1
|
Velasco-Gutierrez JA, de Alvarez-Buylla ER, Montero S, Rodríguez-Hernández A, Miranda SL, Martínez-Santillan K, Álvarez-Valadez MDR, Lemus M, Flores-Silva A, Virgen-Ortiz A. TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet. Biomedicines 2025; 13:126. [PMID: 39857710 PMCID: PMC11763071 DOI: 10.3390/biomedicines13010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: In recent years, the role of neurotrophins and their receptors in peripheral tissues has been of great interest. At a metabolic level, the brain-derived neurotrophic factor (BDNF) and its receptor trkB have been reported to participate in insulin secretion from the pancreas in response to increases in circulating blood glucose. Objetive: To determines the role of the BDNF-trkB pathway in insulin secretion and pancreatic morphology in rats fed a cafeteria-style diet for 16 weeks. Methods: For the study, male rats of the Wistar strain were divided into three groups as follows: (1) control group (standard diet), (2) CAF group (cafeteria-style diet) and (3) CAF group treated with ANA-12 (TrkB receptor antagonist). After 4 months of intervention, the glucose and insulin tolerance curves, serum insulin levels, body fat and hematoxylin-eosin staining pancreas were evaluated. Results: The results showed that the cafeteria-style diet induced an increase in the amount of body fat, alterations in the glucose tolerance curve, increased insulin circulation levels, increased HOMA indices and increased pancreatic islet size. The antagonism of the trkB receptor in the rats fed a cafeteria-style diet enhanced some effects such as the accumulation of body fat and insulin secretion and induced a greater increase in the pancreas islet size. Conclusions: Under conditions of cafeteria-style diet-induced obesity, the antagonism of the BDNF-trkB pathway had no enhanced effect on the increase in insulin secretion or pancreatic islet size.
Collapse
Affiliation(s)
| | | | - Sergio Montero
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | | | - Saraí Limón Miranda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Departamento de Ciencias Químico Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa 85800, Sonora, Mexico
| | | | | | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | - Alejandra Flores-Silva
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | - Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| |
Collapse
|
2
|
Petrella C, Ferraguti G, Tarani L, Tarani F, Messina MP, Fiore M. Nerve Growth Factor and Brain-Derived Neurotrophic Factor in COVID-19. BIOLOGY 2024; 13:907. [PMID: 39596862 PMCID: PMC11591877 DOI: 10.3390/biology13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Neurotrophins (NTs) constitute a family of small protein messengers that play a fundamental role in both the central and peripheral nervous systems. In particular, the nerve growth factor (NGF) and the brain-derived neurotrophic factor (BDNF) play a subtle role in the survival, differentiation, and functioning of neuronal populations, as well as in the fine regulation of immune functions. The SARS-CoV-2 infection was characterized by a sequela of symptoms (serious respiratory pathology, inflammatory storm, neurological discomfort, up to the less serious flu-like symptoms), which caused, at the end of 2023, more than 7 million deaths worldwide. Despite the official end of the pandemic, the physical and psychological consequences are currently the object of scientific research, both acute and chronic/long-lasting (Long-COVID-19). Given the multifactorial nature of the outcomes of SARS-CoV-2 infection in adults and children, several studies have investigated the potential involvement of the NGF and BDNF systems in the pathology. This narrative review aims to summarize the most recent evidence on this crucial topic.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Francesca Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Marisa Patrizia Messina
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| |
Collapse
|
3
|
ElGrawani W, Sun G, Kliem FP, Sennhauser S, Pierre-Ferrer S, Rosi-Andersen A, Boccalaro I, Bethge P, Heo WD, Helmchen F, Adamantidis AR, Forger DB, Robles MS, Brown SA. BDNF-TrkB signaling orchestrates the buildup process of local sleep. Cell Rep 2024; 43:114500. [PMID: 39046880 DOI: 10.1016/j.celrep.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sleep debt accumulates during wakefulness, leading to increased slow wave activity (SWA) during sleep, an encephalographic marker for sleep need. The use-dependent demands of prior wakefulness increase sleep SWA locally. However, the circuitry and molecular identity of this "local sleep" remain unclear. Using pharmacology and optogenetic perturbations together with transcriptomics, we find that cortical brain-derived neurotrophic factor (BDNF) regulates SWA via the activation of tyrosine kinase B (TrkB) receptor and cAMP-response element-binding protein (CREB). We map BDNF/TrkB-induced sleep SWA to layer 5 (L5) pyramidal neurons of the cortex, independent of neuronal firing per se. Using mathematical modeling, we here propose a model of how BDNF's effects on synaptic strength can increase SWA in ways not achieved through increased firing alone. Proteomic analysis further reveals that TrkB activation enriches ubiquitin and proteasome subunits. Together, our study reveals that local SWA control is mediated by BDNF-TrkB-CREB signaling in L5 excitatory cortical neurons.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Guanhua Sun
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany
| | - Simon Sennhauser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sara Pierre-Ferrer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Alex Rosi-Andersen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Ida Boccalaro
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Philipp Bethge
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Acuña-Catalán D, Shah S, Wehrfritz C, Nomura M, Acevedo A, Olmos C, Quiroz G, Huerta H, Bons J, Ampuero E, Wyneken U, Sanhueza M, Arancibia F, Contreras D, Cárdenas JC, Morales B, Schilling B, Newman JC, González-Billault C. Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice. Cell Rep Med 2024; 5:101593. [PMID: 38843842 PMCID: PMC11228662 DOI: 10.1016/j.xcrm.2024.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.
Collapse
Affiliation(s)
- Diego Acuña-Catalán
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Samah Shah
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | - Alejandro Acevedo
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Cristina Olmos
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriel Quiroz
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Hernán Huerta
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Estibaliz Ampuero
- Neurobiology of Behavior Laboratory, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Ursula Wyneken
- IMPACT, Center for Interventional Medicine for Precision and Advanced Cellular Therapy, and Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Arancibia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Julio César Cárdenas
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Department of Chemistry and Biochemistry and Center for Aging and Longevity Studies University of California, Santa Barbara, CA, USA
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | - John C Newman
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Christian González-Billault
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
5
|
D'Amico F, Lugarà C, Luppino G, Giuffrida C, Giorgianni Y, Patanè EM, Manti S, Gambadauro A, La Rocca M, Abbate T. The Influence of Neurotrophins on the Brain-Lung Axis: Conception, Pregnancy, and Neonatal Period. Curr Issues Mol Biol 2024; 46:2528-2543. [PMID: 38534776 DOI: 10.3390/cimb46030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific receptors. Initial studies on NTs have identified them only as functional molecules of the nervous system. However, recent research have shown that some tissues and organs (such as the lungs, skin, and skeletal and smooth muscle) as well as some structural cells can secrete and respond to NTs. In addition, NTs perform several roles in normal and pathological conditions at different anatomical sites, in both fetal and postnatal life. During pregnancy, NTs are produced by the mother, placenta, and fetus. They play a pivotal role in the pre-implantation process and in placental and embryonic development; they are also involved in the development of the brain and respiratory system. In the postnatal period, it appears that NTs are associated with some diseases, such as sudden infant death syndrome (SIDS), asthma, congenital central hypoventilation syndrome (CCHS), and bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Federica D'Amico
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Cecilia Lugarà
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Luppino
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Carlo Giuffrida
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Ylenia Giorgianni
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Eleonora Maria Patanè
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Tiziana Abbate
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| |
Collapse
|
6
|
Fan S, Wang X, Gao N, Wei S. Electroacupuncture Pretreatment Attenuates Learning Memory Impairment Induced by Repeated Propofol Exposure and Modulates Hippocampal Synaptic Plasticity in Rats. J Inflamm Res 2023; 16:4559-4573. [PMID: 37868829 PMCID: PMC10588748 DOI: 10.2147/jir.s427925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Recurrent propofol anesthesia in the peak of neurodevelopment may lead to learning-memory decline. This study aimed to examine the efficacy of electroacupuncture pretreatment in ameliorating the aforementioned learning memory deficits and to explore its underlying mechanisms in a rat model of repeated propofol exposure. Methods 10-day-old Sprague Dawley rats were randomly assigned to five groups: the control, fat emulsion, propofol, electroacupuncture pretreatment and electroacupuncture pretreatment combined with propofol groups. The electroacupuncture pretreatment involved three consecutive daily sessions, while propofol was received intraperitoneally once daily for five days. Following the modeling period, the rats' learning-memory performance was assessed using the New Novel Arm Y-maze, New Object Recognition, and Morris Water Maze. The Nissl staining method was used to observe the development of hippocampal neurons, while Golgi staining was employed to observe hippocampal synaptic development. Results The electroacupuncture pretreatment significantly attenuated the learning and memory impairment induced by recurring propofol exposure in rats. Additionally, it facilitated the development of hippocampal neurons and synaptic plasticity in the hippocampus. Immunofluorescence and Western Blot analyses were conducted to detect the expression of proteins related to apoptosis, learning memory, and synaptic plasticity. In the propofol group, the pro-apoptotic factors Caspase-3 and Bax was up-regulated, while the anti-apoptotic factor Bcl-2 was down-regulated, as compared to the blank group. Additionally, the phosphorylated cAMP-response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF), synaptophysin, and growth associated protein-43 (GAP-43) was significantly decreased. In contrast, the electroacupuncture pretreatment combined with propofol group exhibited decreased the Caspase-3 and Bax and increased the Bcl-2, as compared to the propofol group, meanwhile, the pCREB, BDNF, Synaptophysin and GAP-43 was increased. Conclusion Our findings indicate that electroacupuncture pretreatment can alleviate the learning and memory impairment induced by recurring propofol exposure in rats. This is achieved by enhancing hippocampal synaptic plasticity, activating the pCREB/BDNF pathway and inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Shunqin Fan
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Xijun Wang
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Ning Gao
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Songli Wei
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
7
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|
8
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
9
|
Puls R, von Haefen C, Bührer C, Endesfelder S. Protective Effect of Dexmedetomidine against Hyperoxia-Damaged Cerebellar Neurodevelopment in the Juvenile Rat. Antioxidants (Basel) 2023; 12:antiox12040980. [PMID: 37107355 PMCID: PMC10136028 DOI: 10.3390/antiox12040980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Impaired cerebellar development of premature infants and the associated impairment of cerebellar functions in cognitive development could be crucial factors for neurodevelopmental disorders. Anesthetic- and hyperoxia-induced neurotoxicity of the immature brain can lead to learning and behavioral disorders. Dexmedetomidine (DEX), which is associated with neuroprotective properties, is increasingly being studied for off-label use in the NICU. For this purpose, six-day-old Wistar rats (P6) were exposed to hyperoxia (80% O2) or normoxia (21% O2) for 24 h after DEX (5 µg/kg, i.p.) or vehicle (0.9% NaCl) application. An initial detection in the immature rat cerebellum was performed after the termination of hyperoxia at P7 and then after recovery in room air at P9, P11, and P14. Hyperoxia reduced the proportion of Calb1+-Purkinje cells and affected the dendrite length at P7 and/or P9/P11. Proliferating Pax6+-granule progenitors remained reduced after hyperoxia and until P14. The expression of neurotrophins and neuronal transcription factors/markers of proliferation, migration, and survival were also reduced by oxidative stress in different manners. DEX demonstrated protective effects on hyperoxia-injured Purkinje cells, and DEX without hyperoxia modulated neuronal transcription in the short term without any effects at the cellular level. DEX protects hyperoxia-damaged Purkinje cells and appears to differentially affect cerebellar granular cell neurogenesis following oxidative stress.
