1
|
Bhangde S, Fresnay-Murray S, Garretson T, Ashraf A, O’Hagan DT, Amiji MM, Lodaya RN. Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines. Vaccines (Basel) 2024; 12:1343. [PMID: 39772005 PMCID: PMC11680198 DOI: 10.3390/vaccines12121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Adjuvants play a crucial role in improving the immunogenicity of various antigens in vaccines. Squalene-in-water emulsions are clinically established vaccine adjuvants that improve immune responses, particularly during a pandemic. Current manufacturing processes for these emulsion adjuvants include microfluidizers and homogenizers and these processes have been used to produce emulsion adjuvants to meet global demands during a pandemic. These processes, however, are complex and expensive and may not meet the global needs based on the growing populations in low- and middle-income countries. At the forefront of adjuvant research, there is a pressing need to manufacture emulsion adjuvants using novel approaches that balance efficacy, scalability, speed of production, and cost-effectiveness. METHODS In this study, we explored the feasibility of a microfluidic chip platform to address these challenges and evaluated the adjuvanticity of the emulsion adjuvant prepared using the microfluidic chip process in CB6F1 mice model, and compared it with a control formulation. We developed and optimized the process parameters to produce emulsion adjuvants with characteristics similar to SEA160 (control formulation). RESULTS The resulting emulsion prepared using the microfluidic chip process (MC160) when mixed with ovalbumin, maintained antigen structural integrity. Immunogenicity studies in a CB6F1 mouse model, with the Cytomegalovirus glycoprotein B (CMV gB) antigen, resulted in humoral responses that were non-inferior between MC160 and SEA160, thereby validating the microfluidic chip approach for manufacturing emulsion adjuvants. CONCLUSIONS These findings demonstrate a proof of concept for using microfluidic chip platforms for formulating emulsion adjuvants, offering a simpler manufacturing platform that can be deployed to low- and middle-income countries for rapid production, improving adjuvant access and aiding in pandemic preparedness.
Collapse
Affiliation(s)
- Shashank Bhangde
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA (M.M.A.)
| | | | - Tyler Garretson
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Asma Ashraf
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Derek T. O’Hagan
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA (M.M.A.)
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Rushit N. Lodaya
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| |
Collapse
|
2
|
Chi LA, Barnes JE, Patel JS, Ytreberg FM. Exploring the ability of the MD+FoldX method to predict SARS-CoV-2 antibody escape mutations using large-scale data. Sci Rep 2024; 14:23122. [PMID: 39366988 PMCID: PMC11452645 DOI: 10.1038/s41598-024-72491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Antibody escape mutations pose a significant challenge to the effectiveness of vaccines and antibody-based therapies. The ability to predict these escape mutations with computer simulations would allow us to detect threats early and develop effective countermeasures, but a lack of large-scale experimental data has hampered the validation of these calculations. In this study, we evaluate the ability of the MD+FoldX molecular modeling method to predict escape mutations by leveraging a large deep mutational scanning dataset, focusing on the SARS-CoV-2 receptor binding domain. Our results show a positive correlation between predicted and experimental data, indicating that mutations with reduced predicted binding affinity correlate moderately with higher experimental escape fractions. We also demonstrate that higher precision can be achieved using affinity cutoffs tailored to distinct SARS-CoV-2 antibodies from four different classes rather than a one-size-fits-all approach. Further, we suggest that the quartile values of optimized cutoffs reported for each class in this study can serve as a valuable guide for future work on escape mutation predictions. We find that 70% of the systems surpass the 50% precision mark, and demonstrate success in identifying mutations present in significant variants of concern and variants of interest. Despite promising results for some systems, our study highlights the challenges in comparing predicted and experimental values. It also emphasizes the need for new binding affinity methods with improved accuracy that are fast enough to estimate hundreds to thousands of antibody-antigen binding affinities.
Collapse
Affiliation(s)
- L América Chi
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - Jonathan E Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA.
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, 83844, USA.
| | - F Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA.
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
3
|
Cin D, Soguksu P, Oren MM, Ozgulnar N, Agacfidan A, Mese S. The Anti-SARS-CoV-2 S-Protein IgG, Which Is Detected Using the Chemiluminescence Microparticle Immunoassay (CMIA) in Individuals Having Either a History of COVID-19 Vaccination and/or SARS-CoV-2 Infection, Showed a High-Titer Neutralizing Effect. Viruses 2024; 16:1409. [PMID: 39339885 PMCID: PMC11437471 DOI: 10.3390/v16091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Neutralizing antibodies plays a primary role in protective immunity by preventing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from entering the cells. Therefore, characterization of antiviral immunity is important for protection against SARS-CoV-2. In this study, the neutralizing effect of the anti-SARS-CoV-2 S1 protein IgG, which was detected using the chemiluminescence microparticle immunoassay (CMIA)-based SARS-CoV-2 IgG II Quant (Abbott, Waukegan, IL, USA) test in SARS-CoV-2 infected and/or vaccinated individuals, was investigated with a surrogate virus neutralization test (sVNT). In total, 120 Seropositive individuals were included in this study. They were divided into two groups: Vaccinated (n = 60) and Vaccinated + Previously Infected (n = 60). A commercial sVNT, the ACE2-RBD Neutralization Test (Dia.Pro, Milan, Italy), was used to assess the neutralizing effect. The assay is performed in two steps: screening and titration. The screening showed positive results in all seropositive samples. Low titration in 1.7%, medium titration in 5%, and high titration in 93.3% of the Vaccinated group, and medium titration in 1.7% and high titration in 98.3% of the other group, as obtained from the ACE2-RBD titration test. A strong positive and significant correlation was found between the SARS-CoV-2 IgG II Quant test and the ACE2-RBD titration test at the 1/32 titration level for both groups (p < 0.001 for both). This study shows that the SARS-CoV-2 IgG detected using the CMIA method after SARS-CoV-2 infection and/or vaccination has a high neutralizing titration by using the sVNT. In line with these data, knowledge that seropositivity determined by CMIA also indicates a strong neutralizing effect contributes to countrywide planning for protecting the population.
Collapse
Affiliation(s)
- Dilan Cin
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Pinar Soguksu
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Meryem Merve Oren
- Department of Public Health, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Nuray Ozgulnar
- Department of Public Health, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Ali Agacfidan
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Sevim Mese
- Department of Medical Microbiology, Istanbul Medicine Faculty, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
4
|
Chi LA, Barnes JE, Suresh Patel J, Ytreberg FM. Exploring the ability of the MD+FoldX method to predict SARS-CoV-2 antibody escape mutations using large-scale data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595230. [PMID: 38826284 PMCID: PMC11142147 DOI: 10.1101/2024.05.22.595230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Antibody escape mutations pose a significant challenge to the effectiveness of vaccines and antibody-based therapies. The ability to predict these escape mutations with computer simulations would allow us to detect threats early and develop effective countermeasures, but a lack of large-scale experimental data has hampered the validation of these calculations. In this study, we evaluate the ability of the MD+FoldX molecular modeling method to predict escape mutations by leveraging a large deep mutational scanning dataset, focusing on the SARS-CoV-2 receptor binding domain. Our results show a positive correlation between predicted and experimental data, indicating that mutations with reduced predicted binding affinity correlate moderately with higher experimental escape fractions. We also demonstrate that better performance can be achieved using affinity cutoffs tailored to distinct antibody-antigen interactions rather than a one-size-fits-all approach. We find that 70% of the systems surpass the 50% precision mark, and demonstrate success in identifying mutations present in significant variants of concern and variants of interest. Despite promising results for some systems, our study highlights the challenges in comparing predicted and experimental values. It also emphasizes the need for new binding affinity methods with improved accuracy that are fast enough to estimate hundreds to thousands of antibody-antigen binding affinities.
