1
|
Rayo-Morales R, Segura-Carretero A, Borras-Linares I, Garcia-Burgos D. Suppression of sweet taste-related responses by plant-derived bioactive compounds and eating. Part II: A systematic review in animals. Heliyon 2023; 9:e20511. [PMID: 37860570 PMCID: PMC10582302 DOI: 10.1016/j.heliyon.2023.e20511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
This article, the second in a two-part series, continues the discussion on the nature of the relationship between the level of sweet taste suppression and eating behaviour, but in animal rather human subjects. In particular, the aim was to review the scientific literature on the impact that bioactive compounds that decrease oral sweet sensations have on intake, preference and physiological status in preclinical studies. This review was registered in the International Prospective Register of Systematic Reviews and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Scottish Intercollegiate Guidelines Network and covered original papers included in Web of Science, PubMed, Scopus, Food Science Source and Food Science and technology abstracts. We identified 28 peer-reviewed English-language studies that fit the topic and met the inclusion criteria. We identified three plant species, Gymnema sylvestre, Hovenia dulcis, and Ziziphus jujuba, that possess acute sweetness-inhibitory properties. When administered orally, these plants reduced neural responses to sweet stimuli and decreased consumption. However, studies on the longer-term effects of antisweet activity remain to be conducted. Translating the valuable insights into the mechanisms underlying the relationship between sweet taste impairment and eating behaviour into practical clinical applications are discussed.
Collapse
Affiliation(s)
- Raquel Rayo-Morales
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
- Department of Psychobiology, Institute of Neurosciences, Centre for Biomedical Research, University of Granada, 18010, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Isabel Borras-Linares
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - David Garcia-Burgos
- Department of Psychobiology, Institute of Neurosciences, Centre for Biomedical Research, University of Granada, 18010, Granada, Spain
| |
Collapse
|
2
|
Saraiva A, Carrascosa C, Ramos F, Raheem D, Pedreiro S, Vega A, Raposo A. Brazzein and Monellin: Chemical Analysis, Food Industry Applications, Safety and Quality Control, Nutritional Profile and Health Impacts. Foods 2023; 12:foods12101943. [PMID: 37238762 DOI: 10.3390/foods12101943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, customers have been keener to buy products manufactured using all-natural ingredients with positive health properties, but without losing flavor. In this regard, the objective of the current study is to review the consumption of brazzein and monellin, their nutritional profiles and health effects, and their potential applications in the food industry. This poses challenges with sustainability and important quality and safety indicators, as well as the chemical processes used to determine them. To better understand the utilization of brazzein and monellin, the chemical analysis of these two natural sweet proteins was also reviewed by placing particular emphasis on their extraction methods, purification and structural characterization. Protein engineering is considered a means to improve the thermal stability of brazzein and monellin to enhance their application in food processing, especially where high temperatures are applied. When the quality and safety of these sweet proteins are well-investigated and the approval from safety authorities is secured, the market for brazzein and monellin as food ingredient substitutes for free sugar will be guaranteed in the future. Ultimately, the review on these two natural peptide sweeteners increases the body of knowledge on alleviating problems of obesity, diabetes and other non-communicable diseases.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Dele Raheem
- Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Angelo Vega
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
3
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
The Associations between Maternal Serum Aspartame and Sucralose and Metabolic Health during Pregnancy. Nutrients 2022; 14:nu14235001. [PMID: 36501030 PMCID: PMC9740469 DOI: 10.3390/nu14235001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE We aimed to investigate the associations between maternal serum aspartame/sucralose levels and metabolic health during pregnancy. METHODS A nested population-based case-control study was conducted in 109 women with and without gestational diabetes mellitus (GDM). Serum aspartame and sucralose levels were assessed using an ultraperformance liquid chromatography coupled to a tandem mass spectrometry system. RESULTS We detected the presence of circulating aspartame and sucralose in all participants at fasting. No differences in serum aspartame or sucralose levels were observed between GDM and non-GDM groups. In the fully-adjusted linear regression models, serum aspartame levels were positively associated with insulin resistance index, total cholesterol, and LDL cholesterol. In the fully-adjusted logistic regression models, higher serum aspartame levels were positively associated with elevated HbA1c, insulin resistance, hypercholesterolemia, and hyper-LDL cholesterolemia. In the GDM group, the significant associations between higher serum aspartame levels and elevated HbA1c, insulin resistance, and hypo-HDL cholesterolemia persisted, while positive associations were found between higher serum aspartame levels and insulin resistance and hyper-LDL cholesterolemia in the non-GDM group. Serum sucralose levels were negatively associated with HbA1c. CONCLUSIONS The study found that maternal serum aspartame levels were positively associated with insulin resistance index, total cholesterol, and LDL cholesterol during pregnancy. This finding provides the different effects of specific NNS on metabolic health during pregnancy.
