1
|
Tomatis C, Ferrer MF, Aquila S, Thomas PD, Arrías PN, Ferrelli L, Pidre M, Romanowski V, Carrera Silva EA, Gómez RM. Baculovirus surface display of a chimeric E-NS1 protein of YFV protects against YFV infection. Vaccine 2024; 42:126045. [PMID: 38852036 DOI: 10.1016/j.vaccine.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Yellow fever (YF) is a disease caused by the homonymous flavivirus that can be prevented by a vaccine containing attenuated viruses. Since some individuals cannot receive this vaccine, the development of alternatives is desirable. Here, we developed a recombinant baculovirus (rBV) surface display platform utilizing a chimeric E-NS1 protein as a vaccine candidate. A pBacPAK9 vector containing the baculoviral GP64 signal peptide, the YFV prM, E, NS1 and the ectodomain of VSV-G sequences was synthesized. This transfer plasmid and the bAcGOZA bacmid were cotransfected into Sf9 cells, and an rBV-E-NS1 was obtained, which was characterized by PCR, WB, IFI and FACS analysis. Mice immunized with rBV-E-NS1 elicited a specific humoral and cellular immune response and were protected after YFV infection. In summary, we have developed an rBV that expresses YFV major antigen proteins on its surface, which opens new alternatives that can be tested in a mouse model.
Collapse
Affiliation(s)
- Carla Tomatis
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina; Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, Ciudad de Buenos Aires, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Silvia Aquila
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Paula Nazarena Arrías
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Leticia Ferrelli
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Matías Pidre
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Victor Romanowski
- Laboratorio de Virología Molecular, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Eugenio Antonio Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, Ciudad de Buenos Aires, Argentina.
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular (IBBM), CONICET-UNLP, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Song L, Wang Q, Wen Y, Tan R, Cui Y, Xiong D, Jiao X, Pan Z. Enhanced immunogenicity elicited by a novel DNA vaccine encoding the SARS-CoV-2 S1 protein fused to the optimized flagellin of Salmonella typhimurium in mice. Microbiol Spectr 2023; 11:e0254923. [PMID: 37909745 PMCID: PMC10714832 DOI: 10.1128/spectrum.02549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The development of safe and effective vaccines is needed to control the transmission of coronavirus disease 2019 (COVID-19). Synthetic DNA vaccines represent a promising platform in response to such outbreaks. Here, DNA vaccine candidates were developed using an optimized antibiotic-resistance gene-free asd-pVAX1 vector. An optimized flagellin (FliC) adjuvant was designed by fusion expression to increase the immunogenicity of the S1 antigen. S1 and S1-FliCΔD2D3 proteins were strongly expressed in mammalian cells. The FliCΔD2D3-adjuvanted DNA vaccine induced Th1/Th2-mixed immune responses and high titers of neutralizing antibodies. This study provides crucial information regarding the selection of a safer DNA vector and adjuvant for vaccine development. Our FliCΔD2D3-adjuvanted S1 DNA vaccine is more potent at inducing both humoral and cellular immune responses than S1 alone. This finding provides a new idea for the development of novel DNA vaccines against COVID-19 and could be further applied for the development of other vaccines.
Collapse
Affiliation(s)
- Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaoju Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaya Wen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruimeng Tan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaodan Cui
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Yao M, Ren X, Yin M, Chen H, Li X, Qian P. Nanoparticle vaccine based on the envelope protein domain III of Japanese encephalitis virus elicits robust protective immune responses in mice. Nanomedicine (Lond) 2023; 18:5-18. [PMID: 36789970 DOI: 10.2217/nnm-2022-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Aim: To develop a vaccine candidate for Japanese encephalitis virus (JEV), for which an effective and safe vaccine is urgently needed. Materials & methods: A vaccine candidate based on domain III of the JEV envelope protein and lumazine synthase (EDIII-LS) was prepared by coupling multivalent ED III to a self-assembling nanoparticle of LS through genetic fusion and self-assembly. Results: High enrichment of ED III was achieved based on the self-assembly of an EDIII-LS polymer. EDIII-LS strongly promoted dendritic cells' internalization and presentation compared with ED III monomer. The cellular and humoral immune responses provoked by EDIII-LS were remarkably higher than those caused by ED III in mice, and conferred complete protection against JEV challenge. Conclusion: The study of ED III-based nanoparticles suggests an effective approach against JEV.
Collapse
Affiliation(s)
- Manman Yao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mengge Yin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Prevention & Control for African Swine Fever & Other Major Pig Diseases, Ministry of Agriculture & Rural Affairs, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Prevention & Control for African Swine Fever & Other Major Pig Diseases, Ministry of Agriculture & Rural Affairs, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Prevention & Control for African Swine Fever & Other Major Pig Diseases, Ministry of Agriculture & Rural Affairs, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| |
Collapse
|
4
|
Dey A, Chozhavel Rajanathan TM, Chandra H, Pericherla HPR, Kumar S, Choonia HS, Bajpai M, Singh AK, Sinha A, Saini G, Dalal P, Vandriwala S, Raheem MA, Divate RD, Navlani NL, Sharma V, Parikh A, Prasath S, Sankar Rao M, Maithal K. Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine 2021; 39:4108-4116. [PMID: 34120764 PMCID: PMC8166516 DOI: 10.1016/j.vaccine.2021.05.098] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), initially originated in China in year 2019 and spread rapidly across the globe within 5 months, causing over 96 million cases of infection and over 2 million deaths. Huge efforts were undertaken to bring the COVID-19 vaccines in clinical development, so that it can be made available at the earliest, if found to be efficacious in the trials. We developed a candidate vaccine ZyCoV-D comprising of a DNA plasmid vector carrying the gene encoding the spike protein (S) of the SARS-CoV-2 virus. The S protein of the virus includes the receptor binding domain (RBD), responsible for binding to the human angiotensin converting enzyme (ACE-2) receptor. The DNA plasmid construct was transformed into E. coli cells for large scale production. The immunogenicity potential of the plasmid DNA has been evaluated in mice, guinea pig, and rabbit models by intradermal route at 25, 100 and 500 µg dose. Based on the animal studies proof-of-concept has been established and preclinical toxicology (PCT) studies were conducted in rat and rabbit model. Preliminary animal study demonstrates that the candidate DNA vaccine induces antibody response including neutralizing antibodies against SARS-CoV-2 and also elicited Th-1 response as evidenced by elevated IFN-γ levels.
