1
|
Geng J, Yang Y, Li B, Yu Z, Qiu S, Zhang W, Gao S, Liu N, Liu Y, Wang B, Fan Y, Xing C, Liu X. Opto-chemogenetic inhibition of L-type Ca V1 channels in neurons through a membrane-assisted molecular linkage. CELL REPORTS METHODS 2024; 4:100898. [PMID: 39515337 PMCID: PMC11705922 DOI: 10.1016/j.crmeth.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Genetically encoded inhibitors of CaV1 channels that operate via C-terminus-mediated inhibition (CMI) have been actively pursued. Here, we advance the design of CMI peptides by proposing a membrane-anchoring tag that is sufficient to link the inhibitory modules to the target channel as well as chemical and optogenetic modes of system control. We designed and implemented the constitutive and inducible CMI modules with appropriate dynamic ranges for the short and long variants of CaV1.3, both naturally occurring in neurons. Upon optical (near-infrared-responsive nanoparticles) and/or chemical (rapamycin) induction of FRB/FKBP binding, the designed peptides translocated onto the membrane via FRB-Ras, where the physical linkage requirement for CMI could be satisfied. The peptides robustly produced acute, potent, and specific inhibitions on both recombinant and neuronal CaV1 activities, including Ca2+ influx-neuritogenesis coupling. Validated through opto-chemogenetic induction, this prototype demonstrates Ca2+ channel modulation via membrane-assisted molecular linkage, promising broad applicability to diverse membrane proteins.
Collapse
Affiliation(s)
- Jinli Geng
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Yaxiong Yang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhen Yu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Shuang Qiu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Wen Zhang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Shixin Gao
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Nan Liu
- School of Life Sciences, Yunnan University, Kunming Yunnan 650091, China
| | - Yi Liu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Bo Wang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China.
| | - Chengfen Xing
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Xiaodong Liu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China.
| |
Collapse
|
2
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
3
|
Berenson A, Lane R, Soto-Ugaldi LF, Patel M, Ciausu C, Li Z, Chen Y, Shah S, Santoso C, Liu X, Spirohn K, Hao T, Hill DE, Vidal M, Fuxman Bass JI. Paired yeast one-hybrid assays to detect DNA-binding cooperativity and antagonism across transcription factors. Nat Commun 2023; 14:6570. [PMID: 37853017 PMCID: PMC10584920 DOI: 10.1038/s41467-023-42445-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Cooperativity and antagonism between transcription factors (TFs) can drastically modify their binding to regulatory DNA elements. While mapping these relationships between TFs is important for understanding their context-specific functions, existing approaches either rely on DNA binding motif predictions, interrogate one TF at a time, or study individual TFs in parallel. Here, we introduce paired yeast one-hybrid (pY1H) assays to detect cooperativity and antagonism across hundreds of TF-pairs at DNA regions of interest. We provide evidence that a wide variety of TFs are subject to modulation by other TFs in a DNA region-specific manner. We also demonstrate that TF-TF relationships are often affected by alternative isoform usage and identify cooperativity and antagonism between human TFs and viral proteins from human papillomaviruses, Epstein-Barr virus, and other viruses. Altogether, pY1H assays provide a broadly applicable framework to study how different functional relationships affect protein occupancy at regulatory DNA regions.
Collapse
Affiliation(s)
- Anna Berenson
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Mahir Patel
- Department of Computer Science, Boston University, Boston, MA, 02215, USA
| | - Cosmin Ciausu
- Department of Computer Science, Boston University, Boston, MA, 02215, USA
| | - Zhaorong Li
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Yilin Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Sakshi Shah
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Xing Liu
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Zhou XL, Wei Y, Chen P, Yang X, Lu C, Pan MH. A novel transcription factor, BmZFP67, regulates endomitosis switch by controlling the expression of cyclin B in silk glands. Int J Biol Macromol 2023:124931. [PMID: 37263320 DOI: 10.1016/j.ijbiomac.2023.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 06/03/2023]
Abstract
Endomitosis is involved in developmental processes associated with an increase in metabolic cell activity, which is characterized by repeated rounds of DNA replication without cytokinesis. Endomitosis cells are widespread in protozoa, plants, animals and humans. Endomitosis cell cycle is currently viewed as a variation of the canonical cell cycle and transformed from mitotic cell cycle. However, the meaningful question about how endomitosis transformed from mitosis is still unclear. Herein, we identified a novel transcription factor in silk glands, ZFP67, which is gradually reduced in silk glands during the transition of mitosis to endomitosis. In addition, over-expressed ZFP67 in silk glands led to the transition delayed. And, knock-out of ZFP67 led to abnormal chromatin division and unsuccessful cell division. These data reveled that ZFP67 played an important role in transition of mitosis to endomitosis. Furthermore, ZFP67 can regulate the transcription of cyclin B, a key cyclin related to cell division and G2/M phase, which is demonstrated by chromatin immunoprecipitation and dual luciferase reporter system in this article. In conclusion, it can be speculated that the decreasing expression of ZFP67 in silk glands during the transition stage of mitosis-to-endomitosis resulted in the lack of cyclin B, which further led to unsuccessful cytokinesis and then promoted the transition from mitosis to endomitosis of silk gland cells.
Collapse
Affiliation(s)
- Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Boral A, Mitra D. Heterogeneity in winged helix-turn-helix and substrate DNA interactions: Insights from theory and experiments. J Cell Biochem 2023; 124:337-358. [PMID: 36715571 DOI: 10.1002/jcb.30369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023]
Abstract
Specific interactions between transcription factors (TFs) and substrate DNA constitute the fundamental basis of gene expression. Unlike in TFs like basic helix-loop-helix or basic leucine zippers, prediction of substrate DNA is extremely challenging for helix-turn-helix (HTH). Experimental techniques like chromatin immunoprecipitation combined with massively parallel DNA sequencing remains a viable option. We characterize the molecular basis of heterogeneity in HTH-DNA interaction using in silico tools and thence validate them experimentally. Given the profound functional diversity in HTH, we focus primarily on winged-HTH (wHTH). We consider 180 wHTH TFs, whose experimental three-dimensional structures are available in DNA bound/unbound conformations. Starting with PDB-wide scanning and curation of data, we construct a phylogenetic tree, which distributes 180 wHTH sequences under multiple sub-groups. Structure-sequence alignment followed by detailed intra/intergroup analysis, covariation studies and extensive network theory analysis help us to gain deep insight into heterogeneous wHTH-substrate DNA interactions. A central aim of this study is to find a consensus to predict the substrate DNA sequence for wHTH, amidst heterogeneity. The strength of our exhaustive theoretical investigations including molecular docking are successfully tested through experimental characterization of wHTH TF from Sulfurimonas denitrificans.