Collapse
|
5
|
Bilal M, Ji L, Xu S, Zhang Y, Iqbal HMN, Cheng H. Bioprospecting and biotechnological insights into sweet-tasting proteins by microbial hosts-a review. Bioengineered 2022; 13:9815-9828. [PMID: 35435127 PMCID: PMC9161876 DOI: 10.1080/21655979.2022.2061147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Owing to various undesirable health effects of sugar overconsumption, joint efforts are being made by industrial sectors and regulatory authorities to reduce sugar consumption practices, worldwide. Artificial sweeteners are considered potential substitutes in several products, e.g., sugar alcohols (polyols), high-fructose corn syrup, powdered drink mixes, and other beverages. Nevertheless, their long-standing health effects continue to be debatable. Consequently, growing interest has been shifted in producing non-caloric sweetenersfrom renewable resources to meet consumers' dietary requirements. Except for the lysozyme protein, various sweet proteins including thaumatin, mabinlin, brazzein, monellin, miraculin, pentadin, and curculin have been identified in tropical plants. Given the high cost and challenging extortion of natural resources, producing these sweet proteins using engineered microbial hosts, such as Yarrowia lipolytica, Pichia pastoris, Hansenula polymorpha, Candida boidinii, Arxula adeninivorans, Pichia methanolica, Saccharomyces cerevisiae, and Kluyveromyces lactis represents an appealing choice. Engineering techniques can be applied for large-scale biosynthesis of proteins, which can be used in biopharmaceutical, food, diagnostic, and medicine industries. Nevertheless, extensive work needs to be undertaken to address technical challenges in microbial production of sweet-tasting proteins in bulk. This review spotlights historical aspects, physicochemical properties (taste, safety, stability, solubility, and cost), and recombinant biosynthesis of sweet proteins. Moreover, future opportunities for process improvement based on metabolic engineering strategies are also discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Liyun Ji
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- CONTACT Hairong Cheng Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Mahalapbutr P, Darai N, Panman W, Opasmahakul A, Kungwan N, Hannongbua S, Rungrotmongkol T. Atomistic mechanisms underlying the activation of the G protein-coupled sweet receptor heterodimer by sugar alcohol recognition. Sci Rep 2019; 9:10205. [PMID: 31308429 PMCID: PMC6629994 DOI: 10.1038/s41598-019-46668-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/03/2019] [Indexed: 12/03/2022] Open
Abstract
The human T1R2-T1R3 sweet taste receptor (STR) plays an important role in recognizing various low-molecular-weight sweet-tasting sugars and proteins, resulting in the release of intracellular heterotrimeric G protein that in turn leads to the sweet taste perception. Xylitol and sorbitol, which are naturally occurring sugar alcohols (polyols) found in many fruits and vegetables, exhibit the potential caries-reducing effect and are widely used for diabetic patients as low-calorie sweeteners. In the present study, computational tools were applied to investigate the structural details of binary complexes formed between these two polyols and the T1R2-T1R3 heterodimeric STR. Principal component analysis revealed that the Venus flytrap domain (VFD) of T1R2 monomer was adapted by the induced-fit mechanism to accommodate the focused polyols, in which α-helical residues 233-268 moved significantly closer to stabilize ligands. This finding likely suggested that these structural transformations might be the important mechanisms underlying polyols-STR recognitions. The calculated free energies also supported the VFD of T1R2 monomer as the preferential binding site for such polyols, rather than T1R3 region, in accord with the lower number of accessible water molecules in the T1R2 pocket. The E302 amino acid residue in T1R2 was found to be the important recognition residue for polyols binding through a strongly formed hydrogen bond. Additionally, the binding affinity of xylitol toward the T1R2 monomer was significantly higher than that of sorbitol, making it a sweeter tasting molecule.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitchakan Darai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanwisa Panman
- Multidisciplinary Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aunchan Opasmahakul
