1
|
Rivera-Flores IV, Wang EX, Murphy KC. Mycobacterium smegmatis NucS-promoted DNA mismatch repair involves limited resection by a 5'-3' exonuclease and is independent of homologous recombination and NHEJ. Nucleic Acids Res 2024:gkae895. [PMID: 39417425 DOI: 10.1093/nar/gkae895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The MutSL mismatch repair (MMR) systems in bacteria and eukaryotes correct mismatches made at the replication fork to maintain genome stability. A novel MMR system is represented by the EndoMS/NucS endonuclease from Actinobacterium Corynebacterium glutamicum, which recognizes mismatched substrates in vitro and creates dsDNA breaks at the mismatch. In this report, a genetic analysis shows that an M. smegmatis ΔnucS strain could be complemented by expression of wild type NucS protein, but not by one deleted of its last five amino acids, a region predicted to be critical for binding to the β-clamp at the replication fork. Oligo-recombineering was then leveraged to deliver defined mismatches to a defective hygromycin resistance gene on the M. smegmatis chromosome. We find that NucS recognizes and repairs G-G, G-T, and T-T mismatches in vivo, consistent with the recognition of these same mismatches in C. glutamicum in vitro, as well as mutation accumulation studies done in M. smegmatis. Finally, an assay that employs an oligo that promotes the generation of two mismatches in close proximity on the chromosome shows that a NucS-promoted cut is processed by a 5'-3' exonuclease (or 5'-Flap endonuclease) and that NucS-promoted MMR is independent of both homologous recombination and non-homologous end-joining.
Collapse
Affiliation(s)
- Iris V Rivera-Flores
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emily X Wang
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kenan C Murphy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Martini MC, Alonso MN, Cafiero JH, Xiao J, Shell SS. Loss of glycerol catabolism confers carbon-source-dependent artemisinin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0064524. [PMID: 39194262 PMCID: PMC11459938 DOI: 10.1128/aac.00645-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
In view of the urgent need for new antibiotics to treat human infections caused by multidrug-resistant pathogens, drug repurposing is gaining strength due to the relatively low research costs and shorter clinical trials. Such is the case of artemisinin, an antimalarial drug that has recently been shown to display activity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To gain insight into how Mtb is affected by artemisinin, we used RNAseq to assess the impact of artemisinin on gene expression profiles, revealing the induction of several efflux pumps and the KstR2 regulon. To anticipate the artemisinin resistance-conferring mutations that could arise in clinical Mtb strains, we performed an in vitro evolution experiment in the presence of lethal concentrations of artemisinin. We obtained artemisinin-resistant isolates displaying different growth kinetics and drug phenotypes, suggesting that resistance evolved through different pathways. Whole-genome sequencing of nine isolates revealed alterations in the glpK and glpQ1 genes, both involved in glycerol metabolism, in seven and one strains, respectively. We then constructed a glpK mutant and found that loss of glpK increases artemisinin resistance only when glycerol is present as a major carbon source. Our results suggest that mutations in glycerol catabolism genes could be selected during the evolution of resistance to artemisinin when glycerol is available as a carbon source. These results add to recent findings of mutations and phase variants that reduce drug efficacy in carbon-source-dependent ways.
Collapse
Affiliation(s)
- Maria Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Institute of Biotechnology and Molecular Biology—CONICET, National University of La Plata, Buenos Aires, Argentina
| | - Maria Natalia Alonso
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Institute of Agrobiotechnology and Molecular Biology (IABIMO), CONICET–INTA, Buenos Aires, Argentina
| | - Juan Hilario Cafiero
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Junpei Xiao
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Mayfield JA, Raman S, Ramnarine AK, Mishra VK, Huang AD, Dudoit S, Buter J, Cheng TY, Young DC, Nair YM, Ouellet IG, Griebel BT, Ma S, Sherman DR, Mallet L, Rhee KY, Minnaard AJ, Branch Moody D. Mycobacteria that cause tuberculosis have retained ancestrally acquired genes for the biosynthesis of chemically diverse terpene nucleosides. PLoS Biol 2024; 22:e3002813. [PMID: 39348416 PMCID: PMC11476799 DOI: 10.1371/journal.pbio.3002813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/10/2024] [Accepted: 08/24/2024] [Indexed: 10/02/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) releases the unusual terpene nucleoside 1-tuberculosinyladenosine (1-TbAd) to block lysosomal function and promote survival in human macrophages. Using conventional approaches, we found that genes Rv3377c and Rv3378c, but not Rv3376, were necessary for 1-TbAd biosynthesis. Here, we introduce linear models for mass spectrometry (limms) software as a next-generation lipidomics tool to study the essential functions of lipid biosynthetic enzymes on a whole-cell basis. Using limms, whole-cell lipid profiles deepened the phenotypic landscape of comparative mass spectrometry experiments and identified a large family of approximately 100 terpene nucleoside metabolites downstream of Rv3378c. We validated the identity of previously unknown adenine-, adenosine-, and lipid-modified tuberculosinol-containing molecules using synthetic chemistry and collisional mass spectrometry, including comprehensive profiling of bacterial lipids that fragment to adenine. We tracked terpene nucleoside genotypes and lipid phenotypes among Mycobacterium tuberculosis complex (MTC) species that did or did not evolve to productively infect either human or nonhuman mammals. Although 1-TbAd biosynthesis genes were thought to be restricted to the MTC, we identified the locus in unexpected species outside the MTC. Sequence analysis of the locus showed nucleotide usage characteristic of plasmids from plant-associated bacteria, clarifying the origin and timing of horizontal gene transfer to a pre-MTC progenitor. The data demonstrated correlation between high level terpene nucleoside biosynthesis and mycobacterial competence for human infection, and 2 mechanisms of 1-TbAd biosynthesis loss. Overall, the selective gain and evolutionary retention of tuberculosinyl metabolites in modern species that cause human TB suggest a role in human TB disease, and the newly discovered molecules represent candidate disease-specific biomarkers.
Collapse
Affiliation(s)
- Jacob A. Mayfield
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sahadevan Raman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandrea K. Ramnarine
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vivek K. Mishra
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Annie D. Huang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, California, United States of America
| | - Jeffrey Buter
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David C. Young
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yashodhan M. Nair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Isobel G. Ouellet
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Braden T. Griebel
- University of Washington Department of Chemical Engineering, Seattle, Washington State, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington State, United States of America
| | - Shuyi Ma
- University of Washington Department of Chemical Engineering, Seattle, Washington State, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington State, United States of America
- University of Washington Department of Pediatrics, Seattle, Washington State, United States of America
- University of Washington Pathobiology Program, Department of Global Health, Seattle, Washington State, United States of America
| | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, Washington State, United States of America
| | - Ludovic Mallet
- Unité de Mathématique et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Cheng H, Ji Z, Wang Y, Li S, Tang T, Wang F, Peng C, Wu X, Cheng Y, Liu Z, Ma M, Wang J, Huang X, Wang L, Qin L, Liu H, Chen J, Zheng R, Feng CG, Cai X, Qu D, Ye L, Yang H, Ge B. Mycobacterium tuberculosis produces D-serine under hypoxia to limit CD8 + T cell-dependent immunity in mice. Nat Microbiol 2024; 9:1856-1872. [PMID: 38806671 PMCID: PMC11222154 DOI: 10.1038/s41564-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Adaptation to hypoxia is a major challenge for the survival of Mycobacterium tuberculosis (Mtb) in vivo. Interferon (IFN)-γ-producing CD8+ T cells contribute to control of Mtb infection, in part by promoting antimicrobial activities of macrophages. Whether Mtb counters these responses, particularly during hypoxic conditions, remains unknown. Using metabolomic, proteomic and genetic approaches, here we show that Mtb induced Rv0884c (SerC), an Mtb phosphoserine aminotransferase, to produce D-serine. This activity increased Mtb pathogenesis in mice but did not directly affect intramacrophage Mtb survival. Instead, D-serine inhibited IFN-γ production by CD8+ T cells, which indirectly reduced the ability of macrophages to restrict Mtb upon co-culture. Mechanistically, D-serine interacted with WDR24 and inhibited mTORC1 activation in CD8+ T cells. This decreased T-bet expression and reduced IFN-γ production by CD8+ T cells. Our findings suggest an Mtb evasion mechanism where pathogen metabolic adaptation to hypoxia leads to amino acid-dependent suppression of adaptive anti-TB immunity.
Collapse
Affiliation(s)
- Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhe Ji
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Yang Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Shenzhi Li
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Tianqi Tang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Fei Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Cheng Peng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yuanna Cheng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Mingtong Ma
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Carl G Feng
- Immunology and Host Defense Group, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, P. R. China.
