaccination also referred to as DNA vaccines or genetic immunization for inducing long-term immunity in various animals and humans. The main attraction of this technology is the possibility to induce a broad range of immune responses without the use of conventional adjuvants. To date, most of the studies (>500 reports) have focused on DNA vaccination in mice. The present report summarizes the limited number of trials that have used target animal species to not only test the immune responses but also correlate them to protection.
Collapse
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
37
|
Lewis PJ, Babiuk LA. Altering the cellular location of an antigen expressed by a DNA-based vaccine modulates the immune response. J Virol 1999; 73:10214-23. [PMID: 10559338 PMCID: PMC113075 DOI: 10.1128/jvi.73.12.10214-10223.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential for DNA vaccines encoding mutated versions of the same antigen to modulate immune responses in C3H/HeN mice was investigated. We created expression plasmids that encoded several versions of glycoprotein D (gD) from bovine herpesvirus 1, including authentic membrane-anchored glycoprotein (pSLRSV.AgD), a secreted glycoprotein (pSLRSV.SgD), and an intracellular protein (pSLRSV.CgD). Immunization of an inbred strain of mice with these plasmids resulted in highly efficacious and long-lasting humoral and cell-mediated immunity. We also demonstrated that the cell compartment in which plasmid-encoded gD was expressed caused a deviation in the serum immunoglobulin (Ig) isotype profile as well as the predominant cytokines secreted from the draining lymph node. Immunization of C3H/HeN mice with DNA vaccines encoding cell-associated forms of gD resulted in a predominance of serum IgG2a and gamma interferon-secreting cells within the spleens and draining lymph nodes. In contrast, mice immunized with a secreted form of this same antigen displayed immune responses characterized by greater levels of interleukin 4 in the draining lymph node and IgG1 as the predominant serum isotype. We also showed evidence of compartmentalization of distinct immune responses within different lymphoid organs.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- COS Cells
- Cattle
- Cell Line
- Female
- Gene Expression
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin Isotypes/blood
- Immunoglobulin Isotypes/immunology
- Immunophenotyping
- Lymph Nodes
- Mice
- Mice, Inbred C3H
- Neutralization Tests
- Spleen/cytology
- Spleen/immunology
- Th1 Cells/immunology
- Transfection
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/metabolism
Collapse
Affiliation(s)
- P J Lewis
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | | |
Collapse
|
38
|
Abstract
Therapeutic and prophylactic DNA vaccine clinical trials for a variety of pathogens and cancers are underway (Chattergoon et al., 1997; Taubes, 1997). The speed with which initiation of these trials occurred is no less than astounding; clinical trials for a human immunodeficiency virus (HIV) gp160 DNA-based vaccine were underway within 36 months of the first description of "genetic immunization" (Tang et al., 1992) and within 24 months of publication of the first article describing intramuscular delivery of a DNA vaccine (Ulmer et al., 1993). Despite the relative fervor with which clinical trials have progressed, it can be safely stated that DNA-based vaccines will not be an immunological "silver bullet." In this regard, it was satisfying to see a publication entitled "DNA Vaccines--A Modern Gimmick or a Boon to Vaccinology?" (Manickan et al., 1997b). There is no doubt that this technology is well beyond the phenomenology phase of study. Research niches and models have been established and will allow the truly difficult questions of mechanism and application to target species to be studied. These two aspects of future studies are intricately interwoven and will ultimately determine the necessity for mechanistic understanding and the evolution of target species studies. The basic science of DNA vaccines has yet to be clearly defined and will ultimately determine the success or failure of this technology to find a place in the immunological arsenal against disease. In a commentary on a