Collapse
Affiliation(s)
- Aparna Boral
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
7
|
Darvishi E, Ghamsari L, Leong SF, Ramirez R, Koester M, Gallagher E, Yu M, Mason JM, Merutka G, Kappel BJ, Rotolo JA. Anticancer Activity of ST101, A Novel Antagonist of CCAAT/Enhancer Binding Protein β. Mol Cancer Ther 2022; 21:1632-1644. [PMID: 36121385 PMCID: PMC9630826 DOI: 10.1158/1535-7163.mct-21-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/29/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
CCAAT/enhancer binding protein β (C/EBPβ) is a basic leucine zipper (bZIP) family transcription factor, which is upregulated or overactivated in many cancers, resulting in a gene expression profile that drives oncogenesis. C/EBPβ dimerization regulates binding to DNA at the canonical TTGCGCAA motif and subsequent transcriptional activity, suggesting that disruption of dimerization represents a powerful approach to inhibit this previously "undruggable" oncogenic target. Here we describe the mechanism of action and antitumor activity of ST101, a novel and selective peptide antagonist of C/EBPβ that is currently in clinical evaluation in patients with advanced solid tumors. ST101 binds the leucine zipper domain of C/EBPβ, preventing its dimerization and enhancing ubiquitin-proteasome dependent C/EBPβ degradation. ST101 exposure attenuates transcription of C/EBPβ target genes, including a significant decrease in expression of survival, transcription factors, and cell-cycle-related proteins. The result of ST101 exposure is potent, tumor-specific in vitro cytotoxic activity in cancer cell lines including glioblastoma, breast, melanoma, prostate, and lung cancer, whereas normal human immune and epithelial cells are not impacted. Further, in mouse xenograft models ST101 exposure results in potent tumor growth inhibition or regression, both as a single agent and in combination studies. These data provide the First Disclosure of ST101, and support continued clinical development of ST101 as a novel strategy for targeting C/EBPβ-dependent cancers.
Collapse
Affiliation(s)
- Emad Darvishi
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Lila Ghamsari
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Siok F. Leong
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Ricardo Ramirez
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Mark Koester
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Erin Gallagher
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Miao Yu
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M. Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Gene Merutka
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Barry J. Kappel
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Jim A. Rotolo
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528, Corresponding Author (, telephone: 914-607-6935)
| |
Collapse
|
8
|
Yadav Y, Subbaroyan A, Martin OC, Samal A. Relative importance of composition structures and biologically meaningful logics in bipartite Boolean models of gene regulation. Sci Rep 2022; 12:18156. [PMID: 36307465 PMCID: PMC9616893 DOI: 10.1038/s41598-022-22654-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 12/31/2022] Open
Abstract
Boolean networks have been widely used to model gene networks. However, such models are coarse-grained to an extent that they abstract away molecular specificities of gene regulation. Alternatively, bipartite Boolean network models of gene regulation explicitly distinguish genes from transcription factors (TFs). In such bipartite models, multiple TFs may simultaneously contribute to gene regulation by forming heteromeric complexes, thus giving rise to composition structures. Since bipartite Boolean models are relatively recent, an empirical investigation of their biological plausibility is lacking. Here, we estimate the prevalence of composition structures arising through heteromeric complexes. Moreover, we present an additional mechanism where composition structures may arise as a result of multiple TFs binding to cis-regulatory regions and provide empirical support for this mechanism. Next, we compare the restriction in BFs imposed by composition structures and by biologically meaningful properties. We find that though composition structures can severely restrict the number of Boolean functions (BFs) driving a gene, the two types of minimally complex BFs, namely nested canalyzing functions (NCFs) and read-once functions (RoFs), are comparatively more restrictive. Finally, we find that composition structures are highly enriched in real networks, but this enrichment most likely comes from NCFs and RoFs.
Collapse
Affiliation(s)
- Yasharth Yadav
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - Ajay Subbaroyan
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Olivier C Martin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France.
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
9
|
Abstract
Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea.
Collapse
|
10
|
Solano A, Lou J, Scipioni L, Gratton E, Hinde E. Radial pair correlation of molecular brightness fluctuations maps protein diffusion as a function of oligomeric state within live-cell nuclear architecture. Biophys J 2022; 121:2152-2167. [PMID: 35490296 PMCID: PMC9247470 DOI: 10.1016/j.bpj.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nuclear proteins can modulate their DNA binding activity and the exploration volume available during DNA target search by self-associating into higher-order oligomers. Directly tracking this process in the nucleoplasm of a living cell is, however, a complex task. Thus, here we present a microscopy method based on radial pair correlation of molecular brightness fluctuations (radial pCOMB) that can extract the mobility of a fluorescently tagged nuclear protein as a function of its oligomeric state and spatiotemporally map the anisotropy of this parameter with respect to nuclear architecture. By simply performing a rapid frame scan acquisition, radial pCOMB has the capacity to detect, within each pixel, protein oligomer formation and the size-dependent obstruction nuclear architecture imparts on this complex's transport across sub-micrometer distances. From application of radial pCOMB to an oligomeric transcription factor and DNA repair protein, we demonstrate that homo-oligomer formation differentially regulates chromatin accessibility and interaction with the DNA template.
Collapse
Affiliation(s)
- Ashleigh Solano
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne
| | - Jieqiong Lou
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California, Irvine
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California, Irvine.
| | - Elizabeth Hinde
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne.
| |
Collapse
|
11
|
Lim C, Kang K, Shim Y, Yoo SC, Paek NC. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. PLANT PHYSIOLOGY 2022; 188:1900-1916. [PMID: 34718775 PMCID: PMC8968288 DOI: 10.1093/plphys/kiab492] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 05/18/2023]
Abstract
During crop cultivation, water-deficit conditions retard growth, thus reducing crop productivity. Therefore, uncovering the mechanisms behind drought tolerance is a critical task for crop improvement. Here, we show that the rice (Oryza sativa) WRKY transcription factor OsWRKY5 negatively regulates drought tolerance. We determined that OsWRKY5 was mainly expressed in developing leaves at the seedling and heading stages, and that its expression was reduced by drought stress and by treatment with NaCl, mannitol, and abscisic acid (ABA). Notably, the genome-edited loss-of-function alleles oswrky5-2 and oswrky5-3 conferred enhanced drought tolerance, measured as plant growth under water-deficit conditions. Conversely, the overexpression of OsWRKY5 in the activation-tagged line oswrky5-D resulted in higher susceptibility under the same conditions. The loss of OsWRKY5 activity increased sensitivity to ABA, thus promoting ABA-dependent stomatal closure. Transcriptome deep sequencing and reverse transcription quantitative polymerase chain reaction analyses demonstrated that the expression of abiotic stress-related genes including rice MYB2 (OsMYB2) was upregulated in oswrky5 knockout mutants and downregulated in oswrky5-D mutants. Moreover, dual-luciferase, yeast one-hybrid, and chromatin immunoprecipitation assays showed that OsWRKY5 directly binds to the W-box sequences in the promoter region of OsMYB2 and represses OsMYB2 expression, thus downregulating genes downstream of OsMYB2 in the ABA signaling pathways. Our results demonstrate that OsWRKY5 functions as a negative regulator of ABA-induced drought stress tolerance, strongly suggesting that inactivation of OsWRKY5 or manipulation of key OsWRKY5 targets could be useful to improve drought tolerance in rice cultivars.