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
| |
Collapse
|
5
|
Ng WL, Rego EH. A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in Mycobacterium smegmatis. mSphere 2024; 9:e0012224. [PMID: 38591887 PMCID: PMC11237743 DOI: 10.1128/msphere.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.
Collapse
Affiliation(s)
- Wei L Ng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Qu D, Ge P, Botella L, Park SW, Lee HN, Thornton N, Bean JM, Krieger IV, Sacchettini JC, Ehrt S, Aldrich CC, Schnappinger D. Mycobacterial biotin synthases require an auxiliary protein to convert dethiobiotin into biotin. Nat Commun 2024; 15:4161. [PMID: 38755122 PMCID: PMC11099021 DOI: 10.1038/s41467-024-48448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.
Collapse
Affiliation(s)
- Di Qu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Peng Ge
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Natalie Thornton
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - James M Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Islam T, Josephs EA. Genome editing outcomes reveal mycobacterial NucS participates in a short-patch repair of DNA mismatches. Nucleic Acids Res 2024:gkae402. [PMID: 38747340 DOI: 10.1093/nar/gkae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if a nucleotide is incorrectly mis-paired with the template strand during replication, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, leading to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism, perhaps mediated by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ∼5-6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Eric A Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
8
|
Eckartt KA, Delbeau M, Munsamy-Govender V, DeJesus MA, Azadian ZA, Reddy AK, Chandanani J, Poulton NC, Quiñones-Garcia S, Bosch B, Landick R, Campbell EA, Rock JM. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature 2024; 628:186-194. [PMID: 38509362 PMCID: PMC10990936 DOI: 10.1038/s41586-024-07206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
Collapse
Affiliation(s)
- Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Abhijna K Reddy
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Joshua Chandanani
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Sturm A, Sun P, Avila-Pacheco J, Clatworthy AE, Bloom-Ackermann Z, Wuo MG, Gomez JE, Jin S, Clish CB, Kiessling LL, Hung DT. Genetic factors affecting storage and utilization of lipids during dormancy in Mycobacterium tuberculosis. mBio 2024; 15:e0320823. [PMID: 38236034 PMCID: PMC10865790 DOI: 10.1128/mbio.03208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.
Collapse
Affiliation(s)
- Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Penny Sun
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Anne E. Clatworthy
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael G. Wuo
- Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - James E. Gomez
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Soomin Jin
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Clary B. Clish
- Metabolomics Platform, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Deborah T. Hung
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Stanley S, Wang X, Liu Q, Kwon YY, Frey AM, Hicks ND, Vickers AJ, Hui S, Fortune SM. Ongoing evolution of the Mycobacterium tuberculosis lactate dehydrogenase reveals the pleiotropic effects of bacterial adaption to host pressure. PLoS Pathog 2024; 20:e1012050. [PMID: 38422159 DOI: 10.1371/journal.ppat.1012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.
Collapse
Affiliation(s)
- Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Young Yon Kwon
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Abigail M Frey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Nathan D Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Andrew J Vickers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
11
|
Ng WL, Rego EH. A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in M. smegmatis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.12.544663. [PMID: 38260554 PMCID: PMC10802252 DOI: 10.1101/2023.06.12.544663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Antibiotic resistance in M. tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that, as in other bacterial species, in M. smegmatis, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA.
Collapse
Affiliation(s)
- Wei L. Ng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06519
| |
Collapse
|
12
|
Nisbett LM, Previti ML, Seeliger JC. A Loss of Function in LprG-Rv1410c Homologues Attenuates Growth during Biofilm Formation in Mycobacterium smegmatis. Pathogens 2023; 12:1375. [PMID: 38133260 PMCID: PMC10745849 DOI: 10.3390/pathogens12121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
MmpL (mycobacterial membrane protein large) proteins are integral membrane proteins that have been implicated in the biosynthesis and/or transport of mycobacterial cell wall lipids. Given the cellular location of these proteins, however, it is unclear how cell wall lipids are transported beyond the inner membrane. Moreover, given that mycobacteria grow at the poles, we also do not understand how new cell wall is added in a highly localized and presumably coordinated manner. Here, we examine the relationship between two lipid transport pathways associated with the proteins MmpL11 and LprG-Rv1410c. The lipoprotein LprG has been shown to interact with proteins involved in cell wall processes including MmpL11, which is required in biofilms for the surface localization of certain lipids. Here we report that deletion of mmpL11 (MSMEG_0241) or the lprG-rv1410c operon homologues MSMEG_3070-3069 in Mycobacterium smegmatis produced similar biofilm defects that were distinct from that of the previously reported mmpL11 transposon insertion mutant. Analysis of pellicle biofilms, bacterial growth, lipid profiles, and gene expression revealed that the biofilm phenotypes could not be directly explained by changes in the synthesis or localization of biofilm-related lipids or the expression of biofilm-related genes. Instead, the shared biofilm phenotype between ΔMSMEG_3070-3069 and ΔmmpL11 may be related to their modest growth defect, while the origins of the distinct mmpL11::Tn biofilm defect remain unclear. Our findings suggest that the mechanisms that drive pellicle biofilm formation in M. smegmatis are not connected to crosstalk between the LprG-Rv1410c and MmpL11 pathways and that any functional interaction between these proteins does not relate directly to their lipid transport function.
Collapse
Affiliation(s)
- Lisa-Marie Nisbett
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | | | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Kumar A, Boradia VM, Mahajan A, Kumaran S, Raje M, Raje CI. Mycobacterium tuberculosis H37Rv enolase (Rv1023)- expression, characterization and effect of host dependent modifications on protein functionality. Biochimie 2023; 214:102-113. [PMID: 37385399 DOI: 10.1016/j.biochi.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Mycobacterium tuberculosis enolase is an essential glycolytic enzyme that catalyzes the conversion of 2, phosphoglycerate (PGA) to phosphoenol pyruvate (PEP). It is also a crucial link between glycolysis and the tricarboxylic acid (TCA) pathway. The depletion of PEP has recently been associated with the emergence of non-replicating drug resistant bacteria. Enolase is also known to exhibit multiple alternate functions, such as promoting tissue invasion via its role as a plasminogen (Plg) receptor. In addition, proteomic studies have identified the presence of enolase in the Mtb degradosome and in biofilms. However, the precise role in these processes has not been elaborated. The enzyme was recently identified as a target for 2-amino thiazoles - a novel class of anti-mycobacterials. In vitro assays and characterization of this enzyme were unsuccessful due to the inability to obtain functional recombinant protein. In the present study, we report the expression and characterization of enolase using Mtb H37Ra as a host strain. Our study demonstrates that the enzyme activity and alternate functions of this protein are significantly impacted by the choice of expression host (Mtb H37Ra or E. coli). Detailed analysis of the protein from each source revealed subtle differences in the post-translational modifications. Lastly, our study confirms the role of enolase in Mtb biofilm formation and describes the potential for inhibiting this process.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab, 160062, India
| | - Vishant Mahendra Boradia
- Department of Biotechnology National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab, 160062, India
| | - Apurwa Mahajan
- Council of Scientific and Industrial Research -Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036, India
| | - S Kumaran
- Council of Scientific and Industrial Research -Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036, India
| | - Manoj Raje
- Council of Scientific and Industrial Research -Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
14
|
Islam T, Josephs EA. Genome Editing Outcomes Reveal Mycobacterial NucS Participates in a Short-Patch Repair of DNA Mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563644. [PMID: 37961639 PMCID: PMC10634747 DOI: 10.1101/2023.10.23.563644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if during replication a nucleotide is incorrectly mis-paired with the template strand, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, which has led to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism. It has been proposed that nuclease activity at a mismatch might result in correction by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches during replication specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ~5 - 6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Eric A. Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
15
|
Duffy SC, Lupien A, Elhaji Y, Farag M, Marcus V, Behr MA. Establishment of persistent enteric mycobacterial infection following streptomycin pre-treatment. Gut Pathog 2023; 15:46. [PMID: 37789445 PMCID: PMC10546655 DOI: 10.1186/s13099-023-00573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis, a chronic gastrointestinal disease affecting ruminants. This disease remains widespread in part due to the limitations of available diagnostics and vaccines. A representative small animal model of disease could act as a valuable tool for studying its pathogenesis and to develop new methods for paratuberculosis control, but current models are lacking. Streptomycin pre-treatment can reduce colonization resistance and has previously been shown to improve enteric infection in a Salmonella model. Here, we investigated whether streptomycin pre-treatment of mice followed by MAP gavage could act as a model of paratuberculosis which mimics the natural route of infection and disease development in ruminants. The infection outcomes of MAP were compared to M. avium subsp. hominissuis (MAH), an environmental mycobacterium, and M. bovis and M. orygis, two tuberculous mycobacteria. Streptomycin pre-treatment was shown to consistently improve bacterial infection post-oral inoculation. This model led to chronic MAP infection of the intestines and mesenteric lymph nodes (MLNs) up to 24-weeks post-gavage, however there was no evidence of inflammation or disease. These infection outcomes were found to be specific to MAP. When the model was applied to a bacterium of lesser virulence MAH, the infection was comparatively transient. Mice infected with bacteria of greater virulence, M. bovis or M. orygis, developed chronic intestinal and MLN infection with pulmonary disease similar to zoonotic TB. Our findings suggest that a streptomycin pre-treatment mouse model could be applied to future studies to improve enteric infection with MAP and to investigate other modifications underlying MAP enteritis.
