1
|
Barbato A, Gori G, Sacchini M, Pochiero F, Bargiacchi S, Traficante G, Palazzo V, Tiberi L, Bianchini C, Mei D, Parrini E, Pisano T, Procopio E, Guerrini R, Peron A, Stagi S. Endocrinological features and epileptic encephalopathy in COX deficiency due to SCO1 mutations: case series and review of literature. Endocr Connect 2024; 13:e240221. [PMID: 39214134 PMCID: PMC11466244 DOI: 10.1530/ec-24-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Context Cytochrome C oxidase (COX) is the fourth component of the respiratory chain and is located within the internal membrane of mitochondria. COX deficiency causes an inherited mitochondrial disease with significant genetic and phenotypic heterogeneity. Four clinical subtypes have been identified, each with distinct phenotypes and genetic variants. Mitochondrial complex IV deficiency nuclear type 4 (MC4DN4) is a form of COX deficiency associated with pathogenic variants in the SCO1 gene. Case description We describe three patients with MC4DN4 with developmental and epileptic encephalopathy (DEE), hypopituitarism, and SCO1 pathogenic variants. These patients' phenotypes considerably differ from previously reported MC4DN4 phenotypes as they associate DEE with progressive hypopituitarism and survival beyond the first months after birth. Pituitary deficiency in these patients progressively worsened and mainly involved growth hormone secretion and thyroid function. Conclusions Our findings expand knowledge of phenotypic variability in MC4DN4 and suggest that SCO1 is a candidate gene for genetic hypopituitarism and DEE. Significance statement Our paper describes three patients affected by MC4DN4 with hypopituitarism and developmental and epileptic encephalopathy (DEE), two features that have never been associated with this condition. In addition, we reviewed the clinical features of all previous cases of MC4DN4 to give the other clinicians a wide picture of the clinical phenotype of this genetic disease. We hope that the publication of our data may help others to identify this disease and consider the chance to analyze the SCO1 gene in cases of DEE associated with pituitary dysfunction. Our article contributes to expanding the spectrum of genetic hypopituitarism and proposes a model to explain an association between this condition, mitochondrial anomalies, and neurodevelopmental defects.
Collapse
Affiliation(s)
- Alessandro Barbato
- Auxo-endocrinology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Gori
- Medical Genetics Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Michele Sacchini
- Metabolic and Muscular Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Francesca Pochiero
- Metabolic and Muscular Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| | | | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Claudia Bianchini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Davide Mei
- Pediatric Neurology and Neurogenetics Unit and Laboratories, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Parrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology and Neurogenetics Unit and Laboratories, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Procopio
- Metabolic and Muscular Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, Meyer Children’s Hospital IRCCS, Florence, Italy
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Angela Peron
- Medical Genetics Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Stefano Stagi
- Auxo-endocrinology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Walker BR, Theard LM, Pinto M, Rodriguez-Silva M, Bacman SR, Moraes CT. Restoration of defective oxidative phosphorylation to a subset of neurons prevents mitochondrial encephalopathy. EMBO Mol Med 2024; 16:2210-2232. [PMID: 39169163 PMCID: PMC11392956 DOI: 10.1038/s44321-024-00111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative Phosphorylation (OXPHOS) defects can cause severe encephalopathies and no effective treatment exists for these disorders. To assess the ability of gene replacement to prevent disease progression, we subjected two different CNS-deficient mouse models (Ndufs3/complex I or Cox10/complex IV conditional knockouts) to gene therapy. We used retro-orbitally injected AAV-PHP.eB to deliver the missing gene to the CNS of these mice. In both cases, we observed survival extension from 5-6 to more than 15 months, with no detectable disease phenotypes. Likewise, molecular and cellular phenotypes were mostly recovered in the treated mice. Surprisingly, these remarkable phenotypic improvements were achieved with only ~30% of neurons expressing the transgene from the AAV-PHP.eB vector in the conditions used. These findings suggest that neurons lacking OXPHOS are protected by the surrounding neuronal environment and that partial compensation for neuronal OXPHOS loss can have disproportionately positive effects.
Collapse
Affiliation(s)
- Brittni R Walker
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, USA
| | - Lise-Michelle Theard
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA
- Mitobridge Inc, Cambridge, MA, USA
| | | | - Sandra R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA.
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
3
|
Zhang CX, Fan B, Chi J, Li YL, Jiao Q, Zhang ZY, Li GY. Differences between long- and short-wavelength light-induced retinal damage and the role of PARP-1 in retinal injury induced by blue light. Exp Eye Res 2024; 244:109946. [PMID: 38815794 DOI: 10.1016/j.exer.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm2, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.
Collapse
Affiliation(s)
- Chun-Xia Zhang
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Yu-Lin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
4
|
Tavasoli A, Kachuei M, Talebi S, Eghdami S. Complex mitochondrial disease caused by the mutation of COX10 in a toddler: a case-report study. Ann Med Surg (Lond) 2024; 86:3753-3756. [PMID: 38846886 PMCID: PMC11152868 DOI: 10.1097/ms9.0000000000002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/14/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction and importance Cytochrome C oxidase (COX) deficiency is an uncommon inherited metabolic disorder. It is identified by a lack of the COX, also known as Complex IV. This enzyme plays a crucial role in the rate-limiting and oxygen-accepting step of the respiratory chain within the subcellular structures called mitochondria. The deficiency of COX can either be restricted to skeletal muscle tissues or can impact multiple tissues throughout the body. Case presentation A 3-year-old girl was admitted due to muscle weakness and a decline in developmental milestones 7 days after a significant stressor. Leukodystrophy was observed in the brain magnetic resonance imaging, and genome sequencing identified a homozygous mutation in exon 1 and 7 of chromosome 17. This mutation led to a deficiency in COX10, which is a component of mitochondrial complex IV. Clinical discussion In the medical field, inherited metabolic disorders can be complex to diagnose due to overlapping symptoms with other conditions. Mitochondria's oxidative phosphorylation system, including the COX enzyme complex, plays a crucial role in energy production. Mitochondrial disorders, including COX deficiency, can present at various stages of life with diverse symptoms. Treatment options focus on supportive care and potential benefits from supplements like coenzyme-Q10 and small-molecule therapies targeting mitochondrial function. Identifying genetic mutations is key for advancing treatments in this area. Conclusion This report presents a unique case of developmental regression and muscle weakness in a paediatric patient, which can be attributed to a rare occurrence of type 3 nuclear mitochondrial complex IV deficiency.