Collapse
Affiliation(s)
| | | | - Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Cheul Yoo
- Department of Plant Life and Environmental Science, Hankyong National University, Anseong 17579, Republic of Korea
| | | |
Collapse
|
12
|
Chopra A, Mueller R, Weiner J, Rosowski J, Dommisch H, Grohmann E, Schaefer A. BACH1 Binding Links the Genetic Risk for Severe Periodontitis with ST8SIA1. J Dent Res 2022; 101:93-101. [PMID: 34160287 PMCID: PMC8721550 DOI: 10.1177/00220345211017510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies identified various loci associated with periodontal diseases, but assigning causal alleles remains difficult. Likewise, the generation of biological meaning underlying a statistical association has been challenging. Here, we characterized the genetic association at the gene ST8SIA1 that increases the risk for severe periodontitis in smokers. We used CRISPR/dCas9 activation and RNA-sequencing to identify genetic interaction partners of ST8SIA1 and to determine its function in the cell. We used reporter gene assays to identify regulatory elements at the associated single-nucleotide polymorphisms (SNPs) and to determine effect directions and allele-specific changes of enhancer activity. Antibody electrophoretic mobility shift assays proved allele-specific transcription factor binding at the putative causal SNPs. We found the reported periodontitis risk gene ABCA1 as the top upregulated gene following ST8SIA1 activation. Gene set enrichment analysis showed highest effects on integrin cell surface interactions (area under the curve [AUC] = 0.85; q = 4.9 × 10-6) and cell cycle regulation (AUC = 0.89; q = 1.6 × 10-5). We identified 2 associated repressor elements in the introns of ST8SIA1 that bind the transcriptional repressor BACH1. The putative causative variant rs2012722 decreased BACH1 binding by 40%. We also pinpointed ST8SIA1 as the target gene of the association. ST8SIA1 inhibits cell adhesion with extracellular matrix proteins, integrins, and cell cycle, as well as enhances apoptosis. Likewise, tobacco smoke reportedly results in an inhibition of cell adhesion and a decrease in integrin-positive cells and cell growth. We conclude that impaired ST8SIA1 repression, independently caused by reduced BACH1 binding at the effect T allele, as well as by tobacco smoke, contributes to higher ST8SIA1 levels, and in smokers who carry the effect T allele, both factors would be additive with damaging effects on the gingival barrier integrity. The activity of ST8SIA1 is also linked with the periodontitis risk gene ABCA1.
Collapse
Affiliation(s)
- A. Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - R. Mueller
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J. Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - J. Rosowski
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - H. Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - E. Grohmann
- Department of Microbiology, Faculty of Life Sciences and Technology, Beuth Hochschule für Technik Berlin, Berlin, Germany
| | - A.S. Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
13
|
Rota IA, Handel AE, Maio S, Klein F, Dhalla F, Deadman ME, Cheuk S, Newman JA, Michaels YS, Zuklys S, Prevot N, Hublitz P, Charles PD, Gkazi AS, Adamopoulou E, Qasim W, Davies EG, Hanson I, Pagnamenta AT, Camps C, Dreau HM, White A, James K, Fischer R, Gileadi O, Taylor JC, Fulga T, Lagerholm BC, Anderson G, Sezgin E, Holländer GA. FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. SCIENCE ADVANCES 2021; 7:eabj9247. [PMID: 34860543 PMCID: PMC8641933 DOI: 10.1126/sciadv.abj9247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 05/04/2023]
Abstract
The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor’s transcriptional activity. FOXN1’s C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.
Collapse
Affiliation(s)
- Ioanna A. Rota
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam E. Handel
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fabian Klein
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joseph A. Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Yale S. Michaels
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saulius Zuklys
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
| | - Nicolas Prevot
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Philip Hublitz
- MRC Weatherall Institute of Molecular Medicine, Genome engineering services, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D. Charles
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Athina Soragia Gkazi
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Eleni Adamopoulou
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Waseem Qasim
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Edward Graham Davies
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Imelda Hanson
- Department of Pediatrics, Section of Pediatric Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Carme Camps
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helene M. Dreau
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrea White
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Kieran James
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tudor Fulga
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - B. Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Erdinc Sezgin
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Georg A. Holländer
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
14
|
Nayar S, Thangavel G. CsubMADS1, a lag phase transcription factor, controls development of polar eukaryotic microalga Coccomyxa subellipsoidea C-169. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1228-1242. [PMID: 34160095 DOI: 10.1111/tpj.15380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
MADS-box transcription factors (TFs) have not been functionally delineated in microalgae. In this study, the role of CsubMADS1 from microalga Coccomyxa subellipsoidea C-169 has been explored. Unlike Type II MADS-box proteins of seed plants with MADS, Intervening, K-box, and C domains, CsubMADS1 only has MADS and Intervening domains. It forms a group with MADS TFs from algae in the phylogenetic tree within the Type II MIKCC clade. CsubMADS1 is expressed strongly in the lag phase of growth. The CsubMADS1 monomer does not have a specific localization in the nucleus, and it forms homodimers to localize exclusively in the nucleus. The monomer has two nuclear localization signals (NLSs): an N-terminal NLS and an internal NLS. The internal NLS is functional, and the homodimer requires two NLSs for specific nuclear localization. Overexpression (OX) of CsubMADS1 slows down the growth of the culture and leads to the creation of giant polyploid multinucleate cells, resembling autospore mother cells. This implies that the release of autospores from autospore mother cells may be delayed. Thus, in wild-type (WT) cells, CsubMADS1 may play a crucial role in slowing down growth during the lag phase. Due to starvation in 2-month-old colonies on solid media, the WT colonies produce mucilage, whereas OX colonies produce significantly less mucilage. Thus, CsubMADS1 also negatively regulates stress-induced mucilage production and probably plays a role in stress tolerance during the lag phase. Taken together, our results reveal that CsubMADS1 is a key TF involved in the development and stress tolerance of this polar microalga.