Collapse
Affiliation(s)
- Robert Puls
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
10
|
Steinke I, Govindarajulu M, Pinky PD, Bloemer J, Yoo S, Ward T, Schaedig T, Young T, Wibowo FS, Suppiramaniam V, Amin RH. Selective PPAR-Delta/PPAR-Gamma Activation Improves Cognition in a Model of Alzheimer's Disease. Cells 2023; 12:1116. [PMID: 37190025 PMCID: PMC10136457 DOI: 10.3390/cells12081116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Background: The continuously increasing association of Alzheimer's disease (AD) with increased mortality rates indicates an unmet medical need and the critical need for establishing novel molecular targets for therapeutic potential. Agonists for peroxisomal proliferator activating receptors (PPAR) are known to regulate energy in the body and have shown positive effects against Alzheimer's disease. There are three members of this class (delta, gamma, and alpha), with PPAR-gamma being the most studied, as these pharmaceutical agonists offer promise for AD because they reduce amyloid beta and tau pathologies, display anti-inflammatory properties, and improve cognition. However, they display poor brain bioavailability and are associated with several adverse side effects on human health, thus limiting their clinical application. Methods: We have developed a novel series of PPAR-delta and PPAR-gamma agonists in silico with AU9 as our lead compound that displays selective amino acid interactions focused upon avoiding the Tyr-473 epitope in the PPAR-gamma AF2 ligand binding domain. Results: This design helps to avoid the unwanted side effects of current PPAR-gamma agonists and improve behavioral deficits and synaptic plasticity while reducing amyloid-beta levels and inflammation in 3xTgAD animals. Conclusions: Our innovative in silico design of PPAR-delta/gamma agonists may offer new perspectives for this class of agonists for AD.
Collapse
Affiliation(s)
- Ian Steinke
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Priyanka Das Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Jenna Bloemer
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Sieun Yoo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Tracey Ward
- Department of Pharmaceutical Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Taylor Schaedig
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Taylor Young
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Fajar Setyo Wibowo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
- College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 31044, USA
| | - Rajesh H. Amin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| |
Collapse
|
11
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Minaya MA, Mahali S, Iyer AK, Eteleeb AM, Martinez R, Huang G, Budde J, Temple S, Nana AL, Seeley WW, Spina S, Grinberg LT, Harari O, Karch CM. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front Mol Biosci 2023; 10:1051494. [PMID: 36845551 PMCID: PMC9948093 DOI: 10.3389/fmolb.2023.1051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abdallah M. Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Guangming Huang
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY, United States
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
13
|
İnal N, Cavusoglu B, Ermiş Ç, Turan S, Gormez V, Karabay N. Reduced Cortical Thicknesses of Adolescents with Bipolar Disorder and Relationship with Brain-derived Neurotrophic Factor. Scand J Child Adolesc Psychiatr Psychol 2023; 11:78-86. [PMID: 37377456 PMCID: PMC10291755 DOI: 10.2478/sjcapp-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Background Cortical thickness (CT) and brain-derived neurotrophic factor (BDNF) were widely investigated in bipolar disorder (BD). Previous studies focused on the association between the volume of subcortical regions and neurotrophic factor levels. Objective In this study, we aimed to evaluate the association of the CT in youth with early-onset BD with BDNF levels as a potential peripheral marker of neuronal integrity. Method Twenty-three euthymic patients having a clinical diagnosis of BD and 17 healthy subjects as an age-matched control group with neuroimaging and blood BDNF levels were found eligible for CT measurement. A structural magnetic resonance scan (MRI) and timely blood samples were drawn. Results Youth with BD exhibited lower cortical thickness in caudal part of left (L) middle frontal gyrus, right (R) paracentral gyrus, triangular part of R inferior frontal gyrus, R pericalcarine region, R precentral gyrus, L precentral gyrus, R superior frontal gyrus and L superior frontal gyrus when compared to healthy controls. The effect sizes of these differences were moderate to large (d=0.67-0.98) There was a significant correlation between BDNF levels with caudal part of the R anterior cingulate gyrus (CPRACG) in adolescents with BD (r=0.49, p=0.023). Conclusion As a special region for mood regulation, the CT of the caudal part of the R anterior cingulate gyrus had a positive correlation with BDNF. Regarding the key role of CPRACG for affective regulation skills, our results should be replicated in future follow-up studies, investigating a predictive neuroimaging biomarker for the early-onset BD.
Collapse
Affiliation(s)
- Neslihan İnal
- Department of Child and Adolescent Psychiatry, Dokuz Eylul University, Izmir, Turkey
| | | | - Çağatay Ermiş
- Department of Children and Adolescent Psyhciatry, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Serkan Turan
- Department of Child and Adolescent Psychiatry, Uludag University, Bursa, Turkey
| | - Vahdet Gormez
- Department of Child and Adolescent Psychiatry, Medeniyet University Göztepe Training and Research Hospital, Istanbul, Turkey
| | - Nuri Karabay
- Department of Radiology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
14
|
Carnosic Acid Mitigates Depression-Like Behavior in Ovariectomized Mice via Activation of Nrf2/HO-1 Pathway. Mol Neurobiol 2023; 60:610-628. [PMID: 36331794 PMCID: PMC9849300 DOI: 10.1007/s12035-022-03093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The peri- and post-menopausal periods have been described as the "window of vulnerability" for the development of depressive symptoms that impair women activities and quality of life. The etiopathogenesis of these symptoms is multifactorial and may confer resistance to traditional antidepressants. Attention is now directed toward phytochemicals for their pleiotropic functions and safer profiles. This study investigated the possible perturbation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways as an underlying mechanism of post-ovariectomy depression and highlighted the potential benefits of carnosic acid (CA) on the associated behavioral, biochemical, and histopathological alterations. Female Balb/c mice were randomly assigned to be sham-operated or ovariectomized (OVX). After 3 weeks, OVX mice received either a vehicle, CA (20 mg/kg/day), or tin protoporphyrin IX (SnPP-IX; a heme oxygenase-1 (HO-1) inhibitor; 50 μmol/kg/day) for 3 weeks. Our findings revealed that OVX mice had depressive but not anxiety-like behavior. Suppressed Nrf2 and its downstream signaling, and augmented proinflammatory markers were observed in both the hippocampus and prefrontal cortex. CA treatment alleviated depressive behavior, induced the expression of Nrf2, HO-1, thioredoxin-1, and brain-derived neurotrophic factor, and enhanced serotonin levels. CA also suppressed oxidative stress, reduced TNF-α, IL-1β, and iNOS mRNA expression, and ameliorated OVX-induced histopathological changes. SnPP-IX aggravated post-OVX behavioral, neurobiochemical, and histological deteriorations, and reduced CA-protective effects. In conclusion, Nrf2/HO-1 signaling suppression and the associated proinflammatory state are key mechanisms in post-OVX depression. CA exerts multifaceted neuroprotection in OVX mice and represents a promising candidate for clinical evaluation as an antidepressant.
Collapse
|
15
|
He RH, Fan JZ, Qian FF, He YH, Du XH, Lu HX. Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins. Neural Regen Res 2023; 18:368-374. [PMID: 35900432 PMCID: PMC9396518 DOI: 10.4103/1673-5374.346548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies have shown that repetitive transcranial magnetic stimulation (rTMS) can enhance synaptic plasticity and improve neurological dysfunction. However, the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood. In this study, we established rat models of moderate traumatic brain injury using Feeney’s weight-dropping method and treated them using rTMS. To help determine the mechanism of action, we measured levels of several important brain activity-related proteins and their mRNA. On the injured side of the brain, we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor, tropomyosin receptor kinase B, N-methyl-D-aspartic acid receptor 1, and phosphorylated cAMP response element binding protein, which are closely associated with the occurrence of long-term potentiation. rTMS also partially reversed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure. These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.