Collapse
Affiliation(s)
- L. América Chi
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83843, USA
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83843, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83843, USA
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83843, USA
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83843, USA
- Department of Physics, University of Idaho, Moscow, ID 83843, USA
| |
Collapse
|
5
|
Xu Z, Zhang H, Yang D, Wei D, Demongeot J, Zeng Q. The Mathematical Modeling of the Host-Virus Interaction in Dengue Virus Infection: A Quantitative Study. Viruses 2024; 16:216. [PMID: 38399992 PMCID: PMC10891746 DOI: 10.3390/v16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Infectious diseases, such as Dengue fever, pose a significant public health threat. Developing a reliable mathematical model plays a crucial role in quantitatively elucidating the kinetic characteristics of antibody-virus interactions. By integrating previous models and incorporating the antibody dynamic theory, we have constructed a novel and robust model that can accurately simulate the dynamics of antibodies and viruses based on a comprehensive understanding of immunology principles. It explicitly formulates the viral clearance effect of antibodies, along with the positive feedback stimulation of virus-antibody complexes on antibody regeneration. In addition to providing quantitative insights into the dynamics of antibodies and viruses, the model exhibits a high degree of accuracy in capturing the kinetics of viruses and antibodies in Dengue fever patients. This model offers a valuable solution to modeling the differences between primary and secondary Dengue infections concerning IgM/IgG antibodies. Furthermore, it demonstrates that a faster removal rate of antibody-virus complexes might lead to a higher peak viral loading and worse clinical symptom. Moreover, it provides a reasonable explanation for the antibody-dependent enhancement of heterogeneous Dengue infections. Ultimately, this model serves as a foundation for constructing an optimal mathematical model to combat various infectious diseases in the future.
Collapse
Affiliation(s)
- Zhaobin Xu
- School of Life Science, Dezhou University, Dezhou 253023, China
| | - Hongmei Zhang
- School of Life Science, Dezhou University, Dezhou 253023, China
| | - Dongying Yang
- School of Medicine, Dezhou University, Dezhou 253023, China
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France;
| | - Qiangcheng Zeng
- School of Life Science, Dezhou University, Dezhou 253023, China
| |
Collapse
|
6
|
Reyes A, Ortiz G, Duarte LF, Fernández C, Hernández-Armengol R, Palacios PA, Prado Y, Andrade CA, Rodriguez-Guilarte L, Kalergis AM, Simon F, Carreño LJ, Riedel CA, Cáceres M, González PA. Contribution of viral and bacterial infections to senescence and immunosenescence. Front Cell Infect Microbiol 2023; 13:1229098. [PMID: 37753486 PMCID: PMC10518457 DOI: 10.3389/fcimb.2023.1229098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Rosario Hernández-Armengol
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yolanda Prado
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Holt GT, Gorman J, Wang S, Lowegard AU, Zhang B, Liu T, Lin BC, Louder MK, Frenkel MS, McKee K, O'Dell S, Rawi R, Shen CH, Doria-Rose NA, Kwong PD, Donald BR. Improved HIV-1 neutralization breadth and potency of V2-apex antibodies by in silico design. Cell Rep 2023; 42:112711. [PMID: 37436900 PMCID: PMC10528384 DOI: 10.1016/j.celrep.2023.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 μg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.
Collapse
Affiliation(s)
- Graham T Holt
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siyu Wang
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Anna U Lowegard
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA; Department of Biochemistry, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
López-Astacio RA, Adu OF, Goetschius DJ, Lee H, Weichert WS, Wasik BR, Frueh SP, Alford BK, Voorhees IEH, Flint JF, Saddoris S, Goodman LB, Holmes EC, Hafenstein SL, Parrish CR. Viral Capsid, Antibody, and Receptor Interactions: Experimental Analysis of the Antibody Escape Evolution of Canine Parvovirus. J Virol 2023; 97:e0009023. [PMID: 37199627 PMCID: PMC10308881 DOI: 10.1128/jvi.00090-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
Canine parvovirus (CPV) is a small nonenveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late 1970s due to a host range switch of a virus similar to the feline panleukopenia virus that infected another host. The virus that emerged in dogs had altered capsid receptor and antibody binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we used in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bound two distinct epitopes, and one largely overlapped the host receptor binding site. We also generated mutated antibody variants with altered binding structures. Viruses were passaged with wild-type (WT) or mutated antibodies, and their genomes were deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the transferrin receptor type 1 binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we used an in vitro model system and deep genome sequencing to reveal the mutations that arose in the virus genome during selection by each of two monoclonal antibodies or their mutated variants. High-resolution structures of each of the Fab:capsid complexes revealed their binding interactions. The wild-type antibodies or their mutated variants allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and they likely have parallels for many other viruses.
Collapse
Affiliation(s)
- Robert A. López-Astacio
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Oluwafemi F. Adu
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daniel J. Goetschius
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Wendy S. Weichert
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R. Wasik
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Simon P. Frueh
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Brynn K. Alford
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ian E. H. Voorhees
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Joseph F. Flint
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Sarah Saddoris
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Laura B. Goodman
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Colin R. Parrish
- James A. Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
López-Astacio RA, Adu OF, Goetschius DJ, Lee H, Weichert WS, Wasik BR, Frueh SP, Alford BK, Voorhees IE, Flint JF, Saddoris S, Goodman LB, Holmes EC, Hafenstein SL, Parrish CR. Viral capsid, antibody, and receptor interactions: experimental analysis of the antibody escape evolution of canine parvovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524668. [PMID: 36711712 PMCID: PMC9882321 DOI: 10.1101/2023.01.18.524668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Canine parvovirus (CPV) is a small non-enveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late-1970s due to a host range switch of a virus similar to the feline panleukopenia virus (FPV) that infected another host. The virus that emerged in dogs had altered capsid receptor- and antibody-binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we use in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bind two distinct epitopes, and one largely overlaps the host receptor binding site. We also engineered antibody variants with altered binding structures. Viruses were passaged with the wild type or mutated antibodies, and their genomes deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the TfR-binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we use an in vitro model system and deep genome sequencing to reveal the mutations that arise in the virus genome during selection by each of two monoclonal antibodies or their engineered variants. High-resolution structures of each of the Fab: capsid complexes revealed their binding interactions. The engineered forms of the wild-type antibodies or mutant forms allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and likely have parallels for many other viruses.
Collapse
|
10
|
Cui C, He L, Tang X, Xing J, Sheng X, Chi H, Zhan W. Monoclonal antibodies (mAbs) and single chain variable fragment (scFv) antibodies targeting envelope protein VP28 of white spot syndrome virus provide protection against viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:508-520. [PMID: 35768048 DOI: 10.1016/j.fsi.2022.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
White spot syndrome virus (WSSV) is extremely pathogenic and causes huge economic losses in the shrimp farming industry. Neutralizing antibodies against WSSV is expected to be an effective means of preventing infection with the virus. In the present study, eight monoclonal antibodies (mAbs) against VP28 were developed by immunizing BALB/c mice with WSSV-VP28 recombinant protein. Among them, three mAbs named 3B7, 2G3 and 5D2 were determined to be able to delay the mortality of WSSV-infected shrimp in vivo neutralization assay, suggesting their neutralizing ability against WSSV infection. Immunoblotting results showed that the three mAbs reacted specifically with native VP28 of WSSV, and could also recognize the virions in the gills of WSSV-infected shrimp by IFA. Furthermore, the single chain variable fragment (scFv) genes specific for WSSV-VP28 were cloned from the three hybridoma cells and expressed in Escherichia coli. After purification and refolding, three biologically active scFv recombinant proteins were all capable of recognizing the native VP28 of WSSV and delayed the mortality of WSSV-infected shrimp, indicating their neutralizing capacity against WSSV. Subsequently, the eukaryotic expression plasmids of three scFv genes were constructed and the transcriptional properties of expression vectors in shrimp were analyzed. Animal experiments also proved that the scFv eukaryotic expression plasmids were able to partially neutralize WSSV infection. Thus, the production of neutralizing mAb and recombinant scFv antibodies against WSSV has a promising therapeutic potential in prevention and treatment of white spot disease of shrimp.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Liangyin He
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
11
|
Madan B, Reddem ER, Wang P, Casner RG, Nair MS, Huang Y, Fahad AS, de Souza MO, Banach BB, López Acevedo SN, Pan X, Nimrania R, Teng I, Bahna F, Zhou T, Zhang B, Yin MT, Ho DD, Kwong PD, Shapiro L, DeKosky BJ. Antibody screening at reduced pH enables preferential selection of potently neutralizing antibodies targeting SARS-CoV-2. AIChE J 2021; 67:e17440. [PMID: 34898670 PMCID: PMC8646896 DOI: 10.1002/aic.17440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022]
Abstract
Antiviral monoclonal antibody (mAb) discovery enables the development of antibody-based antiviral therapeutics. Traditional antiviral mAb discovery relies on affinity between antibody and a viral antigen to discover potent neutralizing antibodies, but these approaches are inefficient because many high affinity mAbs have no neutralizing activity. We sought to determine whether screening for anti-SARS-CoV-2 mAbs at reduced pH could provide more efficient neutralizing antibody discovery. We mined the antibody response of a convalescent COVID-19 patient at both physiological pH (7.4) and reduced pH (4.5), revealing that SARS-CoV-2 neutralizing antibodies were preferentially enriched in pH 4.5 yeast display sorts. Structural analysis revealed that a potent new antibody called LP5 targets the SARS-CoV-2 N-terminal domain supersite via a unique binding recognition mode. Our data combine with evidence from prior studies to support antibody screening at pH 4.5 to accelerate antiviral neutralizing antibody discovery.
