1
|
Bossa R, Di Colandrea M, Salbitani G, Carfagna S. Phosphorous Utilization in Microalgae: Physiological Aspects and Applied Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2127. [PMID: 39124245 PMCID: PMC11314164 DOI: 10.3390/plants13152127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Phosphorus (P) is a fundamental element for life, playing an integral role in cellular metabolism including energy transfer, nucleic acid synthesis, and membrane structure. This nutrient is critical to the physiological ecology in all photosynthetic organisms including eukaryotic microalgae and cyanobacteria. The review, here presented, delves into the intricate mechanisms governing phosphorus acquisition from the environment, its utilization in plant metabolism, and regulation in these photosynthetic microorganisms. Furthermore, it comprehensively explores the strategies employed by microalgae to cope with phosphorus limitation, such as the activation of high-affinity phosphate transporters and the synthesis of phosphorus storage compounds. On the other hand, the ability to consume abundant phosphate makes microalgae exploitable organisms for environmental remediation processes. The knowledge synthesized in this review contributes to the broader understanding of microalgal physiology, offering insights into the ecological and biotechnological implications of phosphorus assimilation in these microorganisms.
Collapse
Affiliation(s)
| | | | - Giovanna Salbitani
- Department of Biology, University Federico II of Naples, Complesso Universitario MSA, 80126 Naples, Italy; (R.B.); (M.D.C.); (S.C.)
| | | |
Collapse
|
2
|
Vanharanta M, Santoro M, Villena-Alemany C, Piiparinen J, Piwosz K, Grossart HP, Labrenz M, Spilling K. Microbial remineralization processes during postspring-bloom with excess phosphate available in the northern Baltic Sea. FEMS Microbiol Ecol 2024; 100:fiae103. [PMID: 39039015 DOI: 10.1093/femsec/fiae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Mari Vanharanta
- Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, 10900 Hanko, Finland
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Mariano Santoro
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde - IOW, Seestrasse 15, 18119 Rostock, Germany
- Department of Plant Physiology, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237 - Opatovický mlýn, 379 01 Třeboň, Czech Republic
| | - Jonna Piiparinen
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81-332 Gdynia, Poland
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, OT Neuglobsow, 16775 Stechlin, Germany
- Institute of Biology and Biochemistry, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde - IOW, Seestrasse 15, 18119 Rostock, Germany
| | - Kristian Spilling
- Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
- Centre for Coastal Research, University of Agder, Universitetsveien 25, 4604 Kristiansand, Norway
| |
Collapse
|
3
|
Liu C, Yuan X, Li Y, Yang Z. Hydrophyte Debris Induced Sedimentary Phosphorus Release in Tuojiang Rivers, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:103. [PMID: 37284960 DOI: 10.1007/s00128-023-03744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
Hydrophyte debris decomposition may contribute to phosphorus (P) release from the sediments in riverine systems, but the transport and transformation of organic phosphorus during this process has not been studied well. Here, a ubiquitous hydrophyte in southern China (Alternanthera philoxeroides, A. philoxeroides) was selected to identify the processes and mechanisms of sedimentary P release in late autumn or early spring by laboratory incubation. The results showed that the physio-chemical interactions changed quickly during the beginning of the incubation, where the redox potential and dissolved oxygen at the water-sediment interface decreased rapidly, reaching reducing (299 mV) and anoxic (0.23 mg∙L-1) conditions, respectively. Soluble reactive P, dissolved total P and total P concentrations in overlying water all increased with time from 0.011, 0.025 and 0.169 mg∙L-1 to 0.100, 0.100 and 0.342 mg∙L-1 on average, respectively. Furthermore, the decomposition of A. philoxeroides induced sedimentary organic P release to overlying water, including phosphate monoester (Mono-P), and orthophosphate diesters (Diesters-P). The proportions of Mono-P and Diesters-P were higher at 3 to 9 days than at 11 to 34 days, being 29.4% and 23.3 for Mono-P, 6.3% and 5.7% for Diesters-P, respectively. Orthophosphate (Ortho-P) increased from 63.6 to 69.7% during these timeframes, which indicated the transformations of both Mono-P and Diester-P to bio-available orthophosphate (Ortho-P), causing the rising P concentration in the overlying water. Our results revealed that hydrophyte debris decomposition in river systems might lead to autochthonous P contribution even without external P import from the watershed, accelerating the trophic state of receiving waterbodies.
Collapse
Affiliation(s)
- Changling Liu
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, China.
- Sichuan Municipal Water Environment Treatment Engineering Technology Research Center, Chengdu, 611130, China.
| | - Xianfan Yuan
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
- Sichuan Municipal Water Environment Treatment Engineering Technology Research Center, Chengdu, 611130, China
| | - Yuqiong Li
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, China
| | - Zhong Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, China
| |
Collapse
|
4
|
Abad N, Uranga A, Ayo B, Arrieta JM, Baña Z, Azúa I, Artolozaga I, Iriberri J, González-Rojí SJ, Unanue M. Kinetic modulation of bacterial hydrolases by microbial community structure in coastal waters. Environ Microbiol 2023; 25:548-561. [PMID: 36478509 PMCID: PMC10108013 DOI: 10.1111/1462-2920.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In this study, we hypothesized that shifts in the kinetic parameters of extracellular hydrolytic enzymes may occur as a consequence of seasonal environmental disturbances and would reflect the level of adaptation of the bacterial community to the organic matter of the ecosystem. We measured the activities of enzymes that play a key role in the bacterial growth (leucine aminopeptidase, β- and α-glucosidases) in surface coastal waters of the Eastern Cantabrian Sea and determined their kinetic parameters by computing kinetic models of distinct complexity. Our results revealed the existence of two clearly distinct enzymatic systems operating at different substrate concentrations: a high-affinity system prevailing at low substrate concentrations and a low-affinity system characteristic of high substrate concentrations. These findings could be the result of distinct functional bacterial assemblages growing concurrently under sharp gradients of high-molecular-weight compounds. We constructed an ecological network based on contemporaneous and time-delayed correlations to explore the associations between the kinetic parameters and the environmental variables. The analysis revealed that the recurring phytoplankton blooms registered throughout the seasonal cycle trigger the wax and wane of those members of the bacterial community able to synthesize and secrete specific enzymes.
Collapse
Affiliation(s)
- Naiara Abad
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Alava, Spain
| | - Ainhoa Uranga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña Ayo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Jesús Maria Arrieta
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz, Spain
| | - Zuriñe Baña
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Iñigo Azúa
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Itxaso Artolozaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Iriberri
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Santos J González-Rojí
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
- Climate and Environmental Physics (CEP), University of Bern, Bern, Switzerland
| | - Marian Unanue
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
5
|
Zaidi S, Aswal M, Kumar M, Rashid F, Khan AU. Protein expression profiling, in silico classification and pathway analysis of cariogenic bacteria Streptococcus mutans under bacitracin stress conditions. J Med Microbiol 2022; 71. [PMID: 36040855 DOI: 10.1099/jmm.0.001572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Streptococcus mutans is a cariogenic bacterium that causes dental caries as well as being implicated in other dental pathologies and infective endocarditis. Bacitracin is a bactericidal antibiotic that induces cell wall stress in Gram-positive bacteria.Gap Statement. S. mutans is among the most characterized Gram-positive bacteria. However, the transcriptome and proteome of S. mutans have received less attention, and they are actually key in understanding the pathogenesis of any bacteria. In this study, we extracted the whole proteome of S. mutans grown under bacitracin stress. Such a proteome is anticipated to offer deep insights related to physiological dynamic fluctuations and, consequently, it may provide 'proteomic signatures' to be identified as potential targets.Aim. The aim of the study is to explore the general stress response that S. mutans exhibits at the proteome level when cell wall stress is imposed on it.Methodology. A sub-MIC concentration of bacitracin was added to the growth media of S. mutans followed by whole-cell protein extraction. The proteome was then subjected to high-throughput proteomics analysis, i.e. liquid chromatography tandem mass spectrometry (LC-MS/MS). Differentially expressed proteins obtained through LC-MS/MS underwent analyses such as gene ontology, KEGG (Kyoto Encyclopaedia of Genes and Genomes) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analysis, and STRING for functional annotation, pathway enrichment and protein-protein interaction (PPI) networks, respectively. These proteins were also categorized into functional classes using the PANTHER (Protein Annotation Through Evolutionary Relationship) classification system.Result. LC-MS/MS produced data from 321 identified proteins. From these, 41 and 30 were found to be significantly over- (≥2 fold change) and underexpressed (≤0.4 fold change), respectively. In the upregulated proteins we mostly observed sortases and proteins involved in the EPS biosynthesis pathway, whereas among the downregulated proteins the majority related to glycolysis.Conclusion. The sortase family of proteins appear to be potential targets because they regulate various virulence factors and therefore can be targeted to inhibit multiple virulence pathways simultaneously. This study offers an understanding of proteomic fluctuations in response to cell wall stress and can thus help in identifying key players mediating virulence.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Manisha Aswal
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Faraz Rashid
- Henry Ford Health System, Detroit, MI 48202, USA
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
6
|
Martínez-García S, Bunse C, Pontiller B, Baltar F, Israelsson S, Fridolfsson E, Lindh MV, Lundin D, Legrand C, Pinhassi J. Seasonal Dynamics in Carbon Cycling of Marine Bacterioplankton Are Lifestyle Dependent. Front Microbiol 2022; 13:834675. [PMID: 36212867 PMCID: PMC9533715 DOI: 10.3389/fmicb.2022.834675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Although free-living (FL) and particle-attached (PA) bacteria are recognized as ecologically distinct compartments of marine microbial food-webs, few, if any, studies have determined their dynamics in abundance, function (production, respiration and substrate utilization) and taxonomy over a yearly cycle. In the Baltic Sea, abundance and production of PA bacteria (defined as the size-fraction >3.0 μm) peaked over 3 months in summer (6 months for FL bacteria), largely coinciding with blooms of Chitinophagales (Bacteroidetes). Pronounced changes in the growth efficiency (range 0.05–0.27) of FL bacteria (defined as the size-fraction <3.0 μm) indicated the magnitude of seasonal variability of ecological settings bacteria experience. Accordingly, 16S rRNA gene analyses of bacterial community composition uncovered distinct correlations between taxa, environmental variables and metabolisms, including Firmicutes associated with elevated hydrolytic enzyme activity in winter and Verrucomicrobia with utilization of algal-derived substrates during summer. Further, our results suggested a substrate-controlled succession in the PA fraction, from Bacteroidetes using polymers to Actinobacteria and Betaproteobacteria using monomers across the spring to autumn phytoplankton bloom transition. Collectively, our findings emphasize pronounced seasonal changes in both the composition of the bacterial community in the PA and FL size-fractions and their contribution to organic matter utilization and carbon cycling. This is important for interpreting microbial ecosystem function-responses to natural and human-induced environmental changes.