Collapse
Affiliation(s)
- Shannon C Duffy
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Andréanne Lupien
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Youssef Elhaji
- Diagnostic Genomic Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Mina Farag
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Laboratory Medicine, Division of Pathology, McGill University Health Center, Montreal, QC, Canada
| | - Victoria Marcus
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Laboratory Medicine, Division of Pathology, McGill University Health Center, Montreal, QC, Canada
| | - Marcel A Behr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- McGill International TB Centre, Montreal, QC, Canada.
- The Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Tomasi FG, Kimura S, Rubin EJ, Waldor MK. A tRNA modification in Mycobacterium tuberculosis facilitates optimal intracellular growth. eLife 2023; 12:RP87146. [PMID: 37755167 PMCID: PMC10531406 DOI: 10.7554/elife.87146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb, using tRNA sequencing (tRNA-seq) and genome-mining. Homology searches identified 23 candidate tRNA modifying enzymes that are predicted to create 16 tRNA modifications across all tRNA species. Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of nine modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species. Furthermore, the absence of mnmA attenuated Mtb growth in macrophages, suggesting that MnmA-dependent tRNA uridine sulfation contributes to Mtb intracellular growth. Our results lay the foundation for unveiling the roles of tRNA modifications in Mtb pathogenesis and developing new therapeutics against tuberculosis.
Collapse
Affiliation(s)
- Francesca G Tomasi
- Department of Immunology and Infectious Diseases Harvard T. H. Chan School of Public HealthBostonUnited States
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases Harvard T. H. Chan School of Public HealthBostonUnited States
| | - Matthew K Waldor
- Department of Immunology and Infectious Diseases Harvard T. H. Chan School of Public HealthBostonUnited States
- Division of Infectious Diseases, Brigham and Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
17
|
Tomasi FG, Kimura S, Rubin EJ, Waldor MK. A tRNA modification in Mycobacterium tuberculosis facilitates optimal intracellular growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529267. [PMID: 36865327 PMCID: PMC9979996 DOI: 10.1101/2023.02.20.529267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis ( Mtb ), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb , using tRNA sequencing (tRNA-seq) and genome-mining. Homology searches identified 23 candidate tRNA modifying enzymes that are predicted to create 16 tRNA modifications across all tRNA species. Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of 9 modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species. Furthermore, the absence of mnmA attenuated Mtb growth in macrophages, suggesting that MnmA-dependent tRNA uridine sulfation contributes to Mtb intracellular growth. Our results lay the foundation for unveiling the roles of tRNA modifications in Mtb pathogenesis and developing new therapeutics against tuberculosis.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Matthew K. Waldor
- Department of Immunology and Infectious Diseases Harvard T. H. Chan School of Public Health, Boston, MA USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
18
|
Sullivan MR, McGowen K, Liu Q, Akusobi C, Young DC, Mayfield JA, Raman S, Wolf ID, Moody DB, Aldrich CC, Muir A, Rubin EJ. Biotin-dependent cell envelope remodelling is required for Mycobacterium abscessus survival in lung infection. Nat Microbiol 2023; 8:481-497. [PMID: 36658396 PMCID: PMC9992005 DOI: 10.1038/s41564-022-01307-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung. Biotin cofactor synthesis was required for M. abscessus growth due to increased intracellular biotin demand, while pharmacological inhibition of biotin synthesis prevented bacterial proliferation. Biotin was required for fatty acid remodelling, which increased cell envelope fluidity and promoted M. abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-dependent fatty acid remodelling plays a critical role in pathogenic adaptation to the lung niche, suggesting that biotin synthesis and fatty acid metabolism might provide therapeutic targets for treatment of M. abscessus infection.
Collapse
Affiliation(s)
- Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Young
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
19
|
Wong AI, Beites T, Planck KA, Fieweger RA, Eckartt KA, Li S, Poulton NC, VanderVen BC, Rhee KY, Schnappinger D, Ehrt S, Rock J. Cyclic AMP is a critical mediator of intrinsic drug resistance and fatty acid metabolism in M. tuberculosis. eLife 2023; 12:e81177. [PMID: 36810158 PMCID: PMC9995111 DOI: 10.7554/elife.81177] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger that transduces signals from cellular receptors to downstream effectors. Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, devotes a considerable amount of coding capacity to produce, sense, and degrade cAMP. Despite this fact, our understanding of how cAMP regulates Mtb physiology remains limited. Here, we took a genetic approach to investigate the function of the sole essential adenylate cyclase in Mtb H37Rv, Rv3645. We found that a lack of rv3645 resulted in increased sensitivity to numerous antibiotics by a mechanism independent of substantial increases in envelope permeability. We made the unexpected observation that rv3645 is conditionally essential for Mtb growth only in the presence of long-chain fatty acids, a host-relevant carbon source. A suppressor screen further identified mutations in the atypical cAMP phosphodiesterase rv1339 that suppress both fatty acid and drug sensitivity phenotypes in strains lacking rv3645. Using mass spectrometry, we found that Rv3645 is the dominant source of cAMP under standard laboratory growth conditions, that cAMP production is the essential function of Rv3645 in the presence of long-chain fatty acids, and that reduced cAMP levels result in increased long-chain fatty acid uptake and metabolism and increased antibiotic susceptibility. Our work defines rv3645 and cAMP as central mediators of intrinsic multidrug resistance and fatty acid metabolism in Mtb and highlights the potential utility of small molecule modulators of cAMP signaling.
Collapse
Affiliation(s)
- Andrew I Wong
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Tiago Beites
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Kyle A Planck
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
20
|
Liu Q, Zhu J, Dulberger CL, Stanley S, Wilson S, Chung ES, Wang X, Culviner P, Liu YJ, Hicks ND, Babunovic GH, Giffen SR, Aldridge BB, Garner EC, Rubin EJ, Chao MC, Fortune SM. Tuberculosis treatment failure associated with evolution of antibiotic resilience. Science 2022; 378:1111-1118. [PMID: 36480634 PMCID: PMC9968493 DOI: 10.1126/science.abq2787] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The widespread use of antibiotics has placed bacterial pathogens under intense pressure to evolve new survival mechanisms. Genomic analysis of 51,229 Mycobacterium tuberculosis (Mtb)clinical isolates has identified an essential transcriptional regulator, Rv1830, herein called resR for resilience regulator, as a frequent target of positive (adaptive) selection. resR mutants do not show canonical drug resistance or drug tolerance but instead shorten the post-antibiotic effect, meaning that they enable Mtb to resume growth after drug exposure substantially faster than wild-type strains. We refer to this phenotype as antibiotic resilience. ResR acts in a regulatory cascade with other transcription factors controlling cell growth and division, which are also under positive selection in clinical isolates of Mtb. Mutations of these genes are associated with treatment failure and the acquisition of canonical drug resistance.
Collapse
Affiliation(s)
- Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA,Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02115, USA
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Peter Culviner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yue J. Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gregory H. Babunovic
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Samantha R. Giffen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02115, USA
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael C. Chao
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA,Corresponding author.
| |
Collapse
|
21
|
Poulton NC, Azadian ZA, DeJesus MA, Rock JM. Mutations in rv0678 Confer Low-Level Resistance to Benzothiazinone DprE1 Inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2022; 66:e0090422. [PMID: 35920665 PMCID: PMC9487612 DOI: 10.1128/aac.00904-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of death from any bacterial infection, causing 1.5 million deaths worldwide each year. Due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) there have been significant efforts aimed at developing novel drugs to treat TB. One promising drug target in Mtb is the arabinogalactan biosynthetic enzyme DprE1, and there have been over a dozen unique chemical scaffolds identified which inhibit the activity of this protein. Among the most promising lead compounds are the benzothiazinones BTZ043 and PBTZ169, both of which are currently in or have completed phase IIa clinical trials. Due to the potential clinical utility of these drugs, we sought to identify potential synergistic interactions and new mechanisms of resistance using a genome-scale CRISPRi chemical-genetic screen with PBTZ169. We found that knockdown of rv0678, the negative regulator of the mmpS5/L5 drug efflux pump, confers resistance to PBTZ169. Mutations in rv0678 are the most common form of resistance to bedaquiline and there is already abundant evidence of these mutations emerging in bedaquiline-treated patients. We confirmed that rv0678 mutations from clinical isolates confer low level cross-resistance to BTZ043 and PBTZ169. While it is yet unclear whether rv0678 mutations would render benzothiazinones ineffective in treating TB, these results highlight the importance of monitoring for clinically prevalent rv0678 mutations during ongoing BTZ043 and PBTZ169 clinical trials.
