1
|
Ombredane AS, Martins NO, de Souza GMV, Araujo VHS, Szlachetka ÍO, da Silva SW, da Rocha MCO, de Oliveira AS, Holanda CA, Romeiro LAS, Damas EBDO, Azevedo RB, Joanitti GA. Combinatory Effect of Pequi Oil ( Caryocar brasiliense)-Based Nanoemulsions Associated to Docetaxel and Anacardic Acid ( Anacardium occidentale) in Triple-Negative Breast Cancer Cells In Vitro. Pharmaceutics 2024; 16:1170. [PMID: 39339206 PMCID: PMC11435098 DOI: 10.3390/pharmaceutics16091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Combination therapy integrated with nanotechnology offers a promising alternative for breast cancer treatment. The inclusion of pequi oil, anacardic acid (AA), and docetaxel (DTX) in a nanoemulsion can amplify the antitumor effects of each molecule while reducing adverse effects. Therefore, the study aims to develop pequi oil-based nanoemulsions (PeNE) containing DTX (PDTX) or AA (PAA) and to evaluate their cytotoxicity against triple-negative breast cancer cells (4T1) in vitro. The PeNE without and with AA (PAA) and DTX (PDTX) were prepared by sonication and characterized by ZetaSizer® and electronic transmission microscopy. Viability testing and combination index (CI) were determined by MTT and Chou-Talalay methods, respectively. Flow cytometry was employed to investigate the effects of the formulations on cell structures. PeNE, PDTX, and PAA showed hydrodynamic diameter < 200 nm and a polydispersity index (PdI) of 0.3. The association PDTX + PAA induced a greater decrease in cell viability (~70%, p < 0.0001) and additive effect (CI < 1). In parallel, an association of the DTX + AA molecules led to antagonism (CI > 1). Additionally, PDTX + PAA induced an expressive morphological change, a major change in lysosome membrane permeation and mitochondria membrane permeation, cell cycle blockage in G2/M, and phosphatidylserine exposure. The study highlights the successful use of pequi oil nanoemulsions as delivery systems for DTX and AA, which enhances their antitumor effects against breast cancer cells. This nanotechnological approach shows significant potential for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Alicia Simalie Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| | - Natália Ornelas Martins
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Gabriela Mara Vieira de Souza
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Victor Hugo Sousa Araujo
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Ísis O. Szlachetka
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
- Laboratory of Optical Espectroscopy, Physics Institute, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil
| | - Sebastião William da Silva
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
- Laboratory of Optical Espectroscopy, Physics Institute, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil
| | - Márcia Cristina Oliveira da Rocha
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| | - Andressa Souza de Oliveira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasilia, Brasilia 70910-900, Brazil; (A.S.d.O.); (C.A.H.); (L.A.S.R.)
- Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Cleonice Andrade Holanda
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasilia, Brasilia 70910-900, Brazil; (A.S.d.O.); (C.A.H.); (L.A.S.R.)
- Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Luiz Antonio Soares Romeiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasilia, Brasilia 70910-900, Brazil; (A.S.d.O.); (C.A.H.); (L.A.S.R.)
- Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Elysa Beatriz de Oliveira Damas
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Ricardo Bentes Azevedo
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| |
Collapse
|
2
|
Salam A, Kaushik K, Mukherjee B, Anjum F, Sapkal GT, Sharma S, Garg R, Nandi CK. A zinc metal complex as an NIR emissive probe for real-time dynamics and in vivo embryogenic evolution of lysosomes using super-resolution microscopy. Chem Sci 2024:d4sc04638b. [PMID: 39246364 PMCID: PMC11376271 DOI: 10.1039/d4sc04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Zinc (Zn) based fluorescent metal complexes have gained increasing attention due to their non-toxicity and high brightness with marked fluorescence quantum yield (QY). However, they have rarely been employed in super-resolution microscopy (SRM) to study live cells and in vivo dynamics of lysosomes. Here, we present an NIR emissive highly photostable Zn-complex as a multifaceted fluorescent probe for the long-term dynamical distribution of lysosomes in various cancerous and non-cancerous cells in live condition and in vivo embryogenic evolution in Caenorhabditis elegans (C. elegans). Apart from the normal fission, fusion, and kiss & run, the motility and the exact location of lysosomes at each point were mapped precisely. A notable difference in the lysosomal motility in the peripheral region between cancerous and non-cancerous cells was distinctly observed. This is attributed to the difference in viscosity of the cytoplasmic environment. On the other hand, along with the super-resolved structure of the smallest size lysosome (∼77 nm) in live C. elegans, the complete in vivo embryogenic evolution of lysosomes and lysosome-related organelles (LROs) was captured. We were able to capture the images of lysosomes and LROs at different stages of C. elegans, starting from a single cell and extending to a fully matured adult animal.
Collapse
Affiliation(s)
- Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Bodhidipra Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| | - Goraksha T Sapkal
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Richa Garg
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi HP-175075 India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi HP-175075 India
| |
Collapse
|
3
|
Güleç Taşkıran AE, Hüsnügil HH, Soltani ZE, Oral G, Menemenli NS, Hampel C, Huebner K, Erlenbach-Wuensch K, Sheraj I, Schneider-Stock R, Akyol A, Liv N, Banerjee S. Post-Transcriptional Regulation of Rab7a in Lysosomal Positioning and Drug Resistance in Nutrient-Limited Cancer Cells. Traffic 2024; 25:e12956. [PMID: 39313937 DOI: 10.1111/tra.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Limited nutrient availability in the tumor microenvironment can cause the rewiring of signaling and metabolic networks to confer cancer cells with survival advantages. We show here that the limitation of glucose, glutamine and serum from the culture medium resulted in the survival of a population of cancer cells with high viability and capacity to form tumors in vivo. These cells also displayed a remarkable increase in the abundance and size of lysosomes. Moreover, lysosomes were located mainly in the perinuclear region in nutrient-limited cells; this translocation was mediated by a rapid post-transcriptional increase in the key endolysosomal trafficking protein Rab7a. The acidic lysosomes in nutrient-limited cells could trap weakly basic drugs such as doxorubicin, mediating resistance of the cells to the drug, which could be partially reversed with the lysosomal inhibitor bafilomycin A1. An in vivo chorioallantoic membrane (CAM) assay indicated a remarkable decrease in microtumor volume when nutrient-limited cells were treated with 5-Fluorouracil (5-FU) and bafilomycin A1 compared to cells treated with either agent alone. Overall, our data indicate the activation of complementary pathways with nutrient limitation that can enable cancer cells to survive, proliferate and acquire drug resistance.
Collapse
Affiliation(s)
- Aliye Ezgi Güleç Taşkıran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Department of Molecular Biology and Genetics, Başkent University, Ankara, Turkiye
| | - Hepşen H Hüsnügil
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Zahra E Soltani
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Göksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Nazlı S Menemenli
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Chuanpit Hampel
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Huebner
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Erlenbach-Wuensch
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Aytekin Akyol
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Cancer Systems Biology Laboratory (CanSyL), Orta Dogu Teknik Universitesi, Ankara, Turkiye
| |
Collapse
|
4
|
Bashiru M, Rayaan M, Ali N, Jenkins SV, Oyebade A, Rahman MS, Griffin RJ, Oyelere AK, Siraj N. Interrogating the Role of Endocytosis Pathway and Organelle Trafficking for Doxorubicin-Based Combination Ionic Nanomedicines. ACS APPLIED BIO MATERIALS 2024; 7:5359-5368. [PMID: 39102354 PMCID: PMC11457535 DOI: 10.1021/acsabm.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We have studied the endocytic mechanisms that determine subcellular localization for three carrier-free chemotherapeutic-photothermal (chemo-PTT) combination ionic nanomedicines (INMs) composed of doxorubicin (DOX) and an near-infrared (NIR) dye (ICG, IR820, or IR783). This study aims to understand the cellular basis for previously published enhanced toxicity results of these combination nanomedicines toward MCF-7 breast cancer cells. The active transport mechanism of INMs, unlike free DOX, which is known to employ passive transport, was validated by conducting temperature-dependent cellular uptake of the drug in MCF-7 cells using confocal microscopy. The internalization pathway of these INMs was further probed in the presence and absence of different endocytosis inhibitors. Detailed examination of the mode of entry of the carrier-free INMs in MCF-7 cells revealed that they are primarily internalized through clathrin-mediated endocytosis. In addition, time-dependent subcellular localization studies were also investigated. Examination of time-dependent confocal images indicated that the INMs targeted multiple organelles, in contrast to free DOX that primarily targets the nucleus. Collectively, the high cellular endocytic uptake in cancerous cells (EPR effect) and the multimode targeting ability demonstrated the main reason for the low half-maxima inhibitory concentration (IC50) value (the high cytotoxicity) of these carrier-free INMs as compared to their respective parent chemo and PTT drugs.