Collapse
Affiliation(s)
- Bharat Madan
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - Eswar R. Reddem
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Pengfei Wang
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ryan G. Casner
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ahmed S. Fahad
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | | | - Bailey B. Banach
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | | | - Xiaoli Pan
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - Rajani Nimrania
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - I‐Ting Teng
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Fabiana Bahna
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Tongqing Zhou
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Baoshan Zhang
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Michael T. Yin
- Department of Medicine, Division of Infectious DiseasesColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David D. Ho
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Peter D. Kwong
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Brandon J. DeKosky
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
- Department of Chemical EngineeringThe University of KansasLawrenceKansasUSA
- The Ragon Institute of MGHMIT, and Harvard, Cambridge, MA
- Department of Chemical EngineeringMassachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
12
|
Lee TJ, Vazquez JA, Rao ASRS. Mathematical modeling of impact of eCD4-Ig molecule in control and management of HIV within a host. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6887-6906. [PMID: 34517562 DOI: 10.3934/mbe.2021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eradication and eventually cure of the HIV virus from the infected individual should be the primary goal in all HIV therapy. This has yet to be achieved, however development of broadly neutralizing antibodies (bNabs) and eCD4-Ig and its related particles are promising therapeutic alternatives to eliminate the HIV virus from the host. Past studies have found superior protectivity and efficacy eradicating the HIV virus with the use of eCD4-Igs over bNabs, which has proposed the antibody-dependent cell-mediated cytotoxicity (ADCC) effect as one of the key-factors for antibody design. In this study, we evaluated the dynamics of the HIV virus, CD4 T-cells, and eCD4-Ig in humans using a gene-therapy approach which has been evaluated in primates previously. We utilized a mathematical model to investigate the relationship between eCD4-Ig levels, ADCC effects, and the neutralization effect on HIV elimination. In addition, a balance between ADCC and viral neutralization effect of eCD4-Ig has been investigated in order to understand the condition of which HIV eliminating antibodies needs to satisfy. Our analysis indicated some level of ADCC effect, which was missing from ART, was required for viral elimination. The results will be helpful in designing future drugs or therapeutic strategies.
Collapse
Affiliation(s)
- Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Jose A Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Arni S R Srinivasa Rao
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Laboratory for Theory and Mathematical Modeling, Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Department of Mathematics, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Marchi S, Viviani S, Remarque EJ, Ruello A, Bombardieri E, Bollati V, Milani GP, Manenti A, Lapini G, Rebuffat A, Montomoli E, Trombetta CM. Characterization of antibody response in asymptomatic and symptomatic SARS-CoV-2 infection. PLoS One 2021; 16:e0253977. [PMID: 34214116 PMCID: PMC8253392 DOI: 10.1371/journal.pone.0253977] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
SARS-CoV-2 pandemic is causing high morbidity and mortality burden worldwide with unprecedented strain on health care systems. To investigate the time course of the antibody response in relation to the outcome we performed a study in hospitalized COVID-19 patients. As comparison we also investigated the time course of the antibody response in SARS-CoV-2 asymptomatic subjects. Study results show that patients produce a strong antibody response to SARS-CoV-2 with high correlation between different viral antigens (spike protein and nucleoprotein) and among antibody classes (IgA, IgG, and IgM and neutralizing antibodies). The antibody peak is reached by 3 weeks from hospital admission followed by a sharp decrease. No difference was observed in any parameter of the antibody classes, including neutralizing antibodies, between subjects who recovered or with fatal outcome. Only few asymptomatic subjects developed antibodies at detectable levels.
Collapse
Affiliation(s)
- Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Simonetta Viviani
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Edmond J. Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | - Valentina Bollati
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gregorio P. Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Annunziata Rebuffat
- Presidio Ospedaliero di Campostaggia, Località Campostaggia, Poggibonsi, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
- VisMederi Research srl, Siena, Italy
| | - Claudia M. Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Dingens AS, Pratap P, Malone K, Hilton SK, Ketas T, Cottrell CA, Overbaugh J, Moore JP, Klasse PJ, Ward AB, Bloom JD. High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. eLife 2021; 10:e64281. [PMID: 33438580 PMCID: PMC7864656 DOI: 10.7554/elife.64281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mapping polyclonal serum responses is critical to rational vaccine design. However, most high-resolution mapping approaches involve isolating and characterizing individual antibodies, which incompletely defines the polyclonal response. Here we use two complementary approaches to directly map the specificities of the neutralizing and binding antibodies of polyclonal anti-HIV-1 sera from rabbits immunized with BG505 Env SOSIP trimers. We used mutational antigenic profiling to determine how all mutations in Env affected viral neutralization and electron microscopy polyclonal epitope mapping (EMPEM) to directly visualize serum Fabs bound to Env trimers. The dominant neutralizing specificities were generally only a subset of the more diverse binding specificities. Additional differences between binding and neutralization reflected antigenicity differences between virus and soluble Env trimer. Furthermore, we refined residue-level epitope specificity directly from sera, revealing subtle differences across sera. Together, mutational antigenic profiling and EMPEM yield a holistic view of the binding and neutralizing specificity of polyclonal sera.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Payal Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Keara Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - PJ Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
15
|
Age-Related Differences in Immunological Responses to SARS-CoV-2. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3251-3258. [PMID: 32861856 PMCID: PMC7450283 DOI: 10.1016/j.jaip.2020.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
There is a striking age-related disparity in the prevalence and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 infections, which might be explained by age-dependent immunological mechanisms. These include age-related physiological differences in immunological responses, cross-neutralizing antibodies, and differences in levels and binding affinity of angiotensin-converting enzyme 2, the SARS-CoV-2 target receptor; antibody-dependent enhancement in adults manifesting with an overexuberant systemic inflammation in response to infection; and the increased likelihood of comorbidities in adults and the elderly. Emerging immunological phenomena such as Pediatric Multi-System Inflammatory Disorder Temporally associated with SARS-CoV-2 or Multisystem Inflammatory Syndrome in Children are now being observed, though the underlying mechanisms are still unclear. Understanding the mechanisms through which pediatric patients are protected from severe novel coronaviruses infections will provide critical clues to the pathophysiology of coronavirus disease 2019 infection and inform future therapeutic and prophylactic interventions. Asymptomatic carriage in children may have major public health implications, which will have an impact on social and health care policies on screening and isolation practices, school reopening, and safe distancing requirements in the community.
