1
|
Gokalp D, Unal G. The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats. Psychopharmacology (Berl) 2024; 241:1399-1415. [PMID: 38459971 PMCID: PMC11199271 DOI: 10.1007/s00213-024-06571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
RATIONALE Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.
Collapse
Affiliation(s)
- Dilan Gokalp
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
2
|
Shirakawa Y, Li H, Inoue Y, Izumi H, Kaga Y, Goto YI, Inoue K, Inagaki M. Abnormality in GABAergic postsynaptic transmission associated with anxiety in Bronx waltzer mice with an Srrm4 mutation. IBRO Neurosci Rep 2024; 16:67-77. [PMID: 38229888 PMCID: PMC10790029 DOI: 10.1016/j.ibneur.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
The homozygous Bronx waltzer (bv) mouse, which shows hearing impairment, also exhibits anxiety accompanied by a reduction in cortical parvalbumin (PV)-positive GABAergic interneurons. Recently, a mutation in splicing factor Ser/Arg repetitive matrix 4 (Srrm4) was found in bv mice. However, the cellular consequences of the Srrm4 mutation for anxiety remain unknown. Here, we tested our hypothesis that bv mutant primarily affects interneurons through a cell-intrinsic pathology that leads to a reduction of interneurons and consequently causes anxiety. We found that the anxiety becomes apparent at 6 weeks of age in bv/bv mice. However, in situ hybridization revealed that Srrm4 is not expressed in interneurons, but rather dominates in pyramidal neurons. In addition, the PV-positive GABAergic interneurons were not reduced in number in the bv/bv cortex when anxiety became evident. However, electrophysiological abnormality of GABAergic transmission from interneurons was concomitantly present. Pharmacological blockage of GABAA receptors revealed increased excitability in bv/bv mice, although no gross change occurred in the expression of an Srrm4-downstream gene, Kcc2, which regulates chloride flux upon GABAergic transmission. These findings suggest that the bv-associated Srrm4 mutation mainly involves post-synaptic GABAergic transmission in the central nervous system, which may be associated with the anxiety phenotype in bv/bv mice.
Collapse
Affiliation(s)
- Yuka Shirakawa
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| | - Heng Li
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| | - Yuki Inoue
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| | - Hitomi Izumi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| | - Yoshimi Kaga
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4–1-1 Ogawa Higashi, Kodaira, Tokyo 187–8553, Japan
| |
Collapse
|
3
|
Rio-Alamos C, Montefusco-Siegmund R, Cañete T, Sotomayor J, Fernandez-Teruel A. Acute Relaxation Response Induced by Tibetan Singing Bowl Sounds: A Randomized Controlled Trial. Eur J Investig Health Psychol Educ 2023; 13:317-330. [PMID: 36826208 PMCID: PMC9955072 DOI: 10.3390/ejihpe13020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The prevalence of anxiety has increased dramatically due to COVID-19, so effective preventive interventions are welcome. The main objective of our study was to compare the acute relaxation response (RR) induced by Tibetan singing bowl (TSB) sound-based treatment against progressive muscle relaxation (PMR) and a control waiting list group (CWL) in a single treatment session in an adult nonclinical anxious population. In this cross-sectional randomized control trial, 50 participants selected based on high state anxiety were randomly assigned to one of the experimental groups. Pre/post self-reported anxiety, electroencephalographic activity (EEG), and heart rate variability (HRV) were recorded at baseline (T1), minute 15 (T2), minute 30 (T3), and minute 45 (T4). The TSB group showed significant reductions in alpha power (from T2 to T4) and increased HRV (from T3 to T4) compared with the PMR and CWL groups. Moreover, TSB and PMR both showed significant reductions in self-reported anxiety compared with CWL, with this effect being more evident in the TSB group. We concluded that a single session of TSB treatment was able to induce a more evident psychological/physiological relaxation response compared with PMR and CWL. TSB could be a relevant acute intervention in stressful situations or crisis intervention and while waiting for conventional interventions.
Collapse
Affiliation(s)
- Cristobal Rio-Alamos
- Faculty of Medicine, Department of Psychology, Austral University of Chile, Valdivia 5090000, Chile
- Correspondence:
| | - Rodrigo Montefusco-Siegmund
- Human Cognitive Neurophysiology and Behavior Lab, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Department of Kinesiology, Austral University of Chile, Valdivia 5090000, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Austral University of Chile, Valdivia 5090000, Chile
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Joaquín Sotomayor
- Faculty of Medicine, Department of Psychology, Austral University of Chile, Valdivia 5090000, Chile
| | - Alberto Fernandez-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Cross-species anxiety tests in psychiatry: pitfalls and promises. Mol Psychiatry 2022; 27:154-163. [PMID: 34561614 PMCID: PMC8960405 DOI: 10.1038/s41380-021-01299-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022]
Abstract
Behavioural anxiety tests in non-human animals are used for anxiolytic drug discovery, and to investigate the neurobiology of threat avoidance. Over the past decade, several of them were translated to humans with three clinically relevant goals: to assess potential efficacy of candidate treatments in healthy humans; to develop diagnostic tests or biomarkers; and to elucidate the pathophysiology of anxiety disorders. In this review, we scrutinise these promises and compare seven anxiety tests that are validated across species: five approach-avoidance conflict tests, unpredictable shock anticipation, and the social intrusion test in children. Regarding the first goal, three tests appear suitable for anxiolytic drug screening in humans. However, they have not become part of the drug development pipeline and achieving this may require independent confirmation of predictive validity and cost-effectiveness. Secondly, two tests have shown potential to measure clinically relevant individual differences, but their psychometric properties, predictive value, and clinical applicability need to be clarified. Finally, cross-species research has not yet revealed new evidence that the physiology of healthy human behaviour in anxiety tests relates to the physiology of anxiety symptoms in patients. To summarise, cross-species anxiety tests could be rendered useful for drug screening and for development of diagnostic instruments. Using these tests for aetiology research in healthy humans or animals needs to be queried and may turn out to be unrealistic.