Collapse
Affiliation(s)
- Mujeebat Bashiru
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Muhammad Rayaan
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Samir V Jenkins
- Department of Radiation Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, Arkansas 72205, United States
| | - Adeniyi Oyebade
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Md Shahedur Rahman
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Robert J Griffin
- Department of Radiation Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, Arkansas 72205, United States
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|
5
|
Wang H, Li C, Zhu L, Liu Z, Li N, Zheng Z, Liang S, Yan J. Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis. In Vitro Cell Dev Biol Anim 2024; 60:805-814. [PMID: 38427138 DOI: 10.1007/s11626-024-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Adiponectin has previously been investigated for exerting its protective effect against myocardial injury through anti-apoptotic and anti-oxidative actions. Therefore, the present study aimed to investigate the nature and mechanism of adiponectin inhibition of H2O2-induced apoptosis in chicken skeletal myoblasts. Skeletal muscle satellite cells were differentiated and assigned into three groups. Group C was on the blank control group, group H was stimulated with the H2O2 (500 μmol/L, 4 h) alone group, group A + H was pre-treated with adiponectin (10 μg/mL, 24 h) and stimulated with the H2O2 (500 μmol/L, 4 h) group. Cytotoxicity inhibited by adiponectin was evaluated by the CCK-8 assay. The degree of apoptosis and oxidative damage was investigated by the TdT-mediated dUTP nick end labeling (TUNEL) and reactive oxygen species (ROS) staining assays. Oxidative stress was assessed by evaluating lipid peroxidation, superoxide dismutase, and reduced glutathione. Acridine orange (AO) staining detected lysosomal membrane permeability. The changes in mitochondrial membrane potential (MMP) were analyzed using 5,5,6,6'-tetrachloro-1,1,3,3-tetraethylimidacarbocyanine iodide (JC-1) dye under a fluorescence microscope. The lysosomal function, mitochondrial function, and apoptosis-related mRNA and protein expression levels were quantified by real-time quantitative PCR and western blot, respectively. The results suggested that adiponectin treatment attenuated H2O2-induced cytotoxicity and oxidative stress in skeletal myoblasts. Compared with H2O2 treatment, TUNEL and ROS staining demonstrated lower apoptosis upon adiponectin treatment. AO staining confirmed the amelioration of lysosomal membrane damage, and JC-1 staining revealed an increase in mitochondrial membrane potential after adiponectin treatment. At the molecular level, adiponectin treatment inhibited the expression of the lysosomal apoptotic factors cathepsin B, chymotrypsin B, and the mitochondrial apoptotic pathway cytochrome-c (cyt-c) and caspase-8; decreased the apoptotic marker gene Bax; and increased the expression of the anti-apoptotic marker gene Bcl-2. Adiponectin treatment attenuated H2O2-induced apoptosis in skeletal myoblasts, possibly by inhibiting oxidative stress and apoptosis through the lysosomal-mitochondrial axis.
Collapse
Affiliation(s)
- Han Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chi Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Longbo Zhu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
6
|
Bucci A, Tortarolo G, Held MO, Bega L, Perego E, Castagnetti F, Bozzoni I, Slenders E, Vicidomini G. 4D Single-particle tracking with asynchronous read-out single-photon avalanche diode array detector. Nat Commun 2024; 15:6188. [PMID: 39043637 PMCID: PMC11266502 DOI: 10.1038/s41467-024-50512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Single-particle tracking techniques enable investigation of the complex functions and interactions of individual particles in biological environments. Many such techniques exist, each demonstrating trade-offs between spatiotemporal resolution, spatial and temporal range, technical complexity, and information content. To mitigate these trade-offs, we enhanced a confocal laser scanning microscope with an asynchronous read-out single-photon avalanche diode array detector. This detector provides an image of the particle's emission, precisely reflecting its position within the excitation volume. This localization is utilized in a real-time feedback system to drive the microscope scanning mechanism and ensure the particle remains centered inside the excitation volume. As each pixel is an independent single-photon detector, single-particle tracking is combined with fluorescence lifetime measurement. Our system achieves 40 nm lateral and 60 nm axial localization precision with 100 photons and sub-millisecond temporal sampling for real-time tracking. Offline tracking can refine this precision to the microsecond scale. We validated the system's spatiotemporal resolution by tracking fluorescent beads with diffusion coefficients up to 10 μm2/s. Additionally, we investigated the movement of lysosomes in living SK-N-BE cells and measured the fluorescence lifetime of the marker expressed on a membrane protein. We expect that this implementation will open other correlative imaging and tracking studies.
Collapse
Affiliation(s)
- Andrea Bucci
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genoa, Genoa, Italy
| | - Giorgio Tortarolo
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Experimental Biophysics, EPFL, Lausanne, Switzerland
| | - Marcus Oliver Held
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Luca Bega
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Centre for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Francesco Castagnetti
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Irene Bozzoni
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Eli Slenders
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
7
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Needham D. Niclosamide: A career builder. J Control Release 2024; 369:786-856. [PMID: 37544514 DOI: 10.1016/j.jconrel.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023]
Abstract
My contribution to honoring Professor Kinam Park celebrates and resonates with his scholarly career in drug delivery, his commitment to encouraging the next generation(s), and his efforts to keep us focused on clinically effective formulations. To do this I take as my example, niclosamide, a small molecule protonophore that, uniquely, can "target" all cell membranes, both plasma and organelle. As such, it acts upstream of many cell pathways and so has the potential to affect many of the essential events that a cell, and particularly a diseased cell or other entities like a virus, use to stay alive and prosper. Literature shows that it has so far been discovered to positively influence (at least): cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, systemic sclerosis, Parkinson's, and COPD. With such a fundamental action and broad-spectrum activity, I believe that studying niclosamide in all its manifestations, discovering if and to what extent it can contribute positively to disease control (and also where it can't), formulating it as effective therapeutics, and testing them in preclinical and clinical trials is a career builder for our next generation(s). The article is divided into two parts: Part I introduces niclosamide and other proton shunts mainly in cancer and viral infections and reviews an exponentially growing literature with some concepts and physicochemical properties that lead to its proton shunt mechanism. Part II focuses on repurposing by reformulation of niclosamide. I give two examples of "carrier-free formulations", - one for cancer (as a prodrug therapeutic of niclosamide stearate for i.v. and other administration routes, exemplified by our recent work on Osteosarcoma in mice and canine patients), and the other as a niclosamide solution formulation (that could provide the basis for a preventative nasal spray and early treatment option for COVID19 and other respiratory virus infections). My goal is to excite and enthuse, encourage, and motivate all involved in the drug development and testing process in academia, institutes, and industry, to learn more about this interesting molecule and others like it. To enable such endeavors, I give many proposed ideas throughout the document, that have been stimulated and inspired by gaps in the literature, urgent needs in disease, and new studies arising from our own work. The hope is that, by reading through this document and studying the suggested topics and references, the drug delivery and development community will continue our lineage and benefit from our legacy to achieve niclosamide's potential as an effective contributor to the treatment and control of many diseases and conditions.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA; Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
9
|
Ashrafi-Dehkordi E, Tahmasebi A, Zare H, Mazloomi SM. A Meta-analysis of Transcriptome Data to Investigate the Effect of Soy Isoflavones on Breast Cancer Cell. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3762. [PMID: 39220340 PMCID: PMC11364926 DOI: 10.30498/ijb.2024.407148.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/03/2024] [Indexed: 09/04/2024]
Abstract
Background Breast cancer ranks as the second highest cause of cancer-linked deaths in women, with varying rates between Western and Asian countries. The consumption of phytoestrogens can influence breast cancer occurrence. Objective To comprehend how soy isoflavones impact breast cancer cells, we conducted a meta-analysis, combining gene expression data from multiple studies. This approach aimed to identify crucial transcriptional characteristics driving breast cancer cell response to soy phytoestrogens. Materials and Methods The gene expression profiles obtained from the Gene Expression Omnibus and Array Express and were grouped into control and isoflavones exposure conditions. We performed a meta-analysis based on the effect size combination method to identify the differentially expressed genes (DEGs). In addition, we performed Gene Ontology (GO) enrichment analysis, pathway analysis, weighted gene co-expression network analysis (WGCNA) and recursive support vector machine (R-SVM) algorithm. Results Based on this meta-analysis, we identified 3,890 DEGs, of which 2,173 were up-regulated and 1,717 were down-regulated. For example, SGCG, PLK2, and TBC1D9 were the most highly down-regulated genes and EGR3, WISP2, and FKBP4 were the most highly expressed genes in the isoflavones exposure condition. The functional enrichment and pathway analysis were revealed "cell division" and "cell cycle" among the most enriched terms. Among the identified DEGs, 269 transcription factor (TF) genes belonged to 42 TF families, where the C2H2 ZF, bZIP, and bHLH were the most prominent families. We also employed the R-SVM for detecting the most important genes to classify samples into isoflavones exposure and control conditions. It identified a subset of 100 DEGs related to regulation of cell growth, response to estradiol, and intermediate ribonucleoside monophosphate in the purine (IMP) metabolic process. Moreover, the WGCNA separated the DEGs into five discrete modules strongly enriched for genes involved in cell division, DNA replication, embryonic digit morphogenesis, and cell-cell adhesion. Conclusion Our analysis provides evidence suggesting that isoflavone affects various mechanisms in cells, including pathways associated with NF-κB, Akt, MAPK, Wnt, Notch, p53, and AR pathways, which can lead to the induction of apoptosis, the alteration of the cell cycle, the inhibition of angiogenesis, and interference in the redox state of cells. These findings can shed light on the molecular mechanisms that underlie the response of breast cancer cells to isoflavones.
