1
|
Zhao YJ, Zhou C, Wei YY, Zhang SY, Mishra JS, Li HH, Lei W, Wang K, Kumar S, Zheng J. An Endogenous Aryl Hydrocarbon Receptor Ligand Induces Preeclampsia-like Phenotypes: Transcriptome, Phosphoproteome, and Cell Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572271. [PMID: 38187714 PMCID: PMC10769228 DOI: 10.1101/2023.12.20.572271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Preeclampsia (PE) is one hypertensive disorder and a leading cause of maternal and fetal mortality and morbidity during human pregnancy. Aryl hydrocarbon receptor (AhR) is a transcription factor, which regulates vascular functions. Exogenous and endogenous AhR ligands can induce hypertension in animals. However, if dysregulation of endogenous AhR ligands contributes to the pathophysiology of PE remains elusive. Methods We measured AhR activities in human maternal and umbilical vein sera. We also applied physiological, cellular, and molecular approaches to dissect the role of endogenous AhR ligands in vascular functions during pregnancy using pregnant rats and primary human umbilical vein endothelial cells (HUVECs) as models. Results PE elevated AhR activities in human umbilical vein sera. Exposure of pregnant rats to an endogenous AhR ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) increased blood pressure and proteinuria, while decreased uteroplacental blood flow and reduced fetal and placental weights, all of which are hallmarks of PE. ITE dampened vascular growth and fetal sex-specifically altered immune cell infiltration in rat placentas. ITE also decreased cell proliferation and cell monolayer integrity in HUVECs in vitro . RNA sequencing analysis revealed that ITE dysregulated transcriptome in rat placentas and HUVECs in a fetal sex-specific manner. Bottom-up phosphoproteomics showed that ITE disrupted phosphoproteome in HUVECs. These ITE-dysregulated genes and phosphoproteins were enriched in biological functions and pathways which are highly relevant to diseases of heart, liver, and kidney, vascular functions, inflammation responses, cell death, and kinase inhibition. Conclusions Dysregulation of endogenous AhR ligands during pregnancy may lead to the development of PE with underlying impaired vascular functions, fetal sex-specific immune cell infiltration and transcriptome, and phosphoproteome. Thus, this study has provided a novel mechanism for the development of PE and potentially other forms of hypertensive pregnancies. These AhR ligand-activated genes and phosphoproteins might represent promising therapeutic and fetal sex-specific targets for PE-impaired vascular functions.
Collapse
|
2
|
Zhou C, Freel C, Mills O, Yang XR, Yan Q, Zheng J. MicroRNA-29 differentially mediates preeclampsia-dysregulated cellular responses to cytokines in female and male fetal endothelial cells. J Physiol 2023; 601:3631-3645. [PMID: 37401732 PMCID: PMC10807859 DOI: 10.1113/jp284746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
Preeclampsia (PE) differentially impairs female and male fetal endothelial cell function, which is associated with an increased risk of adult-onset cardiovascular disorders in children born to mothers with PE. However, the underlying mechanisms are poorly defined. We hypothesize that dysregulation of microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in PE disturbs gene expression and cellular responses to cytokines in fetal endothelial cells in a fetal sex-dependent manner. RT-qPCR analysis of miR-29a/c-3p was performed on female and male unpassaged (P0) human umbilical vein endothelial cells (HUVECs) from normotensive (NT) pregnancies and PE. Bioinformatic analysis of an RNA-seq dataset was performed to identify PE-dysregulated miR-29a/c-3p target genes in female and male P0-HUVECs. Gain- and loss-of-function assays were conducted to determine the effects of miR-29a/c-3p on endothelial monolayer integrity and proliferation in response to transforming growth factor-β1 (TGFβ1) and tumour necrosis factor-α (TNFα) in NT and PE HUVECs at passage 1. We observed that PE downregulated miR-29a/c-3p in male and female P0-HUVECs. PE dysregulated significantly more miR-29a/c-3p target genes in female vs. male P0-HUVECs. Many of these PE-differentially dysregulated miR-29a/c-3p target genes are associated with critical cardiovascular diseases and endothelial function. We further demonstrated that miR-29a/c-3p knockdown specifically recovered the PE-abolished TGFβ1-induced strengthening of endothelial monolayer integrity in female HUVECs, while miR-29a/c-3p overexpression specifically enhanced the TNFα-promoted cell proliferation in male PE HUVECs. In conclusion, PE downregulates miR-29a/c-3p expression and differentially dysregulates miR-29a/c-3p target genes associated with cardiovascular diseases and endothelial function in female and male fetal endothelial cells, possibly contributing to the fetal sex-specific endothelial dysfunction observed in PE. KEY POINTS: Preeclampsia differentially impairs female and male fetal endothelial cell function in responses to cytokines. Pro-inflammatory cytokines are elevated in maternal circulation during pregnancy in preeclampsia. MicroRNAs are critical regulators of endothelial cell function during pregnancy. We have previously reported that preeclampsia downregulated microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in primary fetal endothelial cells. However, it is unknown if PE differentially dysregulates the expression of miR-29a/c-3p in female and male fetal endothelial cells. We show that preeclampsia downregulates miR-29a/c-3p in male and female HUVECs and preeclampsia dysregulates cardiovascular disease- and endothelial function-associated miR-29a/c-3p target genes in HUVECs in a fetal sex-specific manner. MiR-29a/c-3p differentially mediate cell responses to cytokines in female and male fetal endothelial cells from preeclampsia. We have revealed fetal sex-specific dysregulation of miR-29a/c-3p target genes in fetal endothelial cells from preeclampsia. This differential dysregulation may contribute to fetal sex-specific endothelial dysfunction in offspring born to preeclamptic mothers.