Collapse
|
16
|
Chu TH, Crowley AR, Backes I, Chang C, Tay M, Broge T, Tuyishime M, Ferrari G, Seaman MS, Richardson SI, Tomaras GD, Alter G, Leib D, Ackerman ME. Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathog 2020; 16:e1008083. [PMID: 32092122 PMCID: PMC7058349 DOI: 10.1371/journal.ppat.1008083] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/05/2020] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Andrew R. Crowley
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Iara Backes
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Cheryl Chang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Matthew Tay
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas Broge
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Marina Tuyishime
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Simone I. Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - David Leib
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
17
|
Schindewolf C, Menachery VD. Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism. Viruses 2019; 11:E74. [PMID: 30658390 PMCID: PMC6356267 DOI: 10.3390/v11010074] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/28/2022] Open
Abstract
Efforts towards developing a vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV) have yielded promising results. Utilizing a variety of platforms, several vaccine approaches have shown efficacy in animal models and begun to enter clinical trials. In this review, we summarize the current progress towards a MERS-CoV vaccine and highlight potential roadblocks identified from previous attempts to generate coronavirus vaccines.
Collapse
Affiliation(s)
- Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555 TX, USA.
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555 TX, USA.
| |
Collapse
|
18
|
Zhong Y, Tang X, Sheng X, Xing J, Zhan W. Development and Characterization of Monoclonal Antibodies to the 32 kDa Viral Attachment Protein of Lymphocystis Disease Virus and Their Neutralizing Ability in Vitro. Int J Mol Sci 2018; 19:ijms19092536. [PMID: 30150566 PMCID: PMC6165272 DOI: 10.3390/ijms19092536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 11/16/2022] Open
Abstract
In previous research, a 32 kDa protein in lymphocystis disease virus (LCDV) was identified as viral attachment protein (VAP) that specifically interacted with the 27.8 kDa cellular receptor from flounder Paralichthys olivaceus gill (FG) cells, and the recombinant VAP (rVAP) was expressed in Escherichia coli strain BL21 (DE3). In this study, monoclonal antibodies (MAbs) against 32 kDa VAP are produced by immunization of BALB/c mice with the rVAP. Seven hybridoma secreting MAbs were screened by enzyme-linked immunosorbent assay, five of which designated as 1C6, 1C8, 3B5, 3D11 and 3H10 are cloned by the limiting dilution method, depending on the strongly positive results of ELISA. Western blotting analysis shows that the five MAbs can specifically react with the 32 kDa protein of LCDV and the purified 50 kDa rVAP, and the subtype of the MAbs is identified as IgG. Immunofluorescence results demonstrate that the specific fluorescence signals for LCDV appear in the cytoplasm of FG cells at 24 h post LCDV infection. Neutralization assay results indicate that pre-incubations of LCDV with the five MAbs can significantly decrease the LCDV copy numbers and delay the development of the cytopathic effect in FG cells, revealing that the five MAbs can neutralize the LCDV particles and block viral infection in vitro. The neutralizing MAbs against 32 kDa VAP would be useful for the study on the LCDV⁻host interaction and might be promising inhibitors of LCDV infection in fish.
Collapse
Affiliation(s)
- Ying Zhong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China.
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
19
|
Role of Conserved E2 Residue W420 in Receptor Binding and Hepatitis C Virus Infection. J Virol 2016; 90:7456-7468. [PMID: 27279607 DOI: 10.1128/jvi.00685-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) enters cells via interactions with several host factors, a key one being that between the viral E2 envelope glycoprotein and the CD81 receptor. We previously identified E2 tryptophan residue 420 (W420) as an essential CD81-binding residue. However, the importance of W420 in the context of the native virion is unknown, as those previous studies predate the infectious HCV cell culture (cell culture-derived HCV [HCVcc]) system. Here, we introduced four separate mutations (F, Y, A, or R) at position 420 within the infectious HCVcc JFH-1 genome and characterized their effects on the viral life cycle. While all mutations reduced E2-CD81 binding, only two (W420A and W420R) reduced HCVcc infectivity. Further analyses of mutants with hydrophobic residues (F or Y) found that interactions with the receptors SR-BI and CD81 were modulated, which in turn determined the viral uptake route. Both mutant viruses were significantly less dependent on SR-BI, and its lipid transfer activity, for virus entry. Furthermore, these viruses were resistant to the drug erlotinib, which targets epidermal growth factor receptor (EGFR) (a host cofactor for HCV entry) and also blocks SR-BI-dependent high-density lipoprotein (HDL)-mediated enhancement of virus entry. Together, our data indicate a model where an alteration at position 420 causes a subtle change in the E2 conformation that prevents interaction with SR-BI and increases accessibility to the CD81-binding site, in turn favoring a particular internalization route. These results further show that a hydrophobic residue with a strong preference for tryptophan at position 420 is important, both functionally and structurally, to provide an additional hydrophobic anchor to stabilize the E2-CD81 interaction. IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver disease, causing up to 500,000 deaths annually. The first step in the viral life cycle is the entry process. This study investigates the role of a highly conserved residue, tryptophan residue 420, of the viral glycoprotein E2 in this process. We analyzed the effect of changing this residue in the virus and confirmed that this region is important for binding to the CD81 receptor. Furthermore, alteration of this residue modulated interactions with the SR-BI receptor, and changes to these key interactions were found to affect the virus internalization route involving the host cofactor EGFR. Our results also show that the nature of the amino acid at this position is important functionally and structurally to provide an anchor point to stabilize the E2-CD81 interaction.
Collapse
|
20
|
Conformation-controlled binding kinetics of antibodies. Sci Rep 2016; 6:18976. [PMID: 26755272 PMCID: PMC4709514 DOI: 10.1038/srep18976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/02/2015] [Indexed: 01/28/2023] Open
Abstract
Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.
Collapse
|
21
|
Olofsson S, Blixt O, Bergström T, Frank M, Wandall HH. Viral O-GalNAc peptide epitopes: a novel potential target in viral envelope glycoproteins. Rev Med Virol 2015; 26:34-48. [PMID: 26524377 DOI: 10.1002/rmv.1859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted owing to various viral escape mechanisms. We expand the range of possible viral glycoprotein targets, by presenting a previously unknown type of viral glycoprotein epitope based on a short peptide stretch modified with small O-linked glycans. Besides being immunologically active, these epitopes have a high potential for antigenic variation. Thus, sera from patients infected with EBV develop individual IgG responses addressing the different possible glycopeptide glycoforms of one short peptide backbone that reflect individual variations in the course of virus infection. In contrast, in HSV type 2 meningitis patients, CSF antibodies are focussed to only one single glycoform peptide of a major viral glycoprotein. Thus, dependent on the viral disease, the serological response may be variable or constant with respect to the number of targeted peptide glycoforms. Mapping of these epitopes relies on a novel three-step procedure that identifies any reactive viral O-glycosyl peptide epitope with respect to (i) relevant peptide sequence, (ii) the reactive glycoform out of several possible glycopeptide isomers of that peptide sequence, and (iii) possibly tolerated carbohydrate or peptide structural variations at glycosylation sites. In conclusion, the viral O-glycosyl peptide epitopes may be of relevance for development of subunit vaccines and for improved serodiagnosis of viral diseases. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sigvard Olofsson
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Bergström
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | | | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Oh IS, Park SH. Immune-mediated Liver Injury in Hepatitis B Virus Infection. Immune Netw 2015; 15:191-8. [PMID: 26330805 PMCID: PMC4553257 DOI: 10.4110/in.2015.15.4.191] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/26/2015] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
Hepatitis B virus (HBV) is responsible for approximately 350 million chronic infections worldwide and is a leading cause of broad-spectrum liver diseases such as hepatitis, cirrhosis and liver cancer. Although it has been well established that adaptive immunity plays a critical role in viral clearance, the pathogenetic mechanisms that cause liver damage during acute and chronic HBV infection remain largely known. This review describes our current knowledge of the immune-mediated pathogenesis of HBV infection and the role of immune cells in the liver injury during hepatitis B.