Collapse
|
5
|
Millan MJ. Agomelatine for the treatment of generalized anxiety disorder: focus on its distinctive mechanism of action. Ther Adv Psychopharmacol 2022; 12:20451253221105128. [PMID: 35795687 PMCID: PMC9251978 DOI: 10.1177/20451253221105128] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, is usually treated by cognitive-behavioural approaches or medication; in particular, benzodiazepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in alternative options. Agomelatine, clinically employed in the treatment of major depression, expresses anxiolytic properties in rodents and was effective in the treatment of GAD (including severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention (6 months) studies. At active doses, the incidence of adverse effects was no higher than for placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine transporters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the induction of anxious states, and their blockade likely plays a primary role in mediating the anxiolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vasopressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed for the management of GAD. PLAIN LANGUAGE SUMMARY How agomelatine helps in the treatment of anxiety disorders. INTRODUCTION • Anxiety disorders have a significant negative impact on quality of life.• The most common type of anxiety disorder, called generalized anxiety disorder (GAD), is associated with nervousness and excessive worry.• These symptoms can lead to additional symptoms like tiredness, sleeplessness, irritability, and poor attention.• GAD is generally treated through either cognitive-behavioural therapy or medication. However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors have adverse effects.• Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering ('anxiolytic') properties in rats and has been shown to effectively treat GAD with minimal side effects.• However, exactly how it acts on the brain to manage GAD is not yet clear.• Thus, this review aims to shed light on agomelatine's mechanism of action in treating GAD. METHODS • The authors reviewed studies on how agomelatine treats anxiety in animals.• They also looked at clinical studies on the effects of agomelatine in people with GAD. RESULTS • The study showed that agomelatine 'blocks' a receptor in nerve cells, which plays a role in causing anxiety, called the 5-HT2C receptor.• Blocking this receptor, especially in specific brain regions such as nerve cells of the amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety reduction seen during agomelatine treatment.• Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety in check, promote sleep, and maintain the sleep cycle.• Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.• Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known to be involved in anxiety disorders (called 'neurotransmitters' and 'neuropeptides') are also affected by agomelatine. CONCLUSION • Agomelatine's anxiolytic effects are caused by mechanisms that are distinct from those of other medications currently used to treat GAD.• This explains its therapeutic success and minimal adverse side effects.
Collapse
Affiliation(s)
- Mark J Millan
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 28 Hillhead Street, Glasgow G12 8QB, UK
| |
Collapse
|
6
|
Bryant KG, Barker JM. Arbitration of Approach-Avoidance Conflict by Ventral Hippocampus. Front Neurosci 2020; 14:615337. [PMID: 33390895 PMCID: PMC7773818 DOI: 10.3389/fnins.2020.615337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
When environmental cues or stimuli that represent both rewarding and aversive outcomes are presented, complex computations must be made in order to determine whether approach or avoidance is the better behavioral strategy. In many neuropsychiatric illnesses these computations can be skewed. In some instances, circumstances that may normally warrant avoidance instead promote approach, thus producing compulsive-like behavioral strategies that are inflexible in response to new or conflicting information. Alternatively, high sensitivity to aversion or low sensitivity to reward can result in the failure to achieve goals and loss of resilience that characterizes depressive disorders. Increases in compulsive-like behavior have been found to be associated with disrupted signaling in regions that regulate response to conflicting stimuli, including the hippocampus. Classic behavioral inhibition theories of hippocampus function in anxiety suggest that the hippocampus blocks aberrant behavior in response to anxiety related cues or stimuli. The hippocampus may act to block approach in the face of conflicting stimuli. Dysregulations of hippocampal function, as may be present in neuropsychiatric disorders, may therefore promote aberrant approach behavior. The ventral hippocampus (vHPC) subregion is key for coordinating this approach/avoidance conflict resolution, likely through its participation with cortico-striatal and mesolimbic circuits. We revisit Gray's behavioral inhibition theory of HPC function, first posited in the 1980s, and interpret in the context of new knowledge on vHPC function gained through modern technology. Taken together with the extant, classical literature on hippocampal function, we propose that these new findings suggest that vHPC circuits balance behavioral response to conflicting stimuli in a manner that is both state- and context-dependent and, further, that disruption of specific vHPC circuits tips the balance in favor of biased approach or avoidance behavioral strategies.
Collapse
Affiliation(s)
- Kathleen G Bryant
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Abstract
How do brain systems evaluate the affective valence of a stimulus - that is, its quality of being good or bad? One possibility is that a neural subsystem, or 'module' (such as a subregion of the brain, a projection pathway, a neuronal population or an individual neuron), is permanently dedicated to mediate only one affective function, or at least only one specific valence - an idea that is termed here the 'affective modules' hypothesis. An alternative possibility is that a given neural module can exist in multiple neurobiological states that give it different affective functions - an idea termed here the 'affective modes' hypothesis. This suggests that the affective function or valence mediated by a neural module need not remain permanently stable but rather can change dynamically across different situations. An evaluation of evidence for the 'affective modules' versus 'affective modes' hypotheses may be useful for advancing understanding of the affective organization of limbic circuitry.
Collapse
|
8
|
The plus maze and scototaxis test are not valid behavioral assays for anxiety assessment in the South African clawed frog. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:567-582. [DOI: 10.1007/s00359-019-01351-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023]
|
9
|
Shoja M, Mehri S, Amin B, Askari VR, Hosseinzadeh H. The Prophylactic and Therapeutic Effects of Saffron Extract and Crocin on Ethanol Withdrawal Syndrome in Mice. J Pharmacopuncture 2019; 21:277-283. [PMID: 30652054 PMCID: PMC6333192 DOI: 10.3831/kpi.2018.21.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives Ethanol withdrawal following its chronic use is a serious outcome and challenging to treatment. The chronic use of ethanol induces a progressive neuroplasticity in different reigns of brain. In this study we evaluated the effects of aqueous extract of Crocus sativus L. (saffron) and its active compound, crocin, on the withdrawal behavior induced after repeated administration of ethanol, in two regimens of prophylactic (administration of drugs concomitant with the induction of dependence) and treatment (administration of drugs during the period of ethanol withdrawal) in mice which received ethanol. Methods Ethanol dependence was induced by oral administration of 10% v/v ethanol (2 g/kg) for 7 days. The aqueous extracts of saffron (40, 80 and 160) and crocin (10, 20 and 40 mg/kg) were administered to mice in two regimens of prophylactic (along with ethanol) and treatment (during withdrawal period). Diazepam (1 mg/kg) was used as a positive control. Six hours after discontinuation of the ethanol, seizure was evaluated by the sub-convulsive dose of pentyleneltetrazole (PTZ) (30 mg/kg). The open field test and Rota rod test were used for evaluation of locomotor activity and motor incoordination, respectively. Results Both extracts and crocin increased the number of crossed lined in the open field test. PTZ kindling seizure was inhibited in animals received extract (80 and 160 mg/kg) in both regimens. Motor incoordination was only improved following administration of crocin. Conclusion The aqueous extract of saffron and crocin can be considered as safe agents and reliable alternative to diazepam in management of ethanol withdrawal syndrome.