Collapse
Affiliation(s)
- Chi Zhou
- School of Animal and Comparative Biomedical Sciences, the University of Arizona, Tucson, AZ, United States
- Department of Obstetrics and Gynecology, the University of Arizona, Tucson, AZ, United States
| | - Colman Freel
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Current Institution: University of Nebraska Medical Center, Omaha, NE, United States
| | - Olivia Mills
- School of Animal and Comparative Biomedical Sciences, the University of Arizona, Tucson, AZ, United States
| | - Xin-Ran Yang
- School of Animal and Comparative Biomedical Sciences, the University of Arizona, Tucson, AZ, United States
| | - Qin Yan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Rengarajan A, Austin JL, Stanic AK, Patankar MS, Boeldt DS. Mononuclear Cells Negatively Regulate Endothelial Ca 2+ Signaling. Reprod Sci 2023; 30:2292-2301. [PMID: 36717462 DOI: 10.1007/s43032-023-01164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/24/2022] [Indexed: 02/01/2023]
Abstract
Endothelial Ca2+ signaling has important roles to play in maintaining pregnancy associated vasodilation in the utero-placenta. Inflammatory cytokines, often elevated in vascular complications of pregnancy, negatively regulate ATP-stimulated endothelial Ca2+ signaling and associated nitric oxide production. However, the role of direct engagement of immune cells on endothelial Ca2+ signaling and therefore endothelial function is unclear. To model immune-endothelial interactions, herein, we evaluate the effects of peripheral blood mononuclear cells (PBMCs) in short-term interaction with human umbilical vein endothelial cells (HUVECs) on agonist-stimulated Ca2+ signaling in HUVECs. We find that mononuclear cells (10:1 and 25:1 mononuclear: HUVEC) cause decreased ATP-stimulated Ca2+ signaling; worsened by activated mononuclear cells possibly due to increased cytokine secretion. Additionally, monocytes, natural killers, and T-cells cause decrease in ATP-stimulated Ca2+ signaling using THP-1 (monocyte), NKL (natural killer cells), and Jurkat (T-cell) cell lines, respectively. PBMCs with Golgi-restricted protein transport prior to interaction with endothelial cells display rescue in Ca2+ signaling, strongly suggesting that secreted proteins from PBMCs mediate changes in HUVEC Ca2+ signaling. We propose that endothelial cells from normal pregnancy interacting with PBMCs may model preeclamptic endothelial-immune interaction and resultant endothelial dysfunction.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Jason L Austin
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Aleksandar K Stanic
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Manish S Patankar
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, Perinatal Research Laboratories, 7E UnityPoint Health-Meriter Hospital, 202 South Park St, Madison, WI, 53715, USA.