Collapse
Affiliation(s)
- Sandra Martínez-García
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Pontevedra, Spain
- *Correspondence: Sandra Martínez-García,
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Institute for the Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Stina Israelsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Markus V. Lindh
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
7
|
Kumar V, Sarma VV, Thambugala KM, Huang JJ, Li XY, Hao GF. Ecology and Evolution of Marine Fungi With Their Adaptation to Climate Change. Front Microbiol 2021; 12:719000. [PMID: 34512597 PMCID: PMC8430337 DOI: 10.3389/fmicb.2021.719000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change agitates interactions between organisms and the environment and forces them to adapt, migrate, get replaced by others, or extinct. Marine environments are extremely sensitive to climate change that influences their ecological functions and microbial community including fungi. Fungi from marine habitats are engaged and adapted to perform diverse ecological functions in marine environments. Several studies focus on how complex interactions with the surrounding environment affect fungal evolution and their adaptation. However, a review addressing the adaptation of marine fungi to climate change is still lacking. Here we have discussed the adaptations of fungi in the marine environment with an example of Hortaea werneckii and Aspergillus terreus which may help to reduce the risk of climate change impacts on marine environments and organisms. We address the ecology and evolution of marine fungi and the effects of climate change on them to explain the adaptation mechanism. A review of marine fungal adaptations will show widespread effects on evolutionary biology and the mechanism responsible for it.
Collapse
Affiliation(s)
- Vinit Kumar
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | | | - Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jun-Jie Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang-Yang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Wang C, Baseler S, Lin S. Glycerol Utilization By Phytoplankton 1. JOURNAL OF PHYCOLOGY 2020; 56:1157-1167. [PMID: 32452560 DOI: 10.1111/jpy.13031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic carbon (DOC) is an important source of carbon and energy for microbes, but whether it can be used by phytoplankton has not been systematically studied, and the underlying molecular metabolism remains poorly understood. Here, we investigated the ability of phytoplankton to utilize glycerol as a representative of DOC. The widespread presence and expression of glycerol transporter genes were found in transcriptomes and genomes, suggesting the glycerol utilization potential in the diverse marine phytoplankton. We surveyed 29 representative phytoplankton species (31 strains) from six phyla for their ability to use glycerol. Three types of responses were found: positive utilization (Type I), no response (Type II), and negative response (Type III). In all, 11 Type I species were further investigated in axenic cultures with different glycerol concentrations, and five species showed intrinsic glycerol utilizing ability without the aid of bacteria. The ability of species to use glycerol to support non-photosynthetic (DCMU treated) growth was consistent with their possession and expression of glycerol transporter genes. However, some species from the Type II and Type III also possess and express the genes, raising a question whether glycerol transporter in algae might have diversified its function to glycerol export or even non-glycerol transport. Our results show that glycerol could serve as organic carbon source, harmless xenobiotics, or growth inhibitors for phytoplankton depending on species, indicating that glycerol, including natural sources or human discharges, may shape the marine phytoplankton community structure, especially under low photosynthetic efficiency conditions.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Sarah Baseler
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
9
|
Lavrentyeva EV, Erdyneeva EB, Dunaevskii YE, Boltyanskaya YV, Kevbrin VV. Peptidase Activity of Proteinivorax Bacteria and Their Possible Ecological Role in the Microbial Communities of Tanatar Soda Lakes (Altai Krai, Russia). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Pastor A, Freixa A, Skovsholt LJ, Wu N, Romaní AM, Riis T. Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls. MICROBIAL ECOLOGY 2019; 78:539-554. [PMID: 30739147 DOI: 10.1007/s00248-019-01330-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
In the Arctic, climate changes contribute to enhanced mobilization of organic matter in streams. Microbial extracellular enzymes are important mediators of stream organic matter processing, but limited information is available on enzyme processes in this remote area. Here, we studied the variability of microbial extracellular enzyme activity in high-Arctic fluvial biofilms. We evaluated 12 stream reaches in Northeast Greenland draining areas exhibiting different geomorphological features with contrasting contents of soil organic matter to cover a wide range of environmental conditions. We determined stream nitrogen, phosphorus, and dissolved organic carbon concentrations, quantified algal biomass and bacterial density, and characterized the extracellular enzyme activities involved in catalyzing the cleavage of a range of organic matter compounds (e.g., β-glucosidase, phosphatase, β-xylosidase, cellobiohydrolase, and phenol oxidase). We found significant differences in microbial organic matter utilization among the study streams draining contrasting geomorphological features, indicating a strong coupling between terrestrial and stream ecosystems. Phosphatase and phenol oxidase activities were higher in solifluction areas than in alluvial areas. Besides dissolved organic carbon, nitrogen availability was the main driver controlling enzyme activities in the high-Arctic, which suggests enhanced organic matter mineralization at increased nutrient availability. Overall, our study provides novel information on the controls of organic matter usage by high-Arctic stream biofilms, which is of high relevance due to the predicted increase of nutrient availability in high-Arctic streams in global climate change scenarios.
Collapse
Affiliation(s)
- Ada Pastor
- Department of Bioscience, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA), Girona, Spain
| | - Louis J Skovsholt
- Department of Bioscience, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - Naicheng Wu
- Department of Bioscience, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Anna M Romaní
- Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Tenna Riis
- Department of Bioscience, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| |
Collapse
|
11
|
Patel D, Gismondi R, Alsaffar A, Tiquia-Arashiro SM. Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments. ENVIRONMENTAL TECHNOLOGY 2019; 40:3227-3239. [PMID: 29683032 DOI: 10.1080/09593330.2018.1468492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Waters draining into a lake carry with them much of the suspended sediment that is transported by rivers and streams from the local drainage basin. The organic matter processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and evaluate some of these variabilities in the sediments, we sampled six sites: three from the St. Clair River and three from Lake St. Clair in spring, summer, fall, and winter of 2016. At all sites and dates, we investigated the spatial and temporal variations in 19 extracellular enzyme activities using API ZYM. Our results indicated that a broad range of enzymes were found to be active in the sediments. Phosphatases, lipases, and esterases were synthesized most intensively by the sediment microbial communities. No consistent difference was found between the lake and sediment samples. Differences were more obvious between sites and seasons. Sites with the highest metabolic (enzyme) diversity reflected the capacity of the sediment microbial communities to breakdown a broader range of substrates and may be linked to differences in river and lake water quality. The seasonal variability of the enzymes activities was governed by the variations of environmental factors caused by anthropogenic and terrestrial inputs, and provides information for a better understanding of the dynamics of sediment organic matter of the river and lake ecosystems. The experimental results suggest that API ZYM is a simple and rapid enzyme assay procedure to evaluate natural processes in ecosystems and their changes.