Collapse
Affiliation(s)
- Saraswati Nayar
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Gokilavani Thangavel
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| |
Collapse
|
15
|
Leuendorf JE, Schmülling T. Meeting at the DNA: Specifying Cytokinin Responses through Transcription Factor Complex Formation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071458. [PMID: 34371661 PMCID: PMC8309282 DOI: 10.3390/plants10071458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Cytokinin is a plant hormone regulating numerous biological processes. Its diverse functions are realized through the expression control of specific target genes. The transcription of the immediate early cytokinin target genes is regulated by type-B response regulator proteins (RRBs), which are transcription factors (TFs) of the Myb family. RRB activity is controlled by phosphorylation and protein degradation. Here, we focus on another step of regulation, the interaction of RRBs among each other or with other TFs to form active or repressive TF complexes. Several examples in Arabidopsis thaliana illustrate that RRBs form homodimers or complexes with other TFs to specify the cytokinin response. This increases the variability of the output response and provides opportunities of crosstalk between the cytokinin signaling pathway and other cellular signaling pathways. We propose that a targeted approach is required to uncover the full extent and impact of RRB interaction with other TFs.
Collapse
|
16
|
Monitoring Transcription Factor Oligomerization in Single Living Cells by Number and Brightness Analysis. Methods Mol Biol 2019. [PMID: 31407288 DOI: 10.1007/978-1-4939-9674-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
One key step in the activation of inducible transcription factors is their homooligomerization, which can be measured in individual living cells by a fluorescence microscopy technique called Number and Brightness analysis (N&B). In this chapter we describe how to acquire and analyze confocal microscopy time-series to provide information about transcription factor oligomerization in living cells using this technique.
Collapse
|
17
|
Perenthaler E, Yousefi S, Niggl E, Barakat TS. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front Cell Neurosci 2019; 13:352. [PMID: 31417368 PMCID: PMC6685065 DOI: 10.3389/fncel.2019.00352] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the human cerebral cortex is a complex and dynamic process, in which neural stem cell proliferation, neuronal migration, and post-migratory neuronal organization need to occur in a well-organized fashion. Alterations at any of these crucial stages can result in malformations of cortical development (MCDs), a group of genetically heterogeneous neurodevelopmental disorders that present with developmental delay, intellectual disability and epilepsy. Recent progress in genetic technologies, such as next generation sequencing, most often focusing on all protein-coding exons (e.g., whole exome sequencing), allowed the discovery of more than a 100 genes associated with various types of MCDs. Although this has considerably increased the diagnostic yield, most MCD cases remain unexplained. As Whole Exome Sequencing investigates only a minor part of the human genome (1-2%), it is likely that patients, in which no disease-causing mutation has been identified, could harbor mutations in genomic regions beyond the exome. Even though functional annotation of non-coding regions is still lagging behind that of protein-coding genes, tremendous progress has been made in the field of gene regulation. One group of non-coding regulatory regions are enhancers, which can be distantly located upstream or downstream of genes and which can mediate temporal and tissue-specific transcriptional control via long-distance interactions with promoter regions. Although some examples exist in literature that link alterations of enhancers to genetic disorders, a widespread appreciation of the putative roles of these sequences in MCDs is still lacking. Here, we summarize the current state of knowledge on cis-regulatory regions and discuss novel technologies such as massively-parallel reporter assay systems, CRISPR-Cas9-based screens and computational approaches that help to further elucidate the emerging role of the non-coding genome in disease. Moreover, we discuss existing literature on mutations or copy number alterations of regulatory regions involved in brain development. We foresee that the future implementation of the knowledge obtained through ongoing gene regulation studies will benefit patients and will provide an explanation to part of the missing heritability of MCDs and other genetic disorders.
Collapse
Affiliation(s)
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC – University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Kopra K, Tong-Ochoa N, Laine M, Eskonen V, Koskinen PJ, Härmä H. Homogeneous peptide-break assay for luminescent detection of enzymatic protein post-translational modification activity utilizing charged peptides. Anal Chim Acta 2019; 1055:126-132. [PMID: 30782363 DOI: 10.1016/j.aca.2018.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022]
Abstract
We have developed a rapid and sensitive universal peptide-based time-resolved luminescence assay for detection of enzymatic post-translational modifications (PTMs). PTMs play essential roles in intracellular signaling and cell regulation, thus providing functional protein diversity in cell. Due this, impaired PTM patterns have been linked to multiple disease states. Clear link between PTMs and pathological conditions have also driven assay development further, but still today most of the methodologies are based on single-specificity or group-specific PTM-recognition. We have previously introduced leuzine-zipper based peptide-break technology as a viable option for universal PTM detection. Here, we introduce peptide-break technology utilizing single-label homogeneous quenching resonance energy transfer (QRET) and charge-based peptide-peptide interaction. We demonstrate the functionality of the new assay concept in phosphorylation, deacetylation, and citrullination. In a comparable study between previously introduced leucine-zipper and the novel charge-based approach, we found equal PTM detection performance and sensitivity, but the peptide design for new targets is simplified with the charged peptides. The new concept allows the use of short <20 amino acid peptides without limitations rising from the leucine-zipper coiled-coil structure. Introduced methodology enables wash-free PTM detection in a 384-well plate format, using low nanomolar enzyme concentrations. Potentially, the peptide-break technique using charged peptides may be applicable for natural peptide sequences directly obtained from the target protein.
Collapse
Affiliation(s)
- Kari Kopra
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500, Turku, Finland.