Collapse
Affiliation(s)
- Maryam Shoja
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Reza Askari
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Narváez M, Borroto-Escuela DO, Santín L, Millón C, Gago B, Flores-Burgess A, Barbancho MA, Pérez de la Mora M, Narváez J, Díaz-Cabiale Z, Fuxe K. A Novel Integrative Mechanism in Anxiolytic Behavior Induced by Galanin 2/Neuropeptide Y Y1 Receptor Interactions on Medial Paracapsular Intercalated Amygdala in Rats. Front Cell Neurosci 2018; 12:119. [PMID: 29765307 PMCID: PMC5938606 DOI: 10.3389/fncel.2018.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Anxiety is evoked by a threatening situation and display adaptive or defensive behaviors, found similarly in animals and humans. Neuropeptide Y (NPY) Y1 receptor (NPYY1R) and Galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the amygdala. In a previous study, GALR2 enhanced NPYY1R mediated anxiolytic actions on spatiotemporal parameters in the open field and elevated plus maze, involving the formation of GALR2/NPYY1R heteroreceptor complexes in the amygdala. Moreover, the inclusion of complementary ethological parameters provides a more comprehensive profile on the anxiolytic effects of a treatment. The purpose of the current study is to evaluate the anxiolytic effects and circuit activity modifications caused by coactivation of GALR2 and NPYY1R. Ethological measurements were performed in the open field, the elevated plus-maze and the light-dark box, together with immediate early gene expression analysis within the amygdala-hypothalamus-periaqueductal gray (PAG) axis, as well as in situ proximity ligation assay (PLA) to demonstrate the formation of GALR2/NPYY1R heteroreceptor complexes. GALR2 and NPYY1R coactivation resulted in anxiolytic behaviors such as increased rearing and head-dipping, reduced stretch attend postures and freezing compared to single agonist or aCSF injection. Neuronal activity indicated by cFos expression was decreased in the dorsolateral paracapsular intercalated (ITCp-dl) subregion of the amygdala, ventromedial hypothalamic (VMH) nucleus and ventrolateral part of the periaqueductal gray (vlPAG), while increased in the perifornical nucleus of the hypothalamus (PFX) following coactivation of GALR2 and NPYY1R. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was explicitly observed in ITCp-dl, following GALR2 and NPYY1R coactivation. Besides, knockdown of GALR2 was found to reduce the density of complexes in ITCp-dl. Taken together, these results open up the possibility that the increased anxiolytic activity demonstrated upon coactivation of NPYY1R and GALR2 receptor was related to actions on the ITCp-dl. GALR2-NPYY1R heteroreceptor complexes may inhibit neuronal activity, by also modifying the neuronal networks of the hypothalamus and the PAG. These results indicate that GALR2/NPYY1R interactions in medial paracapsular intercalated amygdala can provide a novel integrative mechanism in anxiolytic behavior and the basis for the development of heterobivalent agonist drugs targeting GALR2/NPYY1R heteromers, especially in the ITCp-dl of the amygdala for the treatment of anxiety.
Collapse
Affiliation(s)
- Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy.,Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Luis Santín
- Instituto de Investigación Biomédica de Málaga, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Carmelo Millón
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Belén Gago
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Antonio Flores-Burgess
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel A Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Zaida Díaz-Cabiale
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Anxiolytic-Like Effect of Methanol Leaf Extract of Laggera aurita Linn. F. (Asteraceae) in Mice. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/archneurosci.63441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Re-examining the factors affecting choice in the light–dark preference test in zebrafish. Behav Brain Res 2017; 327:21-28. [DOI: 10.1016/j.bbr.2017.03.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/22/2022]
|
13
|
Kirlic N, Young J, Aupperle RL. Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behav Res Ther 2017; 96:14-29. [PMID: 28495358 DOI: 10.1016/j.brat.2017.04.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Avoidance behavior in clinical anxiety disorders is often a decision made in response to approach-avoidance conflict, resulting in a sacrifice of potential rewards to avoid potential negative affective consequences. Animal research has a long history of relying on paradigms related to approach-avoidance conflict to model anxiety-relevant behavior. This approach includes punishment-based conflict, exploratory, and social interaction tasks. There has been a recent surge of interest in the translation of paradigms from animal to human, in efforts to increase generalization of findings and support the development of more effective mental health treatments. This article briefly reviews animal tests related to approach-avoidance conflict and results from lesion and pharmacologic studies utilizing these tests. We then provide a description of translational human paradigms that have been developed to tap into related constructs, summarizing behavioral and neuroimaging findings. Similarities and differences in findings from analogous animal and human paradigms are discussed. Lastly, we highlight opportunities for future research and paradigm development that will support the clinical utility of this translational work.
Collapse
Affiliation(s)
- Namik Kirlic
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States.
| | - Jared Young
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093, United States; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161, United States.
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States; School of Community Medicine, University of Tulsa, 800 S Tucker Dr, Tulsa, OK 74104, United States.
| |
Collapse
|
14
|
Ennaceur A, Chazot PL. Preclinical animal anxiety research - flaws and prejudices. Pharmacol Res Perspect 2016; 4:e00223. [PMID: 27069634 PMCID: PMC4804324 DOI: 10.1002/prp2.223] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Collapse
Affiliation(s)
| | - Paul L. Chazot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
| |
Collapse
|
15
|
Engin E, Smith KS, Gao Y, Nagy D, Foster RA, Tsvetkov E, Keist R, Crestani F, Fritschy JM, Bolshakov VY, Hajos M, Heldt SA, Rudolph U. Modulation of anxiety and fear via distinct intrahippocampal circuits. eLife 2016; 5:e14120. [PMID: 26971710 PMCID: PMC4816644 DOI: 10.7554/elife.14120] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus and CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry. DOI:http://dx.doi.org/10.7554/eLife.14120.001 Fear and anxiety can be thought of as different but related emotional states. Fear is triggered by specific harmful situations, such as the immediate presence of a predator. Anxiety instead results from the possibility of an obscure threat, such as being in an exposed environment, which increases the chance of being detected by a predator. Evidence suggests that slightly different areas of the brain control fear and anxiety, but much remains unknown about the specific brain regions that help to regulate these two emotional states. One brain region that has been implicated in both anxiety and fear – as well as in learning and memory – is the hippocampus. Named after the Greek word for seahorse because of its shape, the hippocampus is made up of three subregions: CA1, CA3 and the dentate gyrus. Each of these subregions has a distinct role in learning and memory. However, their individual contributions to the control of fear and anxiety were not known. An inhibitory receptor protein found in the surface of some hippocampal neurons had previously been shown to be involved in controlling fear and anxiety. Now, Engin et al. have studied three different groups of genetically modified mice, each of which lacks the receptor protein in a different subregion of the hippocampus. The mice completed tests that stimulated anxiety or fear, some while under the influence of the anxiety and fear-reducing drug diazepam. Notably, diazepam failed to reduce fear in animals that lacked the inhibitory receptor protein in the CA1 subregion of the hippocampus, suggesting that this subregion participates in the fear response. However, mice that lacked the receptor in the dentate gyrus or CA3 responded normally to the drug (they showed reduced fear when given diazepam). In tests of anxiety, the picture was exactly the opposite. Diazepam failed to reduce anxiety in animals lacking the inhibitory receptor in the dentate gyrus or CA3, indicating that these subregions are involved in the regulation of anxiety. However, the drug still reduced anxiety in mice that lacked the receptor protein in the CA1 subregion. Further studies are now needed to clarify how manipulating specific subregions of the hippocampus alters how it communicates with other brain structures to generate changes in anxiety or fear-related behaviors. DOI:http://dx.doi.org/10.7554/eLife.14120.002
Collapse
Affiliation(s)
- Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Kiersten S Smith
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Yudong Gao
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, United States
| | - David Nagy
- Section of Comparative Medicine, Yale School of Medicine, New Haven, United States
| | - Rachel A Foster
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Evgeny Tsvetkov
- Department of Psychiatry, Harvard Medical School, Boston, United States.,Cellular Neurobiology Laboratory, McLean Hospital, Belmont, United States.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ruth Keist
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Florence Crestani
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Vadim Y Bolshakov
- Department of Psychiatry, Harvard Medical School, Boston, United States.,Cellular Neurobiology Laboratory, McLean Hospital, Belmont, United States
| | - Mihaly Hajos
- Section of Comparative Medicine, Yale School of Medicine, New Haven, United States
| | - Scott A Heldt
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, United States
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| |
Collapse
|
16
|
Pasciuto E, Borrie SC, Kanellopoulos AK, Santos AR, Cappuyns E, D'Andrea L, Pacini L, Bagni C. Autism Spectrum Disorders: Translating human deficits into mouse behavior. Neurobiol Learn Mem 2015. [PMID: 26220900 DOI: 10.1016/j.nlm.2015.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD.