Collapse
Affiliation(s)
- Ayan Dey
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | - Harish Chandra
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | - Sanjeev Kumar
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | - Mayank Bajpai
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Arun K Singh
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Anuradha Sinha
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Gurwinder Saini
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Parth Dalal
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | | | | | - Rupesh D Divate
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Neelam L Navlani
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Vibhuti Sharma
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Aashini Parikh
- Zydus Research Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Siva Prasath
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - M Sankar Rao
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India
| | - Kapil Maithal
- Vaccine Technology Centre, Cadila Healthcare Ltd, Ahmedabad, India.
| |
Collapse
|
5
|
Saxena SK, Kumar S, Haikerwal A. Animal Flaviviruses. EMERGING AND TRANSBOUNDARY ANIMAL VIRUSES 2020. [DOI: 10.1007/978-981-15-0402-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Ladreyt H, Durand B, Dussart P, Chevalier V. How Central Is the Domestic Pig in the Epidemiological Cycle of Japanese Encephalitis Virus? A Review of Scientific Evidence and Implications for Disease Control. Viruses 2019; 11:E949. [PMID: 31618959 PMCID: PMC6832429 DOI: 10.3390/v11100949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the existence of human vaccines, Japanese encephalitis (JE) remains the leading cause of human encephalitis in Asia. Pigs are described as the main amplifying host, but their role in JE epidemiology needs to be reassessed in order to identify and implement efficient control strategies, for both human and animal health. We aimed to provide a systematic review of publications linked to JE in swine, in terms of both individual and population characteristics of JE virus (JEV) infection and circulation, as well as observed epidemiological patterns. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to select and analyze relevant articles from the Scopus database, 127 of which were included in the review. Pigs are central, but the implication of secondary hosts cannot be ruled out and should be further investigated. Although human vaccination cannot eradicate the virus, it is clearly the most important means of preventing human disease. However, a better understanding of the actual involvement of domestic pigs as well as other potential JEV hosts in different JEV epidemiological cycles and patterns could help to identify additional/complementary control measures, either by targeting pigs or not, and in some specific epidemiological contexts, contribute to reduce virus circulation and protect humans from JEV infection.
Collapse
Affiliation(s)
- Héléna Ladreyt
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 94700 Maisons-Alfort, France.
- Agricultural Research for Development (CIRAD), UMR ASTRE, F-34090 Montpellier, France.
| | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 94700 Maisons-Alfort, France.
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh 12201, Cambodia.
| | - Véronique Chevalier
- Agricultural Research for Development (CIRAD), UMR ASTRE, F-34090 Montpellier, France.
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh 12201, Cambodia.
- Agricultural Research for Development (CIRAD), UMR ASTRE, Phnom Penh 12201, Cambodia.
| |
Collapse
|
7
|
Evaluation of immunogenicity and protective efficacy of a CpG-adjuvanted DNA vaccine against Tembusu virus. Vet Immunol Immunopathol 2019; 218:109953. [PMID: 31590073 DOI: 10.1016/j.vetimm.2019.109953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022]
Abstract
Tembusu virus (TMUV) is a contagious pathogen of waterfowl including ducks and geese, which causes symptoms of high fever, loss of appetite and reduced egg production. The development of an effective vaccine is important for the prevention and control of the disease. We evaluated a DNA vaccine based on a recombinant pre-membrane (prM) and envelope (E) protein, using CpG oligodeoxynucleotide (ODN) as an adjuvanted, and tested it for protection efficacy. BHK21 cells were transfected with the recombinant plasmid pVAX1-prM/E-CpG, and the antigenicity of the expressed protein was detected using an indirect immunofluorescence assay (IFA) and western blot assay. One-day-old ducklings were intramuscularly injected with 200 μg doses of pVAX1-prM/E-CpG or pVAX1-CpG, or PBS at ten day intervals. The neutralizing antibodies and cell-mediated immune responses elicited by the DNA vaccine were detected using serum neutralization tests (SNTs) and ELISAs. At 20 days old, the ducks were challenged with 103EID50 doses of TMUV SD/02 strain and observed for 15 days post challenge. After the second DNA vaccination and during the monitoring period, the levels of TMUV neutralizing antibodies increased in the pVAX1-prM/E-CpG vaccinated ducks. Vaccination with pVAX1-prM/E-CpG resulted in 100.0% protection of the ducks, whereas approximately 40% of ducks vaccinated with pVAX-CpG or PBS manifested clinical symptoms. Expressions of IFN-γ and IL-6 in the pVAX1-prM/E-CpG group were significantly increased (p < 0.01) compared with the control groups during the entire experimental period. The results revealed that a vaccine co-expressing prM and E, and using a CpG-ODN motif as an adjuvant, could elicit effective neutralizing antibody titers and provide efficient protection to ducks against TMUV infection.
Collapse
|
8
|
Mansfield KL, Hernández-Triana LM, Banyard AC, Fooks AR, Johnson N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet Microbiol 2017; 201:85-92. [PMID: 28284628 DOI: 10.1016/j.vetmic.2017.01.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022]
Abstract
Japanese encephalitis virus (JEV) is a significant cause of neurological disease in humans throughout Asia causing an estimated 70,000 human cases each year with approximately 10,000 fatalities. The virus contains a positive sense RNA genome within a host-derived membrane and is classified within the family Flaviviridae. Like many flaviviruses, it is transmitted by mosquitoes, particularly those of the genus Culex in a natural cycle involving birds and some livestock species. Spill-over into domestic animals results in a spectrum of disease ranging from asymptomatic infection in some species to acute neurological signs in others. The impact of JEV infection is particularly apparent in pigs. Although infection in adult swine does not result in symptomatic disease, it is considered a significant reproductive problem causing abortion, still-birth and birth defects. Infected piglets can display fatal neurological disease. Equines are also infected, resulting in non-specific signs including pyrexia, but occasionally leading to overt neurological disease that in extreme cases can lead to death. Veterinary vaccination is available for both pigs and horses. This review of JEV disease in livestock considers the current diagnostic techniques available for detection of the virus. Options for disease control and prevention within the veterinary sector are discussed. Such measures are critical in breaking the link to zoonotic transmission into the human population where humans are dead-end hosts.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Department of Clinical Infection, Microbiology and Immunology, Institute for Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Department of Clinical Infection, Microbiology and Immunology, Institute for Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
| |
Collapse
|
9
|
Qian P, Zhi X, Wang B, Zhang H, Chen H, Li X. Construction and immune efficacy of recombinant pseudorabies virus expressing PrM-E proteins of Japanese encephalitis virus genotype І. Virol J 2015; 12:214. [PMID: 26651827 PMCID: PMC4676090 DOI: 10.1186/s12985-015-0449-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/04/2015] [Indexed: 01/24/2023] Open
Abstract
Background Japanese encephalitis (JE) is an arboviral disease with high case fatality rates and neurologic or psychiatric sequelae among survivors in Asia, western Pacific countries and northern Australia. Japanese encephalitis virus (JEV) is the cause of JE and the emergence of genotype І (GI) JEV has displaced genotype III (GIII) as the dominant strains circulating in some Asian regions. The currently available JE vaccines are safe and effective in preventing this disease, but they are developed based on the GIII JEV strains. Methods The recombinant virus PRV TK−/gE−/PrM-E+ which expressed the premembrane (prM) and envelope (E) proteins of JEV SX09S-01 strain (genotype I, GI) was constructed by homologous recombination between the genome of PRV TK−/gE−/LacZ+ digested with EcoRI and plasmid pIE-CAG-PrM-E-BGH. Expression of JEV PrM and E proteins was analyzed by Western blot analysis. Immune efficacy of PRV TK−/gE−/PrM-E+ was further evaluated in mouse model. Results A recombinant pseudorabies virus (PRV TK−/gE−/PrM-E+) was successfully constructed. Mice experiments showed that PRV TK−/gE−/PrM-E+ could induce a high level of ELISA antibodies against PRV and JEV, as well as high titer of PRV neutralizing antibodies. After challenge with 1 × 107 PFU virulent JEV SX09S-01 strain, the time of death was delayed and the survival rate was improved in PRV TK−/gE−/PrM-E+ vaccinated mice. Conclusions PRV TK−/gE−/PrM-E+ is a potential vaccine candidate against PRV and JEV GI infection in the future.