Collapse
Affiliation(s)
- Drashti Patel
- Department of Natural Sciences, University of Michigan-Dearborn , Dearborn , MI , USA
| | - Renee Gismondi
- Department of Natural Sciences, University of Michigan-Dearborn , Dearborn , MI , USA
| | - Ali Alsaffar
- Department of Natural Sciences, University of Michigan-Dearborn , Dearborn , MI , USA
| | | |
Collapse
|
12
|
Karrasch B, Horovitz O, Norf H, Hillel N, Hadas O, Beeri-Shlevin Y, Laronne JB. Quantitative ecotoxicological impacts of sewage treatment plant effluents on plankton productivity and assimilative capacity of rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24034-24049. [PMID: 31228068 DOI: 10.1007/s11356-019-04940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Sewage treatment plants are sources of inorganic and organic matter as well as contaminants for the receiving watercourses. We analyzed the ecological consequences of such effluents by following a holistic and synecological ecotoxicological approach based on quantifying extracellular enzyme activities (EEA), primary production and bacterial cell, and biomass production rates. Samples were obtained at three locations at the Rivers Holtemme and Elbe, Germany and Lower Jordan River, Israel and West Bank, as well as from their adjacent sewage treatment plants. Blending river samples with sewage treatment plant effluents mainly resulted in a stimulation of EEAs, which was diminished in blends with 0.2-μm filtered sewage treatment plant effluents. Stimulation for primary production and bacterial cell and biomass production of River Holtemme and Elbe samples was observed, and inhibition of these rates for Lower Jordan River samples probably linked to generally high turbidity. The quantified bacterial biomass versus cell production rates showed almost unbalanced (≫ 1) growth. Very high biomass to cell production ratios were found for sewage and sewage-containing samples, which provides a semi-quantitative indicator function for high quantities of microbial easy utilizable dissolved organic matter as nutrition source. The presented approach enables the simultaneous quantification of inhibitory and stimulating toxic responses as well as supplying ecosystem-based data for policy decision-making, and for direct incorporation in models to derive management and remediation strategies.
Collapse
Affiliation(s)
- Bernhard Karrasch
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brückstraße 3a, 39114, Magdeburg, Germany.
| | - Omer Horovitz
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Helge Norf
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brückstraße 3a, 39114, Magdeburg, Germany
| | - Noa Hillel
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Ora Hadas
- Yigal Alon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O.B. 447, 14950, Migdal, Israel
| | - Yaron Beeri-Shlevin
- Yigal Alon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O.B. 447, 14950, Migdal, Israel
| | - Jonathan B Laronne
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, 8410501, Beer Sheva, Israel
| |
Collapse
|
13
|
Nguyen TTH, Myrold DD, Mueller RS. Distributions of Extracellular Peptidases Across Prokaryotic Genomes Reflect Phylogeny and Habitat. Front Microbiol 2019; 10:413. [PMID: 30891022 PMCID: PMC6411800 DOI: 10.3389/fmicb.2019.00413] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Proteinaceous compounds are abundant forms of organic nitrogen in soil and aquatic ecosystems, and the rate of protein depolymerization, which is accomplished by a diverse range of microbial secreted peptidases, often limits nitrogen turnover in the environment. To determine if the distribution of secreted peptidases reflects the ecological and evolutionary histories of different taxa, we analyzed their distribution across prokaryotic lineages. Peptidase gene sequences of 147 archaeal and 2,191 bacterial genomes from the MEROPS database were screened for secretion signals, resulting in 55,072 secreted peptidases belonging to 148 peptidase families. These data, along with their corresponding 16S rRNA sequences, were used in our analysis. Overall, Bacteria had a much wider collection of secreted peptidases, higher average numbers of secreted peptidases per genome, and more unique peptidase families than Archaea. We found that the distribution of secreted peptidases corresponded to phylogenetic relationships among Bacteria and Archaea and often segregated according to microbial lifestyles, suggesting that the secreted peptidase complements of microbial taxa are optimized for the environmental microhabitats they occupy. Our analyses provide the groundwork for examining the specific functional role of families of secreted peptidases in relationship to the organisms and the corresponding environments in which they function.
Collapse
Affiliation(s)
- Trang T. H. Nguyen
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - David D. Myrold
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Dang C, Morrissey EM, Neubauer SC, Franklin RB. Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands. GLOBAL CHANGE BIOLOGY 2019; 25:549-561. [PMID: 30537235 DOI: 10.1111/gcb.14486] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
Sea level rise and changes in precipitation can cause saltwater intrusion into historically freshwater wetlands, leading to shifts in microbial metabolism that alter greenhouse gas emissions and soil carbon sequestration. Saltwater intrusion modifies soil physicochemistry and can immediately affect microbial metabolism, but further alterations to biogeochemical processing can occur over time as microbial communities adapt to the changed environmental conditions. To assess temporal changes in microbial community composition and biogeochemical activity due to saltwater intrusion, soil cores were transplanted from a tidal freshwater marsh to a downstream mesohaline marsh and periodically sampled over 1 year. This experimental saltwater intrusion produced immediate changes in carbon mineralization rates, whereas shifts in the community composition developed more gradually. Salinity affected the composition of the prokaryotic community but did not exert a strong influence on the community composition of fungi. After only 1 week of saltwater exposure, carbon dioxide production doubled and methane production decreased by three orders of magnitude. By 1 month, carbon dioxide production in the transplant was comparable to the saltwater controls. Over time, we observed a partial recovery in methane production which strongly correlated with an increase in the relative abundance of three orders of hydrogenotrophic methanogens. Taken together, our results suggest that ecosystem responses to saltwater intrusion are dynamic over time as complex interactions develop between microbial communities and the soil organic carbon pool. The gradual changes in microbial community structure we observed suggest that previously freshwater wetlands may not experience an equilibration of ecosystem function until long after initial saltwater intrusion. Our results suggest that during this transitional period, likely lasting years to decades, these ecosystems may exhibit enhanced greenhouse gas production through greater soil respiration and continued methanogenesis.
Collapse
Affiliation(s)
- Chansotheary Dang
- Plant and Soil Sciences, South Agricultural Sciences Building, West Virginia University, Morgantown, West Virginia
- Department of Biology, Trani Center for Life Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ember M Morrissey
- Plant and Soil Sciences, South Agricultural Sciences Building, West Virginia University, Morgantown, West Virginia
| | - Scott C Neubauer
- Department of Biology, Trani Center for Life Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Rima B Franklin
- Department of Biology, Trani Center for Life Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Fitch A, Orland C, Willer D, Emilson EJS, Tanentzap AJ. Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition. GLOBAL CHANGE BIOLOGY 2018; 24:5110-5122. [PMID: 29998600 PMCID: PMC6220883 DOI: 10.1111/gcb.14391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Boreal lakes are major components of the global carbon cycle, partly because of sediment-bound heterotrophic microorganisms that decompose within-lake and terrestrially derived organic matter (t-OM). The ability for sediment bacteria to break down and alter t-OM may depend on environmental characteristics and community composition. However, the connection between these two potential drivers of decomposition is poorly understood. We tested how bacterial activity changed along experimental gradients in the quality and quantity of t-OM inputs into littoral sediments of two small boreal lakes, a dark and a clear lake, and measured the abundance of operational taxonomic units and functional genes to identify mechanisms underlying bacterial responses. We found that bacterial production (BP) decreased across lakes with aromatic dissolved organic matter (DOM) in sediment pore water, but the process underlying this pattern differed between lakes. Bacteria in the dark lake invested in the energetically costly production of extracellular enzymes as aromatic DOM increased in availability in the sediments. By contrast, bacteria in the clear lake may have lacked the nutrients and/or genetic potential to degrade aromatic DOM and instead mineralized photo-degraded OM into CO2 . The two lakes differed in community composition, with concentrations of dissolved organic carbon and pH differentiating microbial assemblages. Furthermore, functional genes relating to t-OM degradation were relatively higher in the dark lake. Our results suggest that future changes in t-OM inputs to lake sediments will have different effects on carbon cycling depending on the potential for photo-degradation of OM and composition of resident bacterial communities.