Collapse
Affiliation(s)
- Elham Ashrafi-Dehkordi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Tahmasebi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Institute, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Habil Zare
- Department of Computer Science, Texas State University, San Marcos, Texas, 78666, USA
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Huang Y, Song B, Chen K, Kong D, Yuan J. Time-gated luminescent probes for lysosomal singlet oxygen: Synthesis, characterizations and bioimaging applications. Anal Chim Acta 2024; 1287:342063. [PMID: 38182371 DOI: 10.1016/j.aca.2023.342063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUD Single oxygen (1O2), the molecular oxygen at its excited state, plays a crucial role in the photodynamic therapy (PDT) of some diseases owing to its strong oxidizing property to destroy malignant cells. Although the fluorescent probe technique has proven its powerful application abilities for detection of 1O2 in biological systems, most of the reported fluorescent probes suffered from the interference of background autofluorescence of biological samples. It is clear that the real-time and in situ, background-free fluorescent detection of 1O2 generated in live cells, especially in some organelles, is of great significance for understanding the action mechanism of PDT drugs. RESULTS By introducing a lysosome-anchoring motif, a morpholine moiety, into a 1O2-specifically-reactive terpyridine polyacid ligand, [4'-(9-anthryl)-2,2':6',2″-terpyridine-6,6″-diyl] bis(methylenenitrilo) tetrakis (acetic acid) (ATTA), and chelating with lanthanide ions (Eu3+ or Tb3+), two lanthanide complex-based "turn-on" luminescent probes that can be used for the background-free time-gated luminescent (TGL) detection of lysosomal 1O2, Lyso-ATTA-Eu3+ and Lyso-ATTA-Tb3+, have been developed. The probes exhibit fast luminescence responses (within 2.5 min) towards 1O2 with high selectivity and sensitivity (<0.75 μM) in a wide pH range (4-11). And the excellent lysosome-localization performance of the probes allowed them to be used for the monitoring of endogenous 1O2 in lysosomes, which enabled the variability of lysosomal-1O2 concentrations induced by different photosensitizers to be successfully discriminated. Furthermore, by doping Lyso-ATTA-Eu3+ into the polyethylene glycol (PEG) hydrogel, the smart luminescent sensor film, PEG-Lyso-ATTA-Eu3+, was prepared, and successfully used for the detection of the on-site 1O2 production during the PDT process of psoriatic disease in model mice. SIGNIFICANT Two lysosome-targetable background-free TGL probes for 1O2 were firstly reported. The developed smart luminescent sensor film could be a powerful tool for the clinical monitoring of PDT on skin diseases without using sophisticated and expensive instruments.
Collapse
Affiliation(s)
- Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
11
|
Hwang N, Yoon BK, Chun KH, Kim H, Lee Y, Kim JW, Jeon H, Kim TH, Kim MY, Fang S, Cheong JH, Kim JW. Caveolin-1 mediates the utilization of extracellular proteins for survival in refractory gastric cancer. Exp Mol Med 2023; 55:2461-2472. [PMID: 37919422 PMCID: PMC10689497 DOI: 10.1038/s12276-023-01109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 11/04/2023] Open
Abstract
Despite advances in cancer therapy, the clinical outcome of patients with gastric cancer remains poor, largely due to tumor heterogeneity. Thus, finding a hidden vulnerability of clinically refractory subtypes of gastric cancer is crucial. Here, we report that chemoresistant gastric cancer cells rely heavily on endocytosis, facilitated by caveolin-1, for survival. caveolin-1 was highly upregulated in the most malignant stem-like/EMT/mesenchymal (SEM)-type gastric cancer cells, allowing caveolin-1-mediated endocytosis and utilization of extracellular proteins via lysosomal degradation. Downregulation of caveolin-1 alone was sufficient to induce cell death in SEM-type gastric cancer cells, emphasizing its importance as a survival mechanism. Consistently, chloroquine, a lysosomal inhibitor, successfully blocked caveolin-1-mediated endocytosis, leading to the marked suppression of tumor growth in chemorefractory gastric cancer cells in vitro, including patient-derived organoids, and in vivo. Together, our findings suggest that caveolin-1-mediated endocytosis is a key metabolic pathway for gastric cancer survival and a potential therapeutic target.
Collapse
Affiliation(s)
- Nahee Hwang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Hye Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoseob Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Won Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonuk Jeon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Ho Cheong
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of R&D, Veraverse Inc., Seoul, Republic of Korea.
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Nomura TK, Endo S, Kuwano T, Fukasawa K, Takashima S, Todo T, Furuta K, Yamamoto T, Hinoi E, Koyama H, Honda R. ARL-17477 is a dual inhibitor of NOS1 and the autophagic-lysosomal system that prevents tumor growth in vitro and in vivo. Sci Rep 2023; 13:10757. [PMID: 37402770 DOI: 10.1038/s41598-023-37797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
ARL-17477 is a selective neuronal nitric oxide synthase (NOS1) inhibitor that has been used in many preclinical studies since its initial discovery in the 1990s. In the present study, we demonstrate that ARL-17477 exhibits a NOS1-independent pharmacological activity that involves inhibition of the autophagy-lysosomal system and prevents cancer growth in vitro and in vivo. Initially, we screened a chemical compound library for potential anticancer agents, and identified ARL-17477 with micromolar anticancer activity against a wide spectrum of cancers, preferentially affecting cancer stem-like cells and KRAS-mutant cancer cells. Interestingly, ARL-17477 also affected NOS1-knockout cells, suggesting the existence of a NOS1-independent anticancer mechanism. Analysis of cell signals and death markers revealed that LC3B-II, p62, and GABARAP-II protein levels were significantly increased by ARL-17477. Furthermore, ARL-17477 had a chemical structure similar to that of chloroquine, suggesting the inhibition of autophagic flux at the level of lysosomal fusion as an underlying anticancer mechanism. Consistently, ARL-17477 induced lysosomal membrane permeabilization, impaired protein aggregate clearance, and activated transcription factor EB and lysosomal biogenesis. Furthermore, in vivo ARL-17477 inhibited the tumor growth of KRAS-mutant cancer. Thus, ARL-17477 is a dual inhibitor of NOS1 and the autophagy-lysosomal system that could potentially be used as a cancer therapeutic.
Collapse
Affiliation(s)
- Teiko Komori Nomura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Takuma Kuwano
- Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Fukasawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Shigeo Takashima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoji Furuta
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Takuhei Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
- Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroko Koyama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan.
| |
Collapse
|
13
|
Gopalkrishnan A, Wang N, Cruz-Rangel S, Kassab AY, Shiva S, Kurukulasuriya C, Monga SP, DeBerardinis RJ, Kiselyov K, Duvvuri U. Lysosomal mitochondrial interaction promotes tumor growth in squamous cell carcinoma of the head and neck. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546311. [PMID: 37425842 PMCID: PMC10326999 DOI: 10.1101/2023.06.25.546311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tumor growth and proliferation are regulated by numerous mechanisms. Communication between intracellular organelles has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction) is emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. TMEM16A has recently been shown to drive lysosomal biogenesis, but its impact on mitochondrial function is unclear. Here, we show that (1) patients with high TMEM16A SCCHN display increased mitochondrial content specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) β-catenin/NRF2 signaling is a critical linchpin that drives mitochondrial biogenesis, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that LMI drives tumor proliferation and facilitates a functional interaction between lysosomes and mitochondria. Therefore, inhibition of LMI may serve as a therapeutic strategy for patients with SCCHN.
Collapse
|
14
|
Alalawi S, Albalawi F, Ramji DP. The Role of Punicalagin and Its Metabolites in Atherosclerosis and Risk Factors Associated with the Disease. Int J Mol Sci 2023; 24:ijms24108476. [PMID: 37239823 DOI: 10.3390/ijms24108476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ACVD) is the leading cause of death worldwide. Although current therapies, such as statins, have led to a marked reduction in morbidity and mortality from ACVD, they are associated with considerable residual risk for the disease together with various adverse side effects. Natural compounds are generally well-tolerated; a major recent goal has been to harness their full potential in the prevention and treatment of ACVD, either alone or together with existing pharmacotherapies. Punicalagin (PC) is the main polyphenol present in pomegranates and pomegranate juice and demonstrates many beneficial actions, including anti-inflammatory, antioxidant, and anti-atherogenic properties. The objective of this review is to inform on our current understanding of the pathogenesis of ACVD and the potential mechanisms underlying the beneficial actions of PC and its metabolites in the disease, including the attenuation of dyslipidemia, oxidative stress, endothelial cell dysfunction, foam cell formation, and inflammation mediated by cytokines and immune cells together with the regulation of proliferation and migration of vascular smooth muscle cells. Some of the anti-inflammatory and antioxidant properties of PC and its metabolites are due to their strong radical-scavenging activities. PC and its metabolites also inhibit the risk factors of atherosclerosis, including hyperlipidemia, diabetes mellitus, inflammation, hypertension, obesity, and non-alcoholic fatty liver disease. Despite the promising findings that have emerged from numerous in vitro, in vivo, and clinical studies, deeper mechanistic insights and large clinical trials are required to harness the full potential of PC and its metabolites in the prevention and treatment of ACVD.