Collapse
Affiliation(s)
- In Soo Oh
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea. ; Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
23
|
Thisyakorn U, Thisyakorn C. Latest developments and future directions in dengue vaccines. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:3-9. [PMID: 24757522 PMCID: PMC3991153 DOI: 10.1177/2051013613507862] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dengue is a mosquito-borne disease which is currently an expanding global health problem. The disease is caused by four closely related viruses, the dengue virus. There are no specific dengue therapeutics and prevention is currently limited to vector control measures. Development of an effective tetravalent dengue vaccine would therefore represent a major advance in the control of the disease and is considered a high public health priority. While a licensed dengue vaccine is not yet available, the scope and intensity of dengue vaccine development has increased dramatically in the last decade. The uniqueness of the dengue viruses and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on chimeric yellow fever dengue virus, has progressed to phase III efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA and purified inactivated vaccine candidates, are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and virus-like particle-based vaccines, are under evaluation in preclinical studies.
Collapse
Affiliation(s)
- Usa Thisyakorn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Bangkok 10330, Thailand
| | - Chule Thisyakorn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Flipse J, Wilschut J, Smit JM. Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic 2012; 14:25-35. [PMID: 22998156 DOI: 10.1111/tra.12012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/19/2022]
Abstract
Dengue is the most common arthropod-borne viral infection in humans with ∼50 million cases annually worldwide. In recent decades, a steady increase in the number of severe dengue cases has been seen. Severe dengue disease is most often observed in individuals that have pre-existing immunity against heterotypic dengue subtypes and in infants with low levels of maternal dengue antibodies. The generally accepted hypothesis explaining the immunopathogenesis of severe dengue is called antibody-dependent enhancement of dengue infection. Here, circulating antibodies bind to the newly infecting virus but do not neutralize infection. Rather, these antibodies increase the infected cell mass and virus production. Additionally, antiviral responses are diminished allowing massive virus particle production early in infection. The large infected cell mass and the high viral load are prelude for severe disease development. In this review, we discuss what is known about the trafficking of dengue virus in its human host cells, and the signalling pathways activated after virus detection, both in the absence and presence of antibodies against the virus. This review summarizes work that aims to better understand the complex immunopathogenesis of severe dengue disease.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
25
|
Bhowmick A, Salunke DM. Limited conformational flexibility in the paratope may be responsible for degenerate specificity of HIV epitope recognition. Int Immunol 2012; 25:77-90. [DOI: 10.1093/intimm/dxs093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Xiong XP, Dong CF, Weng SP, Zhang J, Zhang Y, He JG. Antigenic identification of virion structural proteins from infectious spleen and kidney necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:919-924. [PMID: 21888976 DOI: 10.1016/j.fsi.2011.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 08/05/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), belonging to the genus Megalocytivirus in the family Iridoviridae, is one of the major agents causing mortality and economic losses to the freshwater fish culture industry in Asian countries. Currently, little information regarding the antigenic properties of Megalocytivirus (especially ISKNV) is available. Our previous study using four different workflows with systematic and comprehensive proteomic approaches led to the identification of 38 ISKNV virion-associated proteins (J. Virol. 2869-2877, 2011). Thus, in this report, the antigenicity of 31 structural proteins from ISKNV virion was investigated. A one-dimensional gel electrophoresis immunoblot profile coupled with MALDI-TOF-TOF MS/MS was applied to identify six immunogenic viral proteins, namely, ORFs major capsid protein (006L), 054L, 055L, 101L, 117L, and 125L. Then, the antigenicity of 31 structural proteins was characterized by Western blot by using pooled sera from mandarin fish that survived ISKNV infection. Of the 31 viral proteins, 22 were recognized by the fish ISKNV antiserum. Furthermore, this antiserum neutralizes MFF-1 cells ISKNV infection. To our knowledge, this study is the first report on the immunogenicity of viral proteins and characterization of the proteome of megalocytivirus infective agents. Our findings are expected to promote the development of effective vaccine candidates.
Collapse
Affiliation(s)
- Xiao-Peng Xiong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Sun P, Bauza K, Pal S, Liang Z, Wu SJ, Beckett C, Burgess T, Porter K. Infection and activation of human peripheral blood monocytes by dengue viruses through the mechanism of antibody-dependent enhancement. Virology 2011; 421:245-52. [DOI: 10.1016/j.virol.2011.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 11/29/2022]
|
28
|
Carlsson F, Trilling M, Perez F, Ohlin M. A dimerized single-chain variable fragment system for the assessment of neutralizing activity of phage display-selected antibody fragments specific for cytomegalovirus. J Immunol Methods 2011; 376:69-78. [PMID: 22154743 DOI: 10.1016/j.jim.2011.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
Cytomegalovirus (CMV) causes severe sequelae in congenitally infected newborns and may cause life-threatening disease in immuno-deficient patients. Recent findings demonstrate the possibility to alleviate the disease by infusing intravenous immunoglobulin G (IgG) preparations, indicating that antibodies are an effective therapeutic option. Modern molecular methodologies, like phage display, allow for the development of specific antibodies targeting virtually any antigen, including those of CMV. However, such methodologies do not in general result in products that by themselves mediate biological activity. To facilitate a semi-high-throughput approach for functional screening in future efforts to develop efficacious antibodies against CMV, we have integrated two different approaches to circumvent potential bottlenecks in such efforts. Firstly, we explored an approach that permits easy transfer of antibody fragment encoding genes from commonly used phage display vectors into vectors for the production of divalent immunoglobulins. Secondly, we demonstrate that such proteins can be applied in a novel reporter-based neutralization assay to establish a proof-of-concept workflow for the generation of neutralizing antibodies against CMV. We validated our approach by showing that divalent antibodies raised against the antigenic domain (AD)-2 region of gB effectively neutralized three different CMV strains (AD169, Towne and TB40/E), whereas two antibodies against the AD-1 region of gB displayed minor neutralizing capabilities. In conclusion, the methods investigated in this proof-of-concept study enables for a semi-high-throughput workflow in the screening and investigation of biological active antibodies.
Collapse
Affiliation(s)
- Fredrika Carlsson
- Department of Immunotechnology, Lund University, BMC D13, SE-221 84 Lund, Sweden.
| | | | | | | |
Collapse
|
29
|
Evidence against extracellular exposure of a highly immunogenic region in the C-terminal domain of the simian immunodeficiency virus gp41 transmembrane protein. J Virol 2011; 86:1145-57. [PMID: 22072749 DOI: 10.1128/jvi.06463-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The generally accepted model for human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein topology includes a single membrane-spanning domain. An alternate model has been proposed which features multiple membrane-spanning domains. Consistent with the alternate model, a high percentage of HIV-1-infected individuals produce unusually robust antibody responses to a region of envelope, the so-called "Kennedy epitope," that in the conventional model should be in the cytoplasm. Here we show analogous, robust antibody responses in simian immunodeficiency virus SIVmac239-infected rhesus macaques to a region of SIVmac239 envelope located in the C-terminal domain, which in the conventional model should be inside the cell. Sera from SIV-infected rhesus macaques consistently reacted with overlapping oligopeptides corresponding to a region located within the cytoplasmic domain of gp41 by the generally accepted model, at intensities comparable to those observed for immunodominant areas of the surface component gp120. Rabbit serum raised against this highly immunogenic region (HIR) reacted with SIV envelope in cell surface-staining experiments, as did monoclonal anti-HIR antibodies isolated from an SIVmac239-infected rhesus macaque. However, control experiments demonstrated that this surface staining could be explained in whole or in part by the release of envelope protein from expressing cells into the supernatant and the subsequent attachment to the surfaces of cells in the culture. Serum and monoclonal antibodies directed against the HIR failed to neutralize even the highly neutralization-sensitive strain SIVmac316. Furthermore, a potential N-linked glycosylation site located close to the HIR and postulated to be outside the cell in the alternate model was not glycosylated. An artificially introduced glycosylation site within the HIR was also not utilized for glycosylation. Together, these data support the conventional model of SIV envelope as a type Ia transmembrane protein with a single membrane-spanning domain and without any extracellular loops.