Collapse
Affiliation(s)
- Amelia Fitch
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Chloe Orland
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - David Willer
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Erik J. S. Emilson
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Natural Resources Canada, Great Lakes Forestry CentreSault Ste. MarieOntario
| | | |
Collapse
|
16
|
Dai L, Liu C, Yu L, Song C, Peng L, Li X, Tao L, Li G. Organic Matter Regulates Ammonia-Oxidizing Bacterial and Archaeal Communities in the Surface Sediments of Ctenopharyngodon idellus Aquaculture Ponds. Front Microbiol 2018; 9:2290. [PMID: 30319588 PMCID: PMC6165866 DOI: 10.3389/fmicb.2018.02290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play important roles in nitrogen removal in aquaculture ponds, but their distribution and the environmental factors that drive their distribution are largely unknown. In this study, we collected surface sediment samples from Ctenopharyngodon idellus ponds in three different areas in China that practice aquaculture. The community structure of AOB and AOA and physicochemical characteristics in the ponds were investigated. The results showed that AOA were more abundant than AOB in all sampling ponds except one, but sediment AOB and AOA numbers varied greatly between ponds. Correlation analyses indicated a significant correlation between the abundance of AOB and arylsulfatase, as well as the abundance of AOA and total nitrogen (TN) and arylsulfatase. In addition, AOB/AOA ratio was found to be significantly correlated with the microbial biomass carbon. AOB were grouped into seven clusters affiliated to Nitrosospira and Nitrosomonas, and AOA were grouped into six clusters affiliated to Nitrososphaera, Nitrososphaera sister group, and Nitrosopumilus. AOB/AOA diversity in the surface sediments of aquaculture ponds varied according to the levels of total organic carbon (TOC), and AOB and AOA diversity was significantly correlated with arylsulfatase and β-glucosidase, respectively. The compositions of the AOB communities were also found to be significantly influenced by sediment eutrophic status (TOC and TN levels), and pH. In addition, concentrations of acid phosphatase and arylsulfatase in surface sediments were significantly correlated with the prominent bacterial amoA genotypes, and concentrations of TOC and urease were found to be significantly correlated with the prominent archaeal amoA genotype compositions. Taken together, our results indicated that AOB and AOA communities in the surface sediments of Ctenopharyngodon idellus aquaculture ponds are regulated by organic matter and its availability to the microorganisms.
Collapse
Affiliation(s)
- Lili Dai
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chengqing Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chaofeng Song
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Liang Peng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ling Tao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Gu Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
17
|
Vrba J, Macholdová M, Nedbalová L, Nedoma J, Šorf M. An Experimental Insight into Extracellular Phosphatases - Differential Induction of Cell-Specific Activity in Green Algae Cultured under Various Phosphorus Conditions. Front Microbiol 2018. [PMID: 29515551 PMCID: PMC5826342 DOI: 10.3389/fmicb.2018.00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Extracellular phosphatase activity (PA) has been used as an overall indicator of P depletion in lake phytoplankton. However, detailed insights into the mechanisms of PA regulation are still limited, especially in the case of acid phosphatases. The novel substrate ELF97 phosphate allows for tagging PA on single cells in an epifluorescence microscope. This fluorescence-labeled enzyme activity (FLEA) assay enables for autecological studies in natural phytoplankton and algal cultures. We combined the FLEA assay with image analysis to measure cell-specific acid PA in two closely related species of the genus Coccomyxa (Trebouxiophyceae, Chlorophyta) isolated from two acidic lakes with distinct P availability. The strains were cultured in a mineral medium supplied with organic (beta-glycerol phosphate) or inorganic (orthophosphate) P at three concentrations. Both strains responded to experimental conditions in a similar way, suggesting that acid extracellular phosphatases were regulated irrespectively of the origin and history of the strains. We found an increase in cell-specific PA at low P concentration and the cultures grown with organic P produced significantly higher (ca. 10-fold) PA than those cultured with the same concentrations of inorganic P. The cell-specific PA measured in the cultures grown with the lowest organic P concentration roughly corresponded to those of the original Coccomyxa population from an acidic lake with impaired P availability. The ability of Coccomyxa strains to produce extracellular phosphatases, together with tolerance for both low pH and metals can be one of the factors enabling the dominance of the genus in extreme conditions of acidic lakes. The analysis of frequency distribution of the single-cell PA documented that simple visual counting of ‘active’ (labeled) and ‘non-active’ (non-labeled) cells can lead to biased conclusions regarding algal P status because the actual PA of the ‘active’ cells can vary from negligible to very high values. The FLEA assay using image cytometry offers a strong tool in plankton ecology for exploring P metabolism.
Collapse
Affiliation(s)
- Jaroslav Vrba
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia.,Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Markéta Macholdová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Nedoma
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Michal Šorf
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia.,Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University, Brno, Czechia
| |
Collapse
|
18
|
Liu Q, Fang J, Li J, Zhang L, Xie BB, Chen XL, Zhang YZ. Depth-Resolved Variations of Cultivable Bacteria and Their Extracellular Enzymes in the Water Column of the New Britain Trench. Front Microbiol 2018; 9:135. [PMID: 29467744 PMCID: PMC5808245 DOI: 10.3389/fmicb.2018.00135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/22/2018] [Indexed: 01/26/2023] Open
Abstract
Marine microorganisms and their extracellular enzymes (ECEs) play an important role in the remineralization of organic material by hydrolyzing high-molecular-weight substrates to sizes sufficiently small to be transported through cell membrane, yet the diversity of the enzyme-producing bacteria and the types of ECEs involved in the degradation process are largely unknown. In this work, we investigated the diversity of cultivable bacteria and their ECEs and the potential activities of aminopeptidase in the water column at eight different depths of the New Britain Trench. There was a great diversity of cultivable bacteria and ECEs, and depth appears an important driver of the diversity. The 16S rRNA sequence analysis revealed that the cultivable bacteria were affiliated mostly with the phyla Proteobacteria and Actinobacteria, and the predominant genera were Pseudoalteromonas (62.7%) and Halomonas (17.3%). Moreover, 70.7% of the isolates were found to produce hydrolytic zone on casein and gelatin plates, in which Pseudoalteromonas was the predominant group, exhibiting relatively high protease production. Inhibitor analysis showed that the extracellular proteases from the isolated bacteria were serine proteases in the surface water and metalloproteases in the deep water. Meanwhile, the Vmax and Km of aminopeptidase exhibited a maximum in the surface water and low values in the deep bathy- and abyssopelagic water, indicating lower rates of hydrolysis and higher substrate affinity in the deeper waters. These results shed new insights into the diversity of the cultivable bacteria and bacterial ECEs and their likely biogeochemical functions in the trench environment.
Collapse
Affiliation(s)
- Qianfeng Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Jiasong Fang
- Hadal Science and Technology Research Center, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, United States
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Geological Process and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| |
Collapse
|
19
|
Zhao B, Xing P, Wu QL. Microbes participated in macrophyte leaf litters decomposition in freshwater habitat. FEMS Microbiol Ecol 2018; 93:4103542. [PMID: 28961908 DOI: 10.1093/femsec/fix108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/01/2017] [Indexed: 11/14/2022] Open
Abstract
Knowledge of aquatic microbes involved in macrophyte leaf litter decomposition is still scarce in freshwater lakes. In situ experiments (150 days) were conducted to study the decomposition processes of macrophyte leaf litters: Zizania latifolia (Zl), Hydrilla verticillata (Hv) and Nymphoides peltata (Np). The decomposition of Np leaf litter was fastest, whereas Zl was slowest. The alpha diversity of both bacterial and fungal communities significantly increased, and their community structures showed significant variations over time. For bacteria, the relative abundance of Gammaproteobacteria decreased, whereas that of Firmicutes, Betaproteobacteria, Deltaproteobacteria and Alphaproteobacteria increased. The dominant fungal phylum Cryptomycota increased significantly in all of the three macrophytes. Both bacteria and fungi were significantly correlated with the dynamics of total phosphorous in the water and the carbon content of the leaf litters. The dynamics of nitrogen content, phosphorous content and N/P ratio of the leaf litters have more influences on fungal communities than on bacteria. In addition, cellulase and xylanase activities were significantly correlated with bacterial and fungal communities, respectively, thereby reflecting the niches differentiation and cooperation between bacteria and fungi on litter decomposition. This work contributes to the understanding of microbially involved carbon and nutrient cycling in macrophyte-dominated freshwater ecosystems.