Collapse
Affiliation(s)
- Sulaiman Alalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Faizah Albalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
15
|
Hamdy NM, Eskander G, Basalious EB. Insights on the Dynamic Innovative Tumor Targeted-Nanoparticles-Based Drug Delivery Systems Activation Techniques. Int J Nanomedicine 2022; 17:6131-6155. [PMID: 36514378 PMCID: PMC9741821 DOI: 10.2147/ijn.s386037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-cancer conventional chemotherapeutic drugs novel formula progress, nowadays, uses nano technology for targeted drug delivery, specifically tailored to overcome therapeutic agents' delivery challenges. Polymer drug delivery systems (DDS) play a crucial role in minimizing off-target side effects arising when using standard cytotoxic drugs. Using nano-formula for targeted localized action, permits using larger effective cytotoxic doses on a single special spot, that can seriously cause harm if it was administered systemically. Therefore, various nanoparticles (NPs) specifically have attached groups for targeting capabilities, not seen in bulk materials, which then need activation. In this review, we will present a simple innovative, illustrative, in a cartoon-way, enumeration of NP anti-cancer drug targeting delivery system activation-types. Area(s) covered in this review are the mechanisms of various NP activation techniques.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Georgette Eskander
- Faculty of Pharmacy, Ain Shams University, Postgraduate Student, Cairo, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
16
|
Zuniga K, Ghousifam N, Sansalone J, Senecal K, Van Dyke M, Rylander MN. Keratin Promotes Differentiation of Keratinocytes Seeded on Collagen/Keratin Hydrogels. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100559. [PMID: 36290526 PMCID: PMC9598618 DOI: 10.3390/bioengineering9100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Keratinocytes undergo a complex process of differentiation to form the stratified stratum corneum layer of the skin. In most biomimetic skin models, a 3D hydrogel fabricated out of collagen type I is used to mimic human skin. However, native skin also contains keratin, which makes up 90% of the epidermis and is produced by the keratinocytes present. We hypothesized that the addition of keratin (KTN) in our collagen hydrogel may aid in the process of keratinocyte differentiation compared to a pure collagen hydrogel. Keratinocytes were seeded on top of a 100% collagen or 50/50 C/KTN hydrogel cultured in either calcium-free (Ca-free) or calcium+ (Ca+) media. Our study demonstrates that the addition of keratin and calcium in the media increased lysosomal activity by measuring the glucocerebrosidase (GBA) activity and lysosomal distribution length, an indication of greater keratinocyte differentiation. We also found that the presence of KTN in the hydrogel also increased the expression of involucrin, a differentiation marker, compared to a pure collagen hydrogel. We demonstrate that a combination (i.e., containing both collagen and kerateine or “C/KTN”) hydrogel was able to increase keratinocyte differentiation compared to a pure collagen hydrogel, and the addition of calcium further increased the differentiation of keratinocytes. This multi-protein hydrogel shows promise in future models or treatments to increase keratinocyte differentiation into the stratum corneum.
Collapse
Affiliation(s)
- Kameel Zuniga
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Correspondence:
| | - Neda Ghousifam
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - John Sansalone
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kris Senecal
- Natick Soldier Center, U.S. Army Soldier & Biological Chemical Command, Natick, MA 01760, USA
| | - Mark Van Dyke
- College of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
17
|
Application of meso-CF 3-Fluorophore BODIPY with Phenyl and Pyrazolyl Substituents for Lifetime Visualization of Lysosomes. Molecules 2022; 27:molecules27155018. [PMID: 35956971 PMCID: PMC9370186 DOI: 10.3390/molecules27155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
A bright far-red emitting unsymmetrical meso-CF3-BODIPY fluorescent dye with phenyl and pyrazolyl substituents was synthesized by condensation of trifluoropyrrolylethanol with pyrazolyl-pyrrole, with subsequent oxidation and complexation of the formed dipyrromethane. This BODIPY dye exhibits optical absorption at λab ≈ 610-620 nm and emission at λem ≈ 640-650 nm. The BODIPY was studied on Ehrlich carcinoma cells as a lysosome-specific fluorescent dye that allows intravital staining of cell structures with subsequent real-time monitoring of changes occurring in the cells. It was also shown that the rate of uptake by cells, the rate of intracellular transport into lysosomes, and the rate of saturation of cells with the dye depend on its concentration in the culture medium. A concentration of 5 μM was chosen as the most suitable BODIPY concentration for fluorescent staining of living cell lysosomes, while a concentration of 100 μM was found to be toxic to Ehrlich carcinoma cells.
Collapse
|
18
|
Qu L, Lin B, Zeng W, Fan C, Wu H, Ge Y, Li Q, Li C, Wei Y, Xin J, Wang X, Liu D, Cang C. Lysosomal K + channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson's disease. EMBO Rep 2022; 23:e53234. [PMID: 35913019 PMCID: PMC9442313 DOI: 10.15252/embr.202153234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Lysosomes are degradative organelles and play vital roles in a variety of cellular processes. Ion channels on the lysosomal membrane are key regulators of lysosomal function. TMEM175 has been identified as a lysosomal potassium channel, but its modulation and physiological functions remain unclear. Here, we show that the apoptotic regulator Bcl-2 binds to and inhibits TMEM175 activity. Accordingly, Bcl-2 inhibitors activate the channel in a caspase-independent way. Increased TMEM175 function inhibits mitophagy, disrupts mitochondrial homeostasis, and increases production of reactive oxygen species (ROS). ROS further activates TMEM175 and thus forms a positive feedback loop to augment apoptosis. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), knockout (KO) of TMEM175 mitigated motor impairment and dopaminergic (DA) neuron loss, suggesting that TMEM175-mediated apoptosis plays an important role in Parkinson's disease (PD). Overall, our study reveals that TMEM175 is an important regulatory site in the apoptotic signaling pathway and a potential therapeutic target for Parkinson's disease (PD).
Collapse
Affiliation(s)
- Lili Qu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Bingqian Lin
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Wenping Zeng
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Chunhong Fan
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Haotian Wu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Yushu Ge
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Canjun Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Yanan Wei
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Jing Xin
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xingbing Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunlei Cang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Fluorescence conjugated nanostructured cobalt-doped hydroxyapatite platform for imaging-guided drug delivery application. Colloids Surf B Biointerfaces 2022; 214:112458. [PMID: 35306345 DOI: 10.1016/j.colsurfb.2022.112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
Multifunctional nanomaterials developed from hydroxyapatite (HAp) with enhanced biological characteristics have recently attracted attention in the biomedical field. The goal of this study is to investigate the potential applications of cobalt-doped HAp (Co-HAp) in the biomedical imaging and therapeutic applications. The co-precipitation approach was used to substitute different molar concentrations of Ca2+ ions with cobalt (Co2+) in HAp structure. The synthesized Co-HAp nanoparticles were studied using various sophisticated techniques to verify the success rate of the doping method. The specific crystal structure, functional groups, size, morphology, photoluminescence property, and thermal stability of the Co-HAp nanoparticles were analyzed based on the characterization results. The computational modelling of doped and undoped HAp reveals the difference in crystal structure parameters. The cytotoxicity study (MTT assay and AO/PI/Hoechst fluorescence staining) reveals the non-toxic characteristics of Co-HAp nanoparticles on MDA-MB-231 breast cancer cell lines. The DOX was loaded onto Co-HAp, showing the maximum drug loading capacity for 2.0 mol% Co-HAp. Drug release was estimated in five different pH environments with various time intervals over 72 h. Furthermore, 2.0 mol% Co-HAp shows excellent fluorescence sensitivity with FITC-conjugated MDA-MB-231 cell lines. These results suggest that cobalt improved the fluorescence intensity of FITC-labeled HAp nanoparticles. This work highlights the promising application of Co-HAp nanoparticles with significant enhanced fluorescence activity for imaging-guided drug delivery system.