Collapse
Affiliation(s)
- Azita Tavasoli
- Department of Pediatric Neurology, Hazrat-e Ali Asghar Hospital, Iran University of Medical Sciences
| | - Maryam Kachuei
- Department of Pediatric Neurology, Hazrat-e Ali Asghar Hospital, Iran University of Medical Sciences
| | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS)
| | - Shayan Eghdami
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
6
|
Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J, Tan R. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med 2023; 208:846-858. [PMID: 37776918 DOI: 10.1016/j.freeradbiomed.2023.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Cardiovascular diseases (CVDs) are leading causes of global mortality; however, their underlying mechanisms remain unclear. The tumor suppressor factor p53 has been extensively studied for its role in cancer and is also known to play an important role in regulating CVDs. Abnormal p53 expression levels and modifications contribute to the occurrence and development of CVDs. Additionally, mounting evidence underscores the critical involvement of mitochondrial dysfunction in CVDs. Notably, studies indicate that p53 abnormalities directly correlate with mitochondrial dysfunction and may even interact with each other. Encouragingly, small molecule inhibitors targeting p53 have exhibited remarkable effects in animal models of CVDs. Moreover, therapeutic strategies aimed at mitochondrial-related molecules and mitochondrial replacement therapy have demonstrated their advantageous potential. Therefore, targeting p53 or mitochondria holds immense promise as a pioneering therapeutic approach for combating CVDs. In this comprehensive review, we delve into the mechanisms how p53 influences mitochondrial dysfunction, including energy metabolism, mitochondrial oxidative stress, mitochondria-induced apoptosis, mitochondrial autophagy, and mitochondrial dynamics, in various CVDs. Furthermore, we summarize and discuss the potential significance of targeting p53 or mitochondria in the treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Yu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yibo Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ruihao Wu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yifei Dai
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ye Deng
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272000, China.
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
7
|
Garza NM, Zulkifli M, Gohil VM. Elesclomol elevates cellular and mitochondrial iron levels by delivering copper to the iron import machinery. J Biol Chem 2022; 298:102139. [PMID: 35714767 PMCID: PMC9270252 DOI: 10.1016/j.jbc.2022.102139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/16/2023] Open
Abstract
Copper (Cu) and iron (Fe) are redox-active metals that serve as cofactors for many essential cellular enzymes. Disruption in the intracellular homeostasis of these metals results in debilitating and frequently fatal human disorders, such as Menkes disease and Friedreich's ataxia. Recently, we reported that an investigational anticancer drug, elesclomol (ES), can deliver Cu to critical mitochondrial cuproenzymes and has the potential to be repurposed for treatment of Cu deficiency disorders. Here, we sought to determine the specificity of ES and the ES-Cu complex in delivering Cu to cuproenzymes in different intracellular compartments. Using a combination of yeast genetics, subcellular fractionation, and inductively coupled plasma-mass spectrometry-based metal measurements, we showed that ES and ES-Cu treatment results in an increase in cellular and mitochondrial Fe content, along with the expected increase in Cu. Utilizing yeast mutants of Cu and Fe transporters, we demonstrate that ES-based elevation in cellular Fe levels is independent of the major cellular Cu importer, but is dependent on the Fe importer Ftr1 and its partner Fet3, a multicopper-oxidase. As Fet3 is metallated in the Golgi lumen, we sought to uncover the mechanism by which Fet3 receives Cu from ES. Using yeast knockouts of genes involved in Cu delivery to Fet3, we determined that ES can bypass Atx1, a metallochaperone involved in Cu delivery to the Golgi membrane Cu pump, Ccc2, but not Ccc2 itself. Taken together, our study provides a mechanism by which ES distributes Cu in cells and impacts cellular and mitochondrial Fe homeostasis.
Collapse
Affiliation(s)
- Natalie M Garza
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Peng J, Ramatchandirin B, Pearah A, Maheshwari A, He L. Development and Functions of Mitochondria in Early Life. NEWBORN (CLARKSVILLE, MD.) 2022; 1:131-141. [PMID: 37206110 PMCID: PMC10193534 DOI: 10.5005/jp-journals-11002-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are highly dynamic organelles of bacterial origin in eukaryotic cells. These play a central role in metabolism and adenosine triphosphate (ATP) synthesis and in the production and regulation of reactive oxygen species (ROS). In addition to the generation of energy, mitochondria perform numerous other functions to support key developmental events such as fertilization during reproduction, oocyte maturation, and the development of the embryo. During embryonic and neonatal development, mitochondria may have important effects on metabolic, energetic, and epigenetic regulation, which may have significant short- and long-term effects on embryonic and offspring health. Hence, the environment, epigenome, and early-life regulation are all linked by mitochondrial integrity, communication, and metabolism.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Balamurugan Ramatchandirin
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexia Pearah
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| | - Ling He
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Elstner M, Olszewski K, Prokisch H, Klopstock T, Murgia M. Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers. Int J Mol Sci 2021; 22:ijms222011080. [PMID: 34681740 PMCID: PMC8537949 DOI: 10.3390/ijms222011080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.
Collapse
Affiliation(s)
- Matthias Elstner
- Department of Neurology, Technical University Munich, 81675 Munich, Germany;
| | - Konrad Olszewski
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8001 Zurich, Switzerland;
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany;
- Institute of Neurogenomics, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, 80336 Munich, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81675 Munich, Germany
| | - Marta Murgia
- Department of Proteomics a Signal Transduction, Max Planck Institute of Biochemistry, 82352 Martinsried, Germany
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
10
|
Sferruzza G, Del Bondio A, Citterio A, Vezzulli P, Guerrieri S, Radaelli M, Martinelli Boneschi F, Filippi M, Maltecca F, Bassi MT, Scarlato M. U-Fiber Leukoencephalopathy Due to a Novel Mutation in the TACO1 Gene. NEUROLOGY-GENETICS 2021; 7:e573. [PMID: 33709035 PMCID: PMC7943219 DOI: 10.1212/nxg.0000000000000573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Giacomo Sferruzza
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Andrea Del Bondio
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Andrea Citterio
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Paolo Vezzulli
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Simone Guerrieri
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Marta Radaelli
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Filippo Martinelli Boneschi
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Massimo Filippi
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Francesca Maltecca
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Maria Teresa Bassi
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| | - Marina Scarlato
- Department of Neurology (G.S., S.G., M.F., M.S.), and Mitochondrial Dysfunctions in Neurodegeneration Unit (A.D.B., F.M.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Laboratory of Molecular Biology (A.C., M.T.B.), Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco; Department of Neuroradiology (P.V.), IRCCS San Raffaele Scientific Institute, Milan; Department of Neurology (M.R.), Papa Giovanni XXIII, Bergamo; Dino Ferrari Centre (F.M.B.), Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan; and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (F.M.B.), Neurology Unit and Multiple Sclerosis Center, Milan, Italy
| |
Collapse
|
11
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
12
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
13
|
Abstract
Maternally mitochondrial dysfunction includes a heterogeneous group of genetic disorders which leads to the impairment of the final common pathway of energy metabolism. Coronary heart disease and coronary venous disease are two important clinical manifestations of mitochondrial dysfunction due to abnormality in the setting of underlying pathways. Mitochondrial dysfunction can lead to cardiomyopathy, which is involved in the onset of acute cardiac and pulmonary failure. Mitochondrial diseases present other cardiac manifestations such as left ventricular noncompaction and cardiac conduction disease. Different clinical findings from mitochondrial dysfunction originate from different mtDNA mutations, and this variety of clinical symptoms poses a diagnostic challenge for cardiologists. Heart transplantation may be a good treatment, but it is not always possible, and other complications of the disease, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome, should be considered. To diagnose and treat most mitochondrial disorders, careful cardiac, neurological, and molecular studies are needed. In this study, we looked at molecular genetics of MIDs and cardiac manifestations in patients with mitochondrial dysfunction.