Collapse
|
16
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
17
|
Ishola IO, Eneanya SU, Folarin OR, Awogbindin IO, Abosi AJ, Olopade JO, Okubadejo NU. Tramadol and Codeine Stacking/Boosting Dose Exposure Induced Neurotoxic Behaviors, Oxidative Stress, Mitochondrial Dysfunction, and Neurotoxic Genes in Adolescent Mice. Neurotox Res 2022; 40:1304-1321. [PMID: 35829998 DOI: 10.1007/s12640-022-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
In spite of the increasing epidemic of pharmaceutical opioids (codeine and tramadol) misuse and abuse among the adolescents, little is known about the neurotoxic consequences of the widespread practice of tramadol and codeine abuse involving increasing multiple doses across days, referred to as stacking and boosting. Hence, in this study, we replicated stacking and boosting doses of tramadol, codeine alone, or in combination on spontaneous motor activity and cognitive function in adolescent mice and adduced a plausible mechanism of possible neurotoxicity. Ninety-six adolescent mice were randomly distributed into 4 groups (n = 24 per group) and treated thrice daily for 9 days with vehicle, tramadol (20, 40, or 80 mg/kg), codeine (40, 80, or 160 mg/kg), or their combinations. Exposure of mice to tramadol induced hyperactivity and stereotypic behavior while codeine exposure caused hypoactivity and nootropic effect but tramadol-codeine cocktail led to marked reduction in spontaneous motor activity and cognitive function. In addition, tramadol, codeine, and their cocktail caused marked induction of nitroso-oxidative stress and inhibition of mitochondrial complex I activity in the prefrontal cortex (PFC) and midbrain (MB). Real-time PCR expression profiling of genes encoding neurotoxicity (RT) showed that tramadol exposure upregulate 57 and downregulate 16 neurotoxic genes, codeine upregulate 45 and downregulate 25 neurotoxic genes while tramadol-codeine cocktail upregulate 52 and downregulate 20 neurotoxic genes in the PFC. Findings from this study demonstrate that the exposure of adolescents mice to multiple and increasing doses of tramadol, codeine, or their cocktail lead to spontaneous motor coordination deficits indicative of neurotoxicity through induction of oxidative stress, inhibition of mitochondrial complex I activity and upregulation of neurotoxicity encoding genes in mice.
Collapse
Affiliation(s)
- I O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria.
| | - S U Eneanya
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - O R Folarin
- Department of Veterinary Anatomy, University of Ibadan, Ibadan Oyo State, Nigeria
| | - I O Awogbindin
- Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - A J Abosi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - J O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan Oyo State, Nigeria
| | - N U Okubadejo
- Department of Medicine, Neurology Unit, College of Medicine, University of Lagos, Lagos State, Nigeria
| |
Collapse
|
18
|
Cui Z, Liao K, Li S, Gu J, Wang Y, Ding C, Guo Y, Chan HF, Ma JH, Tang S, Chen J. LM22B-10 promotes corneal nerve regeneration through in vitro 3D co-culture model and in vivo corneal injury model. Acta Biomater 2022; 146:159-176. [PMID: 35562005 DOI: 10.1016/j.actbio.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/01/2022]
Abstract
Corneal nerve wounding often causes abnormalities in the cornea and even blindness in severe cases. In this study, we construct a dorsal root ganglion-corneal stromal cell (DRG-CSC, DS) co-culture 3D model to explore the mechanism of corneal nerve regeneration. Firstly, this model consists of DRG collagen grafts sandwiched by orthogonally stacked and orderly arranged CSC-laden plastic compressed collagen. Nerve bundles extend into the entire corneal stroma within 14 days, and they also have orthogonal patterns. This nerve prevents CSCs from apoptosis in the serum withdrawal medium. The conditioned medium (CM) for CSCs in collagen scaffolds contains NT-3, IL-6, and other factors. Among them, NT-3 notably promotes the activation of ERK-CREB in the DRG, leading to the growth of nerve bundles, and IL-6 induces the upregulation of anti-apoptotic genes. Then, LM22B-10, an activator of the NT-3 receptor TrkB/TrkC, can also activate ERK-CREB to enhance nerve growth. After administering LM22B-10 eye drops to regular and diabetic mice with corneal wounding, LM22B-10 significantly improves the healing speed of the corneal epithelium, corneal sensitivity, and corneal nerve density. Overall, the DS co-culture model provides a promising platform and tools for the exploration of corneal physiological and pathological mechanisms, as well as the verification of drug effects in vitro. Meanwhile, we confirm that LM22B-10, as a non-peptide small molecule, has future potential in nerve wound repair. STATEMENT OF SIGNIFICANCE: The cornea accounts for most of the refractive power of the eye. Corneal nerves play an important role in maintaining corneal homeostasis. Once the corneal nerves are damaged, the corneal epithelium and stroma develop lesions. However, the mechanism of the interaction between corneal nerves and corneal cells is still not fully understood. Here, we construct a corneal stroma-nerve co-culture in vitro model and reveal that NT-3 expressed by stromal cells promotes nerve growth by activating the ERK-CREB pathway in nerves. LM22B-10, an activator of NT-3 receptors, can also induce nerve growth in vitro. Moreover, it is used as eye drops to enhance corneal epithelial wound healing, corneal nerve sensitivity and density of nerve plexus in corneal nerve wounding model in vivo.
Collapse
|
19
|
Di Benedetto MG, Scassellati C, Cattane N, Riva MA, Cattaneo A. Neurotrophic factors, childhood trauma and psychiatric disorders: A systematic review of genetic, biochemical, cognitive and imaging studies to identify potential biomarkers. J Affect Disord 2022; 308:76-88. [PMID: 35378148 DOI: 10.1016/j.jad.2022.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Exposure to traumatic experience represents one of the key environmental factors influencing the risk for several psychiatric disorders, in particular when suffered during childhood, a critical period for brain development, characterized by a high level of neuroplasticity. Abnormalities affecting neurotrophic factors might play a fundamental role in the link between childhood trauma (CT) and early life stress (ELS) and psychiatric disorders. METHODS A systematic review was conducted, considering genetic, biochemical and expression studies along with cognitive and brain structure imaging investigations, based on PubMed and Web of Science databases (available up until November 2021), to identify potential neuroplasticity related biomarkers associated both with CT/ELS and psychiatric disorders. The search was followed by data abstraction and study quality assessment (Newcastle-Ottawa Scale). RESULTS 103 studies met our eligibility criteria. Among them, 65 were available for genetic, 30 for biochemical and 3 for mRNA data; 45 findings were linked to specific symptomatology/pathologies, 16 with various cognitive functions, 19 with different brain areas, 6 on methylation and 36 performed on control subjects for the Brain Derived Neurotrophic Factor (BDNF); whereas 4 expression/biochemical studies covered Neurotrophin 4 (NT-4), Vascular Endothelium Growth Factor (VEGF), Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), and Transforming Growth Factor β1 (TGF-β1). LIMITATIONS Heterogeneity of assessments (biological, psychological, of symptomatology, and CT/ELS), age range and ethnicity of samples for BDNF studies; limited studies for other neurotrophins. CONCLUSIONS Results support the key role of BDNF (in form of Met allele) as biomarker, both at genetic and biochemical level, in mediating the effect of CT/ELS in psychiatric disorders, passing through specific cognitive functions and specific brain region architecture.
Collapse
Affiliation(s)
- Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
20
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
21
|
Neurotrophin Signaling Impairment by Viral Infections in the Central Nervous System. Int J Mol Sci 2022; 23:ijms23105817. [PMID: 35628626 PMCID: PMC9146244 DOI: 10.3390/ijms23105817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3), NT-4, and NT-5, are proteins involved in several important functions of the central nervous system. The activation of the signaling pathways of these neurotrophins, or even by their immature form, pro-neurotrophins, starts with their recognition by cellular receptors, such as tropomyosin receptor kinase (Trk) and 75 kD NT receptors (p75NTR). The Trk receptor is considered to have a high affinity for attachment to specific neurotrophins, while the p75NTR receptor has less affinity for attachment with neurotrophins. The correct functioning of these signaling pathways contributes to proper brain development, neuronal survival, and synaptic plasticity. Unbalanced levels of neurotrophins and pro-neurotrophins have been associated with neurological disorders, illustrating the importance of these molecules in the central nervous system. Furthermore, reports have indicated that viruses can alter the normal levels of neurotrophins by interfering with their signaling pathways. This work discusses the importance of neurotrophins in the central nervous system, their signaling pathways, and how viruses can affect them.
Collapse
|
22
|
Sharma P, Dhiman P, Singh D. Dietary flavonoids-rich Citrus reticulata peel extract interacts with CREB signaling to suppress seizures and linked neurobehavioral impairments in a kindling mouse model. Nutr Neurosci 2022; 26:582-593. [PMID: 35535580 DOI: 10.1080/1028415x.2022.2071807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: The citrus fruits peel contains a variety of bioactive metabolites that have shown multiple therapeutic effects. However, despite having substantial ethnomedicinal value, citrus peels remained underexplored and regarded as bio-waste. This present study was planned to investigate the effect of a characterized peel extract of Citrus reticulata c.v. (CRE) in pentylenetetrazole (PTZ)-induced kindling and associated cognitive and behavioral impairments in a mouse model.Methods: The kindled animals were treated daily with CRE (100 and 200 mg/kg) and challenged with a sub-effective dose of PTZ every 5th day to record the severity of seizures. In the end, different tests were performed to record behavioral and cognitive performance.Results: CRE-treated kindled animals showed a significant suppression in seizure severity following 20 days of the treatment. In the T-maze test, the extract treatment resulted in a marked increase in the spontaneous alternations, whereas it showed no change in anxiety behavior of kindled animals in the elevated plus-maze test. In both forced swim and tail suspension tests, CRE treatment demonstrated a considerable reduction in immobility time. However, no change in overall locomotion was observed in the open field test among all the groups. An increase in the hippocampal Creb and Bdnf expression and decreased glutamate-to-GABA ratio were observed in the CRE-treated kindled animals.Discussion: The results showed that CRE treatment suppresses epileptic seizures and associated cognitive deficits and depression-like behavior in kindled mice. The gene expression findings supported that the observed protective effects of CRE be due to its interaction with CREB signaling.