| |
Collapse
|
4
|
Zhou C, Freel C, Mills O, Yang XR, Yan Q, Zheng J. MicroRNA-29 Differentially Mediates Preeclampsia-Dysregulated Cellular Responses to Cytokines in Female and Male Fetal Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.532827. [PMID: 36993536 PMCID: PMC10055181 DOI: 10.1101/2023.03.17.532827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Introduction Preeclampsia (PE) differentially impairs female and male fetal endothelial cell function which is associated with the increased risks of adult-onset cardiovascular disorders in children born to mothers with PE. However, the underlying mechanisms are poorly defined. We hypothesize that dysregulation of microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in PE disturbs gene expression and cellular responses to cytokines in fetal endothelial cells in a fetal sex-dependent manner. Methods RT-qPCR analysis of miR-29a/c-3p was performed on female and male unpassaged (P0) human umbilical vein endothelial cells (HUVECs) from normotensive (NT) and PE pregnancies. Bioinformatic analysis of an RNAseq dataset was performed to identify PE-dysregulated miR-29a/c-3p target genes in female and male P0-HUVECs. Gain- and loss-of-function assays were conducted to determine the effects of miR-29a/c-3p on endothelial monolayer integrity and proliferation in response to TGFβ1 and TNFα in NT and PE HUVECs at passage 1. Results PE downregulated miR-29a/c-3p in male, but not female P0-HUVECs. PE dysregulated significantly more miR-29a/c-3p target genes in female vs. male P0-HUVECs. Many of these PE-differentially dysregulated miR-29a/c-3p target genes are associated with critical cardiovascular diseases and endothelial functions. We further demonstrated that miR-29a/c-3p knockdown specifically recovered the PE-abolished TGFβ1-induced strengthening of endothelial monolayer integrity in female HUVECs, while miR-29a/c-3p overexpression specifically enhanced the TNFα-promoted cell proliferation in male PE HUVECs. Conclusions PE differentially dysregulates miR-29a/c-3p and their target genes associated with cardiovascular diseases- and endothelial function in female and male fetal endothelial cells, possibly contributing to the fetal sex-specific endothelial dysfunction observed in PE.
Collapse
|
5
|
Gu M, Zhang F, Jiang X, Chen P, Wan S, Lv Q, Lu Y, Zhou Q, Wang Y, Li L. Influence of placental exosomes from early onset preeclampsia women umbilical cord plasma on human umbilical vein endothelial cells. Front Cardiovasc Med 2022; 9:1061340. [PMID: 36620649 PMCID: PMC9816142 DOI: 10.3389/fcvm.2022.1061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Early onset preeclampsia (EOSP, PE) is characterized by hypertension, proteinuria, and endothelial dysfunction. Oxidative stress-induced trophoblast dysfunction is a major pathology in PE. Placental exosomes are extracellular vesicles that are involved in "mother-placenta-foetal communication" and can regulate the biological functions of endothelial cells. Our study was designed to evaluate placental exosomes effects on endothelial cells. Methods Umbilical cord blood from normal pregnant women and patients with PE were collected. A hypoxia/reoxygenation (H/R) model in human first trimester extravillous trophoblast cell (HTR8/SVneo) line to simulate the PE model of oxidative stress in vitro. Then, placental exosomes (i.e., NO-exo, H/R-exo, N-exo, and PE-exo) were extracted and identified. Finally, the effects of placental exosomes on the biological functions of human umbilical vein endothelial cells (HUVECs) were further evaluated by performing a series of experiments. Results Placental exosomes had a double-membrane cup structure with diameters of 30-150 nm, and there was no obvious difference in placental exosomes. Compared with NO-exo and N-exo, H/R-exo and PE-exo inhibited HUVECs proliferation, tube formation and migration, increased permeability and apoptosis in vitro. Conclusion We hypothesize that H/R-exo and PE-exo impair vessel development by disrupted biological functions in endothelial cells, which may result in vascular disorders in offspring.
Collapse
Affiliation(s)
- Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaotong Jiang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qingfeng Lv
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qian Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal and Child Health Hospital of Shandong Province, Jinan, China
| | - Yanyun Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China,Yanyun Wang,
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China,*Correspondence: Lei Li,
| |
Collapse
|
6
|
Differential Distribution of Tryptophan-Metabolites in Fetal and Maternal Circulations During Normotensive and Preeclamptic Pregnancies. Reprod Sci 2021; 29:1278-1286. [PMID: 34622427 DOI: 10.1007/s43032-021-00759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 02/02/2023]
Abstract
Preeclampsia (PE) is a hypertensive pregnancy, which is a leading cause of maternal and fetal morbidity and mortality during pregnancy. L-Tryptophan (Trp) is an essential amino acid, which can be metabolized into various biologically active metabolites. However, the levels of many circulating Trp-metabolites in human normotensive pregnancies (NT) and PE are undetermined. This study quantified the levels of Trp-metabolites in maternal and umbilical vein sera from women with NT and PE. Paired maternal and umbilical blood samples were collected from singleton pregnant patients. Twenty-five Trp-metabolites were measured in serum samples using liquid chromatography with tandem mass spectrometry. The effects of L-kynurenine (Kyn) and indole-3-lactic acid (ILA), on function of human umbilical vein endothelial cells (HUVECs), were also determined. Twenty Trp-metabolites were detected. The levels of 9 Trp-metabolites including Kyn and ILA were higher (P < 0.05) in umbilical vein than maternal serum, whereas 2 (5-hydroxy-L-tryptophan and serotonin) were lower (P < 0.05) in umbilical vein compared to maternal serum. PE significantly (P < 0.05) elevated ILA levels in maternal and umbilical vein sera. Kyn dose-dependently decreased (P < 0.05) cell viability. Kyn and ILA dose- and time-dependently (P < 0.05) increased monolayer integrity in HUVECs. These data suggest that these Trp-metabolites are important in regulating endothelial function during pregnancy, and the elevated ILA in PE may antagonize increased endothelial permeability occurring in PE.