Collapse
|
14
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
15
|
Frazier AE, Vincent AE, Turnbull DM, Thorburn DR, Taylor RW. Assessment of mitochondrial respiratory chain enzymes in cells and tissues. Methods Cell Biol 2019; 155:121-156. [PMID: 32183956 DOI: 10.1016/bs.mcb.2019.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Measurement of the individual enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) forms a key part of diagnostic investigations in patients with suspected mitochondrial disease, and can provide crucial information on mitochondrial OXPHOS function in a variety of cells and tissues that are applicable to many research investigations. In this chapter, we present methods for analysis of mitochondrial respiratory chain enzymes in cells and tissues based on assays performed in two geographically separate diagnostic referral centers, as part of clinical diagnostic investigations. Techniques for sample preparation from cells and tissues, and spectrophotometric assays for measurement of the activities of OXPHOS complexes I-V, the combined activity of complexes II+III, and the mitochondrial matrix enzyme citrate synthase, are provided. The activities of mitochondrial respiratory chain enzymes are often expressed relative to citrate synthase activity, since these ratios may be more robust in accounting for variability that may arise due to tissue quality, handling and storage, cell growth conditions, or any mitochondrial proliferation that may be present in tissues from patients with mitochondrial disease. Considerations for adaption of these techniques to other cells, tissues, and organisms are presented, as well as comparisons to alternate methods for analysis of respiratory chain function. In this context, a quantitative immunofluorescence protocol is also provided that is suitable for measurement of the amount of multiple respiratory chain complexes in small diagnostic tissue samples. The analysis and interpretation of OXPHOS enzyme activities are then placed in the context of mitochondrial disease tissue pathology and diagnosis.
Collapse
Affiliation(s)
- Ann E Frazier
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Inoue M, Uchino S, Iida A, Noguchi S, Hayashi S, Takahashi T, Fujii K, Komaki H, Takeshita E, Nonaka I, Okada Y, Yoshizawa T, Van Lommel L, Schuit F, Goto YI, Mimaki M, Nishino I. COX6A2 variants cause a muscle-specific cytochrome c oxidase deficiency. Ann Neurol 2019; 86:193-202. [PMID: 31155743 DOI: 10.1002/ana.25517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Cytochrome c oxidase (COX) deficiency is a major mitochondrial respiratory chain defect that has vast genetic and phenotypic heterogeneity. This study aims to identify novel causative genes of COX deficiency with only striated muscle-specific symptoms. METHODS Whole exome sequencing was performed in 2 unrelated individuals who were diagnosed with congenital myopathy and presented COX deficiency in muscle pathology. We assessed the COX6A2 variants using measurements of enzymatic activities and assembly of mitochondrial respiratory chain complexes in the samples from the patients and knockout mice. RESULTS Both patients presented muscle weakness and hypotonia in 4 limbs along with facial muscle weakness. One patient had cardiomyopathy. Neither patient exhibited involvement from other organs. Whole exome sequencing identified biallelic missense variants in COX6A2, which is expressed only in the skeletal muscle and heart. The variants detected were homozygous c.117C > A (p.Ser39Arg) and compound heterozygous c.117C > A (p.Ser39Arg) and c.127T > C (p.Cys43Arg). We found specific reductions in complex IV activities in the skeletal muscle of both individuals. Assembly of complex IV and its supercomplex formation were impaired in the muscle. INTERPRETATION This study indicates that biallelic variants in COX6A2 cause a striated muscle-specific form of COX deficiency. ANN NEUROL 2019;86:193-202.
Collapse
Affiliation(s)
- Michio Inoue
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Integrated Graduate School of Medicine, Engineering, and Agricultural Science, University of Yamanashi, Yamanashi, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shumpei Uchino
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Aritoshi Iida
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Pediatrics, Saiseikai Utsunomiya Hospital, Tochigi, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hirofumi Komaki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ikuya Nonaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Leentje Van Lommel
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Yu-Ichi Goto
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masakazu Mimaki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
17
|
Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 2019; 20:ijms20102409. [PMID: 31096646 PMCID: PMC6567007 DOI: 10.3390/ijms20102409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.
Collapse
Affiliation(s)
- Gianluca Fichi
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Valentina Naef
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | - Maria Marchese
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
18
|
Meyer EH, Welchen E, Carrie C. Assembly of the Complexes of the Oxidative Phosphorylation System in Land Plant Mitochondria. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:23-50. [PMID: 30822116 DOI: 10.1146/annurev-arplant-050718-100412] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants-compared with those described in fungal and animal models-we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.