Collapse
Affiliation(s)
- Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture, Wuhan, 430070, P.R China.
| | - Xianwei Zhi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| | - Bo Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture, Wuhan, 430070, P.R China.
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China. .,Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture, Wuhan, 430070, P.R China.
| |
Collapse
|
10
|
Abstract
Japanese encephalitis (JE) is the most common form of viral encephalitis that appears in the form of frequent epidemics of brain fever throughout Southeast Asia, China and India. The disease is caused by a Flavivirus named Japanese encephalitis virus that is spread to humans by mosquitoes. An internationally approved mouse brain-derived inactivated vaccine has been available that is relatively expensive, gives immunity of uncertain duration and is not completely safe. Cell culture-derived inactivated and attenuated JE vaccines are in use in China, but these are not produced as per the norms acceptable in most countries. Several new promising JE vaccine candidates have been developed, some of which are under different stages of clinical evaluation. These new candidate JE vaccines have the potential to generate long-lasting immunity at low cost.
Collapse
Affiliation(s)
- Kaushik Bharati
- Virology laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| | | |
Collapse
|
11
|
Kant Upadhyay R. Biomarkers in Japanese encephalitis: a review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:591290. [PMID: 24455705 PMCID: PMC3878288 DOI: 10.1155/2013/591290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| |
Collapse
|
12
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
13
|
|
14
|
[Reverse genetics system for flaviviruses]. Uirusu 2013; 63:13-22. [PMID: 24769573 DOI: 10.2222/jsv.63.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Flaviviruses such as Japanese encephalitis virus, West Nile virus, yellow fever virus, dengue virus, and tick-borne encephalitis virus belong to a family Flaviviridae. These viruses are transmitted to vertebrates by infected mosquitoes or ticks, producing diseases, which have a serious impact on global public health. Reverse genetics is a powerful tool for studying the viruses. Although infectious full-length clones have been obtained for multiple flaviviruses, their early-stage development had the difficulty because of the instability problem of the viral cDNA in E. coli. Several strategies have been developed to circumvent the problem of infectious clone instability. The current knowledge accumulated on reverse genetics system of flaviviruses and its application are summarized in this review.
Collapse
|
15
|
Zhang Y, Chen P, Cao R, Gu J. Mutation of putative N-linked glycosylation sites in Japanese encephalitis virus premembrane and envelope proteins enhances humoral immunity in BALB/C mice after DNA vaccination. Virol J 2011; 8:138. [PMID: 21439032 PMCID: PMC3088903 DOI: 10.1186/1743-422x-8-138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 03/25/2011] [Indexed: 11/10/2022] Open
Abstract
Swine are an important host of Japanese encephalitis virus (JEV). The two membrane glycoproteins of JEV, prM and E, each contain a potential N-linked glycosylation site, at positions N15 and N154, respectively. We constructed plasmids that contain the genes encoding wild-type prME (contain the signal of the prM, the prM, and the E coding regions) and three mutant prME proteins, in which the putative N-linked glycosylation sites are mutated individually or in combination, by site-directed mutagenesis. The recombinant plasmids were used as DNA vaccines in mice. Our results indicate that immunizing mice with DNA vaccines that contain the N154A mutation results in elevated levels of interleukin-4 secretion, induces the IgG1 antibody isotype, generates greater titers of anti-JEV antibodies, and shows complete protection against JEV challenge. We conclude that mutation of the putative N-glycosylation site N154 in the E protein of JEV significantly enhances the induced humoral immune response and suggest that this mutant should be further investigated as a potential DNA vaccine against JEV.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
16
|
Imoto JI, Ishikawa T, Yamanaka A, Konishi M, Murakami K, Shibahara T, Kubo M, Lim CK, Hamano M, Takasaki T, Kurane I, Udagawa H, Mukuta Y, Konishi E. Needle-free jet injection of small doses of Japanese encephalitis DNA and inactivated vaccine mixture induces neutralizing antibodies in miniature pigs and protects against fetal death and mummification in pregnant sows. Vaccine 2010; 28:7373-80. [PMID: 20851083 DOI: 10.1016/j.vaccine.2010.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 08/28/2010] [Accepted: 09/03/2010] [Indexed: 11/29/2022]
Abstract
Japanese encephalitis (JE) virus causes abortion and stillbirth in swine, and encephalitis in humans and horses. We have previously reported that immunogenicity of a DNA vaccine against JE was synergistically enhanced in mice by co-immunization with a commercial inactivated JE vaccine (JEVAX) under a needle-free injection system. Here, we found that this immunization strategy was also effective in miniature pigs. Because of the synergism, miniature pigs immunized twice with a mixture of 10 μg of DNA and a 1/100 dose of JEVAX developed a high neutralizing antibody titer (1:190 at 90% plaque reduction assay). Even using 1 μg of DNA, 3 of 4 pigs developed neutralizing antibodies. Following challenge, all miniature pigs with detectable neutralizing antibodies were protected against viremia. Pregnant sows inoculated with 10 or 1 μg of DNA mixed with JEVAX (1/100 dose) developed antibody titers of 1:40-1:320. Following challenge, fetal death and mummification were protected against in DNA/JEVAX-immunized sows.