Collapse
|
30
|
Patil R, Shankar KM, Krupesha Sharma SR, Kulkarni A, Patil P, Naveen Kumar BT, Sahoo AK. Epitope analysis of white spot syndrome virus of Penaeus monodon by in vivo neutralization assay employing a panel of monoclonal antibodies. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1007-1013. [PMID: 21310244 DOI: 10.1016/j.fsi.2011.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/16/2011] [Accepted: 01/23/2011] [Indexed: 05/30/2023]
Abstract
A panel of six monoclonal antibodies (MAbs) against the major envelope proteins VP18, VP26 and VP28 of white spot syndrome virus (WSSV) was evaluated for neutralization of the virus in vivo in Penaeus monodon. WSSV stock diluted to 1 x 10⁻⁶ resulting in 100% mortality on 12 day post injection (dpi) was used as optimum infectious dose of virus for challenge. Constant quantity (100 μg/ml) of MAbs C-5, C-14, C-33, C-38, C-56 and C-72 was incubated separately with WSSV (1 x 10⁻⁶ dilution) at 27 °C for 90 min and injected to shrimp. WSSV infection was neutralized by the MAbs C-5, C-14 and C-33 with a relative percent survival (RPS) of 60, 80 and 60 on 12 dpi, respectively compared to 100% mortality in positive control injected with WSSV alone. MAbs C-38, C-56 and C-72 could neutralize WSSV infection with RPS on 12 dpi of 40, 30 and 30, respectively. Shrimp injected with WSSV (1 x 10⁻⁶ dilution) incubated with panel of the MAbs at 100 μg/ml separately were subjected to nested PCR analysis at 0, 8, 12, 24, 36, 48 and 72 hour post injection (hpi) to provide further evidence for neutralization. MAbs C-5, C-14 and C-33 showed delay in WSSV positivity by 24 and 48 hpi by 2nd and 1st step PCR, respectively. MAbs C-38, C-56 and C-72 showed WSSV positivity by 12 and 24 hpi by 2nd and 1st step PCR, respectively. Shrimp injected with WSSV alone showed WSSV positivity by 8 and 12 hpi by 2nd and 1st step PCR, respectively. The study clearly shows that infectivity of WSSV could be delayed by MAbs C-14, C-5 and C-33.
Collapse
Affiliation(s)
- Rajreddy Patil
- Fish Pathology and Biotechnology Laboratory, Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Neutralization efficiency is greatly enhanced by bivalent binding of an antibody to epitopes in the V4 region and the membrane-proximal external region within one trimer of human immunodeficiency virus type 1 glycoproteins. J Virol 2010; 84:7114-23. [PMID: 20463081 DOI: 10.1128/jvi.00545-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most antibodies are multivalent, with the potential to bind with high avidity. However, neutralizing antibodies commonly bind to virions monovalently. Bivalent binding of a monoclonal antibody (MAb) to a virion has been documented only in a single case. Thus, the role of high avidity in antibody-mediated neutralization of viruses has not been defined clearly. In this study, we demonstrated that when an artificial 2F5 epitope was inserted in the gp120 V4 region so that an HIV-1 envelope glycoprotein (Env) trimer contains a natural 2F5 epitope in the gp41 membrane-proximal envelope region (MPER) and an artificially engineered 2F5 epitope in the gp120 V4 region, bivalent 2F5 IgG achieved greatly enhanced neutralization efficiency, with a 50% inhibitory concentration (IC(50)) decrease over a 2-log scale. In contrast, the monovalent 2F5 Fab fragment did not exhibit any appreciable change in neutralization efficiency in the same context. These results demonstrate that bivalent binding of 2F5 IgG to a single HIV-1 Env trimer results in dramatic enhancement of neutralization, probably through an increase in binding avidity. Furthermore, we demonstrated that bivalent binding of MAb 2F5 to the V4 region and MPER of an HIV-1 Env trimer can be achieved only in a specific configuration, providing an important insight into the structure of a native/infectious HIV-1 Env trimer. This specific binding configuration also establishes a useful standard that can be applied to evaluate the biological relevance of structural information on the HIV-1 Env trimer.
Collapse
|
32
|
Eaton HE, Penny E, Brunetti CR. Antibody dependent enhancement of frog virus 3 infection. Virol J 2010; 7:41. [PMID: 20167100 PMCID: PMC2830962 DOI: 10.1186/1743-422x-7-41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 02/18/2010] [Indexed: 12/02/2022] Open
Abstract
Background Viruses included in the family Iridoviridae are large, icosahedral, dsDNA viruses that are subdivided into 5 genera. Frog virus 3 (FV3) is the type species of the genus Ranavirus and the best studied iridovirus at the molecular level. Typically, antibodies directed against a virus act to neutralize the virus and limit infection. Antibody dependent enhancement occurs when viral antibodies enhance infectivity of the virus rather than neutralize it. Results Here we show that anti-FV3 serum present at the time of FV3 infection enhances infectivity of the virus in two non-immune teleost cell lines. We found that antibody dependent enhancement of FV3 was dependent on the Fc portion of anti-FV3 antibodies but not related to complement. Furthermore, the presence of anti-FV3 serum during an FV3 infection in a non-immune mammalian cell line resulted in neutralization of the virus. Our results suggest that a cell surface receptor specific to teleost cell lines is responsible for the enhancement. Conclusions This report represents the first evidence of antibody dependent enhancement in iridoviruses. The data suggests that anti-FV3 serum can either neutralize or enhance viral infection and that enhancement is related to a novel antibody dependent enhancement pathway found in teleosts that is Fc dependent.
Collapse
Affiliation(s)
- Heather E Eaton
- Department of Biology, Trent University, Peterborough, ON, Canada
| | | | | |
Collapse
|
33
|
Ray N, Whidby J, Stewart S, Hooper JW, Bertolotti-Ciarlet A. Study of Andes virus entry and neutralization using a pseudovirion system. J Virol Methods 2009; 163:416-23. [PMID: 19903496 DOI: 10.1016/j.jviromet.2009.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/13/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Andes virus (ANDV), a member of the Hantavirus genus in the family Bunyaviridae, causes an acute disease characteristic of New-World hantaviruses called hantavirus pulmonary syndrome (HPS). HPS is a highly pathogenic disease with a case-fatality rate of 40%. ANDV is the only hantavirus reported to spread directly from human-to-human. The aim of the present study was to develop a quantitative and high-throughput pseudovirion assay to study ANDV infection and neutralization in biosafety level 2 facilities (BSL-2). This pseudovirion assay is based on incorporation of ANDV glycoproteins onto replication-defective vesicular stomatitis virus (VSV) cores in which the gene for the surface G protein has been replaced by that encoding Renilla luciferase. Infection by the pseudovirions can be quantified by luciferase activity of infected cell lysates. ANDV pseudovirions were neutralized by ANDV-specific antisera, and there was good concordance between specificity and neutralization titers of ANDV hamster sera as determined by our pseudovirion assay and a commonly used plaque reduction neutralization titer (PRNT) assay. In addition, the pseudovirions were used to evaluate the requirements for ANDV entry, like pH dependency and the role of beta3 integrin, the reported receptor for other pathogenic hantaviruses, on entry.