Collapse
Affiliation(s)
- Etienne H Meyer
- Organelle Biology and Biotechnology Research Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Current affiliation: Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany;
| | - Elina Welchen
- Cátedra de Biología Celular y Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Chris Carrie
- Plant Sciences Research Group, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Mansour H, Sabbagh S, Bizzari S, El-Hayek S, Chouery E, Gambarini A, Gencik M, Mégarbané A. The Lebanese Allele in the PET100 Gene: Report on Two New Families with Cytochrome c Oxidase Deficiency. J Pediatr Genet 2019; 8:172-178. [PMID: 31406627 DOI: 10.1055/s-0039-1685172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Cytochrome c oxidase deficiency is caused by mutations in any of at least 30 mitochondrial and nuclear genes involved in mitochondrial complex IV biogenesis and structure, including the recently identified PET100 gene. Here, we report two families, of which one is consanguineous, with two affected siblings each. In one family, the siblings presented with developmental delay, seizures, lactic acidosis, abnormal brain magnetic resonance imaging, and low muscle mitochondrial complex IV activity at 30%. In the other family, the two siblings, now deceased, had a history of global developmental delay, failure to thrive, muscular hypotonia, seizures, developmental regression, respiratory insufficiency, and lactic acidosis. By whole exome sequencing, a missense mutation in exon 1 of the PET100 gene (c.3G > C; [p.Met1?]) was identified in both families. A review of the clinical description and literature is discussed, highlighting the importance of this variant in the Lebanese population.
Collapse
Affiliation(s)
- Hicham Mansour
- Department of Pediatrics, Saint George Hospital, Beirut, Lebanon
| | - Sandra Sabbagh
- Department Pediatrics, Hotel-Dieu de France, Beirut, Lebanon
| | - Sami Bizzari
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | | | - Eliane Chouery
- Unité de Génétique Médicale, Université Saint Joseph, Beirut, Lebanon
| | | | | | - André Mégarbané
- INOVIE-MENA, Beirut, Lebanon.,Institut Jérôme Lejeune, CRB BioJeL, Paris, France
| |
Collapse
|
20
|
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
21
|
Brix N, Jensen JM, Pedersen IS, Ernst A, Frost S, Bogaard P, Petersen MB, Bender L. Mitochondrial Disease Caused by a Novel Homozygous Mutation (Gly106del) in the SCO1 Gene. Neonatology 2019; 116:290-294. [PMID: 31352446 DOI: 10.1159/000499488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
Abstract
The cytochrome C oxidase assembly protein SCO1 gene encodes a mitochondrial protein essential for the mammalian energy metabolism. Only three pedigrees of SCO1mutations have thus far been reported. They all presented with lactate acidosis and encephalopathy. Two had hepatopathy and hypotonia, and the other presented with intrauterine growth retardation and hypertrophic cardiomyopathy leading to cardiac failure. Mitochondrial disease may manifest in neonates, but early diagnosis has so far been difficult. Here, we present a novel mutation in the SCO1 gene: in-frame deletion (Gly106del)with a different phenotype without encephalopathy, hepatopathy, hypotonia, or cardiac involvement. Within the first 2 h the girl developed hypoglycemia and severe chronic lactate acidosis. Because of the improved technique in whole exome sequencing, an early diagnosis was made when the girl was only 9 days old, which enabled the prediction of prognosis as well as level of treatment. She died at 1 month of age.
Collapse
Affiliation(s)
- Ninna Brix
- Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark,
| | | | - Inge Søkilde Pedersen
- Section of Molecular Diagnostic, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Anja Ernst
- Section of Molecular Diagnostic, Aalborg University Hospital, Aalborg, Denmark
| | - Simon Frost
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark.,Section of Molecular Diagnostic, Aalborg University Hospital, Aalborg, Denmark
| | - Pauline Bogaard
- Pathological Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Michael B Petersen
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Bender
- Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
22
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Son G, Han J. Roles of mitochondria in neuronal development. BMB Rep 2018; 51:549-556. [PMID: 30269744 PMCID: PMC6283025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 04/06/2024] Open
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141,
Korea
| |
Collapse
|
24
|
Douiev L, Saada A. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:893-900. [PMID: 29886046 DOI: 10.1016/j.bbabio.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023]
Abstract
Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50 μM KCN for 24 h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD+) deficit combined with a replicative state, rather than oxidative stress and energy depletion.
Collapse
Affiliation(s)
- Liza Douiev
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
25
|
Li R, Xiong G, Yuan S, Wu Z, Miao Y, Weng P. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. World J Microbiol Biotechnol 2017; 33:206. [PMID: 29101531 DOI: 10.1007/s11274-017-2376-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/29/2017] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.
Collapse
Affiliation(s)
- Ruoyun Li
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Guotong Xiong
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Shukun Yuan
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yingjie Miao
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peifang Weng
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
26
|
Martinez Lyons A, Ardissone A, Reyes A, Robinson AJ, Moroni I, Ghezzi D, Fernandez-Vizarra E, Zeviani M. COA7 (C1orf163/RESA1) mutations associated with mitochondrial leukoencephalopathy and cytochrome c oxidase deficiency. J Med Genet 2016; 53:846-849. [PMID: 27683825 PMCID: PMC5264227 DOI: 10.1136/jmedgenet-2016-104194] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/30/2016] [Indexed: 11/05/2022]
Abstract
Background Assembly of cytochrome c oxidase (COX, complex IV, cIV), the terminal component of the mitochondrial respiratory chain, is assisted by several factors, most of which are conserved from yeast to humans. However, some of them, including COA7, are found in humans but not in yeast. COA7 is a 231aa-long mitochondrial protein present in animals, containing five Sel1-like tetratricopeptide repeat sequences, which are likely to interact with partner proteins. Methods Whole exome sequencing was carried out on a 19 year old woman, affected by early onset, progressive severe ataxia and peripheral neuropathy, mild cognitive impairment and a cavitating leukodystrophy of the brain with spinal cord hypotrophy. Biochemical analysis of the mitochondrial respiratory chain revealed the presence of isolated deficiency of cytochrome c oxidase (COX) activity in skin fibroblasts and skeletal muscle. Mitochondrial localization studies were carried out in isolated mitochondria and mitoplasts from immortalized control human fibroblasts. Results We found compound heterozygous mutations in COA7: a paternal c.410A>G, p.Y137C, and a maternal c.287+1G>T variants. Lentiviral-mediated expression of recombinant wild-type COA7 cDNA in the patient fibroblasts led to the recovery of the defect in COX activity and restoration of normal COX amount. In mitochondrial localization experiments, COA7 behaved as the soluble matrix protein Citrate Synthase. Conclusions We report here the first patient carrying pathogenic mutations of COA7, causative of isolated COX deficiency and progressive neurological impairment. We also show that COA7 is a soluble protein localized to the matrix, rather than in the intermembrane space as previously suggested.