| | - Natalia Tong-Ochoa
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| | - Mari Laine
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| | - Ville Eskonen
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| | - Päivi J Koskinen
- Section of Physiology and Genetics, Department of Biology, University of Turku, Vesilinnantie 5, Turku, Finland
| | - Harri Härmä
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| |
Collapse
|
19
|
Spratt DE, Barber KR, Marlatt NM, Ngo V, Macklin JA, Xiao Y, Konermann L, Duennwald ML, Shaw GS. A subset of calcium-binding S100 proteins show preferential heterodimerization. FEBS J 2019; 286:1859-1876. [PMID: 30719832 DOI: 10.1111/febs.14775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/19/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The assembly of proteins into dimers and oligomers is a necessary step for the proper function of transcription factors, muscle proteins, and proteases. In uncontrolled states, oligomerization can also contribute to illnesses such as Alzheimer's disease. The S100 protein family is a group of dimeric proteins that have important roles in enzyme regulation, cell membrane repair, and cell growth. Most S100 proteins have been examined in their homodimeric state, yet some of these important proteins are found in similar tissues implying that heterodimeric molecules can also be formed from the combination of two different S100 members. In this work, we have established co-expression methods in order to identify and quantify the distribution of homo- and heterodimers for four specific pairs of S100 proteins in their calcium-free states. The split GFP trap methodology was used in combination with other GFP variants to simultaneously quantify homo- and heterodimeric S100 proteins in vitro and in living cells. For the specific S100 proteins examined, NMR, mass spectrometry, and GFP trap experiments consistently show that S100A1:S100B, S100A1:S100P, and S100A11:S100B heterodimers are the predominant species formed compared to their corresponding homodimers. We expect the tools developed here will help establish the roles of S100 heterodimeric proteins and identify how heterodimerization might alter the specificity for S100 protein action in cells.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Kathryn R Barber
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Nicole M Marlatt
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Vy Ngo
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Jillian A Macklin
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Yiming Xiao
- Department of Chemistry, The University of Western Ontario, London, Canada
| | - Lars Konermann
- Department of Biochemistry, The University of Western Ontario, London, Canada.,Department of Chemistry, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
20
|
Wang L, Qiao H. New Insights in Transcriptional Regulation of the Ethylene Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:790. [PMID: 31275338 PMCID: PMC6591485 DOI: 10.3389/fpls.2019.00790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/31/2019] [Indexed: 05/19/2023]
Abstract
As any living organisms, plants must respond to a wide variety of environmental stimuli. Plant hormones regulate almost all aspects of plant growth and development. Among all the plant hormones, ethylene is the only gaseous plant hormone that plays pleiotropic roles in plant growth, plant development and stress responses. Transcription regulation is one main mechanism by which a cell orchestrates gene activity. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Here we review the progress of transcription regulation in the ethylene response.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Hong Qiao,
| |
Collapse
|
21
|
Hope CM, Webber JL, Tokamov SA, Rebay I. Tuned polymerization of the transcription factor Yan limits off-DNA sequestration to confer context-specific repression. eLife 2018; 7:37545. [PMID: 30412049 PMCID: PMC6226293 DOI: 10.7554/elife.37545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023] Open
Abstract
During development, transcriptional complexes at enhancers regulate gene expression in complex spatiotemporal patterns. To achieve robust expression without spurious activation, the affinity and specificity of transcription factor–DNA interactions must be precisely balanced. Protein–protein interactions among transcription factors are also critical, yet how their affinities impact enhancer output is not understood. The Drosophila transcription factor Yan provides a well-suited model to address this, as its function depends on the coordinated activities of two independent and essential domains: the DNA-binding ETS domain and the self-associating SAM domain. To explore how protein–protein affinity influences Yan function, we engineered mutants that increase SAM affinity over four orders of magnitude. This produced a dramatic subcellular redistribution of Yan into punctate structures, reduced repressive output and compromised survival. Cell-type specification and genetic interaction defects suggest distinct requirements for polymerization in different regulatory decisions. We conclude that tuned protein–protein interactions enable the dynamic spectrum of complexes that are required for proper regulation.
Collapse
Affiliation(s)
- C Matthew Hope
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, United States
| | - Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sherzod A Tokamov
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, United States
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States.,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, United States
| |
Collapse
|
22
|
Capote T, Barbosa P, Usié A, Ramos AM, Inácio V, Ordás R, Gonçalves S, Morais-Cecílio L. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). BMC PLANT BIOLOGY 2018; 18:198. [PMID: 30223777 PMCID: PMC6142680 DOI: 10.1186/s12870-018-1403-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/30/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Gene activity is largely controlled by transcriptional regulation through the action of transcription factors and other regulators. QsMYB1 is a member of the R2R3-MYB transcription factor family related to secondary growth, and in particular, with the cork development process. In order to identify the putative gene targets of QsMYB1 across the cork oak genome we developed a ChIP-Seq strategy. RESULTS Results provide direct evidence that QsMY1B targets genes encoding for enzymes involved in the lignin and suberin pathways as well as gene encoding for ABCG transporters and LTPs implicated in the transport of monomeric suberin units across the cellular membrane. These results highlight the role of QsMYB1 as a regulator of lignin and suberin biosynthesis, transport and assembly. CONCLUSION To our knowledge, this work constitutes the first ChIP-Seq experiment performed in cork oak, a non-model plant species with a long-life cycle, and these results will contribute to deepen the knowledge about the molecular mechanisms of cork formation and differentiation.
Collapse
Affiliation(s)
- Tiago Capote
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Pedro Barbosa
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Vera Inácio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Ricardo Ordás
- Departamento BOS, Escuela Politécnica de Mieres, Oviedo University, Oviedo, Spain
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Present Address: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB101SA UK
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
23
|
Ma G, Zhang Q, He L, Nguyen NT, Liu S, Gong Z, Huang Y, Zhou Y. Genetically encoded tags for real time dissection of protein assembly in living cells. Chem Sci 2018; 9:5551-5555. [PMID: 30061986 PMCID: PMC6048692 DOI: 10.1039/c8sc00839f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Simple methods with straightforward readouts that enable real-time interrogation of protein quaternary structure are much needed to facilitate the physicochemical characterization of proteins at the single-cell level. After screening over a series of microtubule (MT) binders, we report herein the development of two genetically encoded tags (designated as "MoTags" for the monomer/oligomer detection tag) that can be conveniently fused to a given protein to probe its oligomeric state in cellulo when combined with routine fluorescence microscopy. In their monomeric form, MoTags are evenly distributed in the cytosol; whereas oligomerization enables MoTags to label MT or track MT tips in an oligomeric state-dependent manner. We demonstrate here the broad utility of engineered MoTags to aid the determination of protein oligomeric states, dissection of protein structure and function, and monitoring of protein-target interactions under physiological conditions in living cells.
Collapse
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research , Institute of Biosciences and Technology , College of Medicine , Texas A&M University , 2121 W Holcombe Blvd , Houston , TX 77030 , USA . ;
| | - Qian Zhang
- Center for Translational Cancer Research , Institute of Biosciences and Technology , College of Medicine , Texas A&M University , 2121 W Holcombe Blvd , Houston , TX 77030 , USA . ;
- Department of Infectious Diseases , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Lian He
- Center for Translational Cancer Research , Institute of Biosciences and Technology , College of Medicine , Texas A&M University , 2121 W Holcombe Blvd , Houston , TX 77030 , USA . ;
| | - Nhung T Nguyen
- Center for Translational Cancer Research , Institute of Biosciences and Technology , College of Medicine , Texas A&M University , 2121 W Holcombe Blvd , Houston , TX 77030 , USA . ;
| | - Shuzhong Liu
- Center for Translational Cancer Research , Institute of Biosciences and Technology , College of Medicine , Texas A&M University , 2121 W Holcombe Blvd , Houston , TX 77030 , USA . ;
| | - Zuojiong Gong
- Department of Infectious Diseases , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Yun Huang
- Center for Epigenetics and Disease Prevention , Institute of Biosciences and Technology , College of Medicine , Texas A&M University , 2121 W Holcombe Blvd , Houston , TX 77030 , USA .