Collapse
Affiliation(s)
- Neelanjana Ray
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Zhou R, Das P, Royyuru AK. Single mutation induced H3N2 hemagglutinin antibody neutralization: a free energy perturbation study. J Phys Chem B 2009; 112:15813-20. [PMID: 19367871 DOI: 10.1021/jp805529z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The single mutation effect on the binding affinity of H3N2 viral protein hemagglutinin (HA) with the monoclonical antibody fragment (Fab) is studied in this paper using the free energy perturbation (FEP) simulations. An all-atom protein model with explicit solvents is used to perform an aggregate of several microsecond FEP molecular dynamics simulations. A recent experiment shows that a single mutation in H3N2 HA, T131I, increases the antibody-antigen dissociation constant Kd by a factor of approximately 4000 (equivalent to a binding affinity decrease of approximately 5 kcal/mol), thus introducing an escape of the antibody (Ab) neutralization. Our FEP result confirms this experimental finding by estimating the HA-Ab binding affinity decrease of 5.2 +/- 0.9 kcal/mol but with a somewhat different molecular mechanism from the experimental findings. Detailed analysis reveals that this large binding affinity decrease in the T131I mutant is mainly due to the displacement of two bridge water molecules otherwise present in the wild-type HA/Ab interface. The decomposition of the binding free energy supports this observation, as the major contribution to the binding affinity is from the electrostatic interactions. In addition, we find that the loss of the binding affinity is also related to the large conformational distortion of one loop (loop 155-161) in the unbound state of the mutant. We then simulate all other possible mutations for this specific mutation site T131, and predict a few more mutations with even larger decreases in the binding affinity (i.e., better candidates for antibody neutralization), such as T131W, T131Y, and T131F. As for further validation, we have also modeled another mutation, S157L, with experimental binding affinity available (Kd increasing approximately 500 times), and found a binding affinity decrease of 4.1 +/- 1.0 kcal/mol, which is again in excellent agreement with experiment. These large scale simulations might provide new insights into the detailed physical interaction, possible future escape mutation, and antibody-antigen coevolution relationship between influenza virus and human antibodies.
Collapse
Affiliation(s)
- Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA.
| | | | | |
Collapse
|
35
|
Antibodies to the buried N terminus of rhinovirus VP4 exhibit cross-serotypic neutralization. J Virol 2009; 83:7040-8. [PMID: 19403680 DOI: 10.1128/jvi.00557-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Development of a vaccine for the common cold has been thwarted by the fact that there are more than 100 serotypes of human rhinovirus (HRV). We previously demonstrated that the HRV14 capsid is dynamic and transiently displays the buried N termini of viral protein 1 (VP1) and VP4. Here, further evidence for this "breathing" phenomenon is presented, using antibodies to several peptides representing the N terminus of VP4. The antibodies form stable complexes with intact HRV14 virions and neutralize infectivity. Since this region of VP4 is highly conserved among all of the rhinoviruses, antiviral activity by these anti-VP4 antibodies is cross-serotypic. The antibodies inhibit HRV16 infectivity in a temperature- and time-dependent manner consistent with the breathing behavior. Monoclonal and polyclonal antibodies raised against the 30-residue peptide do not react with peptides shorter than 24 residues, suggesting that these peptides are adopting three-dimensional conformations that are highly dependent upon the length of the peptide. Furthermore, there is evidence that the N termini of VP4 are interacting with each other upon extrusion from the capsid. A Ser5Cys mutation in VP4 yields an infectious virus that forms cysteine cross-links in VP4 when the virus is incubated at room temperature but not at 4 degrees C. The fact that all of the VP4s are involved in this cross-linking process strongly suggests that VP4 forms specific oligomers upon extrusion. Together these results suggest that it may be possible to develop a pan-serotypic peptide vaccine to HRV, but its design will likely require details about the oligomeric structure of the exposed termini.
Collapse
|
36
|
Generation and characterization of high affinity humanized fab against hepatitis B surface antigen. Mol Biotechnol 2009; 43:29-40. [PMID: 19326261 DOI: 10.1007/s12033-009-9165-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 03/10/2009] [Indexed: 02/06/2023]
Abstract
5S is a mouse monoclonal IgG1 that binds to the 'a' epitope of the Hepatitis B surface antigen (HBsAg) and tested positive in an in vitro test for virus neutralization. We have earlier reported the generation of humanized single chain variable fragment (scFv) from the same. In this article we report the generation of a recombinant Fab molecule by fusing humanized variable domains of 5S with the constant domains of human IgG1. The humanized Fab expressed in E. coli and subsequently purified, retained a high binding affinity (K(D) = 3.63 nmol/L) to HBsAg and bound to the same epitope of HBsAg as the parent molecule. The humanized Fab also maintained antigen binding in the presence of various destabilizing agents like 3 M NaCl, 30% DMSO, 8 M urea, and extreme pH. This high affinity humanized Fab provides a basis for the development of therapeutic molecules that can be safely utilized for the prophylaxis and treatment for Hepatitis B infection.
Collapse
|
37
|
Abstract
The interaction between immune responses and hepatitis B virus (HBV) is coordinated between innate and adaptive immunity. Anti-HBs antibodies protect the host by blocking the binding ability of HBV. Anti-HBc antibodies are detected with persistent HBV infection. The presence of anti-HBe antibodies is often associated with recovery from active diseases and is clinically used as a benchmark to assess response to treatment. Our studies have revealed that the anti-HBV immunoglobulins secreted are different in subclass patterns in different HBV infection status populations. These revelations may help to understand HBV escape and persistent infection and to develop strategies for prevention and therapeutic management of HBV infection.
Collapse
Affiliation(s)
- Hsiu-Ting Tsai
- School of Nursing, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
38
|
Pak JE, Sharon C, Satkunarajah M, Auperin TC, Cameron CM, Kelvin DJ, Seetharaman J, Cochrane A, Plummer FA, Berry JD, Rini JM. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. J Mol Biol 2009; 388:815-23. [PMID: 19324051 PMCID: PMC7094495 DOI: 10.1016/j.jmb.2009.03.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 11/02/2022]
Abstract
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.
Collapse
Affiliation(s)
- John E Pak
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:23-61. [PMID: 18039107 DOI: 10.1146/annurev.pathol.1.110304.100230] [Citation(s) in RCA: 587] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the many viruses that are known to infect the human liver, hepatitis B virus (HBV) and hepatitis C virus (HCV) are unique because of their prodigious capacity to cause persistent infection, cirrhosis, and liver cancer. HBV and HCV are noncytopathic viruses and, thus, immunologically mediated events play an important role in the pathogenesis and outcome of these infections. The adaptive immune response mediates virtually all of the liver disease associated with viral hepatitis. However, it is becoming increasingly clear that antigen-nonspecific inflammatory cells exacerbate cytotoxic T lymphocyte (CTL)-induced immunopathology and that platelets enhance the accumulation of CTLs in the liver. Chronic hepatitis is characterized by an inefficient T cell response unable to completely clear HBV or HCV from the liver, which consequently sustains continuous cycles of low-level cell destruction. Over long periods of time, recurrent immune-mediated liver damage contributes to the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Luca G Guidotti
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
40
|
Kwon I, Schaffer DV. Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2007; 25:489-99. [PMID: 17763830 PMCID: PMC2265771 DOI: 10.1007/s11095-007-9431-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/03/2007] [Indexed: 12/23/2022]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure-function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. "Shielding" polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating 'designer' gene delivery vectors with enhanced properties.
Collapse
Affiliation(s)
- Inchan Kwon
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| |
Collapse
|
41
|
Ketas TJ, Schader SM, Zurita J, Teo E, Polonis V, Lu M, Klasse PJ, Moore JP. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes. Virology 2007; 364:431-40. [PMID: 17428517 DOI: 10.1016/j.virol.2007.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/26/2007] [Accepted: 03/02/2007] [Indexed: 11/27/2022]
Abstract
Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 microM), the replication of most R5 isolates in human donor lymphocytes was inhibited by >90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness.