Collapse
Affiliation(s)
| | | | - Aurelio Reyes
- MRC-Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | - Alan J Robinson
- MRC-Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | | | - Daniele Ghezzi
- Unit of Molecular Neurogenetics of the Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | | | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| |
Collapse
|
27
|
Richman TR, Spåhr H, Ermer JA, Davies SMK, Viola HM, Bates KA, Papadimitriou J, Hool LC, Rodger J, Larsson NG, Rackham O, Filipovska A. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun 2016; 7:11884. [PMID: 27319982 PMCID: PMC4915168 DOI: 10.1038/ncomms11884] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. Mutations in the translational activator of cytochrome c oxidase subunit I (TACO1) causes cytochrome c oxidase deficiency and Leigh Syndrome in patients. Here, the authors characterize mice with a mutation that causes lack of TACO1 expression, identifying a mouse model that could be useful for preclinical trials.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Stefan M K Davies
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Helena M Viola
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - John Papadimitriou
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
28
|
Rak M, Bénit P, Chrétien D, Bouchereau J, Schiff M, El-Khoury R, Tzagoloff A, Rustin P. Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond) 2016; 130:393-407. [PMID: 26846578 PMCID: PMC4948581 DOI: 10.1042/cs20150707] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.
Collapse
Affiliation(s)
- Malgorzata Rak
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Paule Bénit
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Dominique Chrétien
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Juliette Bouchereau
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Manuel Schiff
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Reference Center for Inherited Metabolic Diseases, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 Boulevard Sérurier, 75019 Paris, France
| | - Riyad El-Khoury
- American University of Beirut Medical Center, Department of Pathology and Laboratory Medicine, Cairo Street, Hamra, Beirut, Lebanon
| | - Alexander Tzagoloff
- Biological Sciences Department, Columbia University, New York, NY 10027, U.S.A
| | - Pierre Rustin
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
29
|
Rodrigues GS, Godinho RO, Kiyomoto BH, Gamba J, Oliveira ASB, Schmidt B, Tengan CH. Integrated analysis of the involvement of nitric oxide synthesis in mitochondrial proliferation, mitochondrial deficiency and apoptosis in skeletal muscle fibres. Sci Rep 2016; 6:20780. [PMID: 26856437 PMCID: PMC4746761 DOI: 10.1038/srep20780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) is an important signaling messenger involved in different mitochondrial processes but only few studies explored the participation of NO in mitochondrial abnormalities found in patients with genetic mitochondrial deficiencies. In this study we verified whether NO synthase (NOS) activity was altered in different types of mitochondrial abnormalities and whether changes in mitochondrial function and NOS activity could be associated with the induction of apoptosis. We performed a quantitative and integrated analysis of NOS activity in individual muscle fibres of patients with mitochondrial diseases, considering mitochondrial function (cytochrome-c-oxidase activity), mitochondrial content, mitochondrial DNA mutation and presence of apoptotic nuclei. Our results indicated that sarcolemmal NOS activity was increased in muscle fibres with mitochondrial proliferation, supporting the relevance of neuronal NOS in the mitochondrial biogenesis process. Sarcoplasmic NOS activity was reduced in cytochrome-c-oxidase deficient fibres, probably as a consequence of the involvement of NO in the regulation of the respiratory chain. Alterations in NOS activity or mitochondrial abnormalities were not predisposing factors to apoptotic nuclei. Taken together, our results show that NO can be considered a potential molecular target for strategies to increase mitochondrial content and indicate that this approach may not be associated with increased apoptotic events.
Collapse
Affiliation(s)
- Gabriela Silva Rodrigues
- Department of Neurology &Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo;São Paulo, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Hitomi Kiyomoto
- Department of Neurology &Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo;São Paulo, Brazil
| | - Juliana Gamba
- Department of Neurology &Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo;São Paulo, Brazil
| | - Acary Souza Bulle Oliveira
- Department of Neurology &Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo;São Paulo, Brazil
| | - Beny Schmidt
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Célia Harumi Tengan
- Department of Neurology &Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo;São Paulo, Brazil
| |
Collapse
|
30
|
Swan EJ, Salem RM, Sandholm N, Tarnow L, Rossing P, Lajer M, Groop PH, Maxwell AP, McKnight AJ. Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes. Diabet Med 2015; 32:1104-9. [PMID: 25819010 PMCID: PMC4504747 DOI: 10.1111/dme.12763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 01/13/2023]
Abstract
AIM To evaluate the association with diabetic kidney disease of single nucleotide polymorphisms (SNPs) that may contribute to mitochondrial dysfunction. METHODS The mitochondrial genome and 1039 nuclear genes that are integral to mitochondrial function were investigated using a case (n = 823 individuals with diabetic kidney disease) vs. control (n = 903 individuals with diabetes and no renal disease) approach. All people included in the analysis were of white European origin and were diagnosed with Type 1 diabetes before the age of 31 years. Replication was conducted in 5093 people with similar phenotypes to those of the discovery collection. Association analyses were performed using the plink genetic analysis toolset, with adjustment for relevant covariates. RESULTS A total of 25 SNPs were evaluated in the mitochondrial genome, but none were significantly associated with diabetic kidney disease or end-stage renal disease. A total of 38 SNPs in nuclear genes influencing mitochondrial function were nominally associated with diabetic kidney disease and 16 SNPS were associated with end-stage renal disease, secondary to diabetic kidney disease, with meta-analyses confirming the same direction of effect. Three independent signals (seven SNPs) were common to the replication data for both phenotypes with Type 1 diabetes and persistent proteinuria or end-stage renal disease. CONCLUSIONS Our results suggest that SNPs in nuclear genes that influence mitochondrial function are significantly associated with diabetic kidney disease in a white European population.
Collapse
Affiliation(s)
- E J Swan
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - R M Salem
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland
| | - L Tarnow
- Nordsjaellands Hospital, Hilleroed, Denmark and Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Centre, Gentofte, Denmark
| | - P Rossing
- Steno Diabetes Centre, Gentofte, Denmark
| | - M Lajer
- Steno Diabetes Centre, Gentofte, Denmark
| | - P H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - A P Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
| | - A J McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
31
|
Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 2015; 24:64-76. [PMID: 26190566 DOI: 10.1016/j.mito.2015.07.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022]
Abstract
Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.
Collapse
Affiliation(s)
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Martínez-Morentin L, Martínez L, Piloto S, Yang H, Schon EA, Garesse R, Bodmer R, Ocorr K, Cervera M, Arredondo JJ. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model. Hum Mol Genet 2015; 24:3608-22. [PMID: 25792727 DOI: 10.1093/hmg/ddv106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/17/2015] [Indexed: 12/18/2022] Open
Abstract
The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans.