Collapse
Affiliation(s)
- Biying Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100039, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
20
|
Yuan Y, Bi Y, Hu Z. Phytoplankton communities determine the spatio-temporal heterogeneity of alkaline phosphatase activity: evidence from a tributary of the Three Gorges Reservoir. Sci Rep 2017; 7:16404. [PMID: 29180646 PMCID: PMC5703846 DOI: 10.1038/s41598-017-16740-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
In order to reveal the role of phytoplankton in the spatio-temporal distribution of alkaline phosphatase activity (APA), monthly investigations were conducted in the Xiaojiang River, a tributary of the Three Gorges Reservoir in China. Different APA fractions, environmental parameters, and phytoplankton communities were followed. High spatio-temporal variations of APA were observed, with the highest value in summer and the lowest in winter. The annual average APAT (total alkaline phosphatase activity) ranged from 7.78-14.03 nmol∙L-1∙min-1 with the highest in the midstream and the lowest in the estuary. The dominant phytoplankton phyla in summer and winter were Cyanophyta and Bacillariophyta, respectively. The mean cell density in the midstream and in the estuary was 5.2 × 107 cell∙L-1 and 1.4 × 107 cell∙L-1, respectively. That APA>3.0 μm was significantly higher than APA0.45-3 μm indicating phytoplankton was the main contributor to alkaline phosphatase. Correlation analysis indicated the dominant species and cell density could determine the distribution pattern of APA. Turbidity, total phosphorus, chemical oxygen demand, water temperature (WT), pH and chlorophyll a were proved to be positively correlated with APA; soluble reactive phosphorus, conductivity, transparency and water level(WL) were negatively correlated with APA. It was concluded that spatio-temporal heterogeneity of APA determined by phytoplankton communities was related to WT and WL.
Collapse
Affiliation(s)
- Yijun Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
- Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 330013, Nanchang, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
| | - Zhengyu Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| |
Collapse
|
21
|
Ayo B, Abad N, Artolozaga I, Azua I, Baña Z, Unanue M, Gasol JM, Duarte CM, Iriberri J. Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities. GLOBAL CHANGE BIOLOGY 2017; 23:4084-4093. [PMID: 28593723 DOI: 10.1111/gcb.13779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature dependence has not yet been evaluated. Here, we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular β-glucosidase (βG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen, and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with βG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication.
Collapse
Affiliation(s)
- Begoña Ayo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa-Bizkaia, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia-Bizkaia, Spain
| | - Naiara Abad
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa-Bizkaia, Spain
| | - Itxaso Artolozaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa-Bizkaia, Spain
| | - Iñigo Azua
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa-Bizkaia, Spain
| | - Zuriñe Baña
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa-Bizkaia, Spain
| | - Marian Unanue
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa-Bizkaia, Spain
| | - Josep M Gasol
- Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Carlos M Duarte
- Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Esporles, Spain
- Biological and Environmental Science & Engineering Division, Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan Iriberri
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa-Bizkaia, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia-Bizkaia, Spain
| |
Collapse
|
22
|
Extracellular enzymatic activity of two hydrolases in wastewater treatment for biological nutrient removal. Appl Microbiol Biotechnol 2017; 101:7385-7396. [PMID: 28782075 DOI: 10.1007/s00253-017-8423-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/21/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Due to the complex nature of the wastewater (both domestic and non-domestic) composition, biological processes are widely used to remove nutrients, such as carbon (C), nitrogen (N), and phosphorous (P), which cause instability and hence contribute to the damage of water bodies. Systems with different configurations have been developed (including anaerobic, anoxic, and aerobic conditions) for the joint removal of carbon, nitrogen, and phosphorus. The goal of this research is to evaluate the extracellular activity of β-glucosidase and phosphatase enzymes in a University of Cape Town (UCT) system fed with two synthetic wastewaters of different molecular complexity. Both types of waters have medium strength characteristics similar to those of domestic wastewater with a mean C/N/P ratio of 100:13:1. The operation parameters were hydraulic retention time (HRT) of 10 h, solid retention time (SRT) of 12 days, mean concentration of the influent in terms of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) of 600, 80, and 6 mg/L, respectively. According to the results obtained, statistically significant differences have been found in the extracellular enzyme activities with the evaluated wastewaters and in the units comprising the treatment system in some of the cases. An analysis of principal components showed that the extracellular enzymatic activity has been correlated to nutrient concentration in wastewater, biomass concentration in the system, and metabolic conditions of treatment phases. Additionally, this research has allowed determining an inverse relationship between wastewater biodegradability and the extracellular enzyme activity of β-glucosidase and phosphatase. These results highlight the importance of including the analysis of biomass biochemical characteristics as control methods in wastewater treatment systems for the nutrient removal.
Collapse
|
23
|
Ghosh S, Ayayee PA, Valverde-Barrantes OJ, Blackwood CB, Royer TV, Leff LG. Initial nitrogen enrichment conditions determines variations in nitrogen substrate utilization by heterotrophic bacterial isolates. BMC Microbiol 2017; 17:87. [PMID: 28376715 PMCID: PMC5381026 DOI: 10.1186/s12866-017-0993-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023] Open
Abstract
Background The nitrogen (N) cycle consists of complex microbe-mediated transformations driven by a variety of factors, including diversity and concentrations of N compounds. In this study, we examined taxonomic diversity and N substrate utilization by heterotrophic bacteria isolated from streams under complex and simple N-enrichment conditions. Results Diversity estimates differed among isolates from the enrichments, but no significant composition were detected. Substrate utilization and substrate range of bacterial assemblages differed within and among enrichments types, and not simply between simple and complex N-enrichments. Conclusions N substrate use patterns differed between isolates from some complex and simple N-enrichments while others were unexpectedly similar. Taxonomic composition of isolates did not differ among enrichments and was unrelated to N use suggesting strong functional redundancy. Ultimately, our results imply that the available N pool influences physiology and selects for bacteria with various abilities that are unrelated to their taxonomic affiliation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0993-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suchismita Ghosh
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Paul A Ayayee
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| | - Oscar J Valverde-Barrantes
- International Center for Tropical Botany (ICTB), Florida International University, Miami, FL, 33199, USA
| | | | - Todd V Royer
- School of Public and Environmental Affairs, Indiana University, Bloomington, Bloomington, IN, 47405, USA
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
24
|
Błaszczyk L, Basińska-Barczak A, Ćwiek-Kupczyńska H, Gromadzka K, Popiel D, Stępień Ł. Suppressive Effect of Trichoderma spp. on Toxigenic Fusarium Species. Pol J Microbiol 2017; 66:85-100. [DOI: 10.5604/17331331.1234996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to examine the abilities of twenty-four isolates belonging to ten different Trichoderma species (i.e., Trichoderma atroviride, Trichoderma citrinoviride, Trichoderma cremeum, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningiopsis, Trichoderma longibrachiatum, Trichoderma longipile, Trichoderma viride and Trichoderma viridescens) to inhibit the mycelial growth and mycotoxin production by five Fusarium strains (i.e., Fusarium avenaceum, Fusarium cerealis, Fusarium culmorum, Fusarium graminearum and Fusarium temperatum). Dual-culture bioassay on potato dextrose agar (PDA) medium clearly documented that all of the Trichoderma strains used in the study were capable of influencing the mycelial growth of at least four of all five Fusarium species on the fourth day after co-inoculation, when there was the first apparent physical contact between antagonist and pathogen. The qualitative evaluation of the interaction between the colonies after 14 days of co-culturing on PDA medium showed that ten Trichoderma strains completely overgrew and sporulated on the colony at least one of the tested Fusarium species. Whereas, the microscopic assay provided evidence that only T. atroviride AN240 and T. viride AN255 formed dense coils around the hyphae of the pathogen from where penetration took place. Of all screened Trichoderma strains, T. atroviride AN240 was also found to be the most efficient (69–100% toxin reduction) suppressors of mycotoxins (deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, zearalenone, beauvericin, moniliformin) production by all five Fusarium species on solid substrates. This research suggests that T. atroviride AN240 can be a promising candidate for the biological control of toxigenic Fusarium species.
Collapse
|
25
|
A glimpse of the diversity of complex polysaccharide-degrading culturable bacteria from Kongsfjorden, Arctic Ocean. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-016-1252-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Baltar F, Lundin D, Palovaara J, Lekunberri I, Reinthaler T, Herndl GJ, Pinhassi J. Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO 2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic. Front Microbiol 2016; 7:1670. [PMID: 27818655 PMCID: PMC5073097 DOI: 10.3389/fmicb.2016.01670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023] Open
Abstract
To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates-assumed to be related to autotrophic metabolisms-were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.