Collapse
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Poonam Dhiman
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Val66et Polymorphism Is Associated with Altered Motor-Related Oscillatory Activity in Youth with Cerebral Palsy. Brain Sci 2022; 12:brainsci12040435. [PMID: 35447966 PMCID: PMC9027490 DOI: 10.3390/brainsci12040435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in the capacity for neuroplastic change. A single nucleotide polymorphism of the BDNF gene is well known to alter the activity-dependent release of the protein and may impact the capacity for neuroplastic change. Numerous studies have shown altered sensorimotor beta event-related desynchronization (ERD) responses in youth with cerebral palsy (CP), which is thought to be directly related to motor planning. The objective of the current investigation was to use magnetoencephalography (MEG) to evaluate whether the BDNF genotype affects the strength of the sensorimotor beta ERD seen in youth with CP while youth with CP performed a leg isometric target matching task. In addition, we collected saliva samples and used polymerase chain reaction (PCR) amplification to determine the status of the amino acid fragment containing codon 66 of the BDNF gene. Our genotyping results identified that 25% of the youth with CP had a Val66Met or Met66Met polymorphism at codon 66 of the BDNF gene. Furthermore, we identified that the beta ERD was stronger in youth with CP who had the Val66Met or Met66Met polymorphism in comparison to those without the polymorphism (p = 0.042). Overall, these novel findings suggest that a polymorphism at the BDNF gene may alter sensorimotor cortical oscillations in youth with CP.
Collapse
|
24
|
Abstract
Astroglia are key regulators of synaptic function, playing central roles in homeostatic ion buffering, energy dynamics, transmitter uptake, maintenance of neurotransmitter pools, and regulation of synaptic plasticity through release of neuroactive chemicals. Given the myriad of crucial homeostatic and signaling functions attributed to astrocytes and the variety of neurotransmitter receptors expressed by astroglia, they serve as prime cellular candidates for establishing maladaptive synaptic plasticity following drug exposure. Initial studies on astroglia and addiction have placed drug-mediated disruptions in the homeostatic regulation of glutamate as a central aspect of relapse vulnerability. However, the generation of sophisticated tools to study and manipulate astroglia have proven that the interaction between addictive substances, astroglia, and relapse-relevant synaptic plasticity extends far beyond the homeostatic regulation of glutamate. Here we present astroglial systems impacted by drug exposure and discuss how changes in astroglial biology contribute to addiction biology.
Collapse
|
25
|
Plinta K, Plewka A, Pawlicki K, Zmarzły N, Wójcik-Pędziwiatr M, Rudziński M, Krzak-Kubica A, Doręgowska-Stachera M, Rudzińska-Bar M. The Utility of BDNF Detection in Assessing Severity of Huntington's Disease. J Clin Med 2021; 10:jcm10215181. [PMID: 34768699 PMCID: PMC8584708 DOI: 10.3390/jcm10215181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in the survival and maturation of neurons, and also promotes and controls neurogenesis. Its levels are lowered in many neurodegenerative diseases, including Huntington's disease (HD). Clinical pictures of HD can be very diverse, which makes it difficult to assess its severity; however, molecular markers may be helpful. The aim of the study was to determine the relationship between HD severity and the plasma BDNF concentration in HD patients. The study recruited 42 patients with diagnosed and genetically confirmed HD and 40 healthy volunteers. BDNF levels were determined in plasma with the enzyme-linked immunosorbent assay (ELISA). Correlations between BDNF levels and clinical profiles and HD severity were also investigated. The BDNF level was significantly lower in HD patients compared to the control. There was no correlation between the BDNF level and motor symptoms and cognitive impairment. In the early disease stages, BDNF levels were associated with a better neurological examination, independence, and functional evaluation, in contrast to later HD stages, where the correlations were inverse. Multidirectional correlations between parameters of saccadic disorders and the BDNF level do not allow for drawing a conclusion, whether or not there is a relationship between the severity of saccadic disorders and the BDNF concentration.
Collapse
Affiliation(s)
- Klaudia Plinta
- Neurology Department, Institute of Medical Science, University of Opole, 45-040 Opole, Poland;
| | - Andrzej Plewka
- Institute of Health Sciences, University of Opole, 45-040 Opole, Poland;
| | - Krzysztof Pawlicki
- Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland
- Correspondence:
| | - Magdalena Wójcik-Pędziwiatr
- Department of Neurology, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.D.-S.); (M.R.-B.)
| | - Marcin Rudziński
- Department of Otolaryngology, Jagiellonian University Medical College, The University Hospital in Krakow, 30-688 Krakow, Poland;
| | | | - Magdalena Doręgowska-Stachera
- Department of Neurology, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.D.-S.); (M.R.-B.)
| | - Monika Rudzińska-Bar
- Department of Neurology, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.D.-S.); (M.R.-B.)
| |
Collapse
|
26
|
Sharma HS, Muresanu DF, Ozkizilcik A, Sahib S, Tian ZR, Lafuente JV, Castellani RJ, Nozari A, Feng L, Buzoianu AD, Menon PK, Patnaik R, Wiklund L, Sharma A. Superior antioxidant and anti-ischemic neuroprotective effects of cerebrolysin in heat stroke following intoxication of engineered metal Ag and Cu nanoparticles: A comparative biochemical and physiological study with other stroke therapies. PROGRESS IN BRAIN RESEARCH 2021; 266:301-348. [PMID: 34689862 DOI: 10.1016/bs.pbr.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Military personnel are often exposed to high environmental heat associated with industrial or ambient abundance of nanoparticles (NPs) affecting brain function. We have shown that engineered metal NPs Ag and Cu exacerbate hyperthermia induced brain pathology. Thus, exploration of novel drug therapy is needed for effective neuroprotection in heat stroke intoxicated with NPs. In this investigation neuroprotective effects of cerebrolysin, a balanced composition of several neurotrophic factors and active peptides fragments exhibiting powerful antioxidant and anti-ischemic effects was examined in heat stroke after NPs intoxication. In addition, its efficacy is compared to currently used drugs in post-stroke therapies in clinics. Thus, levertiracetam, pregabalin, topiramat and valproate were compared in standard doses with cerebrolysin in heat stroke intoxicated with Cu or Ag NPs (50-60nm, 50mg/kg, i.p./day for 7 days). Rats were subjected to 4h heat stress (HS) in a biological oxygen demand incubator at 38°C (Relative Humidity 45-47%; Wind velocity 22.4-25.6cm/s) that resulted in profound increase in oxidants Luminol, Lucigenin, Malondialdehyde and Myeloperoxidase, and a marked decrease in antioxidant Glutathione. At this time severe reductions in the cerebral blood flow (CBF) was seen together with increased blood-brain barrier (BBB) breakdown and brain edema formation. These pathophysiological responses were exacerbated in NPs treated heat-stressed animals. Pretreatment with cerebrolysin (2.5mL/kg, i.v.) once daily for 3 days significantly attenuated the oxidative stress, BBB breakdown and brain edema and improved CBF in the heat stressed group. The other drugs were least effective on brain pathology following heat stroke. However, in NPs treated heat stressed animals 5mL/kg conventional cerebrolysin and 2.5mL/kg nanowired cerebrolysin is needed to attenuate oxidative stress, BBB breakdown, brain edema and to improve CBF. Interestingly, the other drugs even in higher doses used are unable to alter brain pathologies in NPs and heat stress. These observations are the first to demonstrate that cerebrolysin is the most superior antioxidant and anti-ischemic drug in NPs exposed heat stroke, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
27
|
Ramos-Rosales DF, Vazquez-Alaniz F, Urtiz-Estrada N, Ramirez-Valles EG, Mendez-Hernádez EM, Salas-Leal AC, Barraza-Salas M. Epigenetic marks in suicide: a review. Psychiatr Genet 2021; 31:145-161. [PMID: 34412082 DOI: 10.1097/ypg.0000000000000297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Suicide is a complex phenomenon and a global public health problem that involves several biological factors that could contribute to the pathophysiology of suicide. There is evidence that epigenetic factors influence some psychiatric disorders, suggesting a predisposition to suicide or suicidal behavior. Here, we review studies of molecular mechanisms of suicide in an epigenetic perspective in the postmortem brain of suicide completers and peripheral blood cells of suicide attempters. Besides, we include studies of gene-specific DNA methylation, epigenome-wide association, histone modification, and interfering RNAs as epigenetic factors. This review provides an overview of the epigenetic mechanisms described in different biological systems related to suicide, contributing to an understanding of the genetic regulation in suicide. We conclude that epigenetic marks are potential biomarkers in suicide, and they could become attractive therapeutic targets due to their reversibility and importance in regulating gene expression.
Collapse
Affiliation(s)
| | - Fernando Vazquez-Alaniz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango
- Hospital General 450. Servicios de Salud de Durango
| | | | | | - Edna M Mendez-Hernádez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Alma C Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | |
Collapse
|
28
|
Requena-Ocaña N, Araos P, Flores M, García-Marchena N, Silva-Peña D, Aranda J, Rivera P, Ruiz JJ, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F. Evaluation of neurotrophic factors and education level as predictors of cognitive decline in alcohol use disorder. Sci Rep 2021; 11:15583. [PMID: 34341419 PMCID: PMC8328971 DOI: 10.1038/s41598-021-95131-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cognitive reserve (CR) is the capability of an individual to cope with a brain pathology through compensatory mechanisms developed through cognitive stimulation by mental and physical activity. Recently, it has been suggested that CR has a protective role against the initiation of substance use, substance consumption patterns and cognitive decline and can improve responses to treatment. However, CR has never been linked to cognitive function and neurotrophic factors in the context of alcohol consumption. The present cross-sectional study aims to evaluate the association between CR (evaluated by educational level), cognitive impairment (assessed using a frontal and memory loss assessment battery) and circulating levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in patients with alcohol use disorder (AUD). Our results indicated that lower educational levels were accompanied by earlier onset of alcohol consumption and earlier development of alcohol dependence, as well as impaired frontal cognitive function. They also suggest that CR, NT-3 and BDNF may act as compensatory mechanisms for cognitive decline in the early stages of AUD, but not in later phases. These parameters allow the identification of patients with AUD who are at risk of cognitive deterioration and the implementation of personalized interventions to preserve cognitive function.
Collapse
Affiliation(s)
- Nerea Requena-Ocaña
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain.
- School of Psychology, Complutense University of Madrid, Madrid, Spain.