- Computational Chemistry Center of Excellent, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Center of Excellent, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Joseph JA, Akkermans S, Nimmegeers P, Van Impe JFM. Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Front Microbiol 2019; 10:695. [PMID: 31024485 PMCID: PMC6463758 DOI: 10.3389/fmicb.2019.00695] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
There is currently a worldwide trend to reduce sugar consumption. This trend is mostly met by the use of artificial non-nutritive sweeteners. However, these sweeteners have also been proven to have adverse health effects such as dizziness, headaches, gastrointestinal issues, and mood changes for aspartame. One of the solutions lies in the commercialization of sweet proteins, which are not associated with adverse health effects. Of these proteins, thaumatin is one of the most studied and most promising alternatives for sugars and artificial sweeteners. Since the natural production of these proteins is often too expensive, biochemical production methods are currently under investigation. With these methods, recombinant DNA technology is used for the production of sweet proteins in a host organism. The most promising host known today is the methylotrophic yeast, Pichia pastoris. This yeast has a tightly regulated methanol-induced promotor, allowing a good control over the recombinant protein production. Great efforts have been undertaken for improving the yields and purities of thaumatin productions, but a further optimization is still desired. This review focuses on (i) the motivation for using and producing sweet proteins, (ii) the properties and history of thaumatin, (iii) the production of recombinant sweet proteins, and (iv) future possibilities for process optimization based on a systems biology approach.
Collapse
Affiliation(s)
- Jewel Ann Joseph
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Philippe Nimmegeers
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Jan F. M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| |
Collapse
|
8
|
Prandi S, Voigt A, Meyerhof W, Behrens M. Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells. Cell Mol Life Sci 2018; 75:49-65. [PMID: 28801754 PMCID: PMC11105753 DOI: 10.1007/s00018-017-2621-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
The chemical variability of the intestinal lumen requires the presence of molecular receptors detecting the various substances naturally occurring in the diet and as a result of the activity of the microbiota. Despite their early discovery, intestinal bitter taste receptors (Tas2r) have not yet been assigned an unambiguous physiological function. Recently, using a CRE-recombinant approach we showed that the Tas2r131 gene is expressed in a subset of mucin-producing goblet cells in the colon of mice. Moreover, we also demonstrated that the expression of the Tas2r131 locus is not restricted to this region. In the present study we aimed at characterizing the presence of positive cells also in other gastrointestinal regions. Our results show that Tas2r131+ cells appear in the jejunum and the ileum, and are absent from the stomach and the duodenum. We identified the positive cells as a subpopulation of deep-crypt Paneth cells in the ileum, strengthening the notion of a defensive role for Tas2rs in the gut. To get a broader perspective on the expression of bitter taste receptors in the alimentary canal, we quantified the expression of all 35 Tas2r genes along the gastrointestinal tract by qRT-PCR. We discovered that the number and expression level of Tas2r genes profoundly vary along the alimentary canal, with the stomach and the colon expressing the largest subsets.
Collapse
Affiliation(s)
- Simone Prandi
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anja Voigt
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Department of Molecular Genetics, German Institute for Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
9
|
Gilbert JL, Guthart MJ, Gezan SA, Pisaroglo de Carvalho M, Schwieterman ML, Colquhoun TA, Bartoshuk LM, Sims CA, Clark DG, Olmstead JW. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses. PLoS One 2015; 10:e0138494. [PMID: 26378911 PMCID: PMC4574478 DOI: 10.1371/journal.pone.0138494] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/30/2015] [Indexed: 12/20/2022] Open
Abstract
Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001) were found with sweetness (R2 = 0.70), texture (R2 = 0.68), and flavor (R2 = 0.63). Sourness had a significantly negative relationship with overall liking (R2 = 0.55). The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001) demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile.