Collapse
Affiliation(s)
- Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
- Department of Marine Sciences, University of OtagoDunedin, New Zealand
- National Institute of Water and Atmospheric Research (NIWA)/University of Otago Research Centre for OceanographyDunedin, New Zealand
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
| | - Joakim Palovaara
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
| | - Itziar Lekunberri
- Division of Bio-Oceanography, Department of Limnology and Oceanography, University of ViennaVienna, Austria
- Institut Català de Recerca de l'AiguaGirona, Spain
| | - Thomas Reinthaler
- Division of Bio-Oceanography, Department of Limnology and Oceanography, University of ViennaVienna, Austria
| | - Gerhard J. Herndl
- Division of Bio-Oceanography, Department of Limnology and Oceanography, University of ViennaVienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht UniversityDen Burg, Netherlands
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
| |
Collapse
|
27
|
Baker LJ, Alegado RA, Kemp PF. Response of diatom-associated bacteria to host growth state, nutrient concentrations, and viral host infection in a model system. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:917-927. [PMID: 27558069 DOI: 10.1111/1758-2229.12456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Diatoms are photosynthetic unicellular eukaryotes found ubiquitously in aquatic systems. Frequent physical associations with other microorganisms such as bacteria may influence diatom fitness. The predictability of bacterial-diatom interactions is hypothesized to depend on availability of nutrients as well as the physiological state of the host. Biotic and abiotic factors such as nutrient levels, host growth stage and host viral infection were manipulated to determine their effect on the ecological succession of bacterial communities associated with a single cell line of Chaetoceros sp. KBDT20; this was assessed using the relative abundance of bacterial phylotypes based on 16S rDNA sequences. A single bacterial family, Alteromonadaceae, dominated the attached-bacterial community (84.0%), with the most prevalent phylotypes belonging to the Alteromonas and Marinobacter genera. The taxa comprising the other 16% of the attached bacterial assemblage include Alphaproteobacteria, Betaproteobacteria, Bacilli, Deltaproteobacteria, other Gammaproteobacteria and Flavobacteria. Nutrient concentration and host growth stage had a statistically significant effect on the phylogenetic composition of the attached bacteria. It was inferred that interactions between attached bacteria, as well as the inherent stochasticity mediating contact may also contribute to diatom-bacterial associations.
Collapse
Affiliation(s)
- Lydia J Baker
- Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Rosanna A Alegado
- Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Paul F Kemp
- Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, USA
| |
Collapse
|
28
|
Fenoy E, Casas JJ, Díaz-López M, Rubio J, Guil-Guerrero JL, Moyano-López FJ. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol Ecol 2016; 92:fiw169. [PMID: 27515735 DOI: 10.1093/femsec/fiw169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 11/13/2022] Open
Abstract
Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition.
Collapse
Affiliation(s)
- Encarnación Fenoy
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - J Jesús Casas
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain Andalusian Centre for the Evaluation and Monitoring of Global Change, CAESCG, 04120 Almería, Spain
| | - Manuel Díaz-López
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Juan Rubio
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - J Luís Guil-Guerrero
- Department of Agronomy, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Francisco J Moyano-López
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
29
|
Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition. Oecologia 2016; 182:559-71. [DOI: 10.1007/s00442-016-3677-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
|
30
|
Kreutz JA, Böckenhüser I, Wacht M, Fischer K. A 1-year study of the activities of seven hydrolases in a communal wastewater treatment plant: trends and correlations. Appl Microbiol Biotechnol 2016; 100:6903-6915. [DOI: 10.1007/s00253-016-7540-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 11/28/2022]
|
31
|
Tsuboi S, Yamamura S, Imai A, Iwasaki K. Unexpected Diversity of pepA Genes Encoding Leucine Aminopeptidases in Sediments from a Freshwater Lake. Microbes Environ 2016; 31:49-55. [PMID: 26936797 PMCID: PMC4791116 DOI: 10.1264/jsme2.me15117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We herein designed novel PCR primers for universal detection of the pepA gene, which encodes the representative leucine aminopeptidase gene, and investigated the genetic characteristics and diversity of pepA genes in sediments of hypereutrophic Lake Kasumigaura, Japan. Most of the amino acid sequences deduced from the obtained clones (369 out of 370) were related to PepA-like protein sequences in the M17 family of proteins. The developed primers broadly detected pepA-like clones associated with diverse bacterial phyla—Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Acidobacteria, Actinobacteria, Aquificae, Chlamydiae, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Spirochetes as well as the archaeal phylum Thaumarchaeota, indicating that prokaryotes in aquatic environments possessing leucine aminopeptidase are more diverse than previously reported. Moreover, prokaryotes related to the obtained pepA-like clones appeared to be r- and K-strategists, which was in contrast to our previous findings showing that the neutral metalloprotease gene clones obtained were related to the r-strategist genus Bacillus. Our results suggest that an unprecedented diversity of prokaryotes with a combination of different proteases participate in sedimentary proteolysis.
Collapse
Affiliation(s)
- Shun Tsuboi
- National Institute for Environmental Studies (NIES), Center for Regional Environmental Research
| | | | | | | |
Collapse
|
32
|
Jiangyu DAI, Guang GAO, Shiqiang WU, Xiufeng WU, Jie ZHOU, Wanyun XUE, Qianqian YANG, Dan CHEN. Bacterial alkaline phosphatases and affiliated encoding genes in natural waters: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.18307/2016.0601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
33
|
Wallenstein MD, Burns RG. Ecology of Extracellular Enzyme Activities and Organic Matter Degradation in Soil: A Complex Community-Driven Process. SSSA BOOK SERIES 2015. [DOI: 10.2136/sssabookser9.c2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | - Richard G. Burns
- School of Agriculture and Food Sciences; University of Queensland; Brisbane Australia
| |
Collapse
|
34
|
Oviedo-Vargas D, Royer TV. The role of dissolved organic nitrogen in a nitrate-rich agricultural stream. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:668-675. [PMID: 26023984 DOI: 10.2134/jeq2014.07.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Agricultural activities have heavily altered the nitrogen (N) cycle in stream ecosystems draining croplands, particularly in the midwestern United States. However, our knowledge about dissolved organic N (DON) biogeochemistry in agricultural ecosystems is limited. From January 2011 to June 2012, we investigated DON dynamics in an agricultural headwater stream in the midwestern United States. We quantified the contribution of DON to the total dissolved N (TDN) pool and examined the role of DON as a source of N for microbial metabolism. For this we measured N-acquiring enzyme activities (aminopeptidases) and whole-stream DON uptake through short-term releases of amino acids. To investigate potential coupling between the N and C cycles occurring via simultaneous uptake of these two elements during assimilation of amino acids, seven of the short-term releases were performed concurrently with acetate. We found minimal contribution of DON to the TDN pool in this stream as a result of high concentrations of nitrate. Acetate uptake suggested that C was a limiting factor for microbial metabolism in this stream. In contrast, we were not able to detect amino acid uptake during any of the 13 short-term releases we conducted, likely as a result of high availability of dissolved inorganic N. Aminopeptidase (AMP) activity did not reflect N demand. Large spatial variability in AMP was observed within and among sites, possibly as result of physicochemical characteristics of the sediments. In contrast to other human-dominated streams, DON appeared to play a minor role in microbial metabolic processes and contributed minimally to the N pool of the study stream.
Collapse
|
35
|
Sieczko A, Maschek M, Peduzzi P. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period. Front Microbiol 2015; 6:80. [PMID: 25741326 PMCID: PMC4330910 DOI: 10.3389/fmicb.2015.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that-in disconnected floodplain backwaters with high terrestrial input-BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM.
Collapse
Affiliation(s)
- Anna Sieczko
- Department of Limnology and Bio-Oceanography, Inland Water Microbial and Viral Ecology, University of Vienna Vienna, Austria
| | - Maria Maschek
- Department of Limnology and Bio-Oceanography, Inland Water Microbial and Viral Ecology, University of Vienna Vienna, Austria
| | - Peter Peduzzi
- Department of Limnology and Bio-Oceanography, Inland Water Microbial and Viral Ecology, University of Vienna Vienna, Austria
| |
Collapse
|
36
|
Davies CL, Surridge BWJ, Gooddy DC. Phosphate oxygen isotopes within aquatic ecosystems: global data synthesis and future research priorities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:563-575. [PMID: 25108797 DOI: 10.1016/j.scitotenv.2014.07.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
The oxygen isotope ratio of dissolved inorganic phosphate (δ(18)Op) represents a novel and potentially powerful stable isotope tracer for biogeochemical research. Analysis of δ(18)Op may offer new insights into the relative importance of different sources of phosphorus within natural ecosystems. Due to the isotope fractionations that occur alongside the metabolism of phosphorus, δ(18)Op could also be used to better understand the intracellular and extracellular reaction mechanisms that control phosphorus cycling. In this review focussed on aquatic ecosystems, we examine the theoretical basis to using stable oxygen isotopes within phosphorus research. We consider the methodological challenges involved in accurately determining δ(18)Op, given aquatic matrices in which potential sources of contaminant oxygen are ubiquitous. Finally, we synthesise the existing global data regarding δ(18)Op in aquatic ecosystems, concluding by identifying four key areas for future development of δ(18)Op research. Through this synthesis, we seek to stimulate broader interest in the use of δ(18)Op to address the significant research and management challenges that continue to surround the stewardship of phosphorus.