Collapse
Affiliation(s)
- Leticia Martínez-Morentin
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Lidia Martínez
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Sarah Piloto
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pine Rd, San Diego, CA 92037, USA
| | - Hua Yang
- Department of Neurology and Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 630 West 168th Street P&S 4-449, New York, NY, USA and
| | - Eric A Schon
- Department of Neurology and Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 630 West 168th Street P&S 4-449, New York, NY, USA and
| | - Rafael Garesse
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pine Rd, San Diego, CA 92037, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pine Rd, San Diego, CA 92037, USA,
| | - Margarita Cervera
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| | - Juan J Arredondo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), c/ Arzobispo Morcillo s/n,Universidad Autónoma de Madrid, Madrid 28029, Spain, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| |
Collapse
|
33
|
Hlynialuk CJ, Ling B, Baker ZN, Cobine PA, Yu LD, Boulet A, Wai T, Hossain A, El Zawily AM, McFie PJ, Stone SJ, Diaz F, Moraes CT, Viswanathan D, Petris MJ, Leary SC. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis. Cell Rep 2015; 10:933-943. [PMID: 25683716 DOI: 10.1016/j.celrep.2015.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/15/2014] [Accepted: 01/08/2015] [Indexed: 02/03/2023] Open
Abstract
Human SCO1 fulfills essential roles in cytochrome c oxidase (COX) assembly and the regulation of copper (Cu) homeostasis, yet it remains unclear why pathogenic mutations in this gene cause such clinically heterogeneous forms of disease. Here, we establish a Sco1 mouse model of human disease and show that ablation of Sco1 expression in the liver is lethal owing to severe COX and Cu deficiencies. We further demonstrate that the Cu deficiency is explained by a functional connection between SCO1 and CTR1, the high-affinity transporter that imports Cu into the cell. CTR1 is rapidly degraded in the absence of SCO1 protein, and we show that its levels are restored in Sco1-/- mouse embryonic fibroblasts upon inhibition of the proteasome. These data suggest that mitochondrial signaling through SCO1 provides a post-translational mechanism to regulate CTR1-dependent Cu import into the cell, and they further underpin the importance of mitochondria in cellular Cu homeostasis.
Collapse
Affiliation(s)
| | - Binbing Ling
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Zakery N Baker
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lisa D Yu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Aren Boulet
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Timothy Wai
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Amzad Hossain
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Amr M El Zawily
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Faculty of Science, Damanhour University, Damanhour 22516, Egypt
| | - Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Scot J Stone
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Deepa Viswanathan
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
34
|
Torraco A, Peralta S, Iommarini L, Diaz F. Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion 2015; 21:76-91. [PMID: 25660179 DOI: 10.1016/j.mito.2015.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/22/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Mitochondrial disorders are the most common inborn errors of metabolism affecting the oxidative phosphorylation system (OXPHOS). Because of the poor knowledge of the pathogenic mechanisms, a cure for these disorders is still unavailable and all the treatments currently in use are supportive more than curative. Therefore, in the past decade a great variety of mouse models have been developed to assess the in vivo function of several mitochondrial proteins involved in human diseases. Due to the genetic and physiological similarity to humans, mice represent reliable models to study the pathogenic mechanisms of mitochondrial disorders and are precious to test new therapeutic approaches. Here we summarize the features of several mouse models of mitochondrial diseases directly related to defects in subunits of the OXPHOS complexes or in assembly factors. We discuss how these models recapitulate many human conditions and how they have contributed to the understanding of mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15-00146 Rome, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
35
|
Rutter J, Hughes AL. Power(2): the power of yeast genetics applied to the powerhouse of the cell. Trends Endocrinol Metab 2015; 26:59-68. [PMID: 25591985 PMCID: PMC4315768 DOI: 10.1016/j.tem.2014.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has served as a remarkable model organism for numerous seminal discoveries in biology. This paradigm extends to the mitochondria, a central hub for cellular metabolism, where studies in yeast have helped to reinvigorate the field and launch an exciting new era in mitochondrial biology. Here we discuss a few recent examples in which yeast research has laid a foundation for our understanding of evolutionarily conserved mitochondrial processes and functions, from key factors and pathways involved in the assembly of oxidative phosphorylation (OXPHOS) complexes to metabolite transport, lipid metabolism, and interorganelle communication. We also highlight new areas of yeast mitochondrial biology that are likely to aid in our understanding of the mitochondrial etiology of disease in the future.
Collapse
Affiliation(s)
- Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Zlatic S, Comstra HS, Gokhale A, Petris MJ, Faundez V. Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease. Neurobiol Dis 2015; 81:154-61. [PMID: 25583185 DOI: 10.1016/j.nbd.2014.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/16/2022] Open
Abstract
ATP7A mutations impair copper metabolism resulting in three distinct genetic disorders in humans. These diseases are characterized by neurological phenotypes ranging from intellectual disability to neurodegeneration. Severe ATP7A loss-of-function alleles trigger Menkes disease, a copper deficiency condition where systemic and neurodegenerative phenotypes dominate clinical outcomes. The pathogenesis of these manifestations has been attributed to the hypoactivity of a limited number of copper-dependent enzymes, a hypothesis that we refer as the oligoenzymatic pathogenic hypothesis. This hypothesis, which has dominated the field for 25 years, only explains some systemic Menkes phenotypes. However, we argue that this hypothesis does not fully account for the Menkes neurodegeneration or neurodevelopmental phenotypes. Here, we propose revisions of the oligoenzymatic hypothesis that could illuminate the pathogenesis of Menkes neurodegeneration and neurodevelopmental defects through unsuspected overlap with other neurological conditions including Parkinson's, intellectual disability, and schizophrenia.