published study describing DNA vaccine-mediated protection against heterologous challenge with HIV-1 in chimpanzees, Ronald Kennedy (1997) states, "As someone who has been in the trenches of AIDS vaccine research for over a decade and who, together with collaborators, has attempted a number of different vaccine approaches that have not panned out, I have a relatively pessimistic view of new AIDS vaccine approaches." Kennedy then goes on to summarize a DNA-based multigene vaccine approach and the subsequent development of neutralizing titers and potent CTL activity in immunized chimpanzees (Boyer et al., 1997). Dr. Kennedy closes his commentary by stating. "The most exciting aspect of this report is the experimental challenge studies.... Viraemia was extremely transient and present at low levels during a single time point. These animals remained seronegative ... for one year after challenge" and "Overall, these observations engender some excitement". (Kennedy, 1997). Although this may seem a less than rousing cheer for DNA vaccine technology, it is a refreshingly hopeful outlook for a pathogen to which experience has taught humility. It has also been suggested that DNA vaccine technology may find its true worth as a novel alternative option for the development of vaccines against diseases that conventional vaccines have been unsuccessful in controlling (Manickan et al., 1997b). This is a difficult task for any vaccine, let alone a novel technology. DNA-based vaccine technology represents a powerful and novel entry into the field of immunological control of disease. The spinoff research has also been dramatic, and includes the rediscovery of potent bacterially derived immunomodulatory DNA sequences (Gilkeson et al., 1989), as well as availability of a methodology that allows extremely rapid assessment and dissection of both antigens and immunity. The benefits of potent Th1-type immune responses to DNA vaccines must not be overlooked, particularly in the light of suggestions that Western culture immunization practices may be responsible for the rapid increases in adult allergic and possibly autoimmune disorders (Rook and Stanford, 1998). The full utility of this technology has not yet been realized, and yet its broad potential is clearly evident. Future investigations of this technology must not be hindered by impatience, misunderstanding, and lack of funding or failure of an informed collective and collaborative effort.
Collapse
Affiliation(s)
- P J Lewis
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
39
|
Massaer M, Haumont M, Garcia L, Mazzu L, Bollen A, Jacobs P, Jacquet A. Differential neutralizing antibody responses to varicella-zoster virus glycoproteins B and E following naked DNA immunization. Viral Immunol 1999; 12:227-36. [PMID: 10532651 DOI: 10.1089/vim.1999.12.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The only available vaccine against varicella-zoster virus (VZV) consists of the VZV-Oka attenuated but persistent virus strain. Development of a safer, subunit vaccine is therefore desirable. In this prospect, nucleic acid vaccines, expressing truncated forms of VZV glycoproteins B (recgB) and E (recgE) from which the anchor and the cytoplasmic domains were deleted, were used to immunize mice. Vaccination with recgB encoding plasmid elicited a strong and specific humoral immune response. Total IgG and neutralizing titres were comparable to those previously obtained by vaccination with purified and adjuvanted native recgB. In contrast, mice immunization with recgE encoding plasmid only induced a very weak immune response whereas we previously showed that vaccination with adjuvanted native or denatured recgE protein led to high neutralizing titres. The weakness of the immune response induced by recgE-encoding plasmid depended neither on the deletion of the anchor domain in the gE gene nor on the animal model. Analysis of antibody isotypes produced by plasmid immunizations revealed a response slightly dominated by IgG2a. Taken together, the data indicate that a VZV subunit vaccine based on adjuvanted recombinant glycoprotein E is more promising than a nucleic acid-based vaccine strategy. As regards recgB, both vaccination approaches might be appropriate.