Collapse
Affiliation(s)
- E Pasciuto
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - S C Borrie
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A K Kanellopoulos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A R Santos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - E Cappuyns
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - L D'Andrea
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - L Pacini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - C Bagni
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium; University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy.
| |
Collapse
|
17
|
Almeida-Souza TH, Goes TC, Teixeira-Silva F. Pharmacological validation of the free-exploratory paradigm in male Wistar rats: A proposed test of trait anxiety. Pharmacol Biochem Behav 2015; 135:114-20. [PMID: 26028610 DOI: 10.1016/j.pbb.2015.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022]
Abstract
The free-exploratory paradigm (FEP) has been proposed as a model of trait anxiety for both mice and rats. However, its pharmacological validation has only been carried out for the mice. Thus, the aim of the present study was to pharmacologically validate FEP for Wistar rats, by testing the effects of clinically established anxiolytic and anxiogenic drugs, in four different experiments. In all experiments, male Wistar rats were first tested in FEP to be categorized according to their levels of trait anxiety (high, medium and low). Then, only medium trait anxiety rats were selected to be tested again in FEP, two weeks later, after being pharmacologically treated, according to each experiment as follows: Experiment I: 0.5mg/kg of diazepam (DZP) or vehicle; Experiment II: 20mg/kg of pentylenetetrazole (PTZ) or vehicle; Experiment III: 5mg/kg of fluoxetine (FLX5) or vehicle: and Experiment IV: 0.5mg/kg of fluoxetine (FLX0.5) or vehicle. As a group, the results showed that PTZ and FLX5 increased levels of trait anxiety and reduced locomotor activity, whereas DZP and FLX0.5 decreased levels of trait anxiety, without impairing locomotor activity. These results demonstrate that FEP for rats is able to predict clinical anxiolytic and anxiogenic activities of different drugs, including fluoxetine, which is believed to present a dual effect on anxiety. Therefore, this paradigm can be proposed as an effective method for testing potential trait anxiety-reducing drugs, in rats.
Collapse
Affiliation(s)
- Thiago Henrique Almeida-Souza
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.
| | - Tiago Costa Goes
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.
| | - Flavia Teixeira-Silva
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil.
| |
Collapse
|
18
|
Zhao-Shea R, DeGroot SR, Liu L, Vallaster M, Pang X, Su Q, Gao G, Rando OJ, Martin GE, George O, Gardner PD, Tapper AR. Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nat Commun 2015; 6:6770. [PMID: 25898242 PMCID: PMC4405813 DOI: 10.1038/ncomms7770] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/25/2015] [Indexed: 02/08/2023] Open
Abstract
Increased anxiety is a prominent withdrawal symptom in abstinent smokers, yet the neuroanatomical and molecular bases underlying it are unclear. Here we show that withdrawal-induced anxiety increases activity of neurons in the interpeduncular intermediate (IPI), a subregion of the interpeduncular nucleus (IPN). IPI activation during nicotine withdrawal was mediated by increased corticotropin releasing factor (CRF) receptor-1 expression and signalling, which modulated glutamatergic input from the medial habenula (MHb). Pharmacological blockade of IPN CRF1 receptors or optogenetic silencing of MHb input reduced IPI activation and alleviated withdrawal-induced anxiety; whereas IPN CRF infusion in mice increased anxiety. We identified a mesointerpeduncular circuit, consisting of ventral tegmental area (VTA) dopaminergic neurons projecting to the IPN, as a potential source of CRF. Knockdown of CRF synthesis in the VTA prevented IPI activation and anxiety during nicotine withdrawal. These data indicate that increased CRF receptor signalling within a VTA-IPN-MHb circuit triggers anxiety during nicotine withdrawal.
Collapse
Affiliation(s)
- Rubing Zhao-Shea
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Steven R. DeGroot
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Liwang Liu
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Markus Vallaster
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Xueyan Pang
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Qin Su
- Gene Therapy Center and Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Guangping Gao
- Gene Therapy Center and Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Gilles E. Martin
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, 92037
| | - Paul D. Gardner
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrew R. Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| |
Collapse
|
19
|
Social interaction of rats is related with baseline prepulse inhibition level. Neurosci Lett 2014; 582:125-9. [PMID: 25218712 DOI: 10.1016/j.neulet.2014.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/13/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022]
Abstract
The symptoms of schizophrenia are evaluated in three general categories: positive, negative and cognitive symptoms. Disruption of prepulse inhibition (PPI) of the acoustic startle reflex is commonly used to model positive and cognitive symptoms in experimental animals. On the other hand, deficient social interaction (SI) is a common model of negative symptoms. Here we tested whether PPI provides information about negative symptoms by using a SI test. Baseline PPI and its relation with anxiety-like behavior were also examined with elevated plus maze (EPM) test. In the first experiment, baseline PPI levels of 30 Wistar rats were measured and animals with the highest 1/3 and the lowest 1/3 of PPI scores were respectively assigned in high-inhibitory (HI) and low-inhibitory (LI) groups. Subsequently, rats in the HI and LI groups were paired with animals from the same group and tested for SI. In the second experiment, another batch of animals was assigned to HI and LI groups and they were investigated in the EPM test. The results demonstrate a significant difference between the PPI values of HI and LI groups. Both the SI time and the moving distance of LI rats were significantly lower, and the average distance between rat pairs was significantly longer than HI rats. In the EPM test LI and HI rats showed similar levels of anxiety-like behaviors, however our results imply that performance of the rats in the SI test is related to baseline PPI levels. Thus PPI test can provide predictive information about the outcome of animal models for negative symptoms in rats.