Collapse
|
20
|
Marastoni S, Madariaga A, Pesic A, Nair SN, Li ZJ, Shalev Z, Ketela T, Colombo I, Mandilaras V, Cabanero M, Bruce JP, Li X, Garg S, Wang L, Chen EX, Gill S, Dhani NC, Zhang W, Pintilie M, Bowering V, Koritzinsky M, Rottapel R, Wouters BG, Oza AM, Joshua AM, Lheureux S. Repurposing Itraconazole and Hydroxychloroquine to Target Lysosomal Homeostasis in Epithelial Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:293-306. [PMID: 36875717 PMCID: PMC9981200 DOI: 10.1158/2767-9764.crc-22-0037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/13/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Drug repurposing is an attractive option for oncology drug development. Itraconazole is an antifungal ergosterol synthesis inhibitor that has pleiotropic actions including cholesterol antagonism, inhibition of Hedgehog and mTOR pathways. We tested a panel of 28 epithelial ovarian cancer (EOC) cell lines with itraconazole to define its spectrum of activity. To identify synthetic lethality in combination with itraconazole, a whole-genome drop-out genome-scale clustered regularly interspaced short palindromic repeats sensitivity screen in two cell lines (TOV1946 and OVCAR5) was performed. On this basis, we conducted a phase I dose-escalation study assessing the combination of itraconazole and hydroxychloroquine in patients with platinum refractory EOC (NCT03081702). We identified a wide spectrum of sensitivity to itraconazole across the EOC cell lines. Pathway analysis showed significant involvement of lysosomal compartments, the trans-golgi network and late endosomes/lysosomes; similar pathways are phenocopied by the autophagy inhibitor, chloroquine. We then demonstrated that the combination of itraconazole and chloroquine displayed Bliss defined synergy in EOC cancer cell lines. Furthermore, there was an association of cytotoxic synergy with the ability to induce functional lysosome dysfunction, by chloroquine. Within the clinical trial, 11 patients received at least one cycle of itraconazole and hydroxychloroquine. Treatment was safe and feasible with the recommended phase II dose of 300 and 600 mg twice daily, respectively. No objective responses were detected. Pharmacodynamic measurements on serial biopsies demonstrated limited pharmacodynamic impact. In vitro, itraconazole and chloroquine have synergistic activity and exert a potent antitumor effect by affecting lysosomal function. The drug combination had no clinical antitumor activity in dose escalation. Significance The combination of the antifungal drug itraconazole with antimalarial drug hydroxychloroquine leads to a cytotoxic lysosomal dysfunction, supporting the rational for further research on lysosomal targeting in ovarian cancer.
Collapse
Affiliation(s)
- Stefano Marastoni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ainhoa Madariaga
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Autonomous University of Barcelona, Barcelona, Spain
| | - Aleksandra Pesic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sree Narayanan Nair
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zhu Juan Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zvi Shalev
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ilaria Colombo
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Victoria Mandilaras
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michael Cabanero
- Department of Pathology, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xuan Li
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Swati Garg
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lisa Wang
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eric X Chen
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Sarbjot Gill
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Neesha C Dhani
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Wenjiang Zhang
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Melania Pintilie
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Valerie Bowering
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anthony M Joshua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Kinghorn Cancer Centre, Department of Medical Oncology, St Vincents Hospital, Sydney, Australia.,Garvan Institute of Medical Research, Sydney, Australia
| | - Stephanie Lheureux
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Morsby JJ, Smith BD. Advances in Optical Sensors of N-Acetyl-β-d-hexosaminidase ( N-Acetyl-β-d-glucosaminidase). Bioconjug Chem 2022; 33:544-554. [PMID: 35302753 PMCID: PMC9870670 DOI: 10.1021/acs.bioconjchem.2c00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-Acetyl-β-d-hexosaminidases (EC 3.2.1.52) are exo-acting glycosyl hydrolases that remove N-acetyl-β-d-glucosamine (Glc-NAc) or N-acetyl-β-d-galactosamine (Gal-NAc) from the nonreducing ends of various biomolecules including oligosaccharides, glycoproteins, and glycolipids. The same enzymes are sometimes called N-acetyl-β-d-glucosaminidases, and this review article employs the shorthand descriptor HEX(NAG) to indicate that the terms HEX or NAG are used interchangeably in the literature. The wide distribution of HEX(NAG) throughout the biosphere and its intracellular location in lysosomes combine to make it an important enzyme in food science, agriculture, cell biology, medical diagnostics, and chemotherapy. For more than 50 years, researchers have employed chromogenic derivatives of N-acetyl-β-d-glucosaminide in basic assays for biomedical research and clinical chemistry. Recent conceptual and synthetic innovations in molecular fluorescence sensors, along with concurrent technical improvements in instrumentation, have produced a growing number of new fluorescent imaging and diagnostics methods. A systematic summary of the recent advances in optical sensors for HEX(NAG) is provided under the following headings: assessing kidney health, detection and treatment of infectious disease, fluorescence imaging of cancer, treatment of lysosomal disorders, and reactive probes for chemical biology. The article concludes with some comments on likely future directions.
Collapse
Affiliation(s)
| | - Bradley D. Smith
- Corresponding Author: Bradley D. Smith - Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
22
|
Castelli S, Desideri E, Rosa Ciriolo M. ROS-mediated activation of p38 protects hepatocellular carcinoma cells from caspase-independent death elicited by lysosomal damage. Biochem Pharmacol 2022; 198:114983. [DOI: 10.1016/j.bcp.2022.114983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023]
|
23
|
Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, Ono Y, Tamamura N, Takahashi K, Wada Y, Mizukami Y, Akimitsu N. RNA Exosome Component EXOSC4 Amplified in Multiple Cancer Types Is Required for the Cancer Cell Survival. Int J Mol Sci 2022; 23:496. [PMID: 35008922 PMCID: PMC8745236 DOI: 10.3390/ijms23010496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The RNA exosome is a multi-subunit ribonuclease complex that is evolutionally conserved and the major cellular machinery for the surveillance, processing, degradation, and turnover of diverse RNAs essential for cell viability. Here we performed integrated genomic and clinicopathological analyses of 27 RNA exosome components across 32 tumor types using The Cancer Genome Atlas PanCancer Atlas Studies' datasets. We discovered that the EXOSC4 gene, which encodes a barrel component of the RNA exosome, was amplified across multiple cancer types. We further found that EXOSC4 alteration is associated with a poor prognosis of pancreatic cancer patients. Moreover, we demonstrated that EXOSC4 is required for the survival of pancreatic cancer cells. EXOSC4 also repressed BIK expression and destabilized SESN2 mRNA by promoting its degradation. Furthermore, knockdown of BIK and SESN2 could partially rescue pancreatic cells from the reduction in cell viability caused by EXOSC4 knockdown. Our study provides evidence for EXOSC4-mediated regulation of BIK and SESN2 mRNA in the survival of pancreatic tumor cells.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Shuhei Mitsutomi
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Han Han
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Rika Kakisaka
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 065-0033, Japan; (R.K.); (Y.O.)
| | - Nobue Tamamura
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Kenji Takahashi
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| | - Yusuke Mizukami
- Cancer Genomics and Precision Medicine, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (N.T.); (K.T.); (Y.M.)
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; (T.T.); (Y.S.); (S.M.); (H.H.); (Y.W.)
| |
Collapse
|
24
|
Matsukawa T, Mizutani S, Matsumoto K, Kato Y, Yoshihara M, Kajiyama H, Shibata K. Placental Leucine Aminopeptidase as a Potential Specific Urine Biomarker for Invasive Ovarian Cancer. J Clin Med 2021; 11:jcm11010222. [PMID: 35011963 PMCID: PMC8746293 DOI: 10.3390/jcm11010222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A non-invasive and sensitive biomarker for the detection of ovarian cancer (OvCa) is lacking. We aim to investigate if urinary placental leucine aminopeptidase (P-LAP) can serve as a reliable biomarker for OvCa. METHODS P-LAP activity was measured using a LAP assay kit (Serotech Co., Ltd., Sapporo, Japan) in the urine of 22 patients with benign or borderline malignant ovarian tumors and 18 patients with OvCa. In this assay, L-methionine was added at 20 mM because P-LAP is functional, but other aminopeptidases are inhibited at this dose of L-methionine. RESULTS The mean urinary P-LAP activity was significantly higher in the OvCa group than in the benign or borderline malignant tumor group. When the cut-off value of P-LAP was determined as 11.00 U/L, its sensitivity and specificity for differentiating invasive cancer were 77.8% and 95.5%, respectively. CONCLUSION Although the usefulness of this test should be confirmed in a larger cohort of cases and controls, our study is the first to highlight the importance of urinary P-LAP as a biomarker for OvCa.
Collapse
Affiliation(s)
- Tetsuya Matsukawa
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Aichi 454-8509, Japan;
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan;
| | | | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan;
- Correspondence: (M.Y.); (K.S.); Tel.: +81-52-744-2261 (M.Y.); +81-52-321-8171 (K.S.)