Collapse
Affiliation(s)
- Nicholas C. Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Zachary A. Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Michael A. DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Jeremy M. Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
22
|
Martini MC, Hicks ND, Xiao J, Alonso MN, Barbier T, Sixsmith J, Fortune SM, Shell SS. Loss of RNase J leads to multi-drug tolerance and accumulation of highly structured mRNA fragments in Mycobacterium tuberculosis. PLoS Pathog 2022; 18:e1010705. [PMID: 35830479 PMCID: PMC9312406 DOI: 10.1371/journal.ppat.1010705] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.
Collapse
Affiliation(s)
- Maria Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Junpei Xiao
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria Natalia Alonso
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Thibault Barbier
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
23
|
Tomasi FG, Hall AMJ, Schweber JTP, Dulberger CL, McGowen K, Liu Q, Fortune SM, Helaine S, Rubin EJ. A tRNA-Acetylating Toxin and Detoxifying Enzyme in Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0058022. [PMID: 35638832 PMCID: PMC9241777 DOI: 10.1128/spectrum.00580-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems allow bacteria to adapt to changing environments without altering gene expression. Despite being overrepresented in Mycobacterium tuberculosis, their physiological roles remain elusive. We describe a TA system in M. tuberculosis which we named TacAT due to its homology to previously discovered systems in Salmonella. The toxin, TacT, blocks growth by acetylating glycyl-tRNAs and inhibiting translation. Its effects are reversed by the enzyme peptidyl tRNA hydrolase (Pth), which also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. Pth is essential in most bacteria and thereby has been proposed as a promising drug target for complex pathogens like M. tuberculosis. Transposon sequencing data suggest that the tacAT operon is nonessential for M. tuberculosis growth in vitro, and premature stop mutations in this TA system present in some clinical isolates suggest that it is also dispensable in vivo. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacAT is disrupted. We show that pth essentiality is unaffected by the absence of tacAT. These results highlight a fundamental aspect of mycobacterial biology and indicate that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics. IMPORTANCE The global rise in antibiotic-resistant tuberculosis has prompted an urgent search for new drugs. Toxin-antitoxin (TA) systems allow bacteria to adapt rapidly to environmental changes, and Mycobacterium tuberculosis encodes more TA systems than any known pathogen. We have characterized a new TA system in M. tuberculosis: the toxin, TacT, acetylates charged tRNA to block protein synthesis. TacT's effects are reversed by the essential bacterial enzyme peptidyl tRNA hydrolase (Pth), which is currently being explored as an antibiotic target. Pth also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacT is disrupted. We show that pth essentiality is unaffected by the absence of this TA system, indicating that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Jessica T. P. Schweber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Akusobi C, Benghomari BS, Zhu J, Wolf ID, Singhvi S, Dulberger CL, Ioerger TR, Rubin EJ. Transposon mutagenesis in Mycobacterium abscessus identifies an essential penicillin-binding protein involved in septal peptidoglycan synthesis and antibiotic sensitivity. eLife 2022; 11:71947. [PMID: 35659317 PMCID: PMC9170245 DOI: 10.7554/elife.71947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium abscessus (Mab) is a rapidly growing non-tuberculous mycobacterium (NTM) that causes a wide range of infections. Treatment of Mab infections is difficult because the bacterium is intrinsically resistant to many classes of antibiotics. Developing new and effective treatments against Mab requires a better understanding of the unique vulnerabilities that can be targeted for future drug development. To achieve this, we identified essential genes in Mab by conducting transposon sequencing (TnSeq) on the reference Mab strain ATCC 19977. We generated ~51,000 unique transposon mutants and used this high-density library to identify 362 essential genes for in vitro growth. To investigate species-specific vulnerabilities in Mab, we further characterized MAB_3167c, a predicted penicillin-binding protein and hypothetical lipoprotein (PBP-lipo) that is essential in Mab and non-essential in Mycobacterium tuberculosis (Mtb). We found that PBP-lipo primarily localizes to the subpolar region and later to the septum as cells prepare to divide. Depletion of Mab PBP-lipo causes cells to elongate, develop ectopic branches, and form multiple septa. Knockdown of PBP-lipo along with PbpB, DacB1, and a carboxypeptidase, MAB_0519 lead to synergistic growth arrest. In contrast, these genetic interactions were absent in the Mtb model organism, Mycobacterium smegmatis, indicating that the PBP-lipo homologs in the two species exist in distinct genetic networks. Finally, repressing PBP-lipo sensitized the reference strain and 11 Mab clinical isolates to several classes of antibiotics, including the β-lactams, ampicillin, and amoxicillin by greater than 128-fold. Altogether, this study presents PBP-lipo as a key enzyme to study Mab-specific processes in cell wall synthesis and importantly positions PBP-lipo as an attractive drug target to treat Mab infections.
Collapse
Affiliation(s)
- Chidiebere Akusobi
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | | | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Ian D Wolf
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Shreya Singhvi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
25
|
Li S, Poulton NC, Chang JS, Azadian ZA, DeJesus MA, Ruecker N, Zimmerman MD, Eckartt KA, Bosch B, Engelhart CA, Sullivan DF, Gengenbacher M, Dartois VA, Schnappinger D, Rock JM. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat Microbiol 2022; 7:766-779. [PMID: 35637331 PMCID: PMC9159947 DOI: 10.1038/s41564-022-01130-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb's intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that influence drug efficacy could facilitate the development of more effective therapies, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. Here we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. We discovered diverse mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical genetics with comparative genomics of Mtb clinical isolates, we further identified several previously unknown mechanisms of acquired drug resistance, one of which is associated with a multidrug-resistant tuberculosis outbreak in South America. Lastly, we found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat tuberculosis. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future tuberculosis drug development and treatment.
Collapse
Affiliation(s)
- Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Jesseon S Chang
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel F Sullivan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Véronique A Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
26
|
d’Andrea FB, Poulton NC, Froom R, Tam K, Campbell EA, Rock JM. The essential M. tuberculosis Clp protease is functionally asymmetric in vivo. SCIENCE ADVANCES 2022; 8:eabn7943. [PMID: 35507665 PMCID: PMC9067928 DOI: 10.1126/sciadv.abn7943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The Clp protease system is a promising, noncanonical drug target against Mycobacterium tuberculosis (Mtb). Unlike in Escherichia coli, the Mtb Clp protease consists of two distinct proteolytic subunits, ClpP1 and ClpP2, which hydrolyze substrates delivered by the chaperones ClpX and ClpC1. While biochemical approaches uncovered unique aspects of Mtb Clp enzymology, its essentiality complicates in vivo studies. To address this gap, we leveraged new genetic tools to mechanistically interrogate the in vivo essentiality of the Mtb Clp protease. While validating some aspects of the biochemical model, we unexpectedly found that only the proteolytic activity of ClpP1, but not of ClpP2, is essential for substrate degradation and Mtb growth and infection. Our observations not only support a revised model of Mtb Clp biology, where ClpP2 scaffolds chaperone binding while ClpP1 provides the essential proteolytic activity of the complex; they also have important implications for the ongoing development of inhibitors toward this emerging therapeutic target.
Collapse
Affiliation(s)
- Felipe B. d’Andrea
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas C. Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Ruby Froom
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Kayan Tam
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Jeremy M. Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
27
|
Kreutzfeldt KM, Jansen RS, Hartman TE, Gouzy A, Wang R, Krieger IV, Zimmerman MD, Gengenbacher M, Sarathy JP, Xie M, Dartois V, Sacchettini JC, Rhee KY, Schnappinger D, Ehrt S. CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nat Commun 2022; 13:2203. [PMID: 35459278 PMCID: PMC9033802 DOI: 10.1038/s41467-022-29832-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/31/2022] [Indexed: 12/23/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to resist and tolerate antibiotics complicates the development of improved tuberculosis (TB) chemotherapies. Here we define the Mtb protein CinA as a major determinant of drug tolerance and as a potential target to shorten TB chemotherapy. By reducing the fraction of drug-tolerant persisters, genetic inactivation of cinA accelerated killing of Mtb by four antibiotics in clinical use: isoniazid, ethionamide, delamanid and pretomanid. Mtb ΔcinA was killed rapidly in conditions known to impede the efficacy of isoniazid, such as during nutrient starvation, during persistence in a caseum mimetic, in activated macrophages and during chronic mouse infection. Deletion of CinA also increased in vivo killing of Mtb by BPaL, a combination of pretomanid, bedaquiline and linezolid that is used to treat highly drug-resistant TB. Genetic and drug metabolism studies suggest that CinA mediates drug tolerance via cleavage of NAD-drug adducts.