Collapse
Affiliation(s)
- Stephanie Zlatic
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Generating Mouse Models of Mitochondrial Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
38
|
Melchionda L, Haack TB, Hardy S, Abbink TEM, Fernandez-Vizarra E, Lamantea E, Marchet S, Morandi L, Moggio M, Carrozzo R, Torraco A, Diodato D, Strom TM, Meitinger T, Tekturk P, Yapici Z, Al-Murshedi F, Stevens R, Rodenburg RJ, Lamperti C, Ardissone A, Moroni I, Uziel G, Prokisch H, Taylor RW, Bertini E, van der Knaap MS, Ghezzi D, Zeviani M. Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency. Am J Hum Genet 2014; 95:315-25. [PMID: 25175347 PMCID: PMC4157140 DOI: 10.1016/j.ajhg.2014.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/08/2014] [Indexed: 11/17/2022] Open
Abstract
Cytochrome c oxidase (COX) deficiency is a frequent biochemical abnormality in mitochondrial disorders, but a large fraction of cases remains genetically undetermined. Whole-exome sequencing led to the identification of APOPT1 mutations in two Italian sisters and in a third Turkish individual presenting severe COX deficiency. All three subjects presented a distinctive brain MRI pattern characterized by cavitating leukodystrophy, predominantly in the posterior region of the cerebral hemispheres. We then found APOPT1 mutations in three additional unrelated children, selected on the basis of these particular MRI features. All identified mutations predicted the synthesis of severely damaged protein variants. The clinical features of the six subjects varied widely from acute neurometabolic decompensation in late infancy to subtle neurological signs, which appeared in adolescence; all presented a chronic, long-surviving clinical course. We showed that APOPT1 is targeted to and localized within mitochondria by an N-terminal mitochondrial targeting sequence that is eventually cleaved off from the mature protein. We then showed that APOPT1 is virtually absent in fibroblasts cultured in standard conditions, but its levels increase by inhibiting the proteasome or after oxidative challenge. Mutant fibroblasts showed reduced amount of COX holocomplex and higher levels of reactive oxygen species, which both shifted toward control values by expressing a recombinant, wild-type APOPT1 cDNA. The shRNA-mediated knockdown of APOPT1 in myoblasts and fibroblasts caused dramatic decrease in cell viability. APOPT1 mutations are responsible for infantile or childhood-onset mitochondrial disease, hallmarked by the combination of profound COX deficiency with a distinctive neuroimaging presentation.
Collapse
Affiliation(s)
- Laura Melchionda
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Steven Hardy
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Truus E M Abbink
- Departments of Child Neurology and Functional Genomics, Neuroscience Campus Amsterdam, VU University and VU University Medical Center, Amsterdam 1081 HV, the Netherlands
| | | | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Silvia Marchet
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Department of Neurology, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Rosalba Carrozzo
- Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Alessandra Torraco
- Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Daria Diodato
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy; Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Pinar Tekturk
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Zuhal Yapici
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - René Stevens
- Department of Paediatrics, CHC Clinique de l'Espérance at Liège, Liège 4000, Belgium
| | - Richard J Rodenburg
- Nijmegen Center for Mitochondrial Disorders, Laboratory for Genetic, Endocrine, and Metabolic Disorders, Department of Pediatrics, Radboud University Medical Center, 9101 Nijmegen, the Netherlands
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy
| | - Anna Ardissone
- Department of Child Neurology, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Isabella Moroni
- Department of Child Neurology, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Graziella Uziel
- Department of Child Neurology, Foundation IRCCS Institute of Neurology Besta, 20133 Milan, Italy
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, 00165 Rome, Italy
| | - Marjo S van der Knaap
- Departments of Child Neurology and Functional Genomics, Neuroscience Campus Amsterdam, VU University and VU University Medical Center, Amsterdam 1081 HV, the Netherlands
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy.
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology Besta, 20126 Milan, Italy; MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| |
Collapse
|
39
|
Mitochondrial encephalomyopathy with cytochrome c oxidase deficiency caused by a novel mutation in the MTCO1 gene. Mitochondrion 2014; 17:101-5. [DOI: 10.1016/j.mito.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/25/2014] [Accepted: 06/13/2014] [Indexed: 12/30/2022]
|
40
|
Chadha R, Shah R, Mani S. Analysis of reported SCO2 gene mutations affecting cytochrome c oxidase activity in various diseases. Bioinformation 2014; 10:329-33. [PMID: 25097374 PMCID: PMC4110422 DOI: 10.6026/97320630010329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/23/2022] Open
Abstract
A large number of mutations have been reported in SCO2 (synthesis of cytochrome c oxidase) gene in association with COX deficiency reported in different diseases such as cardioencephalomyopathy, cardiomyopathy and Leigh syndrome. However, very few of these mutations have been functionally analyzed.SCO2 gene encodes for an essential assembly factor for the formation of cytochrome c oxidase (COX). It is a nuclear encoded protein that helps in transfer of copper ions to COX. This study is an attempt to understand the possible effect of these mutations on the structure and function of SCO2 protein, by using different in silico tools. As per Human Gene Mutation Database, total 11 non synonymous variations have been reported in SCO2 gene. Among these 11 variations, only E140K and R171W are functionally proven to cause COX deficiency. They have been used as controls in this study. The remaining variations were further analyzed using ClustalW, SIFT, PolyPhen-2, GOR4, MuPro and Panther softwares. As compared to the results of the controls, most of these variations were predicted to affect the structure of SCO2 protein and hence, may cause COX dysfunction. Thus, we hypothesize that these variations have the potential to result in a disease phenotype and should be investigated by subsequent functional analyses. This will help in an appropriate diagnosis and management of the wide spectrum of COX deficiency diseases.
Collapse
Affiliation(s)
- Radhika Chadha
- International Centre for Genetic Engineering and Biotechnology, New Delhi
| | - Ritika Shah
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida
| |
Collapse
|
41
|
Papadopoulou LC, Kyriazou AV, Bonovolias ID, Tsiftsoglou AS. Imatinib inhibits the expression of SCO2 and FRATAXIN genes that encode mitochondrial proteins in human Bcr-Abl⁺ leukemia cells. Blood Cells Mol Dis 2014; 53:84-90. [PMID: 24726617 DOI: 10.1016/j.bcmd.2014.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
Imatinib mesylate (IM/Gleevec®), a selective inhibitor of chimeric Bcr-Abl tyrosine kinase, was developed as a first line drug to treat CML and ALL Ph(+) patients. Earlier studies have shown that hemin counteracts the IM-induced cell killing in human K-562 CML cells. In this study, we investigated whether IM disrupts the heme-dependent Cytochrome c Oxidase (COX) Biosynthesis and Assembly Pathway (HDCBAP) in Bcr-Abl(+) and Bcr-Abl(-) cells by affecting the expression of key-genes. Cells were exposed to IM and evaluated at time intervals for cell growth, cell death, expression of various genes by RT-PCR analysis as well as Sco2 mature protein levels by western blot analysis and COX enzymatic activity. IM at 1 μM induced extensive cell growth inhibition and cell death as well as marked suppression of the expression of SCO2 and FRATAXIN (FXN) genes in human K-562 and KU-812 Bcr-Abl(+) CML cells. IM also reduced the protein level of mature Sco2 mitochondrial protein as well as COX activity in these cell lines. However, treatment of human MOLT-4 Bcr-Abl(-) cells with 1μM and even with higher concentrations (4×10(-5)M) of IM neither reduced the expression of SCO2 and FXN genes nor suppressed the protein level of mature Sco2 protein and COX activity. Our findings indicate that SCO2 and FXN genes, involved in HDCBAP, are repressed by IM in human Bcr-Abl(+) CML cells and may represent novel target sites in leukemia therapy.