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan;
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Aichi 454-8509, Japan;
- Correspondence: (M.Y.); (K.S.); Tel.: +81-52-744-2261 (M.Y.); +81-52-321-8171 (K.S.)
| |
Collapse
|
25
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|
26
|
Won M, Choi S, Cheon S, Kim EM, Kwon TK, Kim J, Kim YE, Sohn KC, Hur GM, Kim KK. Octyl syringate is preferentially cytotoxic to cancer cells via lysosomal membrane permeabilization and autophagic flux inhibition. Cell Biol Toxicol 2021; 39:183-199. [PMID: 34523043 DOI: 10.1007/s10565-021-09653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
The autophagy-mediated lysosomal pathway plays an important role in conferring stress tolerance to tumor cells during cellular stress such as increased metabolic demands. Thus, targeted disruption of this function and inducing lysosomal cell death have been proved to be a useful cancer therapeutic approach. In this study, we reported that octyl syringate (OS), a novel phenolic derivate, was preferentially cytotoxic to various cancer cells but was significantly less cytotoxic to non-transformed cells. Treatment with OS resulted in non-apoptotic cell death in a caspase-independent manner. Notably, OS not only enhanced accumulation of autophagic substrates, including lapidated LC3 and sequestosome-1, but also inhibited their degradation via an autophagic flux. In addition, OS destabilized the lysosomal function, followed by the intracellular accumulation of the non-digestive autophagic substrates such as bovine serum albumin and stress granules. Furthermore, OS triggered the release of lysosomal enzymes into the cytoplasm that contributed to OS-induced non-apoptotic cell death. Finally, we demonstrated that OS was well tolerated and reduced tumor growth in mouse xenograft models. Taken together, our study identifies OS as a novel anticancer agent that induces lysosomal destabilization and subsequently inhibits autophagic flux and further supports development of OS as a lysosome-targeting compound in cancer therapy. • Octyl syringate, a phenolic derivate, is preferentially cytotoxic to various cancer cells. • Octyl syringate destabilizes the lysosomal function. • Octyl syringate blocks the autophagic flux. • Octyl syringate is a potential candidate compound for cancer therapy.
Collapse
Affiliation(s)
- Minho Won
- Department of Pharmacology, College of Medicine, Chungnam National University, 35015, Daejeon, Republic of Korea.,Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seonghye Cheon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, College of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jaewhan Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yong-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology, College of Medicine, Chungnam National University, 35015, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, 35015, Daejeon, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
27
|
Synthesis, Characterization, and Anticancer Activity of Benzothiazole Aniline Derivatives and Their Platinum (II) Complexes as New Chemotherapy Agents. Pharmaceuticals (Basel) 2021; 14:ph14080832. [PMID: 34451928 PMCID: PMC8399196 DOI: 10.3390/ph14080832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/05/2022] Open
Abstract
We describe the synthesis, characterization, molecular modeling, and in vitro anticancer activity of three benzothiazole aniline (BTA) ligands and their corresponding platinum (II) complexes. We designed the compounds based on the selective antitumor properties of BTA, along with three types of metallic centers, aiming to take advantage of the distinctive and synergistic activity of the complexes to develop anticancer agents. The compounds were characterized using nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, mass spectrometry, elemental analysis, and tested for antiproliferative activity against multiple normal and cancerous cell lines. L1, L2, and L1Pt had better cytotoxicity in the liver, breast, lung, prostate, kidney, and brain cells than clinically used cisplatin. Especially, L1 and L1Pt demonstrated selective inhibitory activities against liver cancer cells. Therefore, these compounds can be a promising alternative to the present chemotherapy drugs.
Collapse
|
28
|
Nie L, Zhang Y, Li L, van Rijn P, Schirhagl R. pH Sensitive Dextran Coated Fluorescent Nanodiamonds as a Biomarker for HeLa Cells Endocytic Pathway and Increased Cellular Uptake. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1837. [PMID: 34361223 PMCID: PMC8308332 DOI: 10.3390/nano11071837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022]
Abstract
Fluorescent nanodiamonds are a useful for biosensing of intracellular signaling networks or environmental changes (such as temperature, pH or free radical generation). HeLa cells are interesting to study with these nanodiamonds since they are a model cell system that is widely used to study cancer-related diseases. However, they only internalize low numbers of nanodiamond particles very slowly via the endocytosis pathway. In this work, we show that pH-sensitive, dextran-coated fluorescent nanodiamonds can be used to visualise this pathway. Additionally, this coating improved diamond uptake in HeLa cells by 5.3 times (*** p < 0.0001) and decreased the required time for uptake to only 30 min. We demonstrated further that nanodiamonds enter HeLa cells via endolysosomes and are eventually expelled by cells.
Collapse
Affiliation(s)
| | | | | | | | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.N.); (Y.Z.); (L.L.); (P.v.R.)
| |
Collapse
|
29
|
Lyra KM, Kaminari A, Panagiotaki KN, Spyrou K, Papageorgiou S, Sakellis E, Katsaros FK, Sideratou Z. Multi-Walled Carbon Nanotubes Decorated with Guanidinylated Dendritic Molecular Transporters: An Efficient Platform for the Selective Anticancer Activity of Doxorubicin. Pharmaceutics 2021; 13:858. [PMID: 34207727 PMCID: PMC8226981 DOI: 10.3390/pharmaceutics13060858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
An efficient doxorubicin (DOX) drug delivery system with specificity against tumor cells was developed, based on multi-walled carbon nanotubes (MWCNTs) functionalized with guanidinylated dendritic molecular transporters. Acid-treated MWCNTs (oxCNTs) interacted both electrostatically and through hydrogen bonding and van der Waals attraction forces with guanidinylated derivatives of 5000 and 25,000 Da molecular weight hyperbranched polyethyleneimine (GPEI5K and GPEI25K). Chemical characterization of these GPEI-functionalized oxCNTs revealed successful decoration with GPEIs all over the oxCNTs sidewalls, which, due to the presence of guanidinium groups, gave them aqueous compatibility and, thus, exceptional colloidal stability. These GPEI-functionalized CNTs were subsequently loaded with DOX for selective anticancer activity, yielding systems of high DOX loading, up to 99.5% encapsulation efficiency, while the DOX-loaded systems exhibited pH-triggered release and higher therapeutic efficacy compared to that of free DOX. Most importantly, the oxCNTs@GPEI5K-DOX system caused high and selective toxicity against cancer cells in a non-apoptotic, fast and catastrophic manner that cancer cells cannot recover from. Therefore, the oxCNTs@GPEI5K nanocarrier was found to be a potent and efficient nanoscale DOX delivery system, exhibiting high selectivity against cancerous cells, thus constituting a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Kyriaki-Marina Lyra
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Archontia Kaminari
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Katerina N. Panagiotaki
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Konstantinos Spyrou
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Sergios Papageorgiou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Fotios K. Katsaros
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch ‘‘Demokritos”, 15310 Aghia Paraskevi, Greece; (K.-M.L.); (A.K.); (K.N.P.); (S.P.); (E.S.); (F.K.K.)
| |
Collapse
|
30
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
31
|
Desideri E, Ciriolo MR. Inhibition of JNK increases the sensitivity of hepatocellular carcinoma cells to lysosomotropic drugs via LAMP2A destabilization. Cell Death Discov 2021; 7:29. [PMID: 33558496 PMCID: PMC7870977 DOI: 10.1038/s41420-021-00408-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/21/2022] Open
Abstract
Alteration of lysosomal homeostasis is common in cancer cells, which often feature an enlarged and peripheral distributed lysosomal compartment and the overexpression of cathepsins. These alterations accelerate the production of building blocks for the de novo synthesis of macromolecules and contribute to the degradation of the extracellular matrix, thus contributing to tumor growth and invasion. At the same time, they make lysosomes more fragile and more prone to lysosomal membrane permeabilization, a condition that can cause the release of proteases into the cytosol and the activation of cell death. Therefore, lysosomes represent a weak spot of cancer cells that can be targeted for therapeutic purposes. Here, we identify a novel role of the kinase JNK as keeper of lysosomal stability in hepatocellular carcinoma cells. JNK inhibition reduces the stability of LAMP2A, a lysosomal membrane protein responsible for the stability of the lysosomal membrane, promoting its degradation by the proteasome. LAMP2A decrease enhances the lysosomal damage induced by lysosomotropic agents, ultimately leading to cell death. The effect is cancer-specific, as JNK inhibition does not decrease LAMP2A in non-tumoral liver cells and does not alter their sensitivity to lysosomotropic drugs. Our finding on the new role of JNK as cancer-specific keeper of lysosomal homeostasis lays the ground for future evaluation of the efficacy of the combination of JNK inhibition and lysosomotropic agents as a potential therapeutic strategy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy. .,IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| |
Collapse
|
32
|
Hanafy MS, Hufnagel S, Trementozzi AN, Sakran W, Stachowiak JC, Koleng JJ, Cui Z. PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles Downregulate PD-1 Expression by Macrophages and Inhibit Tumor Growth : PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles. AAPS PharmSciTech 2021; 22:60. [PMID: 33517490 DOI: 10.1208/s12249-021-01933-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
The present study was designed to test the hypothesis that programmed cell death-1 (PD-1) siRNA can downregulate PD-1 expression in macrophages in culture and in tumor tissues in mice and inhibit tumor growth in a mouse model. PD-1 siRNA was encapsulated in solid lipid nanoparticles (SLNs), and the physical properties of the resultant SLNs were characterized. The ability of the PD-1 siRNA-SLNs to downregulate PD-1 expression was confirmed in J774A.1 macrophages in culture and in tumor tissues in mice. Moreover, the antitumor activity of the PD-1 siRNA-SLNs was evaluated in a mouse model. The PD-1 siRNA-SLNs were roughly spherical, and their particle size, polydispersity index, and zeta potential were 141 ± 5 nm, 0.17 ± 0.02, and 20.7 ± 4.7 mV, respectively, with an siRNA entrapment efficiency of 98.9%. The burst release of the PD-1 siRNA from the SLNs was minimal. The PD-1 siRNA-SLNs downregulated PD-1 expression on J774A.1 macrophage cell surface as well as in macrophages in B16-F10 tumors pre-established in mice. In mice with pre-established B16-F10 tumors, the PD-1 siRNA-SLNs significantly inhibited the tumor growth, as compared with siRNA-SLNs prepared with non-functional, negative control siRNA. In conclusion, the PD-1 siRNA-SLNs inhibited tumor growth, likely related to their ability to downregulate PD-1 expression by tumor-associated macrophage (TAMs).