- Laboratorio de Investigación, IBIMA, Hospital Universitario Regional de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain.
| | - Pedro Araos
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, School of Psychology, University of Málaga, 29010, Málaga, Spain
| | - María Flores
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Nuria García-Marchena
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Daniel Silva-Peña
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Jesús Aranda
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
- School of Medicine, University of Málaga, 29071, Málaga, Spain
| | - Patricia Rivera
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Juan Jesús Ruiz
- Provincial Drug Addiction Center of Málaga, Provincial Council of Málaga, Málaga, Spain
| | - Antonia Serrano
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Francisco Javier Pavón
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
- Cardiac Clinical Management Unit, IBIMA, University Hospital Virgen de la Victoria, 29010, Málaga, Spain
| | - Juan Suárez
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain.
- Department of Human Anatomy, Legal Medicine and History of Science, IBIMA, Facultad de Medicina, University of Málaga, Bulevar Louis Pausteur, 29071, Málaga, Spain.
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain.
| |
Collapse
|
29
|
Qiao X, Sun M, Chen Y, Jin W, Zhao H, Zhang W, Lai J, Yan H. Ethanol-Induced Neuronal and Cognitive/Emotional Impairments are Accompanied by Down-Regulated NT3-TrkC-ERK in Hippocampus. Alcohol Alcohol 2021; 56:220-229. [PMID: 33103180 DOI: 10.1093/alcalc/agaa101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Ethanol ingestion affects cognition and emotion, which have been attributed to the dysfunction of specific brain structures. Studies of alcoholic patients and animal models consistently identify reduced hippocampal mass as a key ethanol-induced brain adaptation. This study evaluated how neuroadaptation in the hippocampus (Hip) produced by ethanol contributed to related behavioral deficits in male and female rats. METHODS Effects of acute, short-term and long-term ethanol exposure on the anxiety-like behavior and recognition memory on adult male and female Sprague-Dawley rats were assessed using elevated plus maze test and novel object recognition test, respectively. In addition, in order to investigate the direct effect of ethanol on hippocampal neurons, primary culture of hippocampal neurons was exposed to ethanol (10, 30 and 90 mM; 1, 24 and 48 h), and viability (CCK-8) and morphology (immunocytochemistry) were analyzed at structural levels. Western blot assays were used to assess protein levels of NT3-TrkC-ERK. RESULTS Acute and short-term ethanol exposure exerted anxiolytic effects, whereas long-term ethanol exposure induced anxiogenic responses in both sexes. Short-term ethanol exposure impaired spatial memory only in female rats, whereas long-term ethanol exposure impaired spatial and recognition memory in both sexes. These behavioral impairments and ethanol-induced loss of hippocampal neurons and decreased cell viability were accompanied by downregulated NT3-TrkC-ERK pathway. CONCLUSION These results indicate that NT3-TrkC-ERK signaling in the Hip may play an important role in ethanol-induced structural and behavioral impairments.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Yuanyuan Chen
- Department of Forensic Biology, College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wenyang Jin
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Huan Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Weiqi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Jianghua Lai
- Department of Forensic Biology, College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| |
Collapse
|
30
|
McPhee GM, Downey LA, Wesnes KA, Stough C. The Neurocognitive Effects of Bacopa monnieri and Cognitive Training on Markers of Brain Microstructure in Healthy Older Adults. Front Aging Neurosci 2021; 13:638109. [PMID: 33692683 PMCID: PMC7937913 DOI: 10.3389/fnagi.2021.638109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bacopa monnieri (BM) is a herbal supplement that increases signaling molecules implicated in synaptogenesis. Combined with cognitive stimulation, it may be a viable supplement to enhance long-term potentiation (LTP) and improve cognitive health in older adults. This randomized, double-blind, placebo-controlled trial asked 28 healthy adults aged over 55 years to complete cognitive training (CT) 3 hours weekly for 12 weeks. Fifteen consumed a standardized extract of BM and 13 consumed a placebo daily. Cognitive tasks, life-satisfaction, memory complaints and mood were assessed, and bloods analyzed for serum brain-derived neurotrophic factor (BDNF) before and after 12-weeks of the intervention. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) in gray (GM) and white matter (WM) were also analyzed. Results demonstrated slower reaction time in an image discrimination task in the BM group and faster reaction time in a spatial working memory task (SWM-O RT) in the placebo group. Mean accuracy was higher in the BM group for these tasks, suggesting a change in the speed accuracy trade-off. Exploratory neuroimaging analysis showed increased WM mean diffusivity (MD) and GM dispersion of neurites (orientation dispersion index, ODI) and decreased WM fractional anisotropy (FA) and GM neurite density (ND) in the BM group. No other outcomes reached statistical significance. An increase in ODI with a decrease in MD and ND in the BM group may indicate an increase in network complexity (through higher dendritic branching) accompanied by dendritic pruning to enhance network efficiency. These neuroimaging outcomes conflict with the behavioral results, which showed poorer reaction time in the BM group. Given the exploratory outcomes and inconsistent findings between the behavioral and neuroimaging data, a larger study is needed to confirm the synaptogenic mechanisms of BM.
Collapse
Affiliation(s)
- Grace M McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
| | - Keith A Wesnes
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Wesnes Cognition Ltd., Streatley, United Kingdom.,University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
32
|
Zhang L, Sun Q, Xin Q, Qin J, Zhang L, Wu D, Gao G, Xia Y. Hyperbaric oxygen therapy mobilized circulating stem cells and improved delayed encephalopathy after acute carbon monoxide poisoning with up-regulation of brain-derived neurotrophic factor. Am J Emerg Med 2021; 42:95-100. [PMID: 33497900 DOI: 10.1016/j.ajem.2021.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Delayed encephalopathy (DE) is the most severe complication after acute carbon monoxide (CO) poisoning, which seriously affects the outcome of patients and leads to a high disability rate. Prior studies have shown that hyperbaric oxygen (HBO2) therapy is therapeutic for DE due to reducing immune-mediated neuropathology and thus improving cognitive performance. Methods In our present perspective study, five DE patients were treated regularly with HBO2 therapy. The mini-mental state examination (MMSE) and Barthel index (BI) were intermittently collected during their hospitalization for mental and physical status evaluation, the peripheral bloods were serially sampled to determine the concentration changes of circulating stem cells, as well as corresponding BDNF and neural markers. Results MMSE and BI showed series of improvements after multiple HBO2 therapies. The CD34+/CD90+ and CD34+/CD133+ dual positive cells, which were categorized as circulating stem cells, were observed an overall up-regulation since the beginning of the DE onset upon the application of HBO2 therapy. Characteristic neurotrophin BDNF, neural markers such as nestin and synaptophysin (SYP) were also up-regulated after exposure of HBO2. Conclusion The application of HBO2 therapy is of significance in improving the cognition of DE patients, along with mobilized circulating stem cells. We primarily infer that the CD34+/CD90+ and CD34+/CD133+ cells were mobilized by HBO2 exposure and have played a positive role in cognition improvement on DE patients by up-regulation of BDNF, nestin and SYP. The altering amount of circulating stem cells mobilized in peripheral blood could be a potential marker on predicting the outcome of DE.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qing Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China; Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Qun Xin
- Department of General Surgery, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Jiangnan Qin
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang 261000, Shandong, China
| | - Lu Zhang
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Di Wu
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China
| | - Guangkai Gao
- Department of Military and Special Medicine, No.971 Hospital of The People's Liberation Army Navy, Qingdao 266071, Shandong, China.
| | - Yujun Xia
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
33
|
Chen X, Xiao JW, Cao P, Zhang Y, Cai WJ, Song JY, Gao WM, Li B. Brain-derived neurotrophic factor protects against acrylamide-induced neuronal and synaptic injury via the TrkB-MAPK-Erk1/2 pathway. Neural Regen Res 2021; 16:150-157. [PMID: 32788470 PMCID: PMC7818888 DOI: 10.4103/1673-5374.286976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acrylamide has been shown to be neurotoxic. Brain-derived neurotrophic factor (BDNF) can alleviate acrylamide-induced synaptic injury; however, the underlying mechanism remains unclear. In this study, dibutyryl-cyclic adenosine monophosphate-induced mature human neuroblastoma (NB-1) cells were exposed with 0–100 μg/mL acrylamide for 24–72 hours. Acrylamide decreased cell viability and destroyed synapses. Exposure of co-cultured NB-1 cells and Schwann cells to 0–100 μg/mL acrylamide for 48 hours resulted in upregulated expression of synapsin I and BDNF, suggesting that Schwann cells can activate self-protection of neurons. Under co-culture conditions, activation of the downstream TrkB-MAPK-Erk1/2 pathway strengthened the protective effect. Exogenous BDNF can increase expression of TrkB, Erk1/2, and synapsin I, while exogenous BDNF or the TrkB inhibitor K252a could inhibit these changes. Taken together, Schwann cells may act through the BDNF-TrkB-MAPK-Erk1/2 signaling pathway, indicating that BDNF plays an important role in this process. Therefore, exogenous BDNF may be an effective treatment strategy for acrylamide-induced nerve injury. This study was approved by the Laboratory Animal Welfare and Ethics Committee of the National Institute of Occupational Health and Poison Control, a division of the Chinese Center for Disease Control and Prevention (approval No. EAWE-2017-008) on May 29, 2017.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing-Wei Xiao
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Cao
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Jian Cai
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-Yang Song
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei-Min Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Bin Li
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
34
|
The Physical Activity Type Most Related to Cognitive Function and Quality of Life. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8856284. [PMID: 33381590 PMCID: PMC7765724 DOI: 10.1155/2020/8856284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 01/12/2023]
Abstract
Background Physical activity has been found to maintain and improve cognitive function and consequently improve health-related quality of life (HRQoL). The relationships between different types of physical activities, cognitive function, and HRQoL have not been studied sufficiently and compared in different age and gender groups. This study is aimed at examining the relationship between different types of physical activity (high-intensity, moderate-intensity, and walking exercise), cognitive function, and HRQoL. In addition, this study is aimed at examining these relationships in different age and gender groups. Methods This cross-sectional study included 150 adults with a mean age of 50 ± 8.8 years. Participants completed the International Physical Activity Questionnaire (IPAQ) to assess the level of the physical activity types and the Short-Form Health Survey (SF-36) questionnaire to assess HRQoL. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) screening instrument. Spearman correlation analysis was used to explore the relationships between the different variables of the study. Results There were significant positive relationships between all types of physical activities, cognitive ability, and HRQoL. The relationships between moderate-intensity physical activities and cognitive function (r = 0.38) and HRQoL (r = 0.33) were higher than the relationships with walking exercise and high-intensity physical activity. The middle-aged group had a significantly higher cognitive function compared to the senior adults (p < 0.001), while there was no significant difference between the age groups in HRQoL (p = 0.18). Conclusion The cognitive function and HRQoL were more related to moderate-intensity physical activities compared to walking exercise or high-intensity physical activities. These relationships were more pronounced in the senior adult population compared to the middle-aged group.