Collapse
|
20
|
The free-exploratory paradigm as a model of trait anxiety in female rats: Test–retest reliability. Neurosci Lett 2014; 580:137-41. [DOI: 10.1016/j.neulet.2014.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/06/2014] [Accepted: 08/04/2014] [Indexed: 11/20/2022]
|
21
|
Mesfin M, Asres K, Shibeshi W. Evaluation of anxiolytic activity of the essential oil of the aerial part of Foeniculum vulgare Miller in mice. Altern Ther Health Med 2014; 14:310. [PMID: 25149087 PMCID: PMC4156641 DOI: 10.1186/1472-6882-14-310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/19/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Foeniculum vulgare locally known as ensilal, is an aromatic plant widely cultivated in temperate and tropical regions. The anti-anxiety activity of the crude extract of F. vulgare has been reported. However, the fraction responsible for anxiolytic activity is not known and there is no any report on the anti-anxiety activity of the essential oil of F. vulgare. The objective of study was to evaluate the anxiolytic activity of the essential oil of Foeniculum vulgare Miller. METHODS Adult Swiss albino male mice were randomly divided into six groups (n = 6). Groups I and II received Tween 80 (5%, v/v) and diazepam (0.5 mg/kg, ip), respectively, while groups III to V received orally 50, 100, and 200 and 400 mg/kg doses of the essential oil of F. vulgare, respectively. The mice were then individually placed in animal anxiety models: elevated plus maze (EPM), staircase test (SCT) and open field test (OFT) and evaluated for various parameters. RESULTS In EPM test, 100 and 200 mg/kg doses of the essential oil significantly increased percent number of entries and time spent in open arms compared to control. In SCT these doses also reduced rearing significantly compared to controls, while only the 200 mg/kg dose significantly increased number of squares crossed at the center in the OFT test. CONCLUSION The essential oil of F. vulgare was found to exhibit a promising anxiolytic activity.
Collapse
|
22
|
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135:55-71. [PMID: 24910138 DOI: 10.1016/j.physbeh.2014.05.032] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 02/05/2023]
Abstract
The plus-maze, the light-dark box and the open-field are the main current tests of unconditioned anxiety for mice and rats. Despite their disappointing achievements, they remain as popular as ever and seem to play an important role in an ever-growing demand for behavioral phenotyping and drug screening. Numerous reviews have repeatedly reported their lack of consistency and reliability but they failed to address the core question of whether these tests do provide unequivocal measures of fear-induced anxiety, that these measurements are not confused with measures of fear-induced avoidance or natural preference responses - i.e. discriminant validity. In the present report, I examined numerous issues that undermine the validity of the current tests, and I highlighted various flaws in the aspects of these tests and the methodologies pursued. This report concludes that the evidence in support of the validity of the plus-maze, the light/dark box and the open-field as anxiety tests is poor and methodologically questionable.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Wharncliffe Street, Sunderland SR1 3SD, UK.
| |
Collapse
|
23
|
Bustamante-García R, Lira-Rocha AS, Espejo-González O, Gómez-Martínez AE, Picazo O. Anxiolytic-like effects of a new 1-N substituted analog of melatonin in pinealectomized rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:133-9. [PMID: 24495777 DOI: 10.1016/j.pnpbp.2014.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/07/2014] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
Abstract
In spite of the wide variety of drugs available for treating anxiety, this disorder continues to represent a worldwide health problem that is classified within the first 10 causes of disability. Therefore, the search continues for new antianxiety agents, particularly those not related to benzodiazepines. Even though melatonin has been prescribed as an anxiolytic drug, its use is currently limited due to its short half-life and photo-sensitivity, among other disadvantages. The present study explores the antianxiety properties of a new 1-N substituted melatonin analog, M3C, in pinealectomized rats submitted to two behavioral tests (the cumulative burying behavior paradigm and the elevated plus-maze). Results from both tests show that M3C is effective as an anxiolytic-like agent, at doses lower than any other melatonin analog previously reported. The blocking of these actions by luzindole together with the available data suggests that the anxiolytic properties of M3C are mediated by MT1 and MT2 receptors.
Collapse
Affiliation(s)
- R Bustamante-García
- Departamento de Biología, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - A S Lira-Rocha
- Departamento de Farmacia, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - O Espejo-González
- Departamento de Farmacia, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - A E Gómez-Martínez
- Departamento de Biología, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - O Picazo
- Escuela Superior de Medicina, IPN, Plan de San Luis y Díaz Mirón Col. Sto. Tomás, 11340 Mexico D.F., Mexico.
| |
Collapse
|
24
|
Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology (Berl) 2014; 231:1125-46. [PMID: 24048469 DOI: 10.1007/s00213-013-3268-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/27/2013] [Indexed: 12/14/2022]
Abstract
The establishment of robust and replicable behavioural testing paradigms with translational value for psychiatric diseases is a major step forward in developing and testing etiology-directed treatment for these complex disorders. Based on the existing literature, we have generated an inventory of applied rodent behavioural testing paradigms relevant to autism spectrum disorders (ASD). This inventory focused on previously used paradigms that assess behavioural domains that are affected in ASD, such as social interaction, social communication, repetitive behaviours and behavioural inflexibility, cognition as well as anxiety behaviour. A wide range of behavioural testing paradigms for rodents were identified. However, the level of face and construct validity is highly variable. The predictive validity of these paradigms is unknown, as etiology-directed treatments for ASD are currently not on the market. To optimise these studies, future efforts should address aspects of reproducibility and take into account data about the neurodevelopmental underpinnings and trajectory of ASD. In addition, with the increasing knowledge of processes underlying ASD, such as sensory information processes and synaptic plasticity, phenotyping efforts should include multi-level automated analysis of, for example, representative task-related behavioural and electrophysiological read-outs.