Collapse
Affiliation(s)
- M Massaer
- Applied Genetics, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
Lecouturier V, Rizzitelli A, Fayolle J, Daviet L, Wild FT, Buckland R. Interaction of measles virus (Hallé strain) with CD46: evidence that a common binding site on CD46 facilitates both CD46 downregulation and MV infection. Biochem Biophys Res Commun 1999; 264:268-75. [PMID: 10527876 DOI: 10.1006/bbrc.1999.1517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD46 acts as a cellular receptor for vaccine strains of measles virus (MV). The MV/CD46 interaction-mediated by the MV attachment glycoprotein, the hemagglutinin (H)-not only facilitates infection but also induces CD46 downregulation. A conflict of opinion exists as to whether a single MVH binding site on CD46, or two separate sites, facilitates the two phenomena. To investigate this conundrum we first tested and compared a panel of CD46-specific monoclonal antibodies (mAbs) for their capacity to block both processes. One (mAb 13/42) abrogated both MV fusion and CD46 downregulation. Mutation of an amino acid (arg59 in the SCR1 of CD46) essential for the epitope of mAb 13/42 resulted in the abrogation of both CD46 downregulation and viral fusion. This strongly suggests that the same MV binding site on CD46 is responsible for both CD46 downregulation and MV infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Arginine/genetics
- Arginine/metabolism
- Cells, Cultured
- Down-Regulation
- Epitope Mapping
- HeLa Cells
- Humans
- Measles/prevention & control
- Measles/virology
- Measles Vaccine/metabolism
- Measles virus/metabolism
- Membrane Cofactor Protein
- Membrane Fusion
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mutagenesis, Site-Directed
- Rabbits
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- Virion/metabolism
Collapse
Affiliation(s)
- V Lecouturier
- Unité Inserm 404, "Immunity and Vaccination,", Tour Inserm, Avenue Tony Garnier, 69365, Lyon Cedex, 07, France
| | | | | | | | | | | |
Collapse
|
41
|
Taylor-Robinson AW, Smith EC. A role for cytokines in potentiation of malaria vaccines through immunological modulation of blood stage infection. Immunol Rev 1999; 171:105-23. [PMID: 10582167 DOI: 10.1111/j.1600-065x.1999.tb01344.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malaria is the world's major parasitic disease, for which effective control measures are urgently needed. One of the difficulties hindering successful vaccine design against Plasmodium is an incomplete knowledge of antigens eliciting protective immunity, the precise types of immune response for which to aim, and how these can be induced. A greater appreciation of the mechanisms of protective immunity, on the one hand, and of immunopathology, on the other, should provide critical clues to how manipulation of the immune system may best be achieved. We are studying the regulation of the balance between T helper 1 (Th1) and T helper 2 (Th2) CD4+ T lymphocytes in immunity to asexual blood stages of malaria responsible for the pathogenicity of the disease. Protective immunity to the experimental murine malarias Plasmodium chabaudi and Plasmodium yoelii involves both Th1 and Th2 cells, which provide protection by different mechanisms at different times of infection characterised by higher and lower parasite densities, respectively. This model therefore facilitates a clearer understanding of the Th1/Th2 equilibrium that appears central to immunoregulation of all host/pathogen relationships. It also permits a detailed dissection in vivo of the mechanisms of antimalarial immunity. Here, we discuss the present state of malaria vaccine development and our current research to understand the factors involved in the modulation of vaccine-potentiated immunity.
Collapse
|
42
|
Hassett DE, Zhang J, Whitton JL. Induction of antiviral antibodies by DNA immunization requires neither perforin-mediated nor CD8(+)-T-cell-mediated lysis of antigen-expressing cells. J Virol 1999; 73:7870-3. [PMID: 10438882 PMCID: PMC104319 DOI: 10.1128/jvi.73.9.7870-7873.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA immunization induces antibodies to the encoded protein, which indicates that the protein must gain access to the extracellular milieu, allowing it to interact with naïve B lymphocytes. It has been suggested that antigen release may be effected by cytotoxic-T-lymphocyte-mediated lysis of transfected antigen-expressing cells; this might be particularly important for the induction of responses to a noncytopathic, cytosolic protein. Here we show that the induction of antibody responses to one such DNA-encoded protein required neither perforin nor CD8(+) T cells. In addition, there was no skewing of the immunoglobulin G isotypes in the absence of perforin.
Collapse
Affiliation(s)
- D E Hassett
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
43
|
Babiuk LA, Lewis J, Suradhat S, Baca-Estrada M, Foldvari M, Babiuk S. Polynucleotide vaccines: potential for inducing immunity in animals. J Biotechnol 1999; 73:131-40. [PMID: 10486923 DOI: 10.1016/s0168-1656(99)00116-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polynucleotide immunization has been described as the Third Revolution in Vaccinology. Early studies suggest the potential benefits of this form of immunization including: long-lived immunity, a broad-spectrum of immune responses (both cell mediated immunity, and humoral responses) and the simultaneous induction of immunity to a variety of pathogens through the use of multivalent vaccines. Using a murine model, we studied methods to enhance and direct the immune response to polynucleotide vaccines. We demonstrated the ability to modulate the magnitude and direction of the immune response by co-administration of plasmid encoded cytokines and antigen. Also, we clearly demonstrated that the cellular components (cytosolic, membrane-anchored, or extracellular) to which the expressed antigen is delivered determines the types of immune responses induced. Since induction of immunity at mucosal surfaces (route of entry for many pathogens) is critical to prevent infection, various methods of delivering polynucleotide vaccines to mucosal surfaces have been attempted and are described. Expansion of studies in various species, using natural models, should be extremely helpful in demonstrating the universality of this approach to immunization and more importantly, accurately identify parameters that are critical for the development of protective immunity.