Collapse
Affiliation(s)
- Lefkothea C Papadopoulou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.), GR-54124 Thessaloniki, Macedonia, Greece
| | - Angeliki V Kyriazou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.), GR-54124 Thessaloniki, Macedonia, Greece
| | - Ioannis D Bonovolias
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.), GR-54124 Thessaloniki, Macedonia, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki (A.U.TH.), GR-54124 Thessaloniki, Macedonia, Greece.
| |
Collapse
|
42
|
Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur J Hum Genet 2014; 23:159-64. [PMID: 24781756 DOI: 10.1038/ejhg.2014.85] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 11/08/2022] Open
Abstract
Isolated cytochrome c oxidase (COX) deficiency is a prevalent cause of mitochondrial disease and is mostly caused by nuclear-encoded mutations in assembly factors while rarely by mutations in structural subunits. We hereby report a case of isolated COX deficiency manifesting with encephalomyopathy, hydrocephalus and hypertropic cardiomyopathy due to a missense p.R20C mutation in the COX6B1 gene, which encodes an integral, nuclear-encoded COX subunit. This novel mutation was predicted to be severe in silico. In accord, enzymatic activity was undetectable in muscle and fibroblasts, was severely decreased in lymphocytes and the COX6B1 protein was barely detectable in patient's muscle mitochondria. Complementation with the wild-type cDNA by a lentiviral construct restored COX activity, and mitochondrial function was improved by 5-aminoimidazole-4-carboxamide ribonucleotide, resveratrol and ascorbate in the patient's fibroblasts. We suggest that genetic analysis of COX6B1should be included in the investigation of isolated COX deficiency, including patients with cardiac defects. Initial measurement of COX activity in lymphocytes may be useful as it might circumvent the need for invasive muscle biopsy. The evaluation of ascorbate supplementation to patients with mutated COX6B1 is warranted.
Collapse
|
43
|
Liu AH, Niu FN, Chang LL, Zhang B, Liu Z, Chen JY, Zhou Q, Wu HY, Xu Y. High cytochrome c oxidase expression links to severe skeletal energy failure by (31)P-MRS spectroscopy in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. CNS Neurosci Ther 2014; 20:509-14. [PMID: 24674659 DOI: 10.1111/cns.12257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022] Open
Abstract
AIMS The purpose of this study was to evaluate the energy metabolism and mitochondrial function in skeletal muscle from patients with Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) or chronic progressive external ophthalmoplegia (CPEO) using phosphorus magnetic resonance spectroscopy ((31)P-MRS), to determine whether abnormally increasing cytochrome c oxidase (COX), as detected in muscle biopsy, could be a cause for MELAS. METHODS (31)P-MRS was performed on the quadriceps femoris muscle of 12 healthy volunteers and 11 patients diagnosed as MELAS or CPEO by muscle biopsy and genetic analysis. All subjects experienced a state of rest, 5-min exercise, and 5-min recovery protocol in a supine position. RESULTS Compared to CPEO, MELAS patients typically exhibited COX-positive ragged-red fibers (RRFs) as well as strongly SDH-positive blood vessels (SSVs). However, based on (31)P-MRS results, MELAS showed a higher inorganic phosphate (Pi)/phosphocreatine (PCr) ratio and lower ATP/PCr ratio during exercise and delayed Pi/PCr and ATP/PCr recovery to normal. CONCLUSIONS This study suggests that high COX expression contributes to severe skeletal energy failure by (31)P-MRS spectroscopy in MELAS.
Collapse
Affiliation(s)
- Ai-Hua Liu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kemppainen KK, Rinne J, Sriram A, Lakanmaa M, Zeb A, Tuomela T, Popplestone A, Singh S, Sanz A, Rustin P, Jacobs HT. Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency. Hum Mol Genet 2013; 23:2078-93. [PMID: 24293544 PMCID: PMC3959817 DOI: 10.1093/hmg/ddt601] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof.
Collapse
Affiliation(s)
- Kia K Kemppainen
- Institute of Biomedical Technology and Tampere University Hospital, University of Tampere, FI-33014 Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Doss S, Lohmann K, Seibler P, Arns B, Klopstock T, Zühlke C, Freimann K, Winkler S, Lohnau T, Drungowski M, Nürnberg P, Wiegers K, Lohmann E, Naz S, Kasten M, Bohner G, Ramirez A, Endres M, Klein C. Recessive dystonia-ataxia syndrome in a Turkish family caused by a COX20 (FAM36A) mutation. J Neurol 2013; 261:207-12. [DOI: 10.1007/s00415-013-7177-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
|
46
|
Adeva M, González-Lucán M, Seco M, Donapetry C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion 2013; 13:615-29. [DOI: 10.1016/j.mito.2013.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
|
47
|
Leary SC, Antonicka H, Sasarman F, Weraarpachai W, Cobine PA, Pan M, Brown GK, Brown R, Majewski J, Ha KCH, Rahman S, Shoubridge EA. Novel Mutations inSCO1as a Cause of Fatal Infantile Encephalopathy and Lactic Acidosis. Hum Mutat 2013; 34:1366-70. [DOI: 10.1002/humu.22385] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Scot C. Leary
- Department of Biochemistry; University of Saskatchewan; Saskatoon; Canada
| | | | | | | | - Paul A. Cobine
- Department of Biological Sciences; Auburn University; Auburn; Alabama
| | - Min Pan
- Department of Biochemistry; University of Saskatchewan; Saskatoon; Canada
| | - Garry K. Brown
- Department of Biochemistry; University of Oxford; Oxford; UK
| | - Ruth Brown
- Department of Biochemistry; University of Oxford; Oxford; UK
| | - Jacek Majewski
- Department of Human Genetics; McGill University; Montreal; Canada
| | - Kevin C. H. Ha
- Department of Human Genetics; McGill University; Montreal; Canada
| | - Shamima Rahman
- Mitochondrial Research Group; UCL Institute of Child Health; London; UK
| | | |
Collapse
|
48
|
Abstract
Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category-defects of mtDNA maintenance-combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot-Marie-Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed.
Collapse
|