Collapse
Affiliation(s)
- Jun-ichi Imoto
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li P, Cao RB, Zheng QS, Liu JJ, Li Y, Wang EX, Li F, Chen PY. Enhancement of humoral and cellular immunity in mice against Japanese encephalitis virus using a DNA prime-protein boost vaccine strategy. Vet J 2008; 183:210-6. [PMID: 19008134 DOI: 10.1016/j.tvjl.2008.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 09/17/2008] [Accepted: 09/27/2008] [Indexed: 11/17/2022]
Abstract
A synthetic multi-epitope gene containing critical epitopes of the Japanese encephalitis virus (JEV) envelope gene was cloned into both prokaryotic and eukaryotic expression vectors. The recombinant plasmid and purified recombinant protein (heterologously expressed in Escherichia coli) were used as immunogens in a mouse model. The results indicate that both the recombinant protein and the DNA vaccine induce humoral and cellular immune responses. Neutralising antibody titres in mice in the pcDNA-TEP plus rEP group increased considerably relative to mice immunised using either pcDNA-TEP or rEP alone (P<0.05). Furthermore, the highest levels of interleukin (IL)-2, interferon-gamma and IL-4 were induced following priming with the DNA vaccine and boosting with the recombinant protein. Together these findings demonstrate that a DNA-recombinant protein prime-boost vaccination strategy can produce high levels of antibody and trigger significant T cell responses in mice, highlighting the potential value of such an approach in the prevention of JEV infection.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Animal Disease Diagnosis and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fei-fei G, Jian W, Feng X, Li-ping S, Quan-yun S, Jin-ping Z, Pu-yan C, Pei-hong L. Japanese encephalitis protein vaccine candidates expressing neutralizing epitope and M.T hsp70 induce virus-specific memory B cells and long-lasting antibodies in swine. Vaccine 2008; 26:5590-4. [DOI: 10.1016/j.vaccine.2008.07.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 05/28/2008] [Accepted: 07/29/2008] [Indexed: 12/01/2022]
|
19
|
Construction and characterization of a second-generation pseudoinfectious West Nile virus vaccine propagated using a new cultivation system. Vaccine 2008; 26:2762-71. [PMID: 18423946 DOI: 10.1016/j.vaccine.2008.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 03/01/2008] [Accepted: 03/11/2008] [Indexed: 12/14/2022]
Abstract
Safer vaccines are needed to prevent flavivirus diseases. To help develop these products we have produced a pseudoinfectious West Nile virus (WNV) lacking a functional C gene which we have named RepliVAX WN. Here we demonstrate that RepliVAX WN can be safely propagated at high titer in BHK cells and vaccine-certified Vero cells engineered to stably express the C protein needed to trans-complement RepliVAX WN growth. Using these BHK cells we selected a better growing mutant RepliVAX WN population and used this to generate a second-generation RepliVAX WN (RepliVAX WN.2). RepliVAX WN.2 grown in these C-expressing cell lines safely elicit strong protective immunity against WNV disease in mice and hamsters. Taken together, these results indicate the clinical utility of RepliVAX WN.2 as a vaccine candidate against West Nile encephalitis.
Collapse
|
20
|
Beasley DWC, Lewthwaite P, Solomon T. Current use and development of vaccines for Japanese encephalitis. Expert Opin Biol Ther 2008; 8:95-106. [PMID: 18081539 DOI: 10.1517/14712598.8.1.95] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Japanese encephalitis (JE) is a significant cause of human morbidity and mortality throughout Asia. Vaccines for JE have been available for many years and their use has been effective in reducing the incidence of JE disease in several countries but, as disease incidence has decreased, concerns regarding adverse events following immunisation have increased. OBJECTIVE To review existing JE vaccines and new candidates in advanced preclinical or clinical evaluation. METHODS The review primarily covers published and some unpublished literature from the past decade describing current use of approved JE vaccines in various parts of the world, and advanced development and clinical testing of alternative vaccine candidates. RESULTS/CONCLUSION There is a clear need for additional licensing of existing or new JE vaccines. Several promising candidates are currently in use or completing clinical trials.
Collapse
Affiliation(s)
- David W C Beasley
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
21
|
|
22
|
Shustov AV, Mason PW, Frolov I. Production of pseudoinfectious yellow fever virus with a two-component genome. J Virol 2007; 81:11737-48. [PMID: 17715227 PMCID: PMC2168813 DOI: 10.1128/jvi.01112-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Application of genetically modified, deficient-in-replication flaviviruses that are incapable of developing productive, spreading infection is a promising means of designing safe and effective vaccines. Here we describe a two-component genome yellow fever virus (YFV) replication system in which each of the genomes encodes complete sets of nonstructural proteins that form the replication complex but expresses either only capsid or prM/E instead of the entire structural polyprotein. Upon delivery to the same cell, these genomes produce together all of the viral structural proteins, and cells release a combination of virions with both types of genomes packaged into separate particles. In tissue culture, this modified YFV can be further passaged at an escalating scale by using a high multiplicity of infection (MOI). However, at a low MOI, only one of the genomes is delivered into the cells, and infection cannot spread. The replicating prM/E-encoding genome produces extracellular E protein in the form of secreted subviral particles that are known to be an effective immunogen. The presented strategy of developing viruses defective in replication might be applied to other flaviviruses, and these two-component genome viruses can be useful for diagnostic or vaccine applications, including the delivery and expression of heterologous genes. In addition, the achieved separation of the capsid-coding sequence and the cyclization signal in the YFV genome provides a new means for studying the mechanism of the flavivirus packaging process.
Collapse
Affiliation(s)
- Alexandr V Shustov
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
23
|
Ishikawa T, Takasaki T, Kurane I, Nukuzuma S, Kondo T, Konishi E. Co-immunization with West Nile DNA and inactivated vaccines provides synergistic increases in their immunogenicities in mice. Microbes Infect 2007; 9:1089-95. [PMID: 17644390 DOI: 10.1016/j.micinf.2007.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 04/28/2007] [Accepted: 05/03/2007] [Indexed: 11/26/2022]
Abstract
West Nile virus is now distributed throughout many temperate, subtropical and tropical areas: vaccines need to be developed that are affordable for developed and developing countries. Here, we constructed and evaluated a DNA vaccine expressing the premembrane and envelope proteins of West Nile virus (pcWNME). Mice immunized twice with 100 or 10 microg of pcWNME developed high or moderate levels of neutralizing antibodies, respectively. These mice were protected from viremia and death after lethal challenge. Mice immunized with a mixture of 1 microg of pcWNME and a small amount (1/10 dose) of a commercial inactivated vaccine developed moderate levels of neutralizing antibodies, whereas immunization with pcWNME or the inactivated vaccine alone induced only low or undetectable levels: co-immunization with the DNA and protein vaccines synergistically increased their own immunogenicities. The synergism reduced the amount of DNA sufficient to induce neutralizing antibodies: a single immunization with doses as low as 0.1 microg induced a titer of 1:40 at a 90% plaque reduction 6 or 9 weeks after immunization. Both IgG1 and IgG2a antibodies were induced in mice by co-immunization with the DNA and protein vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Female
- Immunoglobulin G/immunology
- Injections, Jet
- Mice
- Mice, Inbred ICR
- Vaccines, Combined/immunology
- Vaccines, Combined/pharmacology
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/pharmacology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- West Nile Virus Vaccines/immunology
- West Nile Virus Vaccines/pharmacology
- West Nile virus/immunology
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Department of Health Sciences, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Zhang F, Ma W, Zhang L, Aasa-Chapman M, Zhang H. Expression of particulate-form of Japanese encephalitis virus envelope protein in a stably transfected Drosophila cell line. Virol J 2007; 4:17. [PMID: 17324254 PMCID: PMC1817644 DOI: 10.1186/1743-422x-4-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 02/26/2007] [Indexed: 11/23/2022] Open
Abstract
Background Japanese encephalitis virus (JEV), a member of the family Flaviviridae, is an important mosquito-borne human pathogen. Its envelope glycoprotein (E) is the major determinant of the pathogenicity and host immune responses. In the present study, we explored the feasibility of producing recombinant JEV E protein in the virus-free Drosophila expression system. Results The coding sequence for the signal sequence of premembrane and E protein was cloned into the Drosophila expression vector pAc5.1/V5-His. A Drosophila cell line S2 was cotransfected with this construct as well as a plasmid providing hygromycin B resistance. A cell line expressing the JEV E protein was selected by immunofluoresence, confocal microscopy, and western blot analysis using three different monoclonal antibodies directed against JEV E protein. This cell line was stable in the yield of JEV E protein during two months in vitro maintenance in the presence of hygromycin B. The results showed that the recombinant E protein had an expected molecular weight of about 50 kilodalton, was immunoreactive with all three monoclonal antibodies, and found in both the cytoplasm and culture supernatant. Sucrose gradient ultracentrifugation analysis revealed that the secreted E protein product was in a particulate form. It migrated to the sucrose fraction with a density of 1.13 g/ml. Balb/c mice immunised with the sucrose fraction containing the E protein particles developed specific antibodies. These data show that functioning JEV E protein was expressed in the stable S2 cell line. Conclusion The Drosophila expression system is a more convenient, cheaper and safer approach to the production of vaccine candidates and diagnostic reagents for JEV.