Collapse
|
33
|
Mondal B, Dutta T, Sen Gupta S. Dual enzyme responsive mannose-6-phosphate based vesicle for controlled lysosomal delivery. Chem Commun (Camb) 2021; 57:109-112. [PMID: 33290458 DOI: 10.1039/d0cc06169g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dual enzyme responsive stable biomimetic vesicles composed of mannose-6-phosphate lipid can encapsulate and deliver dual dye/drug and protein/enzyme exclusively to the lysosome in HEK-293 cells. The release of the cargo from the vesicles can be temporally controlled due to the enzyme responsive morphology change of the M6P lipid assembly.
Collapse
Affiliation(s)
- Basudeb Mondal
- Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia-741246, West Bengal, India.
| | | | | |
Collapse
|
34
|
Karim S, Mukherjee S, Mahapatra S, Parveen R, Das D. Green facile synthesis to develop nanoscale coordination polymers as lysosome-targetable luminescent bioprobes. Biomater Sci 2021; 9:124-132. [PMID: 33107498 DOI: 10.1039/d0bm01328e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new coordination polymers (CPs), namely [{M(HL)(L)(H2O)}(ClO4)(H2O)]∞ (M = Zn for CP 1, Mn for CP 2, Cu for CP 3) were synthesized to explore their efficacy as lysosome-targetable luminescent bioprobes. The synthesized CPs were characterized by techniques including single-crystal X-ray analysis, FTIR spectroscopy and elemental analysis. Single-crystal analysis revealed the formation of iso-structural CPs displaying distorted adamantoid topology developed by bridging ligands and H-bonds connections and metals at the nodes. A green hand-grinding technique with a mortar and pestle resulted in nanoscale coordination polymers (NCPs) suitable for cell permeability and was further confirmed by SEM and DLS analyses. Two of these hand-ground nanoscale coordination polymers NCP 1 and NCP 2 showed excellent green luminescence and were explored as potential and selective long-time biotrackers towards lysosome using the human lung carcinoma cell line (A549). Strikingly, the developed bioprobe displayed excellent bio-availability, photostability and excellent selectivity towards lysosomes sustained by various in vitro cell imaging experiments. Moreover, the long-term probing ability of these NCPs turned out to be better than the commercially available lysosome tracker i.e. LysoTracker Red, indicating their potential real-life application in bio-imaging. To the best ofour knowledge, this is the first example of nonexpensive and less toxic essential transition metal-based nanoscale coordination polymers that can behave as effective lysosome-targetable luminescent bioprobes.
Collapse
Affiliation(s)
- Suhana Karim
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700109, India.
| | | | | | | | | |
Collapse
|
35
|
LAMP3 (CD208) Expression in Squamous Cell Carcinoma and Epithelial Dysplasia of the Oral Cavity and Clinicopathological Characteristics of Unfavorable Prognosis. Rep Biochem Mol Biol 2021; 9:379-384. [PMID: 33969129 DOI: 10.52547/rbmb.9.4.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background This study aimed to evaluate LAMP3 (CD208) gene expression in oral squamous cell carcinoma (OSCC) and dysplastic oral epithelium by quantitative real-time polymerase chain reaction (qPCR) and compare LAMP3 expression in different disease grades and stages. Methods In this study, 60 OSCC and dysplastic oral epithelium samples were obtained from the Mashhad University of Medical Sciences together with their demographic and clinicopathological documents. LAMP3 expression was measured by qPCR. Results LAMP3 expression was significantly greater in OSCC than in dysplasia samples (P=0.001), in grade III OSCC than in grades I and II, and also greater in advanced than in early OSCC disease stage (P=0.001). Conclusion The significantly greater LAMP3 expression in OSCC than in dysplastic epithelium indicates a role for LAMP3 in carcinogenesis in oral mucosa. Our results suggest LAMP3 may be useful as an anticancer target and/or to predict disease pathogenesis in OSCC patient's cells.
Collapse
|
36
|
Tannert A, Garcia Lopez J, Petkov N, Ivanova A, Peneva K, Neugebauer U. Lysosome-targeting pH indicator based on peri-fused naphthalene monoimide with superior stability for long term live cell imaging. J Mater Chem B 2021; 9:112-124. [DOI: 10.1039/d0tb02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomal pH is altered in many pathophysiological conditions. We describe synthesis and spectral properties of a new lysosomal fluorescent marker dye suitable for microscopic evaluation of lysosomal distribution and pH changes.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| |
Collapse
|
37
|
Shear Stress Increases V-H + -ATPase and Acidic Vesicle Number Density, and p-mTORC2 Activation in Prostate Cancer Cells. Cell Mol Bioeng 2020; 13:591-604. [PMID: 33281989 DOI: 10.1007/s12195-020-00632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Cells in the tumor microenvironment experience mechanical stresses, such as compression generated by uncontrolled cell growth within a tissue, increased substrate stiffness due to tumor cell extracellular matrix (ECM) remodeling, and leaky angiogenic vessels which involve low fluid shear stress. With our hypothesis that shear stress increases V-H + -ATPase number density in prostate cancer cells via activation of the mTORC1 and mTORC2 pathways, we demonstrated and quantified such a mechanism in prostate cancer cells. Methods Moderately metastatic DU145 and highly metastatic PC3 prostate cancer cells were subjected to 0.05 dynes cm - 2 wall shear stress for 24 h, followed by immunocytochemistry and fluorescence measurements of β 1 integrin, endosome, lysosome, V-H + -ATPase proton pump, mTORC1, and p-mTORC2 antibodies. Post shear stress migration assays, and the effects of vacuolar proton pump inhibitor Bafilomycin A1 (60 nM, 24 h) as well as shear stress on the ICC fluorescence intensity of the proteins of interest were conducted with DU145 cells. Results Low fluid shear stress increases the fluorescence intensity of β 1 integrin, endosome, lysosome, V-H + -ATPase, mTORC1, and p-mTORC2 antibodies in PC3 and DU145 cells, and also increased cell migration. However, Bafilomycin A1 decreased fluorescence intensity of all of these proteins in DU145 cells exposed to shear stress, revealing that V-H + -ATPase controls the expression of these proteins. Conclusions Prostate cancer cell mechanotransduction increases endosomes, lysosomes, and proton pumps-where increases have been associated with enhanced cancer aggressiveness. We also show that the prostate cancer cell's response to force promotes the cancer drivers mTORC1 and mTORC2.
Collapse
|
38
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
39
|
Gąsiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pękala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs 2020; 39:538-563. [PMID: 33159673 PMCID: PMC7960624 DOI: 10.1007/s10637-020-01032-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Although cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
Collapse
Affiliation(s)
- Bartosz Mateusz Gąsiorkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
40
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
41
|
Ma Z, Li J, Lin K, Ramachandran M, Zhang D, Showalter M, De Souza C, Lindstrom A, Solano LN, Jia B, Urayama S, Duan Y, Fiehn O, Lin TY, Li M, Li Y. Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat Commun 2020; 11:4615. [PMID: 32934241 PMCID: PMC7493904 DOI: 10.1038/s41467-020-18399-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
Integration of the unique advantages of the fields of drug discovery and drug delivery is invaluable for the advancement of drug development. Here we propose a self-delivering one-component new-chemical-entity nanomedicine (ONN) strategy to improve cancer therapy through incorporation of the self-assembly principle into drug design. A lysosomotropic detergent (MSDH) and an autophagy inhibitor (Lys05) are hybridised to develop bisaminoquinoline derivatives that can intrinsically form nanoassemblies. The selected BAQ12 and BAQ13 ONNs are highly effective in inducing lysosomal disruption, lysosomal dysfunction and autophagy blockade and exhibit 30-fold higher antiproliferative activity than hydroxychloroquine used in clinical trials. These single-drug nanoparticles demonstrate excellent pharmacokinetic and toxicological profiles and dramatic antitumour efficacy in vivo. In addition, they are able to encapsulate and deliver additional drugs to tumour sites and are thus promising agents for autophagy inhibition-based combination therapy. Given their transdisciplinary advantages, these BAQ ONNs have enormous potential to improve cancer therapy.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jin Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Kai Lin
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Dalin Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Megan Showalter
- West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Lucas N Solano
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Bei Jia
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Shiro Urayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Yuyou Duan
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
| | - Tzu-Yin Lin
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
42
|
Peruzzo R, Costa R, Bachmann M, Leanza L, Szabò I. Mitochondrial Metabolism, Contact Sites and Cellular Calcium Signaling: Implications for Tumorigenesis. Cancers (Basel) 2020; 12:E2574. [PMID: 32927611 PMCID: PMC7564994 DOI: 10.3390/cancers12092574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are organelles that are mainly involved in the generation of ATP by cellular respiration. In addition, they modulate several intracellular functions, ranging from cell proliferation and differentiation to cell death. Importantly, mitochondria are social and can interact with other organelles, such as the Endoplasmic Reticulum, lysosomes and peroxisomes. This symbiotic relationship gives advantages to both partners in regulating some of their functions related to several aspects of cell survival, metabolism, sensitivity to cell death and metastasis, which can all finally contribute to tumorigenesis. Moreover, growing evidence indicates that modulation of the length and/or numbers of these contacts, as well as of the distance between the two engaged organelles, impacts both on their function as well as on cellular signaling. In this review, we discuss recent advances in the field of contacts and communication between mitochondria and other intracellular organelles, focusing on how the tuning of mitochondrial function might impact on both the interaction with other organelles as well as on intracellular signaling in cancer development and progression, with a special focus on calcium signaling.