Collapse
|
7
|
Mauro AK, Khurshid N, Berdahl DM, Ampey AC, Adu D, Shah DM, Boeldt DS. Cytokine concentrations direct endothelial function in pregnancy and preeclampsia. J Endocrinol 2021; 248:107-117. [PMID: 33263558 PMCID: PMC7906941 DOI: 10.1530/joe-20-0397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction is a prominent feature of preeclampsia, a hypertensive disorder of pregnancy, and contributes to multiple symptoms characteristic of the syndrome. A myriad of growth factors and cytokines are dysregulated in preeclampsia as compared to normal pregnancy, however, a complete appreciation of the effect of changing concentrations of these factors on endothelial function is lacking. In this study, we evaluate the effect of a variety of growth factors and cytokines on Ca2+ signaling and monolayer integrity. We report that VEGF165, TNFα, EGF, and IL-1β either improve or inhibit Ca2+ signaling depending on dose, whereas TNFα and IL-1β reduce monolayer integrity and bFGF increases monolayer integrity. Additionally, to model the effects of combinations of growth factors and cytokines, we screened for Ca2+ signaling changes in response to 16 dose combinations of VEGF165 and TNFα together. This revealed an optimal combination capable of supporting pregnancy-adapted Ca2+ signaling, and that changes in either VEGF165 or TNFα dose would result in a shift toward suppressed function. This study shows in detail how growth factor or cytokine concentration effects endothelial cell function. Such data can be used to model how changing growth factor and cytokine levels in normal pregnancy may contribute to healthy endothelial function and in preeclampsia may promote endothelial dysfunction. The results of VEGF165 and TNFα combination treatments suggest that more complex growth factor and cytokine combination modeling may be important in order to more accurately understand the effects of circulating factors on the endothelial function.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Danielle M Berdahl
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Daniel Adu
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Department of Pediatrics, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Dinesh M Shah
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin – Madison, School Medicine and Public Health, Madison, WI 53715
- Correspondence and reprint requests: Derek S Boeldt, Ph.D., University Wisconsin - Madison, Department Obstetrics & Gynecology, Perinatal Research Laboratories, 7E Meriter Hospital/Park, 202 South Park St., Madison, WI 53715., Tel: (608) 417 6314, Fax: (608) 257 1304,
| |
Collapse
|
8
|
Umbilical cord plasma-derived exosomes from preeclamptic women induce vascular dysfunction by targeting HMGCS1 in endothelial cells. Placenta 2020; 103:86-93. [PMID: 33120050 DOI: 10.1016/j.placenta.2020.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the major clinical manifestations of preeclampsia. Vascular dysfunction is crucial for the occurrence and progression of hypertension. Exosomes are emerging as mediators of intercellular communication and can participate in angiogenesis. In this study, we hypothesize that umbilical cord plasma-derived exosomes from preeclamptic women (PE-uexo) impair vascular development by regulating endothelial cells. Here, umbilical cord plasma samples from women with normal pregnancies and matched preeclamptic patients were used to isolate circulating exosomes. Proliferation, Transwell and tube formation assays indicated that PE-uexo impaired the angiogenesis of human umbilical vein endothelial cells (HUVECs). On the basis of microarray analysis of HUVECs treated with PE-uexo or exosomes from women with normal pregnancies, we showed that the expression of 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) was decreased in the PE-uexo-treated HUVECs. Furthermore, downregulation of HMGCS1 in HUVECs attenuated the proliferation and migration of these cells. Interestingly, HMGCS1 was decreased in P0 HUVECs from preeclamptic pregnancies compared with normotensive pregnancies. Together, these observations suggest that PE-uexo disrupts normal function in vascular endothelial cells by targeting HMGCS1, which may result in vascular disorders in the offspring.