Collapse
|
35
|
Heinze K, Cumming J, Dosanjh A, Palin S, Poulton S, Bagshaw AP, Broome MR. Neurobiological evidence of longer-term physical activity interventions on mental health outcomes and cognition in young people: A systematic review of randomised controlled trials. Neurosci Biobehav Rev 2020; 120:431-441. [PMID: 33172601 DOI: 10.1016/j.neubiorev.2020.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate putative neurobiological mechanisms that link longer-term physical activity interventions to mental health and cognitive outcomes using randomised controlled trials in children, adolescents and young adults. DATA SOURCES A range of medical and psychological science electronic databases were searched (MEDLINE, EMBASE, Scopus, Web of Science, PsychINFO). REVIEW METHODS Original research studies were selected, data were extracted and quality was appraised. RESULTS Sixteen primary papers were included, ranging from healthy and community samples to subclinical and clinical populations across a variety of age ranges and using different neurobiological measures (e.g. magnetic resonance imaging, electroencephalography, cortisol, brain-derived neurotropic factor). DISCUSSION The majority of studies report improvement in mental health and cognition outcomes following longer-term physical activity interventions which coincide with neurobiological alterations, especially neuroimaging alterations in activation and electrophysiological parameters in frontal areas. Future research should include measures of pre-existing fitness and target those who would benefit the most from this type of intervention (e.g. those with a lower level of fitness and at risk for or with mental health problems).
Collapse
Affiliation(s)
- Kareen Heinze
- School of Psychology, University of Birmingham, Edgbaston, UK; Institute for Mental Health, University of Birmingham, Edgbaston, UK; Centre for Human Brain Health, University of Birmingham, Edgbaston, UK.
| | - Jennifer Cumming
- Institute for Mental Health, University of Birmingham, Edgbaston, UK; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, UK.
| | - Amrita Dosanjh
- School of Psychology, University of Birmingham, Edgbaston, UK.
| | - Sophia Palin
- School of Psychology, University of Birmingham, Edgbaston, UK.
| | - Shannen Poulton
- School of Psychology, University of Birmingham, Edgbaston, UK.
| | - Andrew P Bagshaw
- School of Psychology, University of Birmingham, Edgbaston, UK; Centre for Human Brain Health, University of Birmingham, Edgbaston, UK.
| | - Matthew R Broome
- School of Psychology, University of Birmingham, Edgbaston, UK; Institute for Mental Health, University of Birmingham, Edgbaston, UK; Centre for Human Brain Health, University of Birmingham, Edgbaston, UK.
| |
Collapse
|
36
|
Mahato AK, Sidorova YA. Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell Tissue Res 2020; 382:147-160. [PMID: 32556722 PMCID: PMC7529621 DOI: 10.1007/s00441-020-03227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Rearranged during transfection (RET), in complex with glial cell line-derived (GDNF) family receptor alpha (GFRα), is the canonical signaling receptor for GDNF family ligands (GFLs) expressed in both central and peripheral parts of the nervous system and also in non-neuronal tissues. RET-dependent signaling elicited by GFLs has an important role in the development, maintenance and survival of dopamine and sensory neurons. Both Parkinson's disease and neuropathic pain are devastating disorders without an available cure, and at the moment are only treated symptomatically. GFLs have been studied extensively in animal models of Parkinson's disease and neuropathic pain with remarkable outcomes. However, clinical trials with recombinant or viral vector-encoded GFL proteins have produced inconclusive results. GFL proteins are not drug-like; they have poor pharmacokinetic properties and activate multiple receptors. Targeting RET and/or GFRα with small molecules may resolve the problems associated with using GFLs as drugs and can result in the development of therapeutics for disease-modifying treatments against Parkinson's disease and neuropathic pain.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland
| | - Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.
| |
Collapse
|
37
|
McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and meta-analysis. Neurobiol Learn Mem 2020; 175:107298. [PMID: 32822863 DOI: 10.1016/j.nlm.2020.107298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/02/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Neurotrophins are signalling molecules involved in the formation and maintenance of synapses in the brain. They can cross the blood-brain barrier and be detected in peripheral blood, suggesting they may be a potential biomarker for brain health and function. In this review, the available literature was systematically searched for studies comparing peripheral neurotrophins levels with MRI and cognitive measures in healthy adults. Twenty-four studies were identified, six of which included a neuroimaging outcome. Fifteen studies measuring cognition were eligible for meta-analysis. The majority of studies measured levels of brain-derived neurotrophic factor (BDNF), with few assessing other neurotrophins. Results revealed BDNF is related to some neuroimaging outcomes, with some studies suggesting older age may be an important factor. A higher proportion of studies who had older samples observed significant effects between cognition and neurotrophin levels. When cognitive studies were pooled together in a meta-analysis, there was a weak non-significant effect between BDNF and cognitive outcomes. There was also a high level of heterogeneity between cognitive studies. Results indicated that gender was a notable source of the heterogeneity, but additional studies employing relevant covariates are necessary to better characterise the inter-relationship between circulating neurotrophins and cognition.
Collapse
Affiliation(s)
- Grace M McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia; Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
38
|
Abstract
Neurotrophin-3 (NT-3) belongs to a family of growth factors called neurotrophins whose actions are centered in the nervous system. NT-3 is structurally related to other neurotrophins like brain-derived neurotrophic factor. The expression of NT-3 starts with the onset of neurogenesis and continues throughout life. A wealth of information links NT-3 to the growth, differentiation, and survival of hippocampal cells as well as sympathetic and sensory neurons. These studies have described the distribution of NT-3 and its receptors throughout development and in the mature nervous system. Prior works has begun to cell-type specific impact of NT-3 as well as identify the signaling pathways involved. However, much less is known about how NT-3 regulates synaptic transmission. This chapter focuses role of NT-3 in the modulation of synaptic transmission.
Collapse
|
39
|
Kotov SV, Isakova EV, Zaitseva EV, Egorova YV. [Multimodal stimulation in the neurorehabilitation of patients with poststroke cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:125-130. [PMID: 32621478 DOI: 10.17116/jnevro2020120051125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Loss of functional activity after a stroke is a leading cause of disability in adults worldwide. Particular attention is currently being paid to post-stroke cognitive impairment. Approaches based on multimodal exposure are increasingly being used when planning rehabilitation programs, which makes it possible to comprehensively cover the entire spectrum of existing neurological disorders in patients and enables to achieve a more effective recovery of functional activity after a stroke.
Collapse
Affiliation(s)
- S V Kotov
- Vladimirsky Moscow Regional Clinical Research Institute, Moscow, Russia
| | - E V Isakova
- Vladimirsky Moscow Regional Clinical Research Institute, Moscow, Russia
| | - E V Zaitseva
- Vladimirsky Moscow Regional Clinical Research Institute, Moscow, Russia
| | - Yu V Egorova
- Vladimirsky Moscow Regional Clinical Research Institute, Moscow, Russia
| |
Collapse
|
40
|
Gejl AK, Enevold C, Bugge A, Andersen MS, Nielsen CH, Andersen LB. Associations between serum and plasma brain-derived neurotrophic factor and influence of storage time and centrifugation strategy. Sci Rep 2019; 9:9655. [PMID: 31273250 PMCID: PMC6609657 DOI: 10.1038/s41598-019-45976-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
The aims of the study were to clarify the impact of storage time and centrifugation strategy on brain-derived neurotrophic factor (BDNF) levels in human serum and plasma samples. In addition, we analyzed associations between BDNF levels, cardiorespiratory fitness and waist circumference. Seventeen healthy males (25.2 (4.1) years) were included in the study. Blood samples were drawn after an overnight fast and treated to different protocols, varying in time before centrifugation and centrifugation strategy. BDNF was analyzed in serum, normal plasma (NP) and platelet-poor plasma (PPP). Also, waist circumference and cardiorespiratory fitness were measured. A large increase was observed in serum BDNF levels during the first hour of clotting. BDNF in NP correlated with PPP, whereas no correlations were found between BDNF in serum and plasma. Though not statistical significant, correlations between fitness and BDNF in serum changed from positive at 30 min. to negative when clotting time was ≥60 min. In conclusion, BDNF levels in serum were affected by clotting time, whereas BDNF levels in plasma were influenced by centrifugation strategy. Importantly, BDNF in serum and plasma appears to reflect two different pools of BDNF. The biological relevance of the velocity of BDNF release during clotting and its dependence upon fitness must be investigated further.