Collapse
|
25
|
Yeung M, Lu L, Hughes AM, Treit D, Dickson CT. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta. Neuropharmacology 2013; 75:47-52. [PMID: 23851259 DOI: 10.1016/j.neuropharm.2013.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023]
Abstract
The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable.
Collapse
Affiliation(s)
- Michelle Yeung
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Lily Lu
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Adam M Hughes
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | - Dallas Treit
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9; Centre for Neuroscience, 513 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada T6G 2R3.
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9; Centre for Neuroscience, 513 Heritage Medical Research Center, University of Alberta, Edmonton, AB, Canada T6G 2R3; Department of Physiology, 7-55 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
26
|
Li X, Risbrough VB, Cates-Gatto C, Kaczanowska K, Finn MG, Roberts AJ, Markou A. Comparison of the effects of the GABAB receptor positive modulator BHF177 and the GABAB receptor agonist baclofen on anxiety-like behavior, learning, and memory in mice. Neuropharmacology 2013; 70:156-67. [PMID: 23376712 PMCID: PMC3644349 DOI: 10.1016/j.neuropharm.2013.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/02/2013] [Accepted: 01/12/2013] [Indexed: 12/14/2022]
Abstract
γ-Aminobutyric acid B (GABAB) receptor activation is a potential therapeutic approach for the treatment of drug addiction, pain, anxiety, and depression. However, full agonists of this receptor induce side-effects, such as sedation, muscle relaxation, tolerance, and cognitive disruption. Positive allosteric modulators (PAMs) of the GABAB receptor may have similar therapeutic effects as agonists with superior side-effect profiles. The present study behaviorally characterized N-([1R,2R,4S]-bicyclo[2.2.1]hept-2-yl)-2-methyl-5-(4-[trifluoromethyl]phenyl)-4-pyrimidinamine (BHF177), a GABAB receptor PAM, in mouse models of anxiety-like behavior, learning and memory. In addition, the effects of BHF177 were compared with the agonist baclofen. Unlike the anxiolytic chlordiazepoxide, baclofen (0.5, 1.5, and 2.5 mg/kg, intraperitoneally) and BHF177 (10, 20, and 40 mg/kg, orally) had no effect on anxiety-like behavior in the elevated plus maze, light/dark box, or Vogel conflict test. Baclofen increased punished drinking in the Vogel conflict test, but this effect may be attributable to the analgesic actions of baclofen. At the highest dose tested (2.5 mg/kg), baclofen-treated mice exhibited sedation-like effects (i.e., reduced locomotor activity) across many of the tests, whereas BHF177-treated mice exhibited no sedation-like effects. BHF177 exhibited pro-convulsion properties only in mice, but not in rats, indicating that this effect may be species-specific. At doses that were not sedative or pro-convulsant, baclofen and BHF177 had no selective effects on fear memory retrieval in contextual and cued fear conditioning or spatial learning and memory in the Barnes maze. These data suggest that BHF177 has little sedative activity, no anxiolytic-like profile, and minimal impairment of learning and memory in mice.
Collapse
Affiliation(s)
- Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victoria B. Risbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA, USA
| | - Chelsea Cates-Gatto
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | | | - M. G. Finn
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda J Roberts
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Singh GK, Chauhan SK, Rai G, Chatterjee SS, Kumar V. Potential antianxiety activity of Fumaria indica: A preclinical study. Pharmacogn Mag 2013; 9:14-22. [PMID: 23661988 PMCID: PMC3647388 DOI: 10.4103/0973-1296.108129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/02/2012] [Accepted: 03/05/2013] [Indexed: 11/22/2022] Open
Abstract
Background: In the view of diverse CNS modulating properties of Fumaria indica, present study was planned to evaluate its putative anxiolytic activity in behavioural models of rats, followed by elucidation of mechanism of observed activity through biochemical estimations. Materials and Methods: Effects of seven daily 100, 200 and 400 mg/kg oral doses of a Fumaria indica extract (FI) was compared with those of an acute oral dose (5 mg/kg) of lorazepam in a battery of rat models consisting of open-field, elevated plus and zero maze, social interaction, and novelty induced feeding tests. Results: Dose dependant antianxiety effects of FI observed in all tests were qualitatively similar to those of the reference anxiolytic drug. Although FI treatments did not alter the concentrations of noradrenaline and serotonin in hippocampus and hypothalamus, concentrations of both these monoamines were dose dependently elevated in prefrontal cortex of FI treated animals. Flunitrazepam binding in brain frontal cortex was also elevated by the extract. Moreover, higher levels of brain expressions of the cytokines TNF-α, IL-1β, and IL-10 observed in animals with prior experience on elevated plus maze were almost completely reversed by the lowest dose of FI tested in the behavioral models. Conclusion: Taken together, these observations strongly suggest that FI is a functionally novel type of antianxiety agent, and that inhibition of cytokine expressions in the brain could be involved in its mode of action.
Collapse
Affiliation(s)
- Gireesh K Singh
- Neuropharmacology Research Laboratory, Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | | | | | | | | |
Collapse
|
28
|
Saif M, Chatterjee D, Buske C, Gerlai R. Sight of conspecific images induces changes in neurochemistry in zebrafish. Behav Brain Res 2013; 243:294-9. [PMID: 23357085 DOI: 10.1016/j.bbr.2013.01.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/19/2022]
Abstract
Zebrafish are gaining popularity in behavioural brain research as this species combines practical simplicity with system complexity. The dopaminergic system has been thoroughly investigated using mammals. Dopamine plays important roles in motor function and reward. Zebrafish have dopamine receptors homologous to mammalian counterparts, and dopamine receptor antagonists as well as alcohol have been shown to exert significant effects on this species as measured using HPLC or behavioural methods. The sight of conspecifics was previously shown to be rewarding in zebrafish but whether this stimulus affects the dopaminergic system has not been studied. Here, we present animated images of zebrafish to the experimental zebrafish subject for varying lengths of time and quantify the amount of dopamine, DOPAC, serotonin and 5HIAA extracted from the subject's brain immediately after the stimulus presentation using HPLC with electrochemical detection. We find conspecific images to induce a robust behavioural response (attraction) in experimental zebrafish. Importantly, dopamine and DOPAC levels significantly increased in response to the presentation of conspecific images but not to scrambled images. Last, serotonin and 5HIAA levels did not significantly change in response to the conspecific images. We conclude that our findings, together with pervious studies, now conclusively demonstrate that the behavioural response induced by the appearance of conspecifics is mediated, at least partly, by the dopaminergic system in zebrafish.