Collapse
Affiliation(s)
- Jessica L Gilbert
- Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America; Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Matthew J Guthart
- Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Salvador A Gezan
- School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Melissa Pisaroglo de Carvalho
- School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Michael L Schwieterman
- Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America; Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Thomas A Colquhoun
- Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America; Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Linda M Bartoshuk
- Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Charles A Sims
- Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - David G Clark
- Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America; Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - James W Olmstead
- Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America; Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
10
|
Brydges NM, Hall L, Nicolson R, Holmes MC, Hall J. The effects of juvenile stress on anxiety, cognitive bias and decision making in adulthood: a rat model. PLoS One 2012; 7:e48143. [PMID: 23118942 PMCID: PMC3485359 DOI: 10.1371/journal.pone.0048143] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/20/2012] [Indexed: 01/03/2023] Open
Abstract
Stress experienced in childhood is associated with an increased risk of developing psychiatric disorders in adulthood. These disorders are particularly characterized by disturbances to emotional and cognitive processes, which are not currently fully modeled in animals. Assays of cognitive bias have recently been used with animals to give an indication of their emotional/cognitive state. We used a cognitive bias test, alongside a traditional measure of anxiety (elevated plus maze), to investigate the effects of juvenile stress (JS) on adulthood behaviour using a rodent model. During the cognitive bias test, animals were trained to discriminate between two reward bowls based on a stimulus (rough/smooth sandpaper) encountered before they reached the bowls. One stimulus (e.g. rough) was associated with a lower value reward than the other (e.g. smooth). Once rats were trained, their cognitive bias was explored through the presentation of an ambiguous stimulus (intermediate grade sandpaper): a rat was classed as optimistic if it chose the bowl ordinarily associated with the high value reward. JS animals were lighter than controls, exhibited increased anxiety-like behaviour in the elevated plus maze and were more optimistic in the cognitive bias test. This increased optimism may represent an optimal foraging strategy for these underweight animals. JS animals were also faster than controls to make a decision when presented with an ambiguous stimulus, suggesting altered decision making. These results demonstrate that stress in the juvenile phase can increase anxiety-like behaviour and alter cognitive bias and decision making in adulthood in a rat model.
Collapse
Affiliation(s)
- Nichola M Brydges
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
11
|
Geraedts MCP, Takahashi T, Vigues S, Markwardt ML, Nkobena A, Cockerham RE, Hajnal A, Dotson CD, Rizzo MA, Munger SD. Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am J Physiol Endocrinol Metab 2012; 303:E464-74. [PMID: 22669246 PMCID: PMC3423100 DOI: 10.1152/ajpendo.00163.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K(+) (K(ATP)) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3(-/-) mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3(+/+), but not T1R3(-/-), ileum explants; this secretion was not mimicked by the K(ATP) channel blocker glibenclamide. T1R2(-/-) mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was K(ATP) channel-dependent and glucose-specific emerged in the large intestine of T1R3(-/-) mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB.
Collapse
Affiliation(s)
- Maartje C P Geraedts
- Division of Endocrinology, Diabetes, and Nutrition, Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fernstrom JD, Munger SD, Sclafani A, de Araujo IE, Roberts A, Molinary S. Mechanisms for sweetness. J Nutr 2012; 142:1134S-41S. [PMID: 22573784 PMCID: PMC3738222 DOI: 10.3945/jn.111.149567] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A remarkable amount of information has emerged in the past decade regarding sweet taste physiology. This article reviews these data, with a particular focus on the elucidation of the sweet taste receptor, its location and actions in taste transduction in the mouth, its nontaste functions in the gastrointestinal tract (e.g., in enteroendocrine cells), and the brain circuitry involved in the sensory processing of sweet taste. Complications in the use of rodents to model human sweet taste perception and responses are also considered. In addition, information relating to low-calorie sweeteners (LCS) is discussed in the context of these issues. Particular consideration is given to the known effects of LCS on enteroendocrine cell function.