Collapse
Affiliation(s)
- Ceri L Davies
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Ben W J Surridge
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
37
|
Schug H, Isaacson CW, Sigg L, Ammann AA, Schirmer K. Effect of TiO2 nanoparticles and UV radiation on extracellular enzyme activity of intact heterotrophic biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11620-8. [PMID: 25208344 DOI: 10.1021/es502620e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
When introduced into the aquatic environment, TiO2 NP are likely to settle from the water column, which results in increased exposure of benthic communities. Here, we show that the activity of two extracellular enzymes of intact heterotrophic biofilms, β-glucosidase (carbon-cycling) and l-leucin aminopeptidase (nitrogen-cycling), was reduced following exposure to surface functionalized TiO2 NP and UV radiation, depending on the particles' coating. This reduction was partially linked to ROS production. Alkaline phosphatase (phosphorus-cycling) activity was not affected, however in contrast, an alkaline phosphatase isolated from E. coli was strongly inhibited at lower concentrations of TiO2 NP than the intact biofilms. These results indicate that enzymes present in the biofilm matrix are partly protected against exposure to TiO2 NP and UV radiation. Impairment of extracellular enzymes which mediate the uptake of nutrients from water may affect ecosystem function.
Collapse
Affiliation(s)
- Hannah Schug
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Tsuboi S, Yamamura S, Imai A, Satou T, Iwasaki K. Linking temporal changes in bacterial community structures with the detection and phylogenetic analysis of neutral metalloprotease genes in the sediments of a hypereutrophic lake. Microbes Environ 2014; 29:314-21. [PMID: 25130992 PMCID: PMC4159043 DOI: 10.1264/jsme2.me14064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated spatial and temporal variations in bacterial community structures as well as the presence of three functional proteolytic enzyme genes in the sediments of a hypereutrophic freshwater lake in order to acquire an insight into dynamic links between bacterial community structures and proteolytic functions. Bacterial communities determined from 16S rRNA gene clone libraries markedly changed bimonthly, rather than vertically in the sediment cores. The phylum Firmicutes dominated in the 4–6 cm deep sediment layer sample after August in 2007, and this correlated with increases in interstitial ammonium concentrations (p < 0.01). The Firmicutes clones were mostly composed of the genus Bacillus. npr genes encoding neutral metalloprotease, an extracellular protease gene, were detected after the phylum Firmicutes became dominant. The deduced Npr protein sequences from the retrieved npr genes also showed that most of the Npr sequences used in this study were closely related to those of the genus Bacillus, with similarities ranging from 61% to 100%. Synchronous temporal occurrences of the 16S rRNA gene and Npr sequences, both from the genus Bacillus, were positively associated with increases in interstitial ammonium concentrations, which may imply that proteolysis by Npr from the genus Bacillus may contribute to the marked increases observed in ammonium concentrations in the sediments. Our results suggest that sedimentary bacteria may play an important role in the biogeochemical nitrogen cycle of freshwater lakes.
Collapse
Affiliation(s)
- Shun Tsuboi
- National Institute for Environmental Studies (NIES)
| | | | | | | | | |
Collapse
|
39
|
Endres S, Galgani L, Riebesell U, Schulz KG, Engel A. Stimulated bacterial growth under elevated p CO₂: results from an off-shore mesocosm study. PLoS One 2014; 9:e99228. [PMID: 24941307 PMCID: PMC4062391 DOI: 10.1371/journal.pone.0099228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5–10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean.
Collapse
Affiliation(s)
- Sonja Endres
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
- * E-mail:
| | - Luisa Galgani
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Ulf Riebesell
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kai-Georg Schulz
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, Lismore, Australia
| | - Anja Engel
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
40
|
Polysaccharides and proteins added to flowing drinking water at microgram-per-liter levels promote the formation of biofilms predominated by bacteroidetes and proteobacteria. Appl Environ Microbiol 2014; 80:2360-71. [PMID: 24487544 DOI: 10.1128/aem.04105-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter(-1) in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter(-1) per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm(-2) day(-1)), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm(-2) day(-1)). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water.
Collapse
|
41
|
Singh RP, Sharma B, Sarkar A, Sengupta C, Singh P, Ibrahim MH. Biological responses of agricultural soils to fly-ash amendment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 232:45-60. [PMID: 24984834 DOI: 10.1007/978-3-319-06746-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The volume of solid waste produced in the world is increasing annually, and disposing of such wastes is a growing problem. Fly ash (FA) is a form of solid waste that is derived from the combustion of coal. Research has shown that fly ash may be disposed of by using it to amend agricultural soils. This review addresses the feasibility of amending agricultural field soils with fly ash for the purpose of improvings oil health and enhancing the production of agricultural crops. The current annual production of major coal combustion residues (CCRs) is estimated to be -600 million worldwide, of which about 500 million t (70-80%) is FA (Ahmaruzzaman 2010). More than 112 million t of FA is generated annually in India alone, and projections show that the production (including both FA and bottom ash) may exceed 170 million t per annum by 2015 (Pandey et al. 2009; Pandey and Singh 20 I 0). Managing this industrial by-product is a big challenge, because more is produced each year, and disposal poses a growing environmental problem.Studies on FA clearly shows that its application as an amendment to agricultural soils can significantly improve soil quality, and produce higher soil fertility. What FA application method is best and what level of application is appropriate for any one soil depends on the following factors: type of soil treated, crop grown, the prevailing agro climatic condition and the character of the FA used. Although utilizing FA in agricultural soils may help address solid waste disposal problems and may enhance agricultural production, its use has potential adverse effects also. In particular, using it in agriculture may enhance amounts of radionuclides and heavy metals that reach soils, and may therefore increase organism exposures in some instances.
Collapse
Affiliation(s)
- Rajeev Pratap Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India,
| | | | | | | | | | | |
Collapse
|
42
|
Zaccone R, Azzaro M, Azzaro F, Bergamasco A, Caruso G, Leonardi M, La Ferla R, Maimone G, Mancuso M, Monticelli LS, Raffa F, Crisafi E. Seasonal dynamics of prokaryotic abundance and activities in relation to environmental parameters in a transitional aquatic ecosystem (Cape Peloro, Italy). MICROBIAL ECOLOGY 2014; 67:45-56. [PMID: 24158689 DOI: 10.1007/s00248-013-0307-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/30/2013] [Indexed: 06/02/2023]
Abstract
This study examines the effects of temporal changes on microbial parameters in a brackish aquatic ecosystem. To this aim, the abundances of prokaryotes and vibrios together with the rates of enzymatic hydrolysis of proteins by leucine aminopeptidase (LAP), polysaccharides by β-glucosidase (GLU) and organic phosphates by alkaline phosphatase (AP), heterotrophic prokaryotic production (HPP), respiration (R), were seasonally investigated, during a 2-year period in the coastal area of Cape Peloro (Messina, Italy), constituted by two brackish lakes (Faro and Ganzirri). In addition, physical and chemical parameters (temperature, salinity, nutrients) and particulate organic carbon and nitrogen (POC, PN) were measured. The influence of multiple factors on prokaryotic abundances and activities was analysed. The results showed that Cape Peloro area is characterised by high seasonal variability of the microbial parameters that is higher than the spatial one. Combined changes in particulate matter and temperature (T), could explain the variability in vibrios abundance, GLU and R activities in both lakes, indicating a direct stimulation of the warm season on the heterotrophic prokaryotic metabolism. Positive correlations between T (from 13.3 to 29.6 °C) and HPP, LAP, AP, POC, PN are also observed in Ganzirri Lake. Moreover, the trophic status index and most of the microbial parameters show significant seasonal differences. This study demonstrates that vibrios abundance and microbial activities are responsive to the spatial and seasonal changes of examined area. The combined effects of temperature and trophic conditions on the microbial parameters lead us to suggest their use as potential indicators of the prokaryotic response to climate changes in temperate brackish areas.
Collapse
Affiliation(s)
- R Zaccone
- CNR-IAMC, Institute for Coastal Marine Environment, Section of Messina, Spianata S. Raineri 86, 98122, Messina, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sieczko A, Peduzzi P. Origin, enzymatic response and fate of dissolved organic matter during flood and non-flood conditions in a river-floodplain system of the Danube (Austria). AQUATIC SCIENCES 2014; 76:115-129. [PMID: 24415892 PMCID: PMC3883529 DOI: 10.1007/s00027-013-0318-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/01/2013] [Indexed: 05/05/2023]
Abstract
Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l-1 and CDOM from 2.94 to 14.32 m-1. The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.