Collapse
Affiliation(s)
- Fuquan Zhang
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Microbiology, the Fourth Military Medical University, Xi'an, the People's Republic of China
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey UK
| | - Wenyu Ma
- Department of Microbiology, the Fourth Military Medical University, Xi'an, the People's Republic of China
| | - Li Zhang
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Marlen Aasa-Chapman
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Hongyi Zhang
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London, UK
- HPA Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Box 236, Hills Road, Cambridge CB2 2QW, UK
| |
Collapse
|
25
|
Liu X, Cao S, Zhou R, Xu G, Xiao S, Yang Y, Sun M, Li Y, Chen H. Inhibition of Japanese Encephalitis Virus NS1 Protein Expression in Cell by Small Interfering RNAs. Virus Genes 2006; 33:69-75. [PMID: 16791421 DOI: 10.1007/s11262-005-0039-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/31/2005] [Indexed: 12/31/2022]
Abstract
Japanese encephalitis virus (JEV), a serious mosquitoborne flavivirus, causes an acute infection of the central system resulting in encephalitis of humans and many kinds of animals. A high proportion of the survivors exhibit neurogical and psychiatric sequelae. NS1 is one of important non-structural proteins, which was found to be associated with viral RNA replication. To inhibit NS1 expression, four small interfering RNAs (siRNAs) expression plasmids (pS-NS1A, pS-NS1B, pS-NS1C and pS-NS1D) were generated to target four different coding regions of the NS1 gene, and were separately co-transfected into Vero cells with an NS1-EGFP fusion expression plasmid pNS1-EGFP. NS1 expression was evaluated by fluorescence microscope, flow cytometry assay, Western blot and RT-PCR. The results revealed that pS-NS1B, pS-NS1C and pS-NS1D could effectively and specifically inhibit NS1 expression in Vero cells. Our data suggested that these siRNAs could be used to inhibit JEV replication by silencing NS1 protein expression in further study.
Collapse
Affiliation(s)
- Xueqin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mason PW, Shustov AV, Frolov I. Production and characterization of vaccines based on flaviviruses defective in replication. Virology 2006; 351:432-43. [PMID: 16712897 PMCID: PMC2430078 DOI: 10.1016/j.virol.2006.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/07/2006] [Accepted: 04/03/2006] [Indexed: 11/25/2022]
Abstract
To develop new vaccine candidates for flavivirus infections, we have engineered two flaviviruses, yellow fever virus (YFV) and West Nile virus (WNV), that are deficient in replication. These defective pseudoinfectious viruses (PIVs) lack a functional copy of the capsid (C) gene in their genomes and are incapable of causing spreading infection upon infection of cells both in vivo and in vitro. However, they produce extracellular E protein in form of secreted subviral particles (SVPs) that are known to be an effective immunogen. PIVs can be efficiently propagated in trans-complementing cell lines making high levels of C or all three viral structural proteins. PIVs derived from YFV and WNV, demonstrated very high safety and immunization produced high levels of neutralizing antibodies and protective immune response. Such defective flaviviruses can be produced in large scale under low biocontainment conditions and should be useful for diagnostic or vaccine applications.
Collapse
Affiliation(s)
- Peter W. Mason
- Department of Microbiology and Immunology, UTMB, 301 University Blvd., Galveston, TX, 77555
- Department of Pathology, UTMB, 301 University Blvd., Galveston, TX, 77555
- Sealy Center for Vaccine Development, UTMB, 301 University Blvd., Galveston, TX, 77555
| | - Alexandr V. Shustov
- Department of Microbiology and Immunology, UTMB, 301 University Blvd., Galveston, TX, 77555
| | - Ilya Frolov
- Department of Microbiology and Immunology, UTMB, 301 University Blvd., Galveston, TX, 77555
| |
Collapse
|
27
|
|
28
|
Chang GJJ, Kuno G, Purdy DE, Davis BS. Recent advancement in flavivirus vaccine development. Expert Rev Vaccines 2004; 3:199-220. [PMID: 15056045 DOI: 10.1586/14760584.3.2.199] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lately, the magnitude of cumulative diseases burden caused by flaviviruses, such as dengue virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus and yellow fever virus, has reached an unprecedented level with the sizes of human and animal populations at risk increasing sharply. These diseases present highly complex medical, economic and ecologic problems, some effecting primarily human and others affecting human, livestock and wildlife. The large body of recent publications on the development of vaccines taking advantage of new generations of bio-engineering techniques clearly reflects the profound interests and deep sense of urgency in the scientific and medical communities in combating those diseases. This review reveals a collection of remarkable progresses thus far made in flaviviral vaccine research not only employing a diverse range of new strategies but also re-tooling old techniques to improve the existing vaccines. The efficacy and safety of some of the new vaccine candidates have been evaluated and proven in human clinical trials. Besides the technical advancement in vaccine development, in this review, the importance of somewhat neglected and yet critical subjects, such as adequacy of animal model, vaccine safety, vaccine formulation and delivery, complication in serodiagostics and economic factor, was examined in-depth.