Collapse
Affiliation(s)
- Anne Kær Gejl
- University of Southern Denmark, Department of Sports Science and Clinical Biomechanics, Exercise Epidemiology, Odense, Denmark. .,University College Copenhagen, Faculty of Health, School of Physiotherapy, Copenhagen, Denmark.
| | - Christian Enevold
- Copenhagen University Hospital Rigshospitalet, Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen, Denmark
| | - Anna Bugge
- University College Copenhagen, Faculty of Health, School of Physiotherapy, Copenhagen, Denmark
| | | | - Claus Henrik Nielsen
- Copenhagen University Hospital Rigshospitalet, Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen, Denmark
| | - Lars Bo Andersen
- Western Norway University of Applied Sciences, Faculty of Education, Arts and Sport, Campus Sogndal, Bergen, Norway.,Norwegian School of Sport Sciences, Department of Sports Medicine, Oslo, Norway
| |
Collapse
|
41
|
Guelfi G, Casano AB, Menchetti L, Bellicci M, Suvieri C, Moscati L, Carotenuto P, Santoro MM, Diverio S. A cross-talk between blood-cell neuroplasticity-related genes and environmental enrichment in working dogs. Sci Rep 2019; 9:6910. [PMID: 31061480 PMCID: PMC6502844 DOI: 10.1038/s41598-019-43402-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
This study aims to identify a panel of blood-cell neuroplasticity-related genes expressed following environmental enrichment stimulation (EE). The Drug detection (DD) training course was an excellent model for the study of EE in the working dog. This research is divided into two experimental trials. In the First Trial, we identified a panel of blood-cell neuroplasticity related-genes associated with DD ability acquired during the training course. In the Second Trial, we assessed the EE additional factor complementary feeding effect on blood-cell neuroplasticity gene expressions. In the First and Second Trials, at different time points of the DD test, blood samples were collected, and NGF, BDNF, VEGFA, IGF1, EGR1, NGFR, and ICE2 blood-cell neuroplasticity related-genes were analyzed. As noted in the First Trial, the DD test in working dogs induced the transient up-regulation of VEGFA, NGF, NGFR, BDNF, and IGF, immediately after the DD test, suggesting the existence of gene regulations. On the contrary, the Second Trial, with feeding implementation, showed an absence of mRNA up-regulation after the DD test. We suppose that complementary feeding alters the systemic metabolism, which, in turn, changes neuroplasticity-related gene blood-cell mRNA. These findings suggested that, in working dogs, there is a cross-talk between blood-cell neuroplasticity-related genes and environmental enrichment. These outcomes could be used to improve future treatments in sensory implementation.
Collapse
Affiliation(s)
- G Guelfi
- Laboratory of Ethology and Animal Welfare (LEBA), Department of Veterinary Medicine, Università degli Studi di Perugia, via San Costanzo 4, 0126, Perugia, Italy.
| | - A B Casano
- Laboratory of Ethology and Animal Welfare (LEBA), Department of Veterinary Medicine, Università degli Studi di Perugia, via San Costanzo 4, 0126, Perugia, Italy
| | - L Menchetti
- Laboratory of Ethology and Animal Welfare (LEBA), Department of Veterinary Medicine, Università degli Studi di Perugia, via San Costanzo 4, 0126, Perugia, Italy
| | - M Bellicci
- Laboratory of Ethology and Animal Welfare (LEBA), Department of Veterinary Medicine, Università degli Studi di Perugia, via San Costanzo 4, 0126, Perugia, Italy
| | - C Suvieri
- Department of Surgical and Biomedical Sciences, Institution of Urological, Andrological Surgery and Minimally Invasive Techniques, Università degli Studi di Perugia, Loc. S. Andrea delle Fratte, 06156, Perugia, Italy
| | - L Moscati
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via G. Salvemini 1, 06126, Perugia, Italy
| | - P Carotenuto
- Guardia di Finanza, Centro Addestramento e Allevamento Cani, Via Lungolago 46, 06061, Castiglione Del Lago, PG, Italy
| | - M M Santoro
- Guardia di Finanza, Centro Addestramento e Allevamento Cani, Via Lungolago 46, 06061, Castiglione Del Lago, PG, Italy
| | - S Diverio
- Laboratory of Ethology and Animal Welfare (LEBA), Department of Veterinary Medicine, Università degli Studi di Perugia, via San Costanzo 4, 0126, Perugia, Italy.
| |
Collapse
|
42
|
Resveratrol Regulates BDNF, trkB, PSA-NCAM, and Arc Expression in the Rat Cerebral Cortex after Bilateral Common Carotid Artery Occlusion and Reperfusion. Nutrients 2019; 11:nu11051000. [PMID: 31052460 PMCID: PMC6567029 DOI: 10.3390/nu11051000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The polyphenol resveratrol (RVT) may drive protective mechanisms of cerebral homeostasis during the hypoperfusion/reperfusion triggered by the transient bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R). This immunochemical study investigates if a single dose of RVT modulates the plasticity-related markers brain-derived neurotrophic factor (BDNF), the tyrosine kinase trkB receptor, Polysialylated-Neural Cell Adhesion Molecule (PSA-NCAM), and Activity-regulated cytoskeleton-associated (Arc) protein in the brain cortex after BCCAO/R. Frontal and temporal-occipital cortical regions were examined in male Wistar rats randomly subdivided in two groups, sham-operated and submitted to BCCAO/R. Six hours prior to surgery, half the rats were gavage fed a dose of RVT (180 mg·kg−1 in 300 µL of sunflower oil as the vehicle), while the second half was given the vehicle alone. In the frontal cortex of BCCAO/R vehicle-treated rats, BDNF and PSA-NCAM decreased, while trkB increased. RVT pre-treatment elicited an increment of all examined markers in both sham- and BCCAO/R rats. No variations occurred in the temporal-occipital cortex. The results highlight a role for RVT in modulating neuronal plasticity through the BDNF-trkB system and upregulation of PSA-NCAM and Arc, which may provide both trophic and structural local support in the dynamic changes occurring during the BCCAO/R, and further suggest that dietary supplements such as RVT are effective in preserving the tissue potential to engage plasticity-related events and control the functional response to the hypoperfusion/reperfusion challenge.
Collapse
|
43
|
The role of MAPK signaling pathway in selenium amelioration of high fat/high cholesterol diet-induced tauopathy in rats. Chem Biol Interact 2019; 302:108-116. [DOI: 10.1016/j.cbi.2019.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/22/2018] [Accepted: 01/22/2019] [Indexed: 12/26/2022]
|
44
|
Yang Y, Liu Y, Wang G, Hei G, Wang X, Li R, Li L, Wu R, Zhao J. Brain-derived neurotrophic factor is associated with cognitive impairments in first-episode and chronic schizophrenia. Psychiatry Res 2019; 273:528-536. [PMID: 30710808 DOI: 10.1016/j.psychres.2019.01.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/11/2018] [Accepted: 01/13/2019] [Indexed: 01/16/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) may be related to the pathophysiology of schizophrenia. This study aims to examine the relation between plasma BDNF levels and the cognition of patients with schizophrenia. We recruited 31 patients with chronic schizophrenia, 34 first-episode patients, and 35 healthy control subjects. We examined the MATRICS Consensus Cognitive Battery (MCCB) and the plasma BDNF levels in all groups. The schizophrenic symptoms were assessed using the positive and negative syndrome scale. The BDNF levels of schizophrenic patients were remarkably lower than those of the controls. The cognitive MCCB global composite scores and part index scores of schizophrenic patients were remarkably lower than those of the controls. Moreover, remarkable correlations were observed between BDNF levels and partial cognitive dimensions, such as visual learning, memory, and processing speed. Therefore, BDNF may be involved in the pathophysiology and cognitive impairment of schizophrenia.
Collapse
Affiliation(s)
- Ye Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Guodong Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Gangrui Hei
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoyi Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Ranran Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Li Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
45
|
Boskovic Z, Meier S, Wang Y, Milne M, Onraet T, Tedoldi A, Coulson E. Regulation of cholinergic basal forebrain development, connectivity, and function by neurotrophin receptors. Neuronal Signal 2019; 3:NS20180066. [PMID: 32269831 PMCID: PMC7104233 DOI: 10.1042/ns20180066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic basal forebrain (cBF) neurons are defined by their expression of the p75 neurotrophin receptor (p75NTR) and tropomyosin-related kinase (Trk) neurotrophin receptors in addition to cholinergic markers. It is known that the neurotrophins, particularly nerve growth factor (NGF), mediate cholinergic neuronal development and maintenance. However, the role of neurotrophin signalling in regulating adult cBF function is less clear, although in dementia, trophic signalling is reduced and p75NTR mediates neurodegeneration of cBF neurons. Here we review the current understanding of how cBF neurons are regulated by neurotrophins which activate p75NTR and TrkA, B or C to influence the critical role that these neurons play in normal cortical function, particularly higher order cognition. Specifically, we describe the current evidence that neurotrophins regulate the development of basal forebrain neurons and their role in maintaining and modifying mature basal forebrain synaptic and cortical microcircuit connectivity. Understanding the role neurotrophin signalling plays in regulating the precision of cholinergic connectivity will contribute to the understanding of normal cognitive processes and will likely provide additional ideas for designing improved therapies for the treatment of neurological disease in which cholinergic dysfunction has been demonstrated.
Collapse
Affiliation(s)
- Zoran Boskovic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Sonja Meier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Wang
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- College of Forensic Science, Xi’an Jiaotong University, Shaanxi, China
| | - Michael R. Milne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Angelo Tedoldi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J. Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Mandolini GM, Lazzaretti M, Pigoni A, Delvecchio G, Soares JC, Brambilla P. The impact of BDNF Val66Met polymorphism on cognition in Bipolar Disorder: A review: Special Section on "Translational and Neuroscience Studies in Affective Disorders" Section Editor, Maria Nobile MD, PhD. This Section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summaries relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders. J Affect Disord 2019; 243:552-558. [PMID: 30078664 DOI: 10.1016/j.jad.2018.07.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Converging lines of evidence suggest that Brain-Derived Neurotrophic Factor (BDNF) may play a central role in the pathogenesis of Bipolar Disorder (BD), thus representing a valid biomarker of the disease. A common genetic variation in the BDNF gene, the Val66Met, is associated with reduced maturation and secretion of BDNF and therefore it has been related to specific mood, cognitive and neuroanatomical alterations in BD. However, so far, only a handful of studies have investigated the association between Val66Met polymorphism and cognitive functioning in BD. METHODS We performed a bibliographic search on PUBMED of all genetic studies investigating Val66Met modulation on cognitive performances in BD subjects. The inclusion criteria were met by nine studies, including a total amount of 897 BD subjects and 803 healthy controls. RESULTS From the analysis of the existing literature emerged that a) Val allele in BD adults, but not in BD adolescents, was associated with better performances in selective cognitive domains including executive functions, verbal learning and memory; b) Met allele may negatively modulate the association between childhood trauma and performances in memory, verbal ability and verbal fluency tasks; c) Met allele may also negatively regulate structural abnormalities in cognitive cerebral structures; d) Val/Met carriers showed greater improvements in cognitive functions compared to Val/Val and Met/Met carriers. LIMITATIONS Few genetic studies exploring the impact of Val66Met on cognition in BD. CONCLUSIONS Val66Met polymorphism likely modulates cognitive functions in BD patients with complex gene-environment interactions and through potential modulations of cerebral structures. Further and larger genetic studies are required in order to detect association between BDNF polymorphism, BDNF levels, brain abnormalities and cognition in BD.