Collapse
Affiliation(s)
- Anna Sieczko
- Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Peter Peduzzi
- Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
44
|
Lundeen RA, McNeill K. Reactivity differences of combined and free amino acids: quantifying the relationship between three-dimensional protein structure and singlet oxygen reaction rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14215-14223. [PMID: 24274590 DOI: 10.1021/es404236c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
It has long been appreciated that the photooxidation kinetics of amino acid (AA) residues in an intact protein differ from those of free AAs due to differences in the local steric microenvironment, such as its location in the three-dimensional structure. Yet there are only a few studies that have quantified the effect of protein structure on the photochemical reactivity of its residues. This is important for predicting phototransformation rates of AAs in aquatic environments where AAs in combined forms (e.g., oligopeptides and proteins) are more abundant than free AAs. In this work, the photochemical reactivity differences between free and combined AAs were assessed. Singlet oxygen ((1)O2) reaction kinetics of individual photooxidizable residues in the protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were examined. The results suggest that the (1)O2 accessibility of residues in intact GAPDH has a profound effect on their photodegradation kinetics and for histidine residues can explain most of the variation in (1)O2 reactivity. Additionally, (1)O2-accessibile surface area values of residues calculated from protein crystal structure data are useful in predicting their reaction rates in GAPDH. This work illustrates a new approach to assess the differential photochemical reactivity of AA-based biomolecules in natural environments or engineered applications.
Collapse
Affiliation(s)
- Rachel A Lundeen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich , 8092 Zurich, Switzerland
| | | |
Collapse
|
45
|
Impacts of labile organic carbon concentration on organic and inorganic nitrogen utilization by a stream biofilm bacterial community. Appl Environ Microbiol 2013; 79:7130-41. [PMID: 24038688 DOI: 10.1128/aem.01694-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In aquatic ecosystems, carbon (C) availability strongly influences nitrogen (N) dynamics. One manifestation of this linkage is the importance in the dissolved organic matter (DOM) pool of dissolved organic nitrogen (DON), which can serve as both a C and an N source, yet our knowledge of how specific properties of DOM influence N dynamics are limited. To empirically examine the impact of labile DOM on the responses of bacteria to DON and dissolved inorganic nitrogen (DIN), bacterial abundance and community composition were examined in controlled laboratory microcosms subjected to various combinations of dissolved organic carbon (DOC), DON, and DIN treatments. Bacterial communities that had colonized glass beads incubated in a stream were treated with various glucose concentrations and combinations of inorganic and organic N (derived from algal exudate, bacterial protein, and humic matter). The results revealed a strong influence of C availability on bacterial utilization of DON and DIN, with preferential uptake of DON under low C concentrations. Bacterial DON uptake was affected by the concentration and by its chemical nature (labile versus recalcitrant). Labile organic N sources (algal exudate and bacterial protein) were utilized equally well as DIN as an N source, but this was not the case for the recalcitrant humic matter DON treatment. Clear differences in bacterial community composition among treatments were observed based on terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes. C, DIN, and DON treatments likely drove changes in bacterial community composition that in turn affected the rates of DON and DIN utilization under various C concentrations.
Collapse
|
46
|
Drake JE, Giasson MA, Spiller KJ, Finzi AC. Seasonal plasticity in the temperature sensitivity of microbial activity in three temperate forest soils. Ecosphere 2013. [DOI: 10.1890/es13-00020.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- J. E. Drake
- Department of Biology, Boston University, Boston, Massachusetts 02215 USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, New South Wales 2753 Australia
| | - M.-A. Giasson
- Department of Biology, Boston University, Boston, Massachusetts 02215 USA
| | - K. J. Spiller
- Department of Biology, Boston University, Boston, Massachusetts 02215 USA
| | - A. C. Finzi
- Department of Biology, Boston University, Boston, Massachusetts 02215 USA
| |
Collapse
|
47
|
Baltar F, Arístegui J, Gasol JM, Yokokawa T, Herndl GJ. Bacterial versus archaeal origin of extracellular enzymatic activity in the Northeast Atlantic deep waters. MICROBIAL ECOLOGY 2013; 65:277-288. [PMID: 23015014 DOI: 10.1007/s00248-012-0126-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
We determined the total and dissolved extracellular enzymatic activity (EEA) of α-glucosidase and β-glucosidase (AGase and BGase), alkaline phosphatase (APase) and leucine aminopeptidase (LAPase) activities in the epi-, meso- and bathypelagic waters of the subtropical Northeast Atlantic. EEA was also determined in treatments in which bacterial EEA was inhibited by erythromycin. Additionally, EEA decay experiments were performed with surface and deep waters to determine EEA lifetimes in both water masses. The proportion of dissolved to total EEA (66-89 %, 44-88 %, 57-82 % and 86-100 % for AGase, BGase, APase and LAPase, respectively) was generally higher than the cell-associated (i.e., particulate) EEA. The percentage of dissolved to total EEA was inversely proportional to the percentage of erythromycin-inhibited to total EEA. Since erythromycin-inhibited plus dissolved EEA equaled total EEA, this tentatively suggests that cell-associated EEA in the open oceanic water column is almost exclusively of bacterial origin. The decay constants of dissolved EEA were in the range of 0.002-0.048 h(-1) depending on the type of extracellular enzyme, temperature and depth in the water column. Although dissolved EEA can have different origins, the major contribution of Bacteria to cell-associated EEA and the long life-time of dissolved EEA suggest that Bacteria-and not mesophilic Archaea-are essentially the main producers of EEA in the open subtropical Northeast Atlantic down to bathypelagic layers.
Collapse
Affiliation(s)
- Federico Baltar
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Parque Científico Marino de Taliarte, Gran Canaria, Spain.
| | | | | | | | | |
Collapse
|
48
|
Chaudhary P, Singh SB, Chaudhry S, Nain L. Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area--a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:1145-56. [PMID: 21505770 DOI: 10.1007/s10661-011-2029-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/16/2011] [Indexed: 05/24/2023]
Abstract
The present study is aimed at analysing and comparing different soil enzymes in soil samples of native contaminated sites of a Mathura refinery and adjoining agricultural land. Enzyme activities are considered as indicators of soil quality and changes in biogeochemical function due to management or perturbations. Soil samples were collected from the premises and nearby area of Mathura refinery, India. Biological health parameters (dehydrogenase, aryl esterase, aryl sulphatase, [Formula: see text]-glucosidase, alkaline phosphatase, acid phosphatase, lipase, laccase and catalase activity) were estimated in the soil samples. Among all the samples, sewage sludge soil showed maximum activity of enzymes, microbial biomass carbon and most probable number of polycyclic aromatic hydrocarbon (PAH) degraders in soils spiked with three- to four-ring PAHs at 50 ppm. Available phosphorus, potassium and nitrogen was also exceptionally high in this sample, indicating maximum microbial bioconversion due to presence of nutrients stimulating potent PAH-degrading microorganisms.
Collapse
Affiliation(s)
- Priyanka Chaudhary
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | |
Collapse
|
49
|
Coolen MJL, van de Giessen J, Zhu EY, Wuchter C. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol 2011; 13:2299-314. [DOI: 10.1111/j.1462-2920.2011.02489.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Fechner LC, Gourlay-Francé C, Uher E, Tusseau-Vuillemin MH. Adapting an enzymatic toxicity test to allow comparative evaluation of natural freshwater biofilms' tolerance to metals. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1302-1311. [PMID: 20623253 DOI: 10.1007/s10646-010-0517-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
A simple, low-cost and non-radioactive short-term toxicity test was developed to study the effects of urban metals on natural freshwater periphytic communities. β-glucosidase activity of natural freshwater biofilms collected in situ was chosen as an endpoint. Metals (Cd, Cu, Ni, Pb, and Zn) successfully inhibited bacterial enzymatic activity after a 1-h exposure enabling the calculation of EC(50). The EC(50) value of a biofilm sample varied with the Total Suspended Solids concentration (TSS) of the biofilm suspension, showing that EC(50) values (expressed as total added metal concentrations) are not representative of the bioavailable metal concentration during the toxicity test. For Cu, Cd, Ni, Zn and Pb, the EC(50) values increased linearly with the TSS concentration leading us to define a normalized EC(50): the value of the EC(50) divided by the corresponding TSS concentration. Normalized EC(50) proved to be a robust, reliable way to assess metal tolerance of a biofilm for Cd, Cu, Ni, Zn and Pb. Normalized EC(50) obtained, expressed as kg(metal)/g(TSS), varied between 0.2 to 7.6 for Cu, 1 to 8 for Cd, 1.8 to 92.3 for Ni, 1.8 to 76.6 for Zn and 25 to 189 for Pb.
Collapse
Affiliation(s)
- Lise C Fechner
- Cemagref-Unité de Recherche Hydrosystèmes et Bioprocédés, Parc de Tourvoie, BP 44, 92163, Antony Cedex, France.
| | | | | | | |
Collapse
|