- Department of Molecular and Cellular Medicine , College of Medicine , Texas A&M University , College Station , TX 77843 , USA
| | - Yubin Zhou
- Center for Translational Cancer Research , Institute of Biosciences and Technology , College of Medicine , Texas A&M University , 2121 W Holcombe Blvd , Houston , TX 77030 , USA . ;
- Department of Medical Physiology , College of Medicine , Texas A&M University , Temple , TX 76504 , USA
| |
Collapse
|
24
|
Hou J, Zeng W, Zong Y, Chen Z, Miao C, Wang B, Lou C. Engineering the Ultrasensitive Transcription Factors by Fusing a Modular Oligomerization Domain. ACS Synth Biol 2018; 7:1188-1194. [PMID: 29733626 DOI: 10.1021/acssynbio.7b00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dimerization and high-order oligomerization of transcription factors has endowed them with cooperative regulatory capabilities that play important roles in many cellular functions. However, such advanced regulatory capabilities have not been fully exploited in synthetic biology and genetic engineering. Here, we engineered a C-terminally fused oligomerization domain to improve the cooperativity of transcription factors. First, we found that two of three designed oligomerization domains significantly increased the cooperativity and ultrasensitivity of a transcription factor for the regulated promoter. Then, seven additional transcription factors were used to assess the modularity of the oligomerization domains, and their ultrasensitivity was generally improved, as assessed by their Hill coefficients. Moreover, we also demonstrated that the allosteric capability of the ligand-responsive domain remained intact when fusing with the designed oligomerization domain. As an example application, we showed that the engineered ultrasensitive transcription factor could be used to significantly improve the performance of a "stripe-forming" gene circuit. We envision that the oligomerization modules engineered in this study could act as a powerful tool to rapidly tune the underlying response profiles of synthetic gene circuits and metabolic pathway controllers.
Collapse
Affiliation(s)
- Junran Hou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Weiqian Zeng
- Institute of Molecular Precision Medicine, The Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Yeqing Zong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Zehua Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Chensi Miao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, U.K
- Centre for Synthetic and System Biology, University of Edinburgh, Edinburgh, EH9 3FF, U.K
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
- College of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
25
|
Dey S, Levy ED. Inferring and Using Protein Quaternary Structure Information from Crystallographic Data. Methods Mol Biol 2018; 1764:357-375. [PMID: 29605927 DOI: 10.1007/978-1-4939-7759-8_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A precise knowledge of the quaternary structure of proteins is essential to illuminate both their function and their evolution. The major part of our knowledge on quaternary structure is inferred from X-ray crystallography data, but this inference process is hard and error-prone. The difficulty lies in discriminating fortuitous protein contacts, which make up the lattice of protein crystals, from biological protein contacts that exist in the native cellular environment. Here, we review methods devised to discriminate between both types of contacts and describe resources for downloading protein quaternary structure information and identifying high-confidence quaternary structures. The use of high-confidence datasets of quaternary structures will be critical for the analysis of structural, functional, and evolutionary properties of proteins.
Collapse
Affiliation(s)
- Sucharita Dey
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
26
|
Hope CM, Rebay I, Reinitz J. DNA Occupancy of Polymerizing Transcription Factors: A Chemical Model of the ETS Family Factor Yan. Biophys J 2017; 112:180-192. [PMID: 28076810 PMCID: PMC5232354 DOI: 10.1016/j.bpj.2016.11.901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022] Open
Abstract
Transcription factors use both protein-DNA and protein-protein interactions to assemble appropriate complexes to regulate gene expression. Although most transcription factors operate as monomers or dimers, a few, including the E26 transformation-specific family repressors Drosophila melanogaster Yan and its human homolog TEL/ETV6, can polymerize. Although polymerization is required for both the normal and oncogenic function of Yan and TEL/ETV6, the mechanisms by which it influences the recruitment, organization, and stability of transcriptional complexes remain poorly understood. Further, a quantitative description of the DNA occupancy of a polymerizing transcription factor is lacking, and such a description would have broader applications to the conceptually related area of polymerizing chromatin regulators. To expand the theoretical basis for understanding how the oligomeric state of a transcriptional regulator influences its chromatin occupancy and function, we leveraged the extensive biochemical characterization of E26 transformation-specific factors to develop a mathematical model of Yan occupancy at chemical equilibrium. We find that spreading condensation from a specific binding site can take place in a path-independent manner given reasonable values of the free energies of specific and non-specific DNA binding and protein-protein cooperativity. Our calculations show that polymerization confers upon a transcription factor the unique ability to extend occupancy across DNA regions far from specific binding sites. In contrast, dimerization promotes recruitment to clustered binding sites and maximizes discrimination between specific and non-specific sites. We speculate that the association with non-specific DNA afforded by polymerization may enable regulatory behaviors that are well-suited to transcriptional repressors but perhaps incompatible with precise activation.
Collapse
Affiliation(s)
- C Matthew Hope
- Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, Illinois
| | - Ilaria Rebay
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois; Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois.
| | - John Reinitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois; Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois; Department of Statistics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
27
|
Kim M, Kim MJ, Pandey S, Kim J. Expression and Protein Interaction Analyses Reveal Combinatorial Interactions of LBD Transcription Factors During Arabidopsis Pollen Development. PLANT & CELL PHYSIOLOGY 2016; 57:2291-2299. [PMID: 27519310 DOI: 10.1093/pcp/pcw145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor gene family members play key roles in diverse aspects of plant development. LBD10 and LBD27 have been shown to be essential for pollen development in Arabidopsis thaliana. From the previous RNA sequencing (RNA-Seq) data set of Arabidopsis pollen, we identified the mRNAs of LBD22, LBD25 and LBD36 in addition to LBD10 and LBD27 in Arabidopsis pollen. Here we conducted expression and cellular analysis using GFP:GUS (green fluorescent protein:β-glucuronidase) reporter gene and subcellular localization assays using LBD:GFP fusion proteins expressed under the control of their own promoters in Arabidopsis. We found that these LBD proteins display spatially and temporally distinct and overlapping expression patterns during pollen development. Bimolecular fluorescence complementation and GST (glutathione S-transferase) pull-down assays demonstrated that protein-protein interactions occur among the LBDs exhibiting overlapping expression during pollen development. We further showed that LBD10, LBD22, LBD25, LBD27 and LBD36 interact with each other to form heterodimers, which are localized to the nucleus in Arabidopsis protoplasts. Taken together, these results suggest that combinatorial interactions among LBD proteins may be important for their function in pollen development in Arabidopsis.
Collapse
Affiliation(s)
- Mirim Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Shashank Pandey
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| |
Collapse
|
28
|
Pantoja-Hernández L, Álvarez-Buylla E, Aguilar-Ibáñez CF, Garay-Arroyo A, Soria-López A, Martínez-García JC. Retroactivity effects dependency on the transcription factors binding mechanisms. J Theor Biol 2016; 410:77-106. [PMID: 27524647 DOI: 10.1016/j.jtbi.2016.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional networks, may induce behaviors such as ultrasensitive responses or even represent an undesired issue in regulation. To the best of our knowledge, the role of the binding mechanisms of transcription factors in relation to minimizing - or enhancing - retroactivity effects has not been previously addressed. Our aim is to evaluate retroactivity effects considering how the binding mechanism impacts the number of free functional transcription factor (FFTF) molecules using a simple model via deterministic and stochastic simulations. We study four transcription factor binding mechanisms (BM): simple monomer binding (SMB), dimer binding (DB), cooperative sequential binding (CSB) and cooperative sequential binding with dimerization (CSB_D). We consider weak and strong binding regimes for each mechanism, where we contrast the cases when the FFTF is bound or unbound to the downstream loads. Upon interconnection, the number of FFTF molecules changed less for the SMB mechanism while for DB they changed the most. Our results show that for the chosen mechanisms (in terms of the corresponding described dynamics), retroactivity effects depend on transcription binding mechanisms. This contributes to the understanding of how the transcription factor regulatory function-such as decision making-and its dynamic needs for the response, may determine the nature of the selected binding mechanism.