Collapse
Affiliation(s)
- Kaj M Kreutzfeldt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Robert S Jansen
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
- Department of Microbiology, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Travis E Hartman
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Min Xie
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Experimental confirmation that an uncommon
rrs
gene mutation (g878a) of
Mycobacterium tuberculosis
confers resistance to streptomycin. Antimicrob Agents Chemother 2022; 66:e0191521. [DOI: 10.1128/aac.01915-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effective treatment of patients diagnosed with drug resistant tuberculosis is highly dependent upon the ability to rapidly and accurately determine the antibiotic susceptibility profile of the
Mycobacterium tuberculosis
isolate(s) involved. Thus, as more clinical microbiology laboratories advance towards the use of DNA sequence-based diagnostics, it is imperative that their predictive functions extend beyond the well-known resistance mutations, in order to also encompass as many of the lower-frequency mutations as possible. However, in most cases, the fundamental experimental proof that links these uncommon mutations with phenotypic resistance is lacking. One such example is the g878a polymorphism within the
rrs
16s rRNA gene. We, and others, have identified this mutation within a small number of drug-resistant isolates, although a consensus regarding exactly which aminoglycoside antibiotic(s) it confers resistance toward has not previously been reached. Here we have employed oligo-mediated recombineering to introduce the g878a polymorphism into the
rrs
gene of
M. bovis
BCG - a close relative of
M. tuberculosis
- and demonstrate that it confers low-level resistance to streptomycin alone. It does not confer cross-resistance towards amikacin, capreomycin, nor kanamycin. We also demonstrate that the
rrs
g878a
mutation exerts a substantial fitness defect
in vitro
, that may at least in part explain why clinical isolates bearing this mutation appear to be quite rare. Overall, this study provides clarity to the phenotype attributable to the
rrs
g878a
mutation and is relevant to the future implementation of genomics-based diagnostics, as well as the clinical management of patients where this particular polymorphism is encountered.
Collapse
|
29
|
Mouhoub E, Domenech P, Ndao M, Reed MB. The Diverse Applications of Recombinant BCG-Based Vaccines to Target Infectious Diseases Other Than Tuberculosis: An Overview. Front Microbiol 2021; 12:757858. [PMID: 34745066 PMCID: PMC8566895 DOI: 10.3389/fmicb.2021.757858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Live attenuated Bacillus Calmette-Guérin (BCG) is the world's most widely used vaccine which is mainly administered for its protection against tuberculosis (TB), particularly in young children. However, since its initial use over 100years ago, it has also proven to offer a level of protection against various other pathogens, as a consequence of its non-specific immune enhancing effects. Thus, over the past few decades, recombinant BCG (rBCG) technology has been used as a vector to create rBCG vaccines expressing heterologous antigens that elicit immunity against a range of bacterial, viral, and parasitic diseases. Our goal with this mini-review is to provide an up-to-date survey of the various techniques, approaches, and applications of rBCG-based vaccines for targeting infectious diseases other than TB.
Collapse
Affiliation(s)
- Esma Mouhoub
- The Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Pilar Domenech
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Momar Ndao
- The Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
- The Department of Medicine, McGill University, Montreal, QC, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Michael B. Reed
- The Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- The McGill International TB Centre, McGill University, Montreal, QC, Canada
- The Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Murphy KC. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis. Methods Mol Biol 2021; 2314:301-321. [PMID: 34235660 DOI: 10.1007/978-1-0716-1460-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phage recombination systems have been instrumental in the development of gene modification technologies for bacterial pathogens. In particular, the Che9 phage RecET system has been used successfully for over 10 years for making gene knockouts and fusions in Mycobacterium tuberculosis. This "recombineering" technology typically uses linear dsDNA substrates that contain a drug-resistance marker flanked by (up to) 500 base pairs of DNA homologous to the target site. Less often employed in mycobacterial recombineering is the use of oligonucleotides, which require only the action of the RecT annealase to align oligos to ssDNA regions of the replication fork, for subsequent incorporation into the chromosome. Despite the higher frequency of such events relative to dsDNA-promoted recombineering, oligo-mediated changes generally suffer from the disadvantage of not being selectable, thus making them harder to isolate. This chapter discusses steps and methodologies that increase the frequencies of finding oligo-mediated events, including the transfer of single nucleotide polymorphisms (SNPs) to mycobacterial chromosomes, and the use of oligos in conjunction with the mycobacterial phage Bxb1 site-specific recombination system for the easy generation of knockouts, insertion, and fusions, in a protocol known as ORBIT.
Collapse
Affiliation(s)
- Kenan C Murphy
- Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
31
|
Schrader SM, Botella H, Jansen R, Ehrt S, Rhee K, Nathan C, Vaubourgeix J. Multiform antimicrobial resistance from a metabolic mutation. SCIENCE ADVANCES 2021; 7:7/35/eabh2037. [PMID: 34452915 PMCID: PMC8397267 DOI: 10.1126/sciadv.abh2037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/08/2021] [Indexed: 05/07/2023]
Abstract
A critical challenge for microbiology and medicine is how to cure infections by bacteria that survive antibiotic treatment by persistence or tolerance. Seeking mechanisms behind such high survival, we developed a forward-genetic method for efficient isolation of high-survival mutants in any culturable bacterial species. We found that perturbation of an essential biosynthetic pathway (arginine biosynthesis) in a mycobacterium generated three distinct forms of resistance to diverse antibiotics, each mediated by induction of WhiB7: high persistence and tolerance to kanamycin, high survival upon exposure to rifampicin, and minimum inhibitory concentration-shifted resistance to clarithromycin. As little as one base change in a gene that encodes, a metabolic pathway component conferred multiple forms of resistance to multiple antibiotics with different targets. This extraordinary resilience may help explain how substerilizing exposure to one antibiotic in a regimen can induce resistance to others and invites development of drugs targeting the mediator of multiform resistance, WhiB7.
Collapse
Affiliation(s)
- Sarah M Schrader
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Hélène Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Robert Jansen
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kyu Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
32
|
Filsinger GT, Wannier TM, Pedersen FB, Lutz ID, Zhang J, Stork DA, Debnath A, Gozzi K, Kuchwara H, Volf V, Wang S, Rios X, Gregg CJ, Lajoie MJ, Shipman SL, Aach J, Laub MT, Church GM. Characterizing the portability of phage-encoded homologous recombination proteins. Nat Chem Biol 2021; 17:394-402. [PMID: 33462496 PMCID: PMC7990699 DOI: 10.1038/s41589-020-00710-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/29/2023]
Abstract
Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host's single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions.
Collapse
Affiliation(s)
- Gabriel T. Filsinger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Correspondence to: ,
| | - Timothy M. Wannier
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix B. Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Isaac D. Lutz
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Julie Zhang
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Devon A. Stork
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Anik Debnath
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Tenza Inc., Cambridge, MA
| | - Kevin Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Helene Kuchwara
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Verena Volf
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Stan Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Marc J. Lajoie
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L. Shipman
- Gladstone Institutes, San Francisco, CA,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Correspondence to: ,
| |
Collapse
|
33
|
Libardo MDJ, Duncombe CJ, Green SR, Wyatt PG, Thompson S, Ray PC, Ioerger TR, Oh S, Goodwin MB, Boshoff HIM, Barry CE. Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chem Biol 2021; 28:1180-1191.e20. [PMID: 33765439 PMCID: PMC8379015 DOI: 10.1016/j.chembiol.2021.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 01/22/2023]
Abstract
Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. In vitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan. Thus, these indole-4-carboxamides act as prodrugs of a tryptophan antimetabolite, 4-aminoindole.