Collapse
Affiliation(s)
- Thomas J Ketas
- Dept of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang X, Lipchina I, Lifton M, Wang L, Sodroski J. Antibody binding in proximity to the receptor/glycoprotein complex leads to a basal level of virus neutralization. J Virol 2007; 81:8809-13. [PMID: 17537847 PMCID: PMC1951382 DOI: 10.1128/jvi.00394-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hypothetically, antibodies may neutralize enveloped viruses by diverse mechanisms, such as disruption of receptor binding, interference with conformational changes required for virus entry, steric hindrance, or virus aggregation. Here, we demonstrate that retroviral infection mediated by the avian sarcoma-leukosis virus (ASLV-A) envelope glycoproteins can be neutralized by an antibody directed against a functionally unimportant component of a chimeric receptor protein. Thus, the binding of an antibody in proximity to the retroviral envelope glycoprotein-receptor complex, without binding to the entry machinery itself, results in neutralization. This finding provides additional support for the hypothesis that steric hindrance is sufficient for antibody-mediated neutralization of retroviruses.
Collapse
Affiliation(s)
- Xinzhen Yang
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
43
|
He J, Kuschner RA, Dewar V, Voet P, Asher LV, Vaughn DW. Characterization of monoclonal antibodies to hepatitis E virus (HEV) capsid protein and identification of binding activity. J Biomed Sci 2007; 14:555-63. [PMID: 17487571 DOI: 10.1007/s11373-007-9172-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 03/26/2007] [Indexed: 12/21/2022] Open
Abstract
Twenty-seven monoclonal antibodies (Mabs) recognizing the open reading frame 2 structural protein of the Pakistan strain of hepatitis E virus (HEV) were generated by conventional hybridoma technique. These Mabs were characterized by ELISA, affinity-capture reverse transcriptase-polymerase chain reaction (AC/RT-PCR), immune electron microscopy (IEM), and a RT-PCR based seroneutralization assay. Twenty-seven Mabs were positive by ELISA. By AC/RT-PCR, 24 Mabs bound to Pakistan and Namibia HEV strains. Thirteen Mabs were examined by IEM. Nine Mabs, positive by ELISA and AC/RT-PCR, bound and aggregated to Mexican HEV strain. We tested five Mabs that were positive by ELISA, AC/RT/PCR, and IEM by a RT-PCR based seroneutralization assay. Only one Mab (Mab 7) showed activity that inhibited the ability of HEV to attach to Alexander hepatoma cells (PLC-PRF-5). When Mab 7 was diluted to 1: 160, its inhibition activity persisted suggesting that Mab 7 might be a potential candidate for further evaluation in primates (passive protection experiments).
Collapse
Affiliation(s)
- Junkun He
- Armed Forces Institute of Pathology, 1413 Research Boulevard, Rockville, MD 20850, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
45
|
Yang X, Lipchina I, Cocklin S, Chaiken I, Sodroski J. Antibody binding is a dominant determinant of the efficiency of human immunodeficiency virus type 1 neutralization. J Virol 2006; 80:11404-8. [PMID: 16956933 PMCID: PMC1642171 DOI: 10.1128/jvi.01102-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary and laboratory-adapted variants of human immunodeficiency virus type 1 (HIV-1) exhibit a wide range of sensitivities to neutralization by antibodies directed against the viral envelope glycoproteins. An antibody directed against an artificial FLAG epitope inserted into the envelope glycoproteins of three HIV-1 isolates with vastly different neutralization sensitivities inhibited all three viruses equivalently. Thus, naturally occurring HIV-1 isolates that are neutralization resistant are not necessarily more impervious to the inhibitory consequences of bound antibody. Moreover, the binding affinity of the anti-FLAG antibody correlated with neutralizing potency, underscoring the dominant impact on neutralization of antibody binding to the envelope glycoproteins.
Collapse
Affiliation(s)
- Xinzhen Yang
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, R.E. 213A, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
46
|
Elliot LN, Lloyd AR, Ziegler JB, Ffrench RA. Protective immunity against hepatitis C virus infection. Immunol Cell Biol 2006; 84:239-49. [PMID: 16509830 DOI: 10.1111/j.1440-1711.2006.01427.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is increasing evidence that a small percentage of individuals exposed to the hepatitis C virus have the capacity to generate a strong cellular immune response against the virus and avoid persistent infection, and perhaps do so repeatedly after re-exposure. This article reviews the evidence that the responses identified in this unique group of individuals represent the protective immunity that will need to be elicited by hepatitis C virus vaccines.
Collapse
Affiliation(s)
- Lisa N Elliot
- School of Women's and Children's Health, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
47
|
Bose B, Khanna N, Acharya SK, Sinha S. High affinity mouse-human chimeric Fab against hepatitis B surface antigen. World J Gastroenterol 2006; 11:7569-78. [PMID: 16437680 PMCID: PMC4727235 DOI: 10.3748/wjg.v11.i48.7569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody. METHODS We cloned the V(H) and V(L) genes of this mouse antibody, and fused them with CH1 domain of human IgG1 and C(L) domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. coli. RESULTS The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal. This chimeric antibody fragment was further expressed in different strains of E. coli to increase the yield. CONCLUSION We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a full-length chimeric antibody for therapeutic uses.
Collapse
Affiliation(s)
- Biplab Bose
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, PIN-110029, India.
| | | | | | | |
Collapse
|
48
|
Yuste E, Sanford HB, Carmody J, Bixby J, Little S, Zwick MB, Greenough T, Burton DR, Richman DD, Desrosiers RC, Johnson WE. Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (HIV-1)-specific epitopes: replication, neutralization, and survey of HIV-1-positive plasma. J Virol 2006; 80:3030-41. [PMID: 16501112 PMCID: PMC1395451 DOI: 10.1128/jvi.80.6.3030-3041.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.
Collapse
Affiliation(s)
- Eloisa Yuste
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical Scool, One Pine Hill Drive, Box 9102, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iannacone M, Sitia G, Guidotti LG. Pathogenetic and antiviral immune responses against hepatitis B virus. Future Virol 2006. [DOI: 10.2217/17460794.1.2.189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus (HBV) is a noncytopathic virus that causes liver disease of variable duration and severity. It is widely assumed that during HBV infection the host immune response is responsible for both hepatocellular damage and viral clearance. Whereas there is considerable evidence that the innate immune response does not play a significant role in these processes, the adaptive immune response, particularly virus-specific cytotoxic T lymphocytes (CTLs), seems to contribute to nearly all of the liver injury associated with HBV infection. By killing infected cells and producing antiviral cytokines capable of purging HBV from viable hepatocytes, CTLs are also thought to eliminate the virus. Although liver damage is initiated and mediated by the CTLs, antigen-nonspecific inflammatory cells can worsen CTL-induced immunopathology and platelets may facilitate the accumulation of CTLs in the liver. The mechanisms responsible for disease pathogenesis and viral clearance during HBV infection are the subject of this review.
Collapse
|
50
|
Rockx B, Baric RS, de Grijs I, Duizer E, Koopmans MPG. Characterization of the homo- and heterotypic immune responses after natural norovirus infection. J Med Virol 2005; 77:439-46. [PMID: 16173019 DOI: 10.1002/jmv.20473] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Noroviruses (NoV) are a genetically and antigenically diverse group of viruses that are common causes of outbreaks of gastroenteritis in humans of all ages. Limited information has been obtained on type specificity of the NoV immune response. In this study, we characterized the homologous and heterologous antibody responses in adults from 13 outbreaks, representing 4 different NoV genotypes. NoV specific IgG and IgA antibodies were determined as well as the increase of antibody avidity. In addition, antibody-mediated blocking of NoV binding to its putative receptor was evaluated. Both homologous and heterologous serological responses were detected after NoV infection. The avidity of antibodies could not be used to distinguish between homologous and heterologous antibody responses. However, a homologous blocking response but not a heterologous response was detected after infection with NoV belonging to genogroup II.4 by a NoV ligand binding inhibition assay. Infection with NoV induces antibodies that can block virus ligand interactions. In contrast with all currently known antibody detection assays for NoV, this can be used as a type specific assay and may be an alternative for studying neutralizing antibodies.
Collapse
Affiliation(s)
- Barry Rockx
- Diagnostic Laboratory for Infectious Diseases and Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | |
Collapse
|