Collapse
Affiliation(s)
- L A Babiuk
- VIDO (Veterinary Infectious Disease Organization), Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Liljeqvist S, Ståhl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73:1-33. [PMID: 10483112 DOI: 10.1016/s0168-1656(99)00107-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.
Collapse
Affiliation(s)
- S Liljeqvist
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | |
Collapse
|
45
|
van Drunen Littel-van den Hurk S, Braun RP, Karvonen BC, King T, Yoo D, Babiuk LA. Immune responses and protection induced by DNA vaccines encoding bovine parainfluenza virus type 3 glycoproteins. Virology 1999; 260:35-46. [PMID: 10405354 DOI: 10.1006/viro.1999.9793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was designed to assess the parameters influencing the magnitude and type of immune responses generated to plasmids encoding the hemagglutinin/neuraminidase (HN) and fusion (F) proteins of bovine parainfluenzavirus type 3 (BPIV3). Mice immunized with plasmids expressing HN or F under control of the Rous sarcoma virus long terminal repeat promoter were primed, but they did not develop measurable immune responses. In contrast, strong humoral and cellular immune responses were induced with constructs containing the human cytomegalovirus immediate-early promoter and intron A. After immunization with both HN- and F-encoding plasmids, enhanced responses were observed. Analysis of in vitro protein synthesis confirmed that the presence of the intron is crucial for the expression of the BPIV3 HN gene. Plasmid encoding HN induced significantly higher serum antibody titers by intradermal injection than by intramuscular delivery, whereas antigen-specific T cell proliferation was stronger in intramuscularly injected mice. Both the isotype ratios and the cytokine profiles indicated a Th1-type response after intramuscular immunization and a mixed to Th2-type response in intradermally immunized mice. A plasmid encoding a truncated, secreted form of HN induced a Th2-type immune response, regardless of the route of delivery. In cotton rats, HN- and F-encoding plasmids conferred protection from BPIV3 challenge.
Collapse
Affiliation(s)
- S van Drunen Littel-van den Hurk
- Veterinary Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, S7N 5E3, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Schuh T, Schultz J, Moelling K, Pavlovic J. DNA-based vaccine against La Crosse virus: protective immune response mediated by neutralizing antibodies and CD4+ T cells. Hum Gene Ther 1999; 10:1649-58. [PMID: 10428210 DOI: 10.1089/10430349950017653] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
La Crosse virus (LACV)-mediated encephalitis is the most frequently reported arboviral disease in the United States, but to date no vaccine against this virus is available. We have established a new animal model, genetically targeted mice lacking a functional interferon type I receptor (IFNAR-1). These mice show an age-independent susceptibility to LACV and develop an acute encephalitis within 6 days of infection, thereby allowing the evaluation of vaccines against LACV. Taking advantage of this knockout mouse model, we have assessed the feasibility of DNA vaccination against this viral disease. Plasmid DNAs, encoding either the virus surface glycoproteins G1 and G2 or the internal nucleocapsid protein N, were used to immunize IFNAR-1-deficient mice. Mice vaccinated with DNA encoding the glycoproteins G1 and G2 produced neutralizing antibodies and exhibited a high degree of protection against challenge with high doses of LACV. Depletion of CD4+ T cells in mice vaccinated with DNA encoding G1/G2 reduced their capacity to control the infection. Virus titration and immunohistological analysis revealed that the protected mice showed no evidence of LACV particles in the brain. This indicates that the vaccine-induced immune response efficiently blocked viral spreading from the primary replication site to the brain. In contrast, immunization with DNA encoding protein N yielded only a partial protective effect that can be attributed to the cellular immune response. Taken together, this study shows that DNA vaccines can be designed to efficiently induce a protective immune response based on neutralizing antibodies and CD4+ T cells.