Collapse
Affiliation(s)
- Muhammed Saif
- Department of Psychology, University of Toronto Mississauga, Canada
| | | | | | | |
Collapse
|
29
|
Campos AC, Ferreira FR, Guimarães FS. Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors. J Psychiatr Res 2012; 46:1501-10. [PMID: 22979992 DOI: 10.1016/j.jpsychires.2012.08.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/31/2012] [Accepted: 08/10/2012] [Indexed: 01/25/2023]
Abstract
Posttraumatic stress disorder (PTSD) is an incapacitating syndrome that follows a traumatic experience. Predator exposure promotes long-lasting anxiogenic effect in rodents, an effect related to symptoms found in PTSD patients. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa with anxiolytic effects. The present study investigated the anti-anxiety actions of CBD administration in a model of PTSD. Male Wistar rats exposed to a predator (cat) received, 1 h later, singled or repeated i.p. administration of vehicle or CBD. Seven days after the stress animals were submitted to the elevated plus maze. To investigate the involvement of 5HT1A receptors in CBD effects animals were pre-treated with WAY100635, a 5HT1A receptor antagonist. To explore possible neurobiological mechanisms involved in these effects, 5HT1A receptor mRNA and BDNF protein expression were measured in the hippocampus, frontal cortex, amygdaloid complex and dorsal periaqueductal gray. Repeated administration of CBD prevented long-lasting anxiogenic effects promoted by a single predator exposure. Pretreatment with WAY100635 attenuated CBD effects. Seven days after predator exposure 5HT1A mRNA expression was up regulated in the frontal cortex and hippocampus. CBD and paroxetine failed to prevent this effect. No change in BDNF expression was found. In conclusion, predator exposure promotes long-lasting up-regulation of 5HT1A receptor gene expression in the hippocampus and frontal cortex. Repeated CBD administration prevents the long-lasting anxiogenic effects observed after predator exposure probably by facilitating 5HT1A receptors neurotransmission. Our results suggest that CBD has beneficial potential for PTSD treatment and that 5HT1A receptors could be a therapeutic target in this disorder.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cannabidiol/administration & dosage
- Disease Models, Animal
- Male
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/physiology
- Serotonin 5-HT1 Receptor Antagonists/pharmacology
- Stress Disorders, Post-Traumatic/drug therapy
- Stress, Psychological/physiopathology
- Time Factors
Collapse
Affiliation(s)
- Alline Cristina Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, São Paulo, Brazil.
| | | | | |
Collapse
|
30
|
Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev 2012; 36:1965-84. [PMID: 22771334 PMCID: PMC4815919 DOI: 10.1016/j.neubiorev.2012.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/01/2012] [Accepted: 06/10/2012] [Indexed: 12/15/2022]
Abstract
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| | - Philip V. Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
31
|
Angoa-Pérez M, Kane MJ, Briggs DI, Sykes CE, Shah MM, Francescutti DM, Rosenberg DR, Thomas DM, Kuhn DM. Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. J Neurochem 2012; 121:974-84. [PMID: 22443164 DOI: 10.1111/j.1471-4159.2012.07739.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropsychiatric disorders characterized by behavioral disinhibition, including disorders of compulsivity (e.g. obsessive-compulsive disorder; OCD) and impulse-control (e.g. impulsive aggression), are severe, highly prevalent and chronically disabling. Treatment options for these diseases are extremely limited. The pathophysiological bases of disorders of behavioral disinhibition are poorly understood but it has been suggested that serotonin dysfunction may play a role. Mice lacking the gene encoding brain tryptophan hydroxylase 2 (Tph2-/-), the initial and rate-limiting enzyme in the synthesis of serotonin, were tested in numerous behavioral assays that are well known for their utility in modeling human neuropsychiatric diseases. Mice lacking Tph2 (and brain 5HT) show intense compulsive and impulsive behaviors to include extreme aggression. The impulsivity is motor in form and not cognitive because Tph2-/- mice show normal acquisition and reversal learning on a spatial learning task. Restoration of 5HT levels by treatment of Tph2-/- mice with its immediate precursor 5-hydroxytryptophan attenuated compulsive and impulsive-aggressive behaviors. Surprisingly, in Tph2-/- mice, the lack of 5HT was not associated with anxiety-like behaviors. The results indicate that 5HT mediates behavioral disinhibition in the mammalian brain independent of anxiogenesis.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ruby B, Benson MK, Kumar EP, Sudha S, Wilking JE. Evaluation of Ashwagandha in alcohol withdrawal syndrome. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60279-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. BIOLOGY OF MOOD & ANXIETY DISORDERS 2011; 1:9. [PMID: 22738250 PMCID: PMC3384226 DOI: 10.1186/2045-5380-1-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/07/2011] [Indexed: 11/10/2022]
Abstract
Animal models of psychiatric disorders are usually discussed with regard to three criteria first elaborated by Willner; face, predictive and construct validity. Here, we draw the history of these concepts and then try to redraw and refine these criteria, using the framework of the diathesis model of depression that has been proposed by several authors. We thus propose a set of five major criteria (with sub-categories for some of them); homological validity (including species validity and strain validity), pathogenic validity (including ontopathogenic validity and triggering validity), mechanistic validity, face validity (including ethological and biomarker validity) and predictive validity (including induction and remission validity). Homological validity requires that an adequate species and strain be chosen: considering species validity, primates will be considered to have a higher score than drosophila, and considering strains, a high stress reactivity in a strain scores higher than a low stress reactivity in another strain. Pathological validity corresponds to the fact that, in order to shape pathological characteristics, the organism has been manipulated both during the developmental period (for example, maternal separation: ontopathogenic validity) and during adulthood (for example, stress: triggering validity). Mechanistic validity corresponds to the fact that the cognitive (for example, cognitive bias) or biological mechanisms (such as dysfunction of the hormonal stress axis regulation) underlying the disorder are identical in both humans and animals. Face validity corresponds to the observable behavioral (ethological validity) or biological (biomarker validity) outcomes: for example anhedonic behavior (ethological validity) or elevated corticosterone (biomarker validity). Finally, predictive validity corresponds to the identity of the relationship between the triggering factor and the outcome (induction validity) and between the effects of the treatments on the two organisms (remission validity). The relevance of this framework is then discussed regarding various animal models of depression.