Collapse
Affiliation(s)
- Gwong-Jen J Chang
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Rampart Road, CDC-Foothill Campus, Fort Collins, CO 80521, USA.
| | | | | | | |
Collapse
|
29
|
Xu G, Xu X, Li Z, He Q, Wu B, Sun S, Chen H. Construction of recombinant pseudorabies virus expressing NS1 protein of Japanese encephalitis (SA14-14-2) virus and its safety and immunogenicity. Vaccine 2004; 22:1846-53. [PMID: 15121294 DOI: 10.1016/j.vaccine.2003.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 09/15/2003] [Indexed: 10/27/2022]
Abstract
The bivalent genetic engineering vaccine of Japanese encephalitis (JE) and Aujeszkj disease (AD) was developed to provide a novel approach to prevent and control these two diseases. NS1 gene of Japanese encephalitis virus (JEV) SA14-14-2 strain was produced by reverse transcriptase-mediated PCR (RT-PCR) and was cloned into vector pUSK to form recombinant plasmid (designed as pUSK-NS1). A co-transfection experiment was performed in porcine kidney (PK-15) cells with pUSK-NS1 and the genome of the vector virus (PRV TK(-)/gG(-)/LacZ(+) mutant). By plaque purification, PCR detection and southern hybridization, recombinant pseudorabies virus (PRV) expressing NS1 protein of JEV was acquired and named TK(-)/gG(-)/NS1(+). Western blot analysis and ELISA demonstrated the NS1 protein expression. To evaluate the recombinant virus's potential application, we characterized the safety and immune responses in Balb/c mice and swine. The safety test indicated that, when receiving the recombinant virus at a concentration of 10(6.0)pfu, no virulence of the recombinant virus to the mice, piglets and pregnant sows was observed. The vaccinated animals could acquire protective immunity against lethal challenge of the virulent PRV Ea strain and develop a good humoral and cellular immune response against JEV. The above results revealed that the recombinant virus could be a suitable candidate vaccine strain for developing a novel genetic vaccine to combat pseudorabies and Japanese encephalitis in the pig industry.
Collapse
Affiliation(s)
- Gaoyuan Xu
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Robert Putnak
- Division of Communicable Diseases and Immunology, Department of Virus Diseases, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | |
Collapse
|
31
|
Kumar P, Krishna VD, Sulochana P, Nirmala G, Haridattatreya M, Satchidanandam V. Cell-mediated immune responses in healthy children with a history of subclinical infection with Japanese encephalitis virus: analysis of CD4+ and CD8+ T cell target specificities by intracellular delivery of viral proteins using the human immunodeficiency virus Tat protein transduction domain. J Gen Virol 2004; 85:471-482. [PMID: 14769905 DOI: 10.1099/vir.0.19531-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV), a single-stranded positive-sense RNA virus of the family Flaviviridae, is the major cause of paediatric encephalitis in Asia. The high incidence of subclinical infections in Japanese encephalitis-endemic areas and subsequent evasion of encephalitis points to the development of immune responses against JEV. Humoral responses play a central role in protection against JEV; however, cell-mediated immune responses contributing to this end are not fully understood. The structural envelope (E) protein, the major inducer of neutralizing antibodies, is a poor target for T cells in natural JEV infections. The extent to which JEV non-structural proteins are targeted by T cells in subclinically infected healthy children would help to elucidate the role of cell-mediated immunity in protection against JEV as well as other flaviviral infections. The property of the Tat peptide of Human immunodeficiency virus to transduce proteins across cell membranes, facilitating intracellular protein delivery following exogenous addition to cultured cells, prompted us to express the four largest proteins of JEV, comprising 71 % of the JEV genome coding sequence, as Tat fusions for enumerating the frequencies of virus-specific CD4+ and CD8+ T cells in JEV-immune donors. At least two epitopes recognized by distinct HLA alleles were found on each of the non-structural proteins, with dominant antiviral Th1 T cell responses to the NS3 protein in nearly 96 % of the cohort. The data presented here show that non-structural proteins are frequently targeted by T cells in natural JEV infections and may be efficacious supplements for the predominantly antibody-eliciting E-based JEV vaccines.
Collapse
Affiliation(s)
- Priti Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Venkatramana D Krishna
- Bhat Biotech India (P) Ltd, Bangalore, Karnataka 561229, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Gejjehalli Nirmala
- Department of Pediatrics, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka 583104, India
| | - Maganti Haridattatreya
- Department of Pediatrics, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka 583104, India
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
32
|
Konishi E, Terazawa A, Fujii A. Evidence for antigen production in muscles by dengue and Japanese encephalitis DNA vaccines and a relation to their immunogenicity in mice. Vaccine 2003; 21:3713-20. [PMID: 12922102 DOI: 10.1016/s0264-410x(03)00376-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study demonstrated viral antigen production in muscle tissues following inoculation with DNA vaccines and examined its relation to antibody induction in mice using the flavivirus system. To achieve detectable levels of antigen production, we used a needle-free jet injector and examined 10% homogenate of quadriceps muscle for viral antigens in a sandwich enzyme-linked immunosorbent assay. We compared DNA vaccines against dengue type 1 (designated pcD1ME), dengue type 2 (pcD2ME) and Japanese encephalitis (pcJEME). The amounts of viral envelope (E) antigen contained in muscle homogenate 1, 2, 3 and 4 days following inoculation with 50 microg of pcJEME were 1.1, 1.0, 0.3 and <0.1 ng/ml, respectively. Muscles from pcD2ME- and pcD1ME-inoculated mice did not contain detectable levels of E antigen (<0.1 ng/ml) during 4 days following inoculation. The E amounts released from Vero cells transfected with DNAs were in the order pcJEME>pcD2ME>pcD1ME. Levels of neutralizing antibody induced by two immunizations with 100 microg of each DNA vaccine using needle-free or normal needle/syringe injection systems also were in the order pcJEME>pcD2ME>pcD1ME, 2-11 weeks after the first immunization. However, the difference in antibody levels among three DNA vaccines 14-18 weeks after immunization was smaller than that in the early phase of immunization. These results provide fundamental information useful for developing combination DNA vaccines, such as a dengue tetravalent DNA vaccine, which require adjustment of immunogenicity of each component.