Collapse
Affiliation(s)
- Libertad Pantoja-Hernández
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México (C3-UNAM), Mexico City, Mexico.
| | - Elena Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México (C3-UNAM), Mexico City, Mexico
| | - Carlos F Aguilar-Ibáñez
- Centro de investigación en Computación, Instituto Politécnico Nacional (CIC - IPN), Mexico City, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alberto Soria-López
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Carlos Martínez-García
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
29
|
Quantifying the dynamics of the oligomeric transcription factor STAT3 by pair correlation of molecular brightness. Nat Commun 2016; 7:11047. [PMID: 27009358 PMCID: PMC4820838 DOI: 10.1038/ncomms11047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022] Open
Abstract
Oligomerization of transcription factors controls their translocation into the nucleus and DNA-binding activity. Here we present a fluorescence microscopy analysis termed pCOMB (pair correlation of molecular brightness) that tracks the mobility of different oligomeric species within live cell nuclear architecture. pCOMB amplifies the signal from the brightest species present and filters the dynamics of the extracted oligomeric population based on arrival time between two locations. We use this method to demonstrate a dependence of signal transducer and activator of transcription 3 (STAT3) mobility on oligomeric state. We find that on entering the nucleus STAT3 dimers must first bind DNA to form STAT3 tetramers, which are also DNA-bound but exhibit a different mobility signature. Examining the dimer-to-tetramer transition by a cross-pair correlation analysis (cpCOMB) reveals that chromatin accessibility modulates STAT3 tetramer formation. Thus, the pCOMB approach is suitable for mapping the impact oligomerization on transcription factor dynamics.
Collapse
|
30
|
Kim MJ, Kim M, Lee MR, Park SK, Kim J. LATERAL ORGAN BOUNDARIES DOMAIN (LBD)10 interacts with SIDECAR POLLEN/LBD27 to control pollen development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:794-809. [PMID: 25611322 DOI: 10.1111/tpj.12767] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/30/2014] [Accepted: 01/08/2015] [Indexed: 05/10/2023]
Abstract
During male gametophyte development in Arabidopsis thaliana, the microspores undergo an asymmetric division to produce a vegetative cell and a generative cell, which undergoes a second division to give rise to two sperm cells. SIDECAR POLLEN/LATERAL ORGAN BOUNDARIES DOMAIN (LBD) 27 plays a key role in the asymmetric division of microspores. Here we provide molecular genetic evidence that a combinatorial role of LBD10 with LBD27 is crucial for male gametophyte development in Arabidopsis. Expression analysis, genetic transmission and pollen viability assays, and pollen development analysis demonstrated that LBD10 plays a role in the male gametophyte function primarily at germ cell mitosis. In the mature pollen of lbd10 and lbd10 expressing a dominant negative version of LBD10, LBD10:SRDX, aberrant microspores such as bicellular and smaller tricellular pollen appeared at a ratio of 10-15% with a correspondingly decreased ratio of normal tricellular pollen, whereas in lbd27 mutants, 70% of the pollen was aborted. All pollen in the lbd10 lbd27 double mutants was aborted and severely shrivelled compared with that of the single mutants, indicating that LBD10 and LBD27 are essential for pollen development. Gene expression and subcellular localization analyses of LBD10:GFP and LBD27:RFP during pollen development indicated that posttranscriptional and/or posttranslational controls are involved in differential accumulation and subcellular localization of LBD10 and LBD27 during pollen development, which may contribute in part to combinatorial and distinct roles of LBD10 with LBD27 in microspore development. In addition, we showed that LBD10 and LBD27 interact to form a heterodimer for nuclear localization.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | | | |
Collapse
|
31
|
Honda S, Nagamune T, Kawahara M. Selection of cDNA candidates that induce oligomerization of NLRP3 using a chimeric receptor approach. J Biosci Bioeng 2015; 120:223-30. [PMID: 25641579 DOI: 10.1016/j.jbiosc.2014.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 11/26/2022]
Abstract
Since diverse cellular events are regulated by protein oligomerization, identification of molecules that affect oligomerization of a target protein is important for understanding cellular physiology and developing therapeutics. In this study, we aimed to screen cDNA candidates that induce oligomerization of NLRP3, which is one of the important inflammatory sensor proteins, in mammalian cytoplasm. In our screening method, the chimera composed of NLRP3 and the kinase domain of c-kit, one of the receptor tyrosine kinases (RTKs) activated by oligomerization, is expressed in cytoplasm of an IL-3-dependent mammalian cell line. The cells are then transduced with a cDNA library, and cultured in the absence of IL-3. If the transduced cDNA is a NLRP3 activator, the kinase domain of the NLRP3-c-kit chimera is activated by oligomerization, which induces cell growth even in the absence of IL-3. Using this system, constitutive oligomers of two NLRP3 variants were clearly detected by cell growth. Furthermore, cDNA screening resulted in identification of three distinct cDNAs that are potential candidates of NLRP3 activators. These results demonstrate the utility of our chimeric receptor-based system for screening candidates that induce oligomerization of a target protein.