Collapse
Affiliation(s)
- Catherine Belzung
- U930, UFR Sciences et Techniques, Parc Grandmont, Rue Monge, Tours, 37200, France.
| | | |
Collapse
|
34
|
McEown K, Treit D. Mineralocorticoid receptors in the medial prefrontal cortex and hippocampus mediate rats' unconditioned fear behaviour. Horm Behav 2011; 60:581-8. [PMID: 21889941 DOI: 10.1016/j.yhbeh.2011.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 01/14/2023]
Abstract
Corticosterone is released from the adrenal cortex in response to stress, and binds to glucocorticosteroid receptors (GRs) and mineralocorticosteroid receptors (MRs) in the brain. Areas such as the dorsal hippocampus (DH), ventral hippocampus (VH) and medial prefrontal cortex (mPFC) all contain MRs and have been previously implicated in fear and/or memory. The purpose of the following experiments was to examine the role of these distinct populations of MRs in rats' unconditioned fear and fear memory. The MR antagonist (RU28318) was microinfused into the DH, VH, or mPFC of rats. Ten minutes later, their unconditioned fear was tested in the elevated plus-maze and the shock-probe tests, two behavioral models of rat "anxiety." Twenty-four hours later, conditioned fear of a non-electrified probe was assessed in rats re-exposed the shock-probe apparatus. Microinfusions of RU28318 into each of the three brain areas reduced unconditioned fear in the shock-probe burying test, but only microinfusions into the VH reduced unconditioned fear in the plus-maze test. RU28318 did not affect conditioned fear of the shock-probe 24hr later. MRs in all three areas of the brain mediated unconditioned fear to a punctate, painful stimulus (probe shock). However, only MRs in the ventral hippocampus seemed to mediate unconditioned fear of the more diffuse threat of open spaces (open arms of the plus maze). In spite of the known roles of the hippocampus in spatial memory and conditioned fear memory, MRs within these sites did not appear to mediate memory of the shock-probe.
Collapse
|
35
|
Dopaminergic and serotonergic drug use: a nationwide register-based study of over 1,300,000 older people. PLoS One 2011; 6:e23750. [PMID: 21858217 PMCID: PMC3156241 DOI: 10.1371/journal.pone.0023750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/23/2011] [Indexed: 01/28/2023] Open
Abstract
Objective To investigate the use of dopaminergic and serotonergic drugs in elderly people. Methods We analyzed data on age, sex and dispensed drugs for individuals aged ≥65 years registered in the Swedish Prescribed Drug Register from July to September 2008 (n = 1 347 564; 81% of the total population aged ≥65 years in Sweden). Main outcome measures were dopaminergic (enhancing and/or lowering) and serotonergic (enhancing and/or lowering) drugs and combinations of these. Results Dopaminergic and serotonergic drugs were used by 5.6% and 13.2% the participants, respectively. Female gender was related to use of both dopaminergic and, particularly, serotonergic drugs. Higher age was associated with use of dopamine lowering drugs and serotonergic drugs, whereas the association with use of dopamine enhancing drugs declined in the oldest old. The occurrence of combinations of dopaminergic and serotonergic drugs was generally low, with dopamine lowering + serotonin lowering drug the most common combination (1.6%). Female gender was associated with all of the combinations of dopaminergic and serotonergic drugs, whereas age showed a mixed pattern. Conclusion Approximately one out of ten older patients uses serotonergic drugs and one out of twenty dopaminergic drugs. The frequent use of dopaminergic and serotonergic drugs in the elderly patients is a potential problem due to the fact that aging is associated with a down-regulation of both these monoaminergic systems. Future studies are needed for evaluation of the impact of these drugs on different cognitive and emotional functions in old age.
Collapse
|
36
|
Anxiolytic-like effects of somatostatin isoforms SST 14 and SST 28 in two animal models (Rattus norvegicus) after intra-amygdalar and intra-septal microinfusions. Psychopharmacology (Berl) 2011; 216:557-67. [PMID: 21424237 DOI: 10.1007/s00213-011-2248-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/25/2011] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Somatostatin (SST) isoforms, SST 14 and SST 28, inhibit regulatory hormones in the periphery (e.g., growth hormone) and are widely distributed in the brain. In recent experiments, intracerebroventricular (ICV) SST produced anxiolytic-like effects in both behavioral and electrophysiological models. The sites of action of these anxiolytic effects in the brain, however, and the relative contributions of SST 14 and SST 28 to these effects are unknown. MATERIALS AND METHODS Anxiolytic effects were assessed in the plus-maze and shock-probe tests after (1) intra-amygdalar microinfusion of SST 14 (0.5 or 3 μg per hemisphere) or SST 28 (3 μg per hemisphere), (2) intra-septal microinfusion of SST 14 (0.5 or 1.5 μg per hemisphere) or SST 28 (1.5 μg per hemisphere), or (3) intra-striatal microinfusion of SST 14 (3 μg per hemisphere). RESULTS Intra-amygdalar and intra-septal microinfusions of SST 14 and SST 28 produced robust anxiolytic-like effects in the behavioral tests, unlike intra-striatal microinfusions. The magnitude of the anxiolytic effects in the amygdala and septum were comparable to those found previously with ICV SST 14, ICV L-779976, an SST (sst2) receptor agonist, and ICV diazepam, a classical benzodiazepine anxiolytic. CONCLUSIONS SST receptors in the septum and amygdala are responsive to both SST 14 and SST 28, but not those in the striatum. Although no obvious differences in the anxiolytic-like effects of the isoforms were detected, quantitative or even qualitative differences in their specific anxiolytic effects may occur in different sub-regions of the septum and amygdala, as has been found for benzodiazepine anxiolytics.
Collapse
|
37
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
38
|
A critical test of the hippocampal theta model of anxiolytic drug action. Neuropharmacology 2011; 62:155-60. [PMID: 21723303 DOI: 10.1016/j.neuropharm.2011.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
Abstract
Hippocampal theta rhythms have been associated with a number of behavioural processes, including learning, memory and arousal. Recently it has been argued that the suppression of hippocampal theta is a valid indicator of anxiolytic drug action. Like all such models, however, it has relied almost exclusively on the experimental effects of well-known, clinically proven anxiolytic compounds for validation. The actual predictive validity of putative models of anxiolytic drug action, however, cannot be rigorously tested with this approach alone. The present study provides a stringent test of the predictive validity of the theta suppression model, using the drug phenytoin (50 mg/kg and 10 mg/kg), and a positive comparison compound, diazepam (2 mg/kg). Phenytoin has two important properties that are advantageous for assessing the validity of the theta suppression model: 1) it is a standard antiepileptic drug with no known anxiolytic effects, and 2) its primary mechanism of action is through suppression of the persistent sodium current, an effect that should also suppress hippocampal theta. Because of the latter property, we also directly compared the effects of phenytoin in the theta suppression model with its effects in the most widely tested behavioural model of anxiolytic drug action, the elevated plus-maze. While an anxiolytic-like effect of phenytoin in the theta suppression model might be expected simply due to its suppressive effects on sodium channel currents, anxiolytic effects in both tests would provide strong support for the predictive validity of the theta suppression model. Surprisingly, phenytoin produced clear anxiolytic-like effects in both neurophysiological and behavioural models, thus providing strong evidence of the predictive validity of the theta suppression model. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|