Collapse
Affiliation(s)
- M Daben J Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline J Duncombe
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simon R Green
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stephen Thompson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter C Ray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael B Goodwin
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|
34
|
Phosphorylation on PstP Regulates Cell Wall Metabolism and Antibiotic Tolerance in Mycobacterium smegmatis. J Bacteriol 2021; 203:JB.00563-20. [PMID: 33257524 DOI: 10.1128/jb.00563-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis and its relatives, like many bacteria, have dynamic cell walls that respond to environmental stresses. Modulation of cell wall metabolism in stress is thought to be responsible for decreased permeability and increased tolerance to antibiotics. The signaling systems that control cell wall metabolism under stress, however, are poorly understood. Here, we examine the cell wall regulatory function of a key cell wall regulator, the serine/threonine phosphatase PstP, in the model organism Mycobacterium smegmatis We show that the peptidoglycan regulator CwlM is a substrate of PstP. We find that a phosphomimetic mutation, pstP T171E, slows growth, misregulates both mycolic acid and peptidoglycan metabolism in different conditions, and interferes with antibiotic tolerance. These data suggest that phosphorylation on PstP affects its activity against various substrates and is important in the transition between growth and stasis.IMPORTANCE Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in mycobacteria, including pathogens such as Mycobacterium tuberculosis However, little is known about how the cell wall is regulated in stress. We describe a pathway of cell wall modulation in Mycobacterium smegmatis through the only essential Ser/Thr phosphatase, PstP. We showed that phosphorylation on PstP is important in regulating peptidoglycan metabolism in the transition to stasis and mycolic acid metabolism in growth. This regulation also affects antibiotic tolerance in growth and stasis. This work helps us to better understand the phosphorylation-mediated cell wall regulation circuitry in Mycobacteria.
Collapse
|
35
|
Fishbein SRS, Tomasi FG, Wolf ID, Dulberger CL, Wang A, Keshishian H, Wallace L, Carr SA, Ioerger TR, Rego EH, Rubin EJ. The conserved translation factor LepA is required for optimal synthesis of a porin family in Mycobacterium smegmatis. J Bacteriol 2020; 203:JB.00604-20. [PMID: 33361193 PMCID: PMC8095456 DOI: 10.1128/jb.00604-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
The recalcitrance of mycobacteria to antibiotic therapy is in part due to its ability to build proteins into a multi-layer cell wall. Proper synthesis of both cell wall constituents and associated proteins is crucial to maintaining cell integrity, and intimately tied to antibiotic susceptibility. How mycobacteria properly synthesize the membrane-associated proteome, however, remains poorly understood. Recently, we found that loss of lepA in Mycobacterium smegmatis (Msm) altered tolerance to rifampin, a drug that targets a non-ribosomal cellular process. LepA is a ribosome-associated GTPase found in bacteria, mitochondria, and chloroplasts, yet its physiological contribution to cellular processes is not clear. To uncover the determinants of LepA-mediated drug tolerance, we characterized the whole-cell proteomes and transcriptomes of a lepA deletion mutant relative to strains with lepA We find that LepA is important for the steady-state abundance of a number of membrane-associated proteins, including an outer membrane porin, MspA, which is integral to nutrient uptake and drug susceptibility. Loss of LepA leads to a decreased amount of porin in the membrane which leads to the drug tolerance phenotype of the lepA mutant. In mycobacteria, the translation factor LepA modulates mycobacterial membrane homeostasis, which in turn affects antibiotic tolerance.ImportanceThe mycobacterial cell wall is a promising target for new antibiotics due to the abundance of important membrane-associated proteins. Defining mechanisms of synthesis of the membrane proteome will be critical to uncovering and validating drug targets. We found that LepA, a universally conserved translation factor, controls the synthesis of a number of major membrane proteins in M. smegmatis LepA primarily controls synthesis of the major porin MspA. Loss of LepA results in decreased permeability through the loss of this porin, including permeability to antibiotics like rifampin and vancomycin. In mycobacteria, regulation from the ribosome is critical for the maintenance of membrane homeostasis and, importantly, antibiotic susceptibility.
Collapse
Affiliation(s)
- Skye R S Fishbein
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Francesca G Tomasi
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Charles L Dulberger
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Albert Wang
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | | | - Luke Wallace
- Broad Institute of MIT and Harvard, Cambridge, 02142, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, 02142, United States
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, Texas, 77843, United States
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, 06510, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| |
Collapse
|
36
|
Hicks ND, Giffen SR, Culviner PH, Chao MC, Dulberger CL, Liu Q, Stanley S, Brown J, Sixsmith J, Wolf ID, Fortune SM. Mutations in dnaA and a cryptic interaction site increase drug resistance in Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1009063. [PMID: 33253310 PMCID: PMC7738170 DOI: 10.1371/journal.ppat.1009063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/15/2020] [Accepted: 10/09/2020] [Indexed: 01/26/2023] Open
Abstract
Genomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics-even below this breakpoint-is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined. Through a genome wide association study, we show that non-synonymous mutations in dnaA, which encodes an essential and highly conserved regulator of DNA replication, are associated with drug resistance in clinical M. tuberculosis strains. We demonstrate that these dnaA mutations specifically enhance M. tuberculosis survival during isoniazid treatment via reduced expression of katG, the activator of isoniazid. To identify DnaA interactors relevant to this phenotype, we perform the first genome-wide biochemical mapping of DnaA binding sites in mycobacteria which reveals a DnaA interaction site that is the target of recurrent mutation in clinical strains. Reconstructing clinically prevalent mutations in this DnaA interaction site reproduces the phenotypes of dnaA mutants, suggesting that clinical strains of M. tuberculosis have evolved mutations in a previously uncharacterized DnaA pathway that quantitatively increases resistance to the key first-line antibiotic isoniazid. Discovering genetic mechanisms that reduce drug susceptibility and support the evolution of high-level drug resistance will guide development of biomarkers capable of prospectively identifying patients at risk of treatment failure in the clinic.
Collapse
Affiliation(s)
- Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Samantha R. Giffen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Peter H. Culviner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Michael C. Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jessica Brown
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ian D. Wolf
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
37
|
Sutiwisesak R, Hicks ND, Boyce S, Murphy KC, Papavinasasundaram K, Carpenter SM, Boucau J, Joshi N, Le Gall S, Fortune SM, Sassetti CM, Behar SM. A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathog 2020; 16:e1009000. [PMID: 33075106 PMCID: PMC7597557 DOI: 10.1371/journal.ppat.1009000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/29/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
CD8 T cells provide limited protection against Mycobacterium
tuberculosis (Mtb) infection in the mouse model. As Mtb causes
chronic infection in mice and humans, we hypothesize that Mtb impairs T cell
responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in
people, nonhuman primates, and mice, which is encoded by the
esxH gene. In C57BL/6 mice, 30–50% of pulmonary CD8 T cells
recognize the TB10.44−11 epitope. However, TB10.4-specific CD8 T
cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits
immunodominant CD8 T cell responses to antigens that are inefficiently presented
by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here,
we leverage naturally occurring polymorphisms in esxH, which
frequently occur in lineage 1 strains, to test this “decoy hypothesis”. Using
the clinical isolate 667, which contains an EsxHA10T polymorphism, we
observe a drastic change in the hierarchy of CD8 T cells. Using isogenic
Erd.EsxHA10T and Erd.EsxHWT strains, we prove that
this polymorphism alters the hierarchy of immunodominant CD8 T cell responses.
Our data are best explained by immunodomination, a mechanism by which
competition for APC leads to dominant responses suppressing subdominant
responses. These results were surprising as the variant epitope can bind to
H2-Kb and is recognized by TB10.4-specific CD8 T cells. The
dramatic change in TB10.4-specific CD8 responses resulted from increased
proteolytic degradation of A10T variant, which destroyed the
TB10.44-11epitope. Importantly, this polymorphism affected T cell
priming and recognition of infected cells. These data support a model in which
nonprotective CD8 T cells become immunodominant and suppress subdominant
responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv
sequence-based vaccines could lead to a mismatch between T cells that are primed
by vaccines and the epitopes presented by infected cells. Reprograming host
immune responses should be considered in the future design of vaccines. An important question for vaccine developers is the relative potency of CD4 vs.
CD8 T cells against Mtb, as strategies differ for eliciting these different T
cell subsets. Despite robust antigen-specific pulmonary CD8 T cell responses,
CD4 T cells mediate more protection than CD8 T cells in the murine model. Most
CD8 T cells recognize a single antigen, TB10.4, which is encoded by the
esxH gene. Based on finding that
TB10.44−11-specific CD8 T cells poorly recognize Mtb-infected
macrophages, we hypothesized that Mtb evades detection by CD8 T cells and
focuses the CD8 T cell response on non-protective antigen. We termed these
antigens “decoy antigens.” To test this hypothesis, we took advantage of a
natural variant of the esxH gene, which contains an A10T
polymorphism within the TB10.44−11 epitope. This polymorphism
drastically alters the hierarchy of CD8 T cell responses elicited by Mtb. These
data suggest that immunodomination by the TB10.4 epitope acts to suppress
subdominant CD8 T cell responses to other Mtb antigens, impairing the CD8 T cell
response to other Mtb antigens, some of which might be presented by Mtb-infected
macrophages and be targets of protective immunity. Importantly, this single
amino acid polymorphism, which does not significantly alter MHC-binding or T
cell recognition, alters the half-life of the epitope and consequently, has a
profound effect on CD8 T cell priming and recognition of infected cells. These
data also provide a mechanism that could be exploited to manipulate the
hierarchy of immunodominant responses.