Collapse
Affiliation(s)
- Shingo Honda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
32
|
Kim MJ, Kim M, Kim J. Combinatorial interactions between LBD10 and LBD27 are essential for male gametophyte development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1044193. [PMID: 26252070 PMCID: PMC4622844 DOI: 10.1080/15592324.2015.1044193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 05/29/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes encodes a unique class of transcription factors that play roles in diverse aspects of lateral organ development in plants. The Arabidopsis LBD gene family comprises 42 members and biological functions of most of the LBD genes are unknown. Our molecular genetic analysis and a variety of functional assays including expression analysis, genetic transmission and pollen viability assays, and pollen development analysis demonstrated that LBD10 co-acts with SIDECAR POLLEN(SCP)/LBD27 to control an early stage of microspore development but also plays a distinct role at later bicellular and tricellular pollen stages and that these 2 LBD genes are essential for Arabidopsis pollen development. We also showed that LBD10 and LBD27 interact with each other to be localized into the nucleus. Our subcellular localization analysis of LBD10 in comparison with LBD27 during pollen development indicated that regulated protein degradation may be involved in determining spatially and temporally distinct and overlapping expression patterns of these LBD transcription factors, contributing to distinct and combinatorial roles of LBD10 and LBD27 in Arabidopsis pollen development.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Bioenergy Science and Technology; Chonnam National University; Gwangju, Korea
| | - Mirim Kim
- Department of Bioenergy Science and Technology; Chonnam National University; Gwangju, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology; Chonnam National University; Gwangju, Korea
| |
Collapse
|
33
|
Torres-Kolbus J, Chou C, Liu J, Deiters A. Synthesis of non-linear protein dimers through a genetically encoded Thiol-ene reaction. PLoS One 2014; 9:e105467. [PMID: 25181502 PMCID: PMC4152134 DOI: 10.1371/journal.pone.0105467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
Site-specific incorporation of bioorthogonal unnatural amino acids into proteins provides a useful tool for the installation of specific functionalities that will allow for the labeling of proteins with virtually any probe. We demonstrate the genetic encoding of a set of alkene lysines using the orthogonal PylRS/PylTCUA pair in Escherichia coli. The installed double bond functionality was then applied in a photoinitiated thiol-ene reaction of the protein with a fluorescent thiol-bearing probe, as well as a cysteine residue of a second protein, showing the applicability of this approach in the formation of heterogeneous non-linear fused proteins.
Collapse
Affiliation(s)
- Jessica Torres-Kolbus
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chungjung Chou
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
34
|
Liberles DA, Teufel AI, Liu L, Stadler T. On the need for mechanistic models in computational genomics and metagenomics. Genome Biol Evol 2014; 5:2008-18. [PMID: 24115604 PMCID: PMC3814209 DOI: 10.1093/gbe/evt151] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Computational genomics is now generating very large volumes of data that have the potential to be used to address important questions in both basic biology and biomedicine. Addressing these important biological questions becomes possible when mechanistic models rooted in biochemistry and evolutionary/population genetic processes are developed, instead of fitting data to off-the-shelf statistical distributions that do not enable mechanistic inference. Three examples are presented, the first involving ecological processes inferred from metagenomic data, the second involving mechanisms of gene regulation rooted in protein–DNA interactions with consideration of DNA structure, and the third involving existing models for the retention of duplicate genes that enables prediction of evolutionary mechanisms. This description of mechanistic models is generalized toward future developments in computational genomics and the need for biological mechanisms and processes in biological models.
Collapse
|
35
|
Pallarés MC, Marcuello C, Botello-Morte L, González A, Fillat MF, Lostao A. Sequential binding of FurA from Anabaena sp. PCC 7120 to iron boxes: exploring regulation at the nanoscale. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:623-31. [PMID: 24440406 DOI: 10.1016/j.bbapap.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/18/2022]
Abstract
Fur (ferric uptake regulator) proteins are involved in the control of a variety of processes in most prokaryotes. Although it is assumed that this regulator binds its DNA targets as a dimer, the way in which this interaction occurs remains unknown. We have focused on FurA from the cyanobacterium Anabaena sp. PCC 7120. To assess the molecular mechanism by which FurA specifically binds to "iron boxes" in PfurA, we examined the topology arrangement of FurA-DNA complexes by atomic force microscopy. Interestingly, FurA-PfurA complexes exhibit several populations, in which one is the predominant and depends clearly on the regulator/promoter ratio on the environment. Those results together with EMSA and other techniques suggest that FurA binds PfurA using a sequential mechanism: (i) a monomer specifically binds to an "iron box" and bends PfurA; (ii) two situations may occur, that a second FurA monomer covers the free "iron box" or that joins to the previously used forming a dimer which would maintain the DNA kinked; (iii) trimerization in which the DNA is unbent; and (iv) finally undergoes a tetramerization; the next coming molecules cover the DNA strands unspecifically. In summary, the bending appears when an "iron box" is bound to one or two molecules and decreases when both "iron boxes" are covered. These results suggest that DNA bending contributes at the first steps of FurA repression promoting the recruitment of new molecules resulting in a fine regulation in the Fur-dependent cluster associated genes.
Collapse
Affiliation(s)
- María Carmen Pallarés
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Carlos Marcuello
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Laura Botello-Morte
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Andrés González
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Francisca Fillat
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Spain.
| |
Collapse
|
36
|
Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci U S A 2013; 110:15497-501. [PMID: 24006363 DOI: 10.1073/pnas.1311126110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homo-oligomerization is found in many biological systems and has been extensively studied in vitro. However, our ability to quantify and understand oligomerization processes in cells is still limited. We used fluorescence correlation spectroscopy and mathematical modeling to measure the dynamics of the tetramers formed by the tumor suppressor protein p53 in single living cells. Previous in vitro studies suggested that in basal conditions all p53 molecules are bound in dimers. We found that in resting cells p53 is present in a mix of oligomeric states with a large cell-to-cell variation. After DNA damage, p53 molecules in all cells rapidly assemble into tetramers before p53 protein levels increase. We developed a model to understand the connection between p53 accumulation and tetramerization. We found that the rapid increase in p53 tetramers requires a combination of active tetramerization and protein stabilization, however tetramerization alone is sufficient to activate p53 transcriptional targets. This suggests triggering tetramerization as a mechanism for activating the p53 pathway in cancer cells. Many other transcription factors homo-oligomerize, and our approach provides a unique way for probing the dynamics and functional consequences of oligomerization.
Collapse
|
37
|
Sun XJ, Wang Z, Wang L, Jiang Y, Kost N, Soong TD, Chen WY, Tang Z, Nakadai T, Elemento O, Fischle W, Melnick A, Patel DJ, Nimer SD, Roeder RG. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 2013; 500:93-7. [PMID: 23812588 PMCID: PMC3732535 DOI: 10.1038/nature12287] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/13/2013] [Indexed: 12/03/2022]
Abstract
Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression1. AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia (AML), is a transcription factor implicated in both gene repression and activation2. AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis3–6, making it important to identify coregulatory factors that “read” the NHR2 oligomerization and contribute to leukaemogenesis4. We now show that, in leukaemic cells, AML1-ETO resides in and functions through a stable protein complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, colocalize genome-wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO–induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO and a potential therapeutic target in t(8;21)+ AML.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mitrea DM, Kriwacki RW. Regulated unfolding of proteins in signaling. FEBS Lett 2013; 587:1081-8. [PMID: 23454209 DOI: 10.1016/j.febslet.2013.02.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/27/2022]
Abstract
The transduction of biological signals often involves structural rearrangements of proteins in response to input signals, which leads to functional outputs. This review discusses the role of regulated partial and complete protein unfolding as a mechanism of controlling protein function and the prevalence of this regulatory mechanism in signal transduction pathways. The principles of regulated unfolding, the stimuli that trigger unfolding, and the coupling of unfolding with other well characterized regulatory mechanism are discussed.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|