Collapse
|
9
|
Mauro AK, Berdahl DM, Khurshid N, Clemente L, Ampey AC, Shah DM, Bird IM, Boeldt DS. Conjugated linoleic acid improves endothelial Ca2+ signaling by blocking growth factor and cytokine-mediated Cx43 phosphorylation. Mol Cell Endocrinol 2020; 510:110814. [PMID: 32259635 PMCID: PMC7253345 DOI: 10.1016/j.mce.2020.110814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Sustained Ca2+ burst signaling is crucial for endothelial vasodilator production and is disrupted by growth factors and cytokines. Conjugated linoleic acid (CLA), a Src inhibitor in certain preparations, is generally regarded as safe during pregnancy by the FDA. Multiple CLA preparations; t10, c12 or c9, t11 CLA, or a 1:1 mixture of the two were administered before growth factor or cytokine treatment. Growth factors and cytokines caused a significant decrease in Ca2+ burst numbers in response to ATP stimulation. Both t10, c12 CLA and the 1:1 mixture rescued VEGF165 or TNFα inhibited Ca2+ bursts and correlated with Src-specific phosphorylation of connexin 43. VEGF165, TNFα, and IL-6 in combination at physiologic concentrations revealed IL-6 amplified the inhibitory effects of lower dose of VEGF165 and TNFα. Again, the 1:1 CLA mixture was most effective at rescue of function. Therefore, CLA formulations may be a promising treatment for endothelial dysfunction in diseases such as preeclampsia.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Danielle M Berdahl
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Dinesh M Shah
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Department of Pediatrics, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA.
| |
Collapse
|
10
|
Abstract
Maternal cardiovascular changes during pregnancy include an expansion of plasma volume, increased cardiac output, decreased peripheral resistance, and increased uteroplacental blood flow. These adaptations facilitate the progressive increase in uteroplacental perfusion that is required for normal fetal growth and development, prevent the development of hypertension, and provide a reserve of blood in anticipation of the significant blood loss associated with parturition. Each woman's genotype and phenotype determine her ability to adapt in response to molecular signals that emanate from the fetoplacental unit. Here, we provide an overview of the major hemodynamic and cardiac changes and then consider regional changes in the splanchnic, renal, cerebral, and uterine circulations in terms of endothelial and vascular smooth muscle cell plasticity. Although consideration of gestational disease is beyond the scope of this review, aberrant signaling and/or maternal responsiveness contribute to the etiology of several common gestational diseases such as preeclampsia, intrauterine growth restriction, and gestational diabetes.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
11
|
Zhou C, Yan Q, Zou QY, Zhong XQ, Tyler CT, Magness RR, Bird IM, Zheng J. Sexual Dimorphisms of Preeclampsia-Dysregulated Transcriptomic Profiles and Cell Function in Fetal Endothelial Cells. Hypertension 2019; 74:154-163. [PMID: 31154903 DOI: 10.1161/hypertensionaha.118.12569] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia impairs fetoplacental vascular function and increases risks of adult-onset cardiovascular disorders in children born to preeclamptic mothers, implicating that preeclampsia programs fetal vasculature in utero. However, the underlying mechanisms remain elusive. We hypothesize that preeclampsia alters fetal endothelial gene expression and disturbs cytokines- and growth factors-induced endothelial responses. RNA sequencing analysis was performed on unpassaged human umbilical vein endothelial cells (HUVECs) from normotensive and preeclamptic pregnancies. Functional assays for endothelial monolayer integrity, proliferation, and migration were conducted on passage 1 HUVECs from normotensive and preeclamptic pregnancies. Compared with normotensive cells, 926 and 172 genes were dysregulated in unpassaged female and male HUVECs from preeclamptic pregnancies, respectively. Many of these preeclampsia-dysregulated genes are associated with cardiovascular diseases (eg, heart failure) and endothelial function (eg, cell migration, calcium signaling, and endothelial nitric oxide synthase signaling). TNF (tumor necrosis factor)-α-, TGF (transforming growth factor)-β1-, FGF (fibroblast growth factor)-2-, and VEGFA (vascular endothelial growth factor A)-regulated gene networks were differentially disrupted in unpassaged female and male HUVECs from preeclamptic pregnancies. Moreover, preeclampsia decreased endothelial monolayer integrity in responses to TNF-α in both female and male HUVECs. Preeclampsia decreased TGF-β1-strengthened monolayer integrity in female HUVECs, whereas it enhanced FGF-2-strengthened monolayer integrity in male HUVECs. Preeclampsia promoted TNF-α-, TGF-β1-, and VEGFA-induced cell proliferation in female, but not in male HUVECs. Preeclampsia inhibited TNF-α-induced cell migration in female HUVECs, but had an opposite effect on male HUVECs. In conclusion, preeclampsia differentially dysregulates cardiovascular diseases- and endothelial function-associated genes/pathways in female and male fetal endothelial cells in association with the sexual dimorphisms of preeclampsia-dysregulated fetal endothelial function.