Collapse
Affiliation(s)
- Rujapak Sutiwisesak
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kenan C. Murphy
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Neelambari Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Christopher M. Sassetti
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
- * E-mail:
| |
Collapse
|
38
|
Randall SE, Martini MC, Zhou Y, Joubran SR, Shell SS. MamA essentiality in Mycobacterium smegmatis is explained by the presence of an apparent cognate restriction endonuclease. BMC Res Notes 2020; 13:462. [PMID: 32993774 PMCID: PMC7526240 DOI: 10.1186/s13104-020-05302-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Restriction-Modification (R-M) systems are ubiquitous in bacteria and were considered for years as rudimentary immune systems that protect bacterial cells from foreign DNA. Currently, these R-M systems are recognized as important players in global gene expression and other cellular processes such us virulence and evolution of genomes. Here, we report the role of the unique DNA methyltransferase in Mycobacterium smegmatis, which shows a moderate degree of sequence similarity to MamA, a previously characterized methyltransferase that affects gene expression in Mycobacterium tuberculosis and is important for survival under hypoxic conditions. RESULTS We found that depletion of mamA levels impairs growth and produces elongated cell bodies. Microscopy revealed irregular septation and unevenly distributed DNA, with large areas devoid of DNA and small DNA-free cells. Deletion of MSMEG_3214, a predicted endonuclease-encoding gene co-transcribed with mamA, restored the WT growth phenotype in a mamA-depleted background. Our results suggest that the mamA-depletion phenotype can be explained by DNA cleavage by the apparent cognate restriction endonuclease MSMEG_3214. In addition, in silico analysis predicts that both MamA methyltransferase and MSMEG_3214 endonuclease recognize the same palindromic DNA sequence. We propose that MamA and MSMEG_3214 constitute a previously undescribed R-M system in M. smegmatis.
Collapse
Affiliation(s)
- Samantha E Randall
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Maria Carla Martini
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ying Zhou
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Samantha R Joubran
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Scarlet S Shell
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA. .,Program in Bioinformatics & Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
39
|
Bockman MR, Mishra N, Aldrich CC. The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Curr Med Chem 2020; 27:4194-4232. [PMID: 30663561 DOI: 10.2174/0929867326666190119161551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.
Collapse
Affiliation(s)
- Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
40
|
Thomas SE, Whitehouse AJ, Brown K, Burbaud S, Belardinelli J, Sangen J, Lahiri R, Libardo M, Gupta P, Malhotra S, Boshoff HIM, Jackson M, Abell C, Coyne A, Blundell TL, Floto RA, Mendes V. Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification. Nucleic Acids Res 2020; 48:8099-8112. [PMID: 32602532 PMCID: PMC7641325 DOI: 10.1093/nar/gkaa539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Translational frameshift errors are often deleterious to the synthesis of functional proteins and could therefore be promoted therapeutically to kill bacteria. TrmD (tRNA-(N(1)G37) methyltransferase) is an essential tRNA modification enzyme in bacteria that prevents +1 errors in the reading frame during protein translation and represents an attractive potential target for the development of new antibiotics. Here, we describe the application of a structure-guided fragment-based drug discovery approach to the design of a new class of inhibitors against TrmD in Mycobacterium abscessus. Fragment library screening, followed by structure-guided chemical elaboration of hits, led to the rapid development of drug-like molecules with potent in vitro TrmD inhibitory activity. Several of these compounds exhibit activity against planktonic M. abscessus and M. tuberculosis as well as against intracellular M. abscessus and M. leprae, indicating their potential as the basis for a novel class of broad-spectrum mycobacterial drugs.
Collapse
Affiliation(s)
- Sherine E Thomas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andrew J Whitehouse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Karen Brown
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Sophie Burbaud
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jasper Sangen
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ramanuj Lahiri
- National Hansen's Disease Program, Healthcare Systems Bureau, Health Resources and Services Administration, Department of Health and Human Services, Baton Rouge, LA, USA
| | - Mark Daben J Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Pooja Gupta
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sony Malhotra
- Birkbeck College, University of London, Malet Street WC1E7HX, UK
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Rodrigo Andres Floto
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Vítor Mendes
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
41
|
Abstract
Many organisms, including bacteria, code for multiple paralogues of some ribosomal protein subunits. The relative contribution of these alternative subunits to ribosome function and protein synthesis is unknown and controversial. Many studies on alternative ribosomes have been confounded by isolation of alternative and canonical ribosomes from different strains or growth conditions, potentially confounding results. Here, we show that one form of alternative ribosome from Mycobacterium smegmatis has a distinct translational profile compared with canonical ribosomes purified from an identical cellular context. We also identify a role for alternative ribosomes in iron homeostasis. Given the prevalence of alternative ribosomal genes in diverse organisms, our study suggests that alternative ribosomes may represent a further layer of regulation of gene translation. Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.
Collapse
|
42
|
Zaveri A, Wang R, Botella L, Sharma R, Zhu L, Wallach JB, Song N, Jansen RS, Rhee KY, Ehrt S, Schnappinger D. Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA-damage response and leads to cell death. Mol Microbiol 2020; 114:641-652. [PMID: 32634279 PMCID: PMC7689832 DOI: 10.1111/mmi.14571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023]
Abstract
Of the ~80 putative toxin-antitoxin (TA) modules encoded by the bacterial pathogen Mycobacterium tuberculosis (Mtb), three contain antitoxins essential for bacterial viability. One of these, Rv0060 (DNA ADP-ribosyl glycohydrolase, DarGMtb ), functions along with its cognate toxin Rv0059 (DNA ADP-ribosyl transferase, DarTMtb ), to mediate reversible DNA ADP-ribosylation (Jankevicius et al., 2016). We demonstrate that DarTMtb -DarGMtb form a functional TA pair and essentiality of darGMtb is dependent on the presence of darTMtb , but simultaneous deletion of both darTMtb -darGMtb does not alter viability of Mtb in vitro or in mice. The antitoxin, DarGMtb , forms a cytosolic complex with DNA-repair proteins that assembles independently of either DarTMtb or interaction with DNA. Depletion of DarGMtb alone is bactericidal, a phenotype that is rescued by expression of an orthologous antitoxin, DarGTaq , from Thermus aquaticus. Partial depletion of DarGMtb triggers a DNA-damage response and sensitizes Mtb to drugs targeting DNA metabolism and respiration. Induction of the DNA-damage response is essential for Mtb to survive partial DarGMtb -depletion and leads to a hypermutable phenotype.
Collapse
Affiliation(s)
- Anisha Zaveri
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ritu Sharma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Linnan Zhu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Naomi Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Robert S Jansen
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kyu Y Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
43
|
Whitaker M, Ruecker N, Hartman T, Klevorn T, Andres J, Kim J, Rhee K, Ehrt S. Two interacting ATPases protect Mycobacterium tuberculosis from glycerol and nitric oxide toxicity. J Bacteriol 2020; 202:JB.00202-20. [PMID: 32482725 PMCID: PMC8404711 DOI: 10.1128/jb.00202-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 01/29/2023] Open
Abstract
The Mycobacterium tuberculosis H37Rv genome has been sequenced and annotated over 20 years ago, yet roughly half of the protein-coding genes still lack a predicted function. We characterized two genes of unknown function, rv3679 and rv3680, for which inconsistent findings regarding their importance for virulence in mice have been reported. We confirmed that a rv3679-80 deletion mutant (Δrv3679-80) was virulent in mice and discovered that Δrv3679-80 suffered from a glycerol-dependent recovery defect on agar plates following mouse infection. Glycerol also exacerbated killing of Δrv3679-80 by nitric oxide. Rv3679-Rv3680 have previously been shown to form a complex with ATPase activity and we demonstrate that the ability of M. tuberculosis to cope with elevated levels of glycerol and nitric oxide requires intact ATP-binding motifs in both Rv3679 and Rv3680. Inactivation of glycerol kinase or Rv2370c, a protein of unknown function, suppressed glycerol mediated toxicity in Δrv3679-80 Glycerol catabolism led to increased intracellular methylglyoxal pools and Δrv3679-80 was hypersusceptible to extracellular methylglyoxal suggesting that glycerol toxicity in Δrv3679-80 is caused by methylglyoxal. Rv3679 and Rv3680 interacted with Rv1509, and Rv3679 had numerous additional interactors including proteins of the type II fatty acid synthase (FASII) pathway and mycolic acid modifying enzymes linking Rv3679 to fatty acid or lipid synthesis. This work provides experimentally determined roles for Rv3679 and Rv3680 and stimulates future research on these and other proteins of unknown function.Importance A better understanding of the pathogenesis of tuberculosis requires a better understanding of gene function in M. tuberculosis This work provides the first functional insight into the Rv3679/Rv3680 ATPase complex. We demonstrate that M. tuberculosis requires this complex and specifically its ATPase activity to resist glycerol and nitric oxide toxicity. We provide evidence that the glycerol-derived metabolite methylglyoxal causes toxicity in the absence of Rv3679/Rv3680. We further show that glycerol-dependent toxicity is reversed when glycerol kinase (GlpK) is inactivated. Our work uncovered other genes of unknown function that interact with Rv3679 and/or Rv3680 genetically or physically, underscoring the importance of understanding uncharacterized genes.