Collapse
Affiliation(s)
- John D. Fernstrom
- University of Pittsburgh School of Medicine, Pittsburgh, PA,To whom correspondence should be addressed. E-mail:
| | | | | | - Ivan E. de Araujo
- John B. Pierce Laboratory and Yale University School of Medicine, New Haven, CT
| | | | | |
Collapse
|
13
|
Abstract
Human desire for sweet taste spans all ages, races, and cultures. Throughout evolution, sweetness has had a role in human nutrition, helping to orient feeding behavior toward foods providing both energy and essential nutrients. Infants and young children in particular base many of their food choices on familiarity and sweet taste. The low cost and ready availability of energy-containing sweeteners in the food supply has led to concerns that the rising consumption of added sugars is the driving force behind the obesity epidemic. Low-calorie sweeteners are one option for maintaining sweet taste while reducing the energy content of children's diets. However, their use has led to further concerns that dissociating sweetness from energy may disrupt the balance between taste response, appetite, and consumption patterns, especially during development. Further studies, preferably based on longitudinal cohorts, are needed to clarify the developmental trajectory of taste responses to low-calorie sweeteners and their potential impact on the diet quality of children and youth.
Collapse
Affiliation(s)
- Adam Drewnowski
- The University of Washington, Nutritional Sciences Program, Seattle, WA, USA.
| | | | | | | |
Collapse
|
14
|
Mandel AL, Breslin PAS. High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. J Nutr 2012; 142:853-8. [PMID: 22492122 PMCID: PMC3327743 DOI: 10.3945/jn.111.156984] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the current study, we determined whether increased digestion of starch by high salivary amylase concentrations predicted postprandial blood glucose following starch ingestion. Healthy, nonobese individuals were prescreened for salivary amylase activity and classified as high (HA) or low amylase (LA) if their activity levels per minute fell 1 SD higher or lower than the group mean, respectively. Fasting HA (n = 7) and LA (n = 7) individuals participated in 2 sessions during which they ingested either a starch (experimental) or glucose solution (control) on separate days. Blood samples were collected before, during, and after the participants drank each solution. The samples were analyzed for plasma glucose and insulin concentrations as well as diploid AMY1 gene copy number. HA individuals had significantly more AMY1 gene copies within their genomes than did the LA individuals. We found that following starch ingestion, HA individuals had significantly lower postprandial blood glucose concentrations at 45, 60, and 75 min, as well as significantly lower AUC and peak blood glucose concentrations than the LA individuals. Plasma insulin concentrations in the HA group were significantly higher than baseline early in the testing session, whereas insulin concentrations in the LA group did not increase at this time. Following ingestion of the glucose solution, however, blood glucose and insulin concentrations did not differ between the groups. These observations are interpreted to suggest that HA individuals may be better adapted to ingest starches, whereas LA individuals may be at greater risk for insulin resistance and diabetes if chronically ingesting starch-rich diets.
Collapse
Affiliation(s)
| | - Paul A. S. Breslin
- Monell Chemical Senses Center, Philadelphia, PA; and,Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
15
|
Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A 2012; 109:E524-32. [PMID: 22315413 DOI: 10.1073/pnas.1115183109] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Postprandial insulin release is regulated by glucose, but other circulating nutrients may target beta cells and potentiate glucose-stimulated insulin secretion via distinct signaling pathways. We demonstrate that fructose activates sweet taste receptors (TRs) on beta cells and synergizes with glucose to amplify insulin release in human and mouse islets. Genetic ablation of the sweet TR protein T1R2 obliterates fructose-induced insulin release and its potentiating effects on glucose-stimulated insulin secretion in vitro and in vivo. TR signaling in beta cells is triggered, at least in part, in parallel with the glucose metabolic pathway and leads to increases in intracellular calcium that are dependent on the activation of phospholipase C (PLC) and transient receptor potential cation channel, subfamily M, member 5 (TRPM5). Our results unveil a pathway for the regulation of insulin release by postprandial nutrients that involves beta cell sweet TR signaling.