Collapse
Affiliation(s)
- Eiji Konishi
- Department of Health Sciences, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan.
| | | | | |
Collapse
|
33
|
Tanabayashi K, Mukai R, Yamada A, Takasaki T, Kurane I, Yamaoka M, Terazawa A, Konishi E. Immunogenicity of a Japanese encephalitis DNA vaccine candidate in cynomolgus monkeys. Vaccine 2003; 21:2338-45. [PMID: 12744864 DOI: 10.1016/s0264-410x(03)00079-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A Japanese encephalitis (JE) vaccine candidate encoding JE virus premembrane (prM) and envelope (E) genes, designated pNJEME, was evaluated for safety and immunogenicity in non-human primate, cynomolgus monkeys. pNJEME was constructed using a vector (pNGVL4a) designed to address some of the safety concerns of DNA vaccine. In two different experiments, two immunizations with 300 microg of pNJEME by intramuscular (i.m.) injection, and 3 microg of pNJEME using a gene gun, and three immunizations by i.m. injection with 500 microg of pNJEME were performed. All the three protocols induced low to high levels of neutralizing antibody, indicating an ability of pNJEME to induce neutralizing antibody in monkeys with a wide individual variation in response to pNJEME. In one experiment designed to compare the DNA vaccine with a commercial inactivated JE vaccine, three immunizations by i.m. inoculation with 300 microg of pNJEME or by gene gun administration with 3 microg of pNJEME induced similar levels of neutralizing antibody to those induced by three immunizations with a human dose of the inactivated vaccine in most monkeys. After intranasal challenge with the Beijing P3 or JaTH160 strain of JE virus, pNJEME-immunized monkeys showed anamnestic neutralizing antibody responses, indicating that pNJEME induced memory B cells which were responsive to infection with JE virus. No systemic and local reactions were observed in any monkeys after i.m. or gene gun inoculations with plasmid DNAs.
Collapse
Affiliation(s)
- Kiyoshi Tanabayashi
- Tsukuba Primate Center for Medical Science, National Institute of Infectious Diseases, Tsukuba 305-0843, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zanin MP, Webster DE, Martin JL, Wesselingh SL. Japanese encephalitis vaccines: moving away from the mouse brain. Expert Rev Vaccines 2003; 2:407-16. [PMID: 12903806 DOI: 10.1586/14760584.2.3.407] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Japanese encephalitis (JE) is a severe disease that is widespread throughout Asia and is spreading beyond its traditional boundaries. Three vaccines are currently in use against JE but only one is available internationally, a mouse-brain-derived inactivated vaccine first used in the 1930s. Although this vaccine has been effective in reducing the incidence of JE, it is relatively expensive and has been linked to severe allergic and neurological reactions. Cell-culture-derived inactivated and attenuated vaccines have been developed but are only used in the People's Republic of China. Other vaccines currently in various stages of development are DNA vaccines, a chimeric yellow fever-JE viral vaccine, virus-like particle vaccines and poxvirus-based vaccines. Poxvirus-based vaccines and the chimeric yellow fever-JE vaccine have been tested in Phase I clinical trials. These new vaccines have the potential to significantly reduce the impact of JE in Asia, particularly if used in an oral vaccine delivery strategy.
Collapse
Affiliation(s)
- Mark P Zanin
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
35
|
Carruthers RI. Invasive species research in the United States Department of Agriculture-Agricultural Research Service. PEST MANAGEMENT SCIENCE 2003; 59:827-834. [PMID: 12846333 DOI: 10.1002/ps.616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Invasive pests cause huge losses both to agricultural production systems and to the natural environment through displacing native species and decreasing biodiversity. It is now estimated that many thousand exotic insect, weed and pathogen species have been established in the USA and that these invasive species are responsible for a large portion of the $130 billion losses estimated to be caused by pests each year. The Agricultural Research Service (ARS) has responded with extensive research and action programs aimed at understanding these problems and developing new management approaches for their control. This paper provides an overview of some of the ARS research that has been conducted on invasive species over the past few years and addresses both different categories of research and some specific pest systems of high interest to the US Department of Agriculture.
Collapse
Affiliation(s)
- Raymond I Carruthers
- USDA-ARS-WRRC, Exotic and Invasive Weeds Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA 94710, USA.
| |
Collapse
|
36
|
Chang GJJ, Hunt AR, Holmes DA, Springfield T, Chiueh TS, Roehrig JT, Gubler DJ. Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology 2003; 306:170-80. [PMID: 12620809 DOI: 10.1016/s0042-6822(02)00028-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have constructed a series of plasmids encoding premembrane (prM) and envelope (E) protein genes of dengue virus type 2 (DEN-2). These plasmids included an authentic DEN-2 prM-E construct (pCBD2-14-6), and two chimeric constructs, 90% DEN-2 E-10% Japanese encephalitis (JE) virus E (pCB9D2-1J-4-3) and 80% DEN-2 E-20% JE E (pCB8D2-2J-2-9-1). Monoclonal antibody (MAb) reactivity indicated that all three plasmids expressed authentic DEN-2 virus E protein epitopes representative of flavivirus domains 1, 2, and 3. However, only the pCB8D2-2J-2-9-1 construct secreted high levels of prM, M (membrane), and E proteins into the culture fluid of plasmid-transformed COS-1 cells. The major portion of the prM and E proteins expressed by COS-1 cells transformed by pCBD2-14-6 or pCB9D2-4-3 plasmids remained membrane-bound. The results supported the notion that an unidentified membrane retention sequence is located between E-397 and E-436 of DEN-2 virus E protein. Replacing the carboxyl-terminal 20% of DEN-2 E (397-450) with the corresponding JE sequence had no effect on anti-DEN-2 MAb reactivity, indicating that this region is antigenically inert, although it is required for antigen secretion. Plasmid pCBD2-2J-2-9-1, which expressed secreted forms of prM/M and E that have the potential to form subviral particles, was superior to other constructs in stimulating an antibody response. Ninety percent neutralization titers ranging from 1:40 to >1:1000 were observed in seven of nine serum specimens from pCB8D2-2J-2-9-1-immunized mice. Eleven of twelve 2-day-old neonatal mice, derived from a pCB8D2-2J-2-9-1 immunized female mouse, survived intraperitoneal challenge of DEN-2 New Guinea C virus.
Collapse
Affiliation(s)
- Gwong-Jen J Chang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Service, Post Office Box 2087, Fort Collins, CO 80522, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Nam JH, Cha SL, Cho HW. Immunogenicity of a recombinant MVA and a DNA vaccine for Japanese encephalitis virus in swine. Microbiol Immunol 2002; 46:23-8. [PMID: 11911185 DOI: 10.1111/j.1348-0421.2002.tb02672.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that mice immunized with recombinant modified vaccinia virus Ankara (MVA) encoding Japanese encephalitis virus (JEV) prM and E genes were completely protected against JEV challenge (Nam, J.H., Wyatt, L.S., Chae, S.L., Cho, H.W., Park, Y.K., Moss, B. Vaccine 1999,17: 261-268). In this study, we examined the immunogenicity in swine of this recombinant MVA (vJH9) or a DNA vaccine (pcJH-1) expressing the same JEV genes. Although the booster effect in mice with a combination of vJH9, pcJH-1 and inactivated JEV commercial vaccine was not apparent by measuring JEV antibodies, the recombinant MVA vaccine (vJH9) and the DNA vaccine (pcJH-l) efficiently produced neutralizing antibodies in swine and 2 doses of each showed a booster effect in mice and swine. Therefore, both vJH9 and pcJH-1 are good candidates for a second generation JEV vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Hemagglutination Inhibition Tests
- Immunization, Secondary
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/immunology
- Mice
- Mice, Inbred ICR
- Neutralization Tests
- Recombination, Genetic
- Swine
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Vaccinia virus/metabolism
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Jae-Hwan Nam
- Department of Virology, Korean National Institute of Health, Eunpyung-Gu, Seoul
| | | | | |
Collapse
|
38
|
Abstract
Inoculation of naked DNA represents a novel approach to vaccine and immune therapeutic development. DNA vaccines or genetic immunization offers several advantages over the conventional vaccines for specific immune activation. Although a large number of vaccines have been made and are being used in the poultry industry, there have been no major advances in vaccine technology for this animal industry sector for decades. The potential advantages of DNA vaccines, such as over coming maternal immunity, in ovo delivery and absence of requirement for a cold-chain, combined with immunological efficacy make this new vaccine technology very attractive for the poultry industry. This review lists all of the published reports of experimental DNA vaccines developed for use in poultry and focuses on the trends, potentials and remaining barriers in the development of this new revolution in poultry vaccinology.