Collapse
Affiliation(s)
- Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thais Klevorn
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Jaclynn Andres
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Jia Kim
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| |
Collapse
|
44
|
Aspartate aminotransferase Rv3722c governs aspartate-dependent nitrogen metabolism in Mycobacterium tuberculosis. Nat Commun 2020; 11:1960. [PMID: 32327655 PMCID: PMC7181641 DOI: 10.1038/s41467-020-15876-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Gene rv3722c of Mycobacterium tuberculosis is essential for in vitro growth, and encodes a putative pyridoxal phosphate-binding protein of unknown function. Here we use metabolomic, genetic and structural approaches to show that Rv3722c is the primary aspartate aminotransferase of M. tuberculosis, and mediates an essential but underrecognized role in metabolism: nitrogen distribution. Rv3722c deficiency leads to virulence attenuation in macrophages and mice. Our results identify aspartate biosynthesis and nitrogen distribution as potential species-selective drug targets in M. tuberculosis.
Collapse
|
45
|
Peptidoglycan Hydrolases RipA and Ami1 Are Critical for Replication and Persistence of Mycobacterium tuberculosis in the Host. mBio 2020; 11:mBio.03315-19. [PMID: 32127458 PMCID: PMC7064781 DOI: 10.1128/mbio.03315-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) is a major global heath burden, with 1.6 million people succumbing to the disease every year. The search for new drugs to improve the current chemotherapeutic regimen is crucial to reducing this global health burden. The cell wall polymer peptidoglycan (PG) has emerged as a very successful drug target in bacterial pathogens, as many currently used antibiotics target the synthesis of this macromolecule. However, the multitude of genes encoding PG-synthesizing and PG-modifying enzymes with apparent redundant functions has hindered the identification of novel drug targets in PG synthesis in Mycobacterium tuberculosis. Here, we demonstrate that two PG-cleaving enzymes are important for virulence of M. tuberculosis. In particular, the d,l-endopeptidase RipA represents a potentially attractive drug target, as its depletion results in the clearance of M. tuberculosis from the host and renders the bacteria hypersusceptible to rifampin, a frontline TB drug, and to several cell wall-targeting antibiotics. Synthesis and cleavage of the cell wall polymer peptidoglycan (PG) are carefully orchestrated processes and are essential for the growth and survival of bacteria. Yet, the function and importance of many enzymes that act on PG in Mycobacterium tuberculosis remain to be elucidated. We demonstrate that the activity of the N-acetylmuramyl-l-alanine amidase Ami1 is dispensable for cell division in M. tuberculosisin vitro yet contributes to the bacterium’s ability to persist during chronic infection in mice. Furthermore, the d,l-endopeptidase RipA, a predicted essential enzyme, is dispensable for the viability of M. tuberculosis but required for efficient cell division in vitro and in vivo. Depletion of RipA sensitizes M. tuberculosis to rifampin and to cell envelope-targeting antibiotics. Ami1 helps sustain residual cell division in cells lacking RipA, but the partial redundancy provided by Ami1 is not sufficient during infection, as depletion of RipA prevents M. tuberculosis from replicating in macrophages and leads to dramatic killing of the bacteria in mice. Notably, RipA is essential for persistence of M. tuberculosis in mice, suggesting that cell division is required during chronic mouse infection. Despite the multiplicity of enzymes acting on PG with redundant functions, we have identified two PG hydrolases that are important for M. tuberculosis to replicate and persist in the host.
Collapse
|
46
|
Danchuk SN, McIntosh F, Jamieson FB, May K, Behr MA. Bacillus Calmette-Guérin strains with defined resistance mutations: a new tool for tuberculosis laboratory quality control. Clin Microbiol Infect 2019; 26:384.e5-384.e8. [PMID: 31705996 DOI: 10.1016/j.cmi.2019.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Laboratory quality control (QC) is essential to assess the reliability of tuberculosis diagnostic testing. To provide safe QC reagents for the detection of drug-resistant Mycobacterium tuberculosis, we generated antibiotic-resistant mycobacterial strains of attenuated virulence (M. bovis bacillus Calmette-Guérin (BCG)). METHODS Seven mono-resistant BCG strains were developed by introducing resistance-conferring mutations into wild-type BCG strains. Mutations were confirmed by dideoxynucleotide sequencing. Phenotypic resistance was quantified by microbroth dilution to determine the MIC90. The capacity of two commercial tests (GeneXpert TB/RIF and Genotype MTBDRplus) to detect resistance-conferring mutations was evaluated independently. RESULTS Our panel included BCG strains with mutations in rpoB (S450L, I491F), katG (deletion at AA428), gyrA (D94G), rpsL (K43R) and Rv0678c (S63R). These mutations translated respectively into phenotypic resistance to rifampin (MIC ≥8 mg/L), isoniazid (MIC ≥8 mg/L), moxifloxacin (MIC 4 mg/L) and streptomycin (MIC ≥8 mg/L); the Rv0678c mutant showed decreased susceptibility to both clofazimine (MIC 4 mg/L) and bedaqualine (MIC 1 mg/L). GeneXpert (Cepheid) and Genotype MTBDRplus (Hain Lifesciences) both called the rpoB S450L strain rifampin-resistant and the I491F mutant rifampin-susceptible, as expected based on single nucleotide polymorphism positions. Likewise, MTBDRplus called the novel katG deletion mutant isoniazid susceptible despite phenotypic resistance. CONCLUSION BCG strains engineered to be mono-resistant to anti-tuberculosis drugs can be used as safe QC reagents for tuberculosis diagnostics and drug susceptibility testing.
Collapse
Affiliation(s)
- S N Danchuk
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, Montreal, Quebec, Canada
| | - F McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, Montreal, Quebec, Canada
| | - F B Jamieson
- Public Health Ontario, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - K May
- Public Health Ontario, Toronto, Ontario, Canada
| | - M A Behr
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10:4970. [PMID: 31672993 PMCID: PMC6823465 DOI: 10.1038/s41467-019-12956-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.
Collapse
|
48
|
Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat Chem Biol 2019; 15:889-899. [PMID: 31427817 DOI: 10.1038/s41589-019-0336-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/28/2019] [Indexed: 12/25/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the world's most deadly pathogen. Unlike less virulent mycobacteria, Mtb produces 1-tuberculosinyladenosine (1-TbAd), an unusual terpene nucleoside of unknown function. In the present study 1-TbAd has been shown to be a naturally evolved phagolysosome disruptor. 1-TbAd is highly prevalent among patient-derived Mtb strains, where it is among the most abundant lipids produced. Synthesis of TbAd analogs and their testing in cells demonstrate that their biological action is dependent on lipid linkage to the 1-position of adenosine, which creates a strong conjugate base. Furthermore, C20 lipid moieties confer passage through membranes. 1-TbAd selectively accumulates in acidic compartments, where it neutralizes the pH and swells lysosomes, obliterating their multilamellar structure. During macrophage infection, a 1-TbAd biosynthesis gene (Rv3378c) confers marked phagosomal swelling and intraphagosomal inclusions, demonstrating an essential role in regulating the Mtb cellular microenvironment. Although macrophages kill intracellular bacteria through phagosome acidification, Mtb coats itself abundantly with antacid.
Collapse
|
49
|
Large-scale chemical-genetics yields new M. tuberculosis inhibitor classes. Nature 2019; 571:72-78. [PMID: 31217586 DOI: 10.1038/s41586-019-1315-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target 474 essential Mtb genes and screened pools of 100-150 strains against activity-enriched and unbiased compound libraries, probing more than 8.5 million chemical-genetic interactions. Primary screens identified over tenfold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insights. We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded conventional drug discovery.
Collapse
|
50
|
Fernández‐Cabezón L, Cros A, Nikel PI. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol J 2019; 14:e1800439. [DOI: 10.1002/biot.201800439] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lorena Fernández‐Cabezón
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|