Collapse
Affiliation(s)
- G M Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| | - M Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - A Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - G Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - J C Soares
- Department of Psychiatry and Behavioural Neurosciences, University of Texas, Houston, TX, USA
| | - P Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Scientific Institute IRCCS "E. Medea", Bosisio Parini (Lc), Italy.
| |
Collapse
|
47
|
Liou CJ, Tong M, Vonsattel JP, de la Monte SM. Altered Brain Expression of Insulin and Insulin-Like Growth Factors in Frontotemporal Lobar Degeneration: Another Degenerative Disease Linked to Dysregulation of Insulin Metabolic Pathways. ASN Neuro 2019; 11:1759091419839515. [PMID: 31081340 PMCID: PMC6535914 DOI: 10.1177/1759091419839515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is the third most common dementing neurodegenerative disease with nearly 80% having no known etiology. OBJECTIVE Growing evidence that neurodegeneration can be linked to dysregulated metabolism prompted us to measure a panel of trophic factors, receptors, and molecules that modulate brain metabolic function in FTLD. METHODS Postmortem frontal (Brodmann's area [BA]8/9 and BA24) and temporal (BA38) lobe homogenates were used to measure immunoreactivity to Tau, phosphorylated tau (pTau), ubiquitin, 4-hydroxynonenal (HNE), transforming growth factor-beta 1 (TGF-β1) and its receptor (TGF-β1R), brain-derived neurotrophic factor (BDNF), nerve growth factor, neurotrophin-3, neurotrophin-4, tropomyosin receptor kinase, and insulin and insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2) and their receptors by direct-binding enzyme-linked immunosorbent assay. RESULTS FTLD brains had significantly elevated pTau, ubiquitin, TGF-β1, and HNE immunoreactivity relative to control. In addition, BDNF and neurotrophin-4 were respectively reduced in BA8/9 and BA38, while neurotrophin-3 and nerve growth factor were upregulated in BA38, and tropomyosin receptor kinase was elevated in BA24. Lastly, insulin and insulin receptor expressions were elevated in the frontal lobe, IGF-1 was increased in BA24, IGF-1R was upregulated in all three brain regions, and IGF-2 receptor was reduced in BA24 and BA38. CONCLUSIONS Aberrantly increased levels of pTau, ubiquitin, HNE, and TGF-β1, marking neurodegeneration, oxidative stress, and neuroinflammation, overlap with altered expression of insulin/IGF signaling ligand and receptors in frontal and temporal lobe regions targeted by FTLD. Dysregulation of insulin-IGF signaling networks could account for brain hypometabolism and several characteristic neuropathologic features that characterize FTLD but overlap with Alzheimer's disease, Parkinson's disease, and Dementia with Lewy Body Disease.
Collapse
Affiliation(s)
- Connie J. Liou
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| | - Jean P. Vonsattel
- New York Brain Bank, Taub Institute, Columbia University, New York, NY, USA
| | - Suzanne M. de la Monte
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
48
|
Ferreira FF, Ribeiro FF, Rodrigues RS, Sebastião AM, Xapelli S. Brain-Derived Neurotrophic Factor (BDNF) Role in Cannabinoid-Mediated Neurogenesis. Front Cell Neurosci 2018; 12:441. [PMID: 30546297 PMCID: PMC6279918 DOI: 10.3389/fncel.2018.00441] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
The adult mammalian brain can produce new neurons in a process called adult neurogenesis, which occurs mainly in the subventricular zone (SVZ) and in the hippocampal dentate gyrus (DG). Brain-derived neurotrophic factor (BDNF) signaling and cannabinoid type 1 and 2 receptors (CB1R and CB2R) have been shown to independently modulate neurogenesis, but how they may interact is unknown. We now used SVZ and DG neurosphere cultures from early (P1-3) postnatal rats to study the CB1R and CB2R crosstalk with BDNF in modulating neurogenesis. BDNF promoted an increase in SVZ and DG stemness and cell proliferation, an effect blocked by a CB2R selective antagonist. CB2R selective activation promoted an increase in DG multipotency, which was inhibited by the presence of a BDNF scavenger. CB1R activation induced an increase in SVZ and DG cell proliferation, being both effects dependent on BDNF. Furthermore, SVZ and DG neuronal differentiation was facilitated by CB1R and/or CB2R activation and this effect was blocked by sequestering endogenous BDNF. Conversely, BDNF promoted neuronal differentiation, an effect abrogated in SVZ cells by CB1R or CB2R blockade while in DG cells was inhibited by CB2R blockade. We conclude that endogenous BDNF is crucial for the cannabinoid-mediated effects on SVZ and DG neurogenesis. On the other hand, cannabinoid receptor signaling is also determinant for BDNF actions upon neurogenesis. These findings provide support for an interaction between BDNF and endocannabinoid signaling to control neurogenesis at distinct levels, further contributing to highlight novel mechanisms in the emerging field of brain repair.
Collapse
Affiliation(s)
- Filipa Fiel Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Doeltgen SH, Rigney L, Cock C, Omari T. Effects of cortical anodal transcranial direct current stimulation on swallowing biomechanics. Neurogastroenterol Motil 2018; 30:e13434. [PMID: 30101445 DOI: 10.1111/nmo.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Anodal transcranial direct current stimulation (tDCS) has demonstrated effects on corticobulbar excitability and swallowing function as assessed via clinical rating scales in stroke cohorts. Biomechanical effects of anodal tDCS on swallowing remain largely unexplored. We investigated how anodal tDCS applied over the floor of mouth (FOM) representation on the primary motor cortex affects swallowing biomechanics in healthy participants. METHODS Anodal and sham tDCS were applied for 20 minutes at 1.5 mA. Corticobulbar excitability was assessed using motor evoked potentials at baseline and 0, 15, 30 and 45 minutes post-tDCS, as assessed by transcranial magnetic stimulation. Swallowing function was assessed pre- and post-tDCS using routine clinical assessments (Study 1) and pharyngeal high resolution impedance manometry (Study 2). KEY RESULTS Study 1 (n = 17) showed increased corticobulbar excitability and performance on a skilled swallowing task following anodal wetDCS, but not sham tDCS. In Study 2 (n = 10) anodal tDCS resulted in increased bolus admittance across the upper esophageal sphincter, but decreased pharyngeal and upper esophageal contractile vigor. CONCLUSIONS Clinical improvements of dietary intake are likely driven by swallowing neuroplastic reorganization which improves bolus admittance across the upper esophageal sphincter (UES). INFERENCES The documented changes make motor cortical application of anodal tDCS a promising adjunct to swallowing rehabilitation practice.
Collapse
Affiliation(s)
- Sebastian H Doeltgen
- Speech Pathology, Swallowing Neurorehabilitation Research Laboratory, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia.,Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Lakkari Rigney
- Speech Pathology, Swallowing Neurorehabilitation Research Laboratory, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Charles Cock
- Gastroenterology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Taher Omari
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
50
|
Shimizu A, Mitani T, Tanaka S, Fujii H, Maebuchi M, Amiya Y, Tanaka M, Matsui T, Nakamura S, Katayama S. Soybean-Derived Glycine-Arginine Dipeptide Administration Promotes Neurotrophic Factor Expression in the Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7935-7941. [PMID: 29985005 DOI: 10.1021/acs.jafc.8b01581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in cognitive abilities, including memory and learning. We demonstrated that soybean protein hydrolysate (SPH) diet suppresses age-related cognitive decline via the upregulation of BDNF in a mouse model of senescence. Our purpose was to identify novel bioactive peptides in SPH, which enhance BDNF expression. We treated mouse primary astrocytes with SPH as well as with its positively charged chromatographic fraction. Significant increases in the expression of BDNF were observed in the treatment with positively charged fraction of SPH. Among the synthesized peptides, the dipeptide glycine-arginine (GR) increased BDNF expression in vitro, and LC-TOF-MS analysis showed the presence of GR in the SPH. Furthermore, its administration in vivo increased the expression of BDNF in the cerebral cortex and the number of neurons in hippocampus and cerebral cortex. These data indicate that GR might promote neurogenesis by upregulating BDNF levels.
Collapse
Affiliation(s)
- Ayano Shimizu
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Takakazu Mitani
- Interdisciplinary Cluster for Cutting Edge Research (ICCER) , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Sachi Tanaka
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Hiroshi Fujii
- Interdisciplinary Cluster for Cutting Edge Research (ICCER) , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Motohiro Maebuchi
- Research Institute for Creating the Future , Fuji Oil Holdings Inc. , 4-3, Kinunodai , Tsukuba , Ibaraki 300-2497 , Japan
| | - Yusuke Amiya
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture , Graduate School, Kyushu University , 744, Motooka , Nishi-ku Fukuoka 819-0395 , Japan
| | - Mitsuru Tanaka
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture , Graduate School, Kyushu University , 744, Motooka , Nishi-ku Fukuoka 819-0395 , Japan
| | - Toshiro Matsui
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture , Graduate School, Kyushu University , 744, Motooka , Nishi-ku Fukuoka 819-0395 , Japan
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
- Interdisciplinary Cluster for Cutting Edge Research (ICCER) , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| |
Collapse
|