Collapse
Affiliation(s)
- G L Oshop
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742-3711, USA
| | | | | |
Collapse
|
39
|
Giese M, Bahr U, Jakob NJ, Kehm R, Handermann M, Müller H, Vahlenkamp TH, Spiess C, Schneider TH, Schusse G, Darai G. Stable and long-lasting immune response in horses after DNA vaccination against equine arteritis virus. Virus Genes 2002; 25:159-67. [PMID: 12418451 DOI: 10.1023/a:1020109801925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of the equine viral arteritis. It is a small RNA virus with a linear, non-segmented plus RNA genome. EAV is a member of the Arteriviridae family that includes porcine reproductive and respiratory syndrome virus (PRSSV), simian haemorrhagic fever virus (SHFV) and lactate dehydrogenase virus (LDV). The viral transmission is via respiratory and reproductive routes. Clinical signs in horses vary, and severe infection can lead to abortions in pregnant mares or neonatal foal death. The aim of this study was to investigate the development of the immune response in horses after immunization with a DNA vaccine harbouring and expressing EAV Open Reading Frames (ORF) 2, 5, and 7, in combination with equine interleukin 2 (eqIL2). Three boosters followed the basic immunization in two-week intervals. Each immunization was a combination of gene gun and intramuscular injection. All horses developed a high titer of neutralizing antibodies after basic immunization within 2 weeks. Remarkably, this immune response was found to be independent of the age of animals. The youngest horse was six-years old, and the oldest twenty-two years old. A remarkable difference in the immune response between the young and old were not observed. The duration of immunity was investigated during a period of one year. After 12 months, neutralizing antibodies were still detectable in all the vaccinated horses.
Collapse
Affiliation(s)
- M Giese
- Boehringer Ingelheim Animal Health, Ingelheim am Rhein, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.
Collapse
Affiliation(s)
- T P Monath
- Acambis Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Ashok MS, Rangarajan PN. Protective efficacy of a plasmid DNA encoding Japanese encephalitis virus envelope protein fused to tissue plasminogen activator signal sequences: studies in a murine intracerebral virus challenge model. Vaccine 2002; 20:1563-70. [PMID: 11858863 DOI: 10.1016/s0264-410x(01)00492-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the construction of chimeric DNA vaccine vectors in which secretory signal sequence derived from tissue plasminogen activator (TPA) was fused to the full length (pCMVTE) or 398 amino terminal amino acids (pCMVTdeltaE) of Japanese encephalitis virus (JEV) envelope (E) protein. Transfection studies indicate that E protein expressed from pCMVTdeltaE-transfected cells but not pCMVTE-transfected cells is secreted into the culture medium. Analysis of the potency of various DNA vaccine constructs in a murine intracerebral (i.c.) JEV challenge model indicates that pCMVTdeltaE confers the highest level (71%) of protection. Immunization with pCMVTdeltaE induces a mixed Th1 and Th2 T helper cell response while immunization with plasmids encoding nonsecretory forms of E protein induces a Th1 T helper response. Only low levels (<1:20) of virus neutralizing antibody titres were observed in DNA vaccinated mice which did not increase further after i.c. JEV challenge. Thus, immunization with a plasmid encoding secretory E protein results in an altered cytokine response and better protection against i.c. JEV challenge than that conferred by immunization with plasmids encoding nonsecretory forms of E protein. We also demonstrate that unlike peripheral JEV challenge, i.c. JEV challenge does not result in an increase in anamnestic antibody response suggesting that other components of immune system such as cytotoxic T cells and T helper cells contribute to protection against i.c. JEV challenge of DNA vaccinated mice.
Collapse
Affiliation(s)
- Mundrigri S Ashok
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
42
|
Hong W, Xiao S, Zhou R, Fang L, He Q, Wu B, Zhou F, Chen H. Protection induced by intramuscular immunization with DNA vaccines of pseudorabies in mice, rabbits and piglets. Vaccine 2002; 20:1205-14. [PMID: 11803083 DOI: 10.1016/s0264-410x(01)00416-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycoprotein gene gB, gC and gD of pseudorabies virus (PrV) strain Ea, which was isolated locally in Wuhan, were cloned from the viral genome DNA and expressed in vitro controlled by the major immediately-early promotor/enhancer of HCMV. In the presented paper, Balb/c mice, rabbits and piglets were vaccinated intramuscularly two times at 2-week interval with those eukaryotic expression plasmid pcDB, pcDC and pcDD, respectively. The animals injected with pcDB, pcDC, pcDD or mix DNA developed anti-PrV antibodies. Neutralizing antibody titers obtained 2-5log(2), 2 weeks after the second vaccination. Cellular immune responses were also detected by lymphoproliferation assay and cytotoxic T lymphocyte (CTL) activity assay in all groups vaccinated with DNA. Immune responses elicited by DNA vaccines provided protections with different degrees against lethal dose PrV challenge. In mice, protections induced by pcDC, pcDD or mix DNA were 100%, similar to that by inactivated vaccine. Protections were more than 50% induced by pcDC, pcDD or mix DNA in rabbits. Protections induced by pcDB were the lowest among DNA immunization in mice or rabbits. However, pcDB could elicit the higher cellular responses in rabbits or piglets. In piglets, body temperatures of animals injected with pcDB, pcDC, pcDD or mix DNA did not change significantly after challenge with 2x10(5) pfu of PrV strain Ea, and the means daily growth post-challenge of those animals were higher than those injected with inactivated vaccine or parental plasmid. Neither DNA vaccines nor inactivated vaccine could prevent or delay virus excretion after challenge. Our experiments in experimental animals and natural hosts suggested the efficiency and potential application of DNA vaccines for pseudorabies in pigs.
Collapse
Affiliation(s)
- Wenzhou Hong
- Laboratory of Animal Virology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Hubei Province 430070, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|