Collapse
Affiliation(s)
- Chi Zhou
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Qin Yan
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China (Q.Y.)
| | - Qing-Yun Zou
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Xin-Qi Zhong
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Department of Pediatrics, the 3rd Affiliated Hospital of Guangzhou Medical University, Guangdong, China (X.-Q.Z.)
| | - Chanel T Tyler
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, University of South Florida, Tampa (R.R.M.)
| | - Ian M Bird
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Jing Zheng
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (J.Z.)
| |
Collapse
|
12
|
Ampey AC, Boeldt DS, Clemente L, Grummer MA, Yi F, Magness RR, Bird IM. TNF-alpha inhibits pregnancy-adapted Ca 2+ signaling in uterine artery endothelial cells. Mol Cell Endocrinol 2019; 488:14-24. [PMID: 30779937 PMCID: PMC6475486 DOI: 10.1016/j.mce.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/03/2023]
Abstract
Enhancement of vasodilation of uterine arteries during pregnancy occurs through increased connexin (Cx)43 gap junction (GJ) communication supporting more frequent and sustained Ca2+ 'bursts'. Such adaptation is lacking in subjects with preeclampsia (PE). Here we show TNF-alpha, commonly increased in PE subjects, inhibits Cx43 function and Ca2+ bursts in pregnancy-derived ovine uterine artery endothelial cells (P-UAEC) via Src and MEK/ERK phosphorylation of Cx43, and this can be reversed by PP2 or U0126. Of relevance to humans: (1) the nutraceutical Src antagonist t10, c12 CLA also recovers Ca2+ bursting in P-UAEC. (2) TNF-alpha can reduce and PP2 rescue Ca2+ bursting and NO output in human umbilical vein endothelium (HUV Endo) preparations. (3) Treatment of HUV Endo from PE subjects with PP2 alone can rescue bursting and NO output. We conclude TNF-alpha acts via Src more than MEK/ERK to inhibit GJ Cx43 function in PE subjects, and CLA may offer a potential therapy.
Collapse
Affiliation(s)
- Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Mary A Grummer
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - FuXian Yi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Ronald R Magness
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Unity Point Health-Meriter Hospital, 202 South Park Street, Madison, WI, 53715, USA.
| |
Collapse
|
13
|
Zou Q, Zhao Y, Li H, Wang X, Liu A, Zhong X, Yan Q, Li Y, Zhou C, Zheng J. GNA11 differentially mediates fibroblast growth factor 2- and vascular endothelial growth factor A-induced cellular responses in human fetoplacental endothelial cells. J Physiol 2018; 596:2333-2344. [PMID: 29659033 PMCID: PMC6002203 DOI: 10.1113/jp275677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Fetoplacental vascular growth is critical to fetal growth. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are two major regulators of fetoplacental vascular growth. G protein α subunit 11 (GNA11) transmits signals from many external stimuli to the cellular interior and may mediate endothelial function. It is not known whether GNA11 mediates FGF2- and VEGFA-induced endothelial cell responses under physiological chronic low O2 . In the present study, we show that knockdown of GNA11 significantly decreases FGF2- and VEGFA-induced fetoplacental endothelial cell migration but not proliferation and permeability. Such decreases in endothelial migration are associated with increased phosphorylation of phospholipase C-β3. The results of the present study suggest differential roles of GNA11 with respect to mediating FGF2- and VEGFA-induced fetoplacental endothelial function. ABSTRACT During pregnancy, fetoplacental angiogenesis is dramatically increased in association with rapidly elevated blood flow. Any disruption of fetoplacental angiogenesis may lead to pregnancy complications such as intrauterine growth restriction. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental angiogenesis. G protein α subunits q (GNAq) and 11 (GNA11) are two members of the Gαq/11 subfamily involved in mediating vascular growth and basal blood pressure. However, little is known about the roles of GNA11 alone with respect to mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using a cell model of human umbilical cord vein endothelial cells cultured under physiological chronic low O2 (3% O2 ), we showed that GNA11 small interfering RNA (siRNA) dramatically inhibited (P < 0.05) FGF2- and VEGFA-stimulated fetoplacental endothelial migration (by ∼36% and ∼50%, respectively) but not proliferation and permeability. GNA11 siRNA also elevated (P < 0.05) FGF2- and VEGFA-induced phosphorylation of phospholipase C-β3 (PLCβ3) at S537 in a time-dependent fashion but not mitogen-activated protein kinase 3/1 (ERK1/2) and v-akt murine thymoma viral oncogene homologue 1 (AKT1). These data suggest that GNA11 mediates FGF2- and VEGFA-stimulated fetoplacental endothelial cell migration partially via altering the activation of PLCβ3.