Collapse
Affiliation(s)
- T Schuh
- Institute of Medical Virology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
47
|
Operschall E, Schuh T, Heinzerling L, Pavlovic J, Moelling K. Enhanced protection against viral infection by co-administration of plasmid DNA coding for viral antigen and cytokines in mice. J Clin Virol 1999; 13:17-27. [PMID: 10405888 DOI: 10.1016/s1386-6532(99)00008-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND DNA vaccines have been shown to induce protective immunity against viral infections in different animal models. We have recently demonstrated that DNA vaccine induced protective immunity against influenza A virus and La Crosse virus (LACV) is primarily mediated by humoral immune response. OBJECTIVE The goal of this study was to investigate whether administration of DNA coding for cytokines such as interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could increase the protective immune response induced by vaccination with DNA coding for viral antigens. STUDY DESIGN For the influenza A virus or LACV model, C57BL/6 or interferon-alpha/beta receptor (IFNAR-1)-deficient mice, respectively, were vaccinated once or twice with 100 micrograms of DNA encoding viral antigens. At the same time plasmid DNAs (100 micrograms) coding either for mouse GM-CSF or mouse IL-12 were administered. The mice were subsequently challenged with a lethal dose of influenza A virus or LACV and monitored for clinical symptoms (weight loss) and survival. RESULTS To achieve a high degree of protection (70% survival) two injections of DNA encoding the influenza A virus surface protein hemagglutinin (HA) were required. Intriguingly, administration of DNA coding for IL-12 alone also led to a pronounced protective effect against virus challenge. Co-administration of DNAs encoding IL-12 and HA significantly increased the protective immunity against influenza A virus, while IL-12 expression did not improve protection upon vaccination with DNA coding for the internal nucleocapsid protein N of LACV. Co-injection of DNA coding for mouse GM-CSF and HA also showed an adjuvant effect. CONCLUSIONS The data clearly indicate that co-administration of DNA encoding cytokines such as IL-12 and GM-CSF with DNA coding for viral antigens has adjuvant effects on the protective immune response against different viral pathogens.
Collapse
Affiliation(s)
- E Operschall
- Institute of Medical Virology, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Route and Method of Delivery of DNA Vaccine Influence Immune Responses in Mice and Non-Human Primates. Mol Med 1999. [DOI: 10.1007/bf03402065] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Abstract
The development of an attenuated measles virus vaccine gave us a tool to combat a disease which has ravaged the child population throughout the centuries. Three decades later the vaccine has shown its qualities and its problems. Using this vaccine the WHO have decided on a measles eradication policy. This article discusses some of the issues which are being addressed and possible solutions.
Collapse
Affiliation(s)
- T F Wild
- Unité INSERM 404 Immunity and Vaccination, Bâtiment Ex-Institut Pasteur de Lyon, France.
| |
Collapse
|
50
|
Alarcon JB, Waine GW, McManus DP. DNA vaccines: technology and application as anti-parasite and anti-microbial agents. ADVANCES IN PARASITOLOGY 1999; 42:343-410. [PMID: 10050276 DOI: 10.1016/s0065-308x(08)60152-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA vaccines have been termed The Third Generation of Vaccines. The recent successful immunization of experimental animals against a range of infectious agents and several tumour models of disease with plasmid DNA testifies to the powerful nature of this revolutionary approach in vaccinology. Among numerous advantages, a major attraction of DNA vaccines over conventional vaccines is that they are able to induce protective cytotoxic T-cell responses as well as helper T-cell and humoral immunity. Here we review the current state of nucleic acid vaccines and cover a wide range of topics including delivery mechanisms, uptake and expression of plasmid DNA, and the types of immune responses generated. Further, we discuss safety issues, and document the use of nucleic acid vaccines against viral, bacterial and parasitic diseases, and cancer. The early potential promise of DNA vaccination has been fully substantiated with recent, exciting developments including the movement from testing DNA vaccines in laboratory models to non-human primates and initial human clinical trials. These advances and the emerging voluminous literature on DNA vaccines highlight the rapid progress that has been made in the DNA immunization field. It will be of considerable interest to see whether the progress and optimism currently prevailing can be maintained, and whether the approach can indeed fulfil the medical and commerical promise anticipated.
Collapse
Affiliation(s)
- J B Alarcon
- Molecular Parasitology Unit, Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research, Bancroft Centre, Herston, Australia
| | | | | |
Collapse
|