Collapse
|
16
|
Templeton CM, Ostovar pour S, Hobbs JR, Blanch EW, Munger SD, Conn GL. Reduced sweetness of a monellin (MNEI) mutant results from increased protein flexibility and disruption of a distant poly-(L-proline) II helix. Chem Senses 2011; 36:425-34. [PMID: 21343241 DOI: 10.1093/chemse/bjr007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monellin is a highly potent sweet-tasting protein but relatively little is known about how it interacts with the sweet taste receptor. We determined X-ray crystal structures of 3 single-chain monellin (MNEI) proteins with alterations at 2 core residues (G16A, V37A, and G16A/V37A) that induce 2- to 10-fold reductions in sweetness relative to the wild-type protein. Surprisingly, no changes were observed in the global protein fold or the positions of surface amino acids important for MNEI sweetness that could explain these differences in protein activity. Differential scanning calorimetry showed that while the thermal stability of each mutant MNEI was reduced, the least sweet mutant, G16A-MNEI, was not the least stable protein. In contrast, solution spectroscopic measurements revealed that changes in protein flexibility and the C-terminal structure correlate directly with protein activity. G16A mutation-induced disorder in the protein core is propagated via changes to hydrophobic interactions that disrupt the formation and/or position of a critical C-terminal poly-(L-proline) II helix. These findings suggest that MNEI interaction with the sweet taste receptor is highly sensitive to the relative positions of key residues across its protein surface and that loss of sweetness in G16A-MNEI may result from an increased entropic cost of binding.
Collapse
Affiliation(s)
- Catherine M Templeton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
17
|
Elson AE, Dotson CD, Egan JM, Munger SD. Glucagon signaling modulates sweet taste responsiveness. FASEB J 2010; 24:3960-9. [PMID: 20547661 PMCID: PMC2996909 DOI: 10.1096/fj.10-158105] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/27/2010] [Indexed: 11/11/2022]
Abstract
The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.
Collapse
Affiliation(s)
- Amanda E.T. Elson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Cedrick D. Dotson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Josephine M. Egan
- National Institute on Aging/National Institutes of Health, Baltimore, Maryland, USA
| | - Steven D. Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| |
Collapse
|
18
|
Shin YJ, Park JH, Choi JS, Chun MH, Moon YW, Lee MY. Enhanced expression of the sweet taste receptors and alpha-gustducin in reactive astrocytes of the rat hippocampus following ischemic injury. Neurochem Res 2010; 35:1628-34. [PMID: 20596769 DOI: 10.1007/s11064-010-0223-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
The heterodimeric sweet taste receptors, T1R2 and T1R3, have recently been proposed to be associated with the brain glucose sensor. To identify whether sweet taste signaling is regulated in response to an ischemic injury inducing acute impairment of glucose metabolism, we investigated the spatiotemporal expression of the sweet taste receptors and their associated taste-specific G-protein α-gustducin in the rat hippocampus after ischemia. The expression profiles of both receptor subunits and α-gustducin shared overlapping expression patterns in sham-operated and ischemic hippocampi. Constitutive expression of both receptors and α-gustducin was localized in neurons of the pyramidal cell and granule cell layers, but their upregulation was detected in reactive astrocytes in ischemic hippocampi. Immunoblot analysis confirmed the immmunohistochemically determined temporal patterns of sweet-taste signaling proteins. These results suggest that the expression of sweet taste signaling proteins in astrocytes might be regulated in response to altered extracellular levels of glucose following an ischemic insult.
Collapse
Affiliation(s)
- Yoo-Jin Shin
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Sensing the chemical environment is critical for all organisms. Diverse animals from insects to mammals utilize highly organized olfactory system to detect, encode, and process chemostimuli that may carry important information critical for health, survival, social interactions and reproduction. Therefore, for animals to properly interpret and react to their environment it is imperative that the olfactory system recognizes chemical stimuli with appropriate selectivity and sensitivity. Because olfactory receptor proteins play such an essential role in the specific recognition of diverse stimuli, understanding how they interact with and transduce their cognate ligands is a high priority. In the nearly two decades since the discovery that the mammalian odorant receptor gene family constitutes the largest group of G protein-coupled receptor (GPCR) genes, much attention has been focused on the roles of GPCRs in vertebrate and invertebrate olfaction. However, is has become clear that the 'family' of olfactory receptors is highly diverse, with roles for enzymes and ligand-gated ion channels as well as GPCRs in the primary detection of olfactory stimuli.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|