Collapse
Affiliation(s)
- Qing‐yun Zou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Ying‐jie Zhao
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology, Qilu HospitalShandong UniversityJinanShandongChina
| | - Hua Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology and ImmunologyAffiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Xiang‐zhen Wang
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Obstetrics and GynecologyNanshan District Maternal and Child Healthcare HospitalShenzhenGuangdongChina
| | - Ai‐xia Liu
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Reproductive EndocrinologyZhejiang UniversityHangzhouZhejiangChina
| | - Xin‐qi Zhong
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Pediatrics3rd Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Qin Yan
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Yan Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chi Zhou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jing Zheng
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Cardiovascular Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
14
|
Affiliation(s)
- Styliani Goulopoulou
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| |
Collapse
|
15
|
Zhou C, Zou QY, Li H, Wang RF, Liu AX, Magness RR, Zheng J. Preeclampsia Downregulates MicroRNAs in Fetal Endothelial Cells: Roles of miR-29a/c-3p in Endothelial Function. J Clin Endocrinol Metab 2017; 102:3470-3479. [PMID: 28911139 PMCID: PMC5587062 DOI: 10.1210/jc.2017-00849] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
CONTEXT Preeclampsia is a leading cause of fetal and maternal morbidity and mortality during pregnancy. Although the etiology of preeclampsia is unknown, preeclampsia offspring have increased risks of developing cardiovascular disorders in adulthood, implicating that preeclampsia programs fetal vasculature in utero. OBJECTIVE We hypothesize that preeclampsia alters expression profiles of endothelial microRNAs (miRNAs) in fetal endothelial cells and disturbs the vascular endothelial growth factor A (VEGFA)- and fibroblast growth factor 2 (FGF2)-induced endothelial function. DESIGN AND SETTING Unpassaged (P0) human umbilical vein endothelial cells (HUVECs) were isolated immediately after cesarean-section delivery from normotensive (NT) and preeclamptic (PE) pregnancies. Differentially expressed miRNAs between P0-HUVECs from NT and PE pregnancies were identified using a miRNA polymerase chain reaction (PCR) array and confirmed using reverse transcription quantitative PCR. To determine the function of these differentially expressed miRNAs, miRNAs of interest were knocked down in NT-HUVECs following by cell functional assays. RESULTS Sixteen miRNAs, including miR-29a/c-3p, were downregulated in P0-HUVECs from the PE group compared with the NT group. Bioinformatics analysis predicted the PI3K-v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling pathway was dysregulated in P0-HUVECs from the PE group, which was associated with the miR-29a/c-3p downregulation. We further demonstrated that miR-29a/c-3p knockdown inhibited the VEGFA- and FGF2-induced endothelial migration as well as FGF2-induced AKT1 phosphorylation in HUVECs. However, miR-29a/c-3p knockdown did not alter the extracellular signal-regulated kinase 1/2 phosphorylation, cell proliferation, and endothelial monolayer integrity in response to VEGFA and FGF2 in HUVECs. CONCLUSIONS Preeclampsia-downregulated miR-29a/c-3p may impair fetal endothelial function by disturbing the FGF2-activated PI3K-AKT signaling pathway, hence inhibiting endothelial cell migration.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
| | - Qing-yun Zou
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
| | - Hua Li
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- Department of Rheumatology and Immunology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Rui-fang Wang
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- 302 Military Hospital of China, Beijing 100039, China
| | - Ai-xia Liu
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- Department of Reproductive Endocrinology, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Ronald R. Magness
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
16
|
Johnson ML, Redmer DA, Reynolds LP, Grazul-Bilska AT. Gap junctional connexin messenger RNA expression in the ovine uterus and placenta: effects of estradiol-17β-treatment, early pregnancy stages, and embryo origin. Domest Anim Endocrinol 2017; 58:104-112. [PMID: 27835804 DOI: 10.1016/j.domaniend.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Gap junctions play a major role in direct, contact-dependent cell-cell communication, and they have been implicated in the regulation of cellular metabolism and the coordination of cellular functions during growth and differentiation of organs and tissues. Gap junctional channels, composed of connexin (Cx) proteins, have been detected and shown to be influenced by hormones (eg, estrogen and progesterone) in uterine and placental tissues in several species. We hypothesized that (1) the messenger RNA (mRNA) for Cx26, Cx32, Cx37, and Cx43 is expressed in the uterus of ovariectomized sheep treated with estradiol-17β (E2) and in ovine placenta during early pregnancy, (2) E2-treatment of ovariectomized ewes would cause time-specific changes in Cx26, Cx32, Cx37, and Cx43 mRNA expression (experiment 1), and (3) expression of these 4 Cx would vary across the days of early pregnancy (experiment 2) and will be affected by embryo origin (ie, after application of assisted reproductive technologies [ARTs]; experiment 3). Thus, we collected uterine tissues at 0 to 24 h after E2 treatments (experiment 1), and placental tissues during days 14 to 30 of early pregnancy after natural (NAT) breeding (experiment 2) and on day 22 of early pregnancy established after transfer of embryos generated through natural breeding (NAT-ET), in vitro fertilization (IVF), or in vitro activation (IVA, parthenotes; experiment 3). In experiment 1, the expression of Cx26, Cx37, and Cx43 mRNA increased (P < 0.05) and Cx32 mRNA decreased (P < 0.06) in both caruncular and intercaruncular tissues after E2 treatment. In experiment 2, during early pregnancy, there were significant changes (P < 0.01) across days in the expression of Cx26, Cx37, and Cx43 mRNA in the maternal placenta, accompanied by changes (P < 0.001) in Cx37 and Cx43 mRNA in the fetal placenta. In experiment 3, in maternal placenta, Cx32 mRNA expression was decreased (P < 0.001) in NAT-ET, IVF, and IVA groups compared to the NAT group; but in fetal placenta, Cx32 mRNA expression was increased (P < 0.05) in NAT-ET, IVF and IVF groups, and Cx26 mRNA expression was increased (P < 0.05) in IVA compared to NAT group. These data suggest that Cx26, Cx32, Cx37, and Cx43 play specific roles in E2-regulated uterine function and in placental development during early gestation both after natural mating and with application of ART.
Collapse
Affiliation(s)
- M L Johnson
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - D A Redmer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - L P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
17
|
Leviton A, Allred EN, Fichorova RN, Kuban KC, O'Shea TM, Dammann O. Antecedents of inflammation biomarkers in preterm newborns on days 21 and 28. Acta Paediatr 2016; 105:274-80. [PMID: 26610180 DOI: 10.1111/apa.13286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
AIM Most studies of systemic inflammation in very preterm newborns focus on assessments made during the first two weeks. The purpose of this study was to identify some of the antecedents of systemic inflammation evident during postnatal weeks three and four. METHODS We measured the protein concentrations in blood spots collected on postnatal days 21 (N = 176) and 28 (N = 157) from infants born before the 28th week of gestation and sought correlates of measurements in the top quartile. Odds ratios of elevated concentrations were calculated for the most obvious correlates. RESULTS Infants born for maternal and foetal indications were more likely than their peers to have top quartile concentrations of IL-beta, IL-8, TNF-alpha and ICAM-1 on both days 21 and 28. Similarly, infants whose birthweight Z-score was <-2 or between -1 and -2 were also more likely than their peers to have elevated concentrations of these proteins. CONCLUSION Markers of systemic inflammation in the very preterm newborn during the third and fourth postnatal weeks are most strongly associated with maternal and foetal indications for (very preterm) delivery and their common correlate/consequence, foetal growth restriction.
Collapse
Affiliation(s)
- Alan Leviton
- Neuroepidemiology Unit Department of Neurology Boston Children's Hospital Harvard Medical School Boston MA USA
| | - Elizabeth N. Allred
- Neuroepidemiology Unit Department of Neurology Boston Children's Hospital Harvard Medical School Boston MA USA
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology Department of Obstetrics, Gynecology, and Reproductive Biology Brigham and Women's HospitalBoston MA USA
| | - Karl C.K. Kuban
- Division of Neurology Department of Pediatrics Boston Medical Center and Boston University Boston MA USA
| | - T. Michael O'Shea
- Department of Pediatrics Wake Forest University Winston‐Salem NC USA
| | - Olaf Dammann
- Department of Public Health and Community Medicine Tufts University School of Medicine Boston MA USA
- Perinatal Neuropidemiology Unit Hannover Medical School Hannover Germany
| | | |
Collapse
|