Collapse
Affiliation(s)
| | | | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy; (R.P.); (R.C.); (M.B.); (I.S.)
| | | |
Collapse
|
43
|
Biolato AM, Filali L, Wurzer H, Hoffmann C, Gargiulo E, Valitutti S, Thomas C. Actin remodeling and vesicular trafficking at the tumor cell side of the immunological synapse direct evasion from cytotoxic lymphocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:99-130. [PMID: 33066877 DOI: 10.1016/bs.ircmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cancer Research Center of Toulouse, INSERM, Toulouse, France
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Salvatore Valitutti
- Cancer Research Center of Toulouse, INSERM, Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole, Toulouse, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| |
Collapse
|
44
|
Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers (Basel) 2020; 12:cancers12092437. [PMID: 32867178 PMCID: PMC7565471 DOI: 10.3390/cancers12092437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells generate large quantities of cytoplasmic protons as byproducts of aberrantly activated aerobic glycolysis and lactate fermentation. To avoid potentially detrimental acidification of the intracellular milieu, cancer cells activate multiple acid-removal pathways that promote cytosolic alkalization and extracellular acidification. Accumulating evidence suggests that in addition to the well-characterized ion pumps and exchangers in the plasma membrane, cancer cell lysosomes are also reprogrammed for this purpose. On the one hand, the increased expression and activity of the vacuolar-type H+-ATPase (V-ATPase) on the lysosomal limiting membrane combined with the larger volume of the lysosomal compartment increases the lysosomal proton storage capacity substantially. On the other hand, enhanced lysosome exocytosis enables the efficient release of lysosomal protons to the extracellular space. Together, these two steps dynamically drive proton flow from the cytosol to extracellular space. In this perspective, we provide mechanistic insight into how lysosomes contribute to the rewiring of pH homeostasis in cancer cells.
Collapse
|
45
|
N-myristoyltransferase-1 is necessary for lysosomal degradation and mTORC1 activation in cancer cells. Sci Rep 2020; 10:11952. [PMID: 32686708 PMCID: PMC7371688 DOI: 10.1038/s41598-020-68615-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
N-myristoyltransferase-1 (NMT1) catalyzes protein myristoylation, a lipid modification that is elevated in cancer cells. NMT1 sustains proliferation and/or survival of cancer cells through mechanisms that are not completely understood. We used genetic and pharmacological inhibition of NMT1 to further dissect the role of this enzyme in cancer, and found an unexpected essential role for NMT1 at promoting lysosomal metabolic functions. Lysosomes mediate enzymatic degradation of vesicle cargo, and also serve as functional platforms for mTORC1 activation. We show that NMT1 is required for both lysosomal functions in cancer cells. Inhibition of NMT1 impaired lysosomal degradation leading to autophagy flux blockade, and simultaneously caused the dissociation of mTOR from the surface of lysosomes leading to decreased mTORC1 activation. The regulation of lysosomal metabolic functions by NMT1 was largely mediated through the lysosomal adaptor LAMTOR1. Accordingly, genetic targeting of LAMTOR1 recapitulated most of the lysosomal defects of targeting NMT1, including defective lysosomal degradation. Pharmacological inhibition of NMT1 reduced tumor growth, and tumors from treated animals had increased apoptosis and displayed markers of lysosomal dysfunction. Our findings suggest that compounds targeting NMT1 may have therapeutic benefit in cancer by preventing mTORC1 activation and simultaneously blocking lysosomal degradation, leading to cancer cell death.
Collapse
|
46
|
Geisslinger F, Müller M, Vollmar AM, Bartel K. Targeting Lysosomes in Cancer as Promising Strategy to Overcome Chemoresistance-A Mini Review. Front Oncol 2020; 10:1156. [PMID: 32733810 PMCID: PMC7363955 DOI: 10.3389/fonc.2020.01156] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
To date, cancer remains a worldwide leading cause of death, with a still rising incidence. This is essentially caused by the fact, that despite the abundance of therapeutic targets and treatment strategies, insufficient response and multidrug resistance frequently occur. Underlying mechanisms are multifaceted and extensively studied. In recent research, it became evident, that the lysosome is of importance in drug resistance phenotypes. While it has long been considered just as cellular waste bag, it is now widely known that lysosomes play an important role in important cellular signaling processes and are in the focus of cancer research. In that regard lysosomes are now considered as so-called "drug safe-houses" in which chemotherapeutics are trapped passively by diffusion or actively by lysosomal P-glycoprotein activity, which prevents them from reaching their intracellular targets. Furthermore, alterations in lysosome to nucleus signaling by the transcription factor EB (TFEB)-mTORC1 axis are implicated in development of chemoresistance. The identification of lysosomes as essential players in drug resistance has introduced novel strategies to overcome chemoresistance and led to innovate therapeutic approaches. This mini review gives an overview of the current state of research on the role of lysosomes in chemoresistance, summarizing underlying mechanisms and treatment strategies and critically discussing open questions and drawbacks.
Collapse
Affiliation(s)
- Franz Geisslinger
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Müller
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karin Bartel
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
47
|
Shaikh S, Nandy SK, Cantí C, Lavandero S. Bafilomycin-A1 and ML9 Exert Different Lysosomal Actions to Induce Cell Death. Curr Mol Pharmacol 2020; 12:261-271. [PMID: 30854984 DOI: 10.2174/1874467212666190308131250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Bafilomycin-A1 and ML9 are lysosomotropic agents, irrespective of cell types. However, the mechanisms of lysosome targeting either bafilomycin-A1 or ML9 are unclear. METHODS The present research has been carried out by different molecular and biochemical analyses like western blot, confocal imaging and FACS studies, as well as molecular docking. RESULTS Our data shows that pre-incubation of neonatal cardiomyocytes with ML9 for 4h induced cell death, whereas a longer period of time (24h) with bafilomycin-A1 was required to induce an equivalent effect. Neither changes in ROS nor ATP production is associated with such death mechanisms. Flow cytometry, LC3-II expression levels, and LC3-GFP puncta formation revealed a similar lysosomotropic effect for both compounds. We used a molecular docking approach, that predicts a stronger inhibitory activity against V-ATPase-C1 and C2 domains for bafilomycin-A1 in comparison to ML9. CONCLUSION Bafilomycin-A1 and ML9 are lysosomotropic agents, involved in cell death events. But such death events are not associated with ATP and ROS production. Furthermore, both the drugs target lysosomes through different mechanisms. For the latter, cell death is likely due to lysosomal membrane permeabilization and release of lysosomal proteases into the cytosol.
Collapse
Affiliation(s)
- Soni Shaikh
- Institut de Recerca de Biomedica de Lleida Fundacio Dr. Pifarre (IRBLleida), Lleida, Spain
| | - Suman K Nandy
- Bioinformatics Infrastructure Facility (BIF), North-Eastern Hill University (NEHU), Tura Campus, Tura, Meghalaya, India
| | - Carles Cantí
- Institut de Recerca de Biomedica de Lleida Fundacio Dr. Pifarre (IRBLleida), Lleida, Spain
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
48
|
Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. Int J Mol Sci 2020; 21:ijms21124392. [PMID: 32575682 PMCID: PMC7352242 DOI: 10.3390/ijms21124392] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.
Collapse
Affiliation(s)
- Jan Hraběta
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Marie Belhajová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Hana Šubrtová
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Tomáš Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
- Correspondence: ; Tel.: +420-606-364-730
| |
Collapse
|
49
|
El-Shafey ES, Elsherbiny ES. Dual Opposed Survival-supporting and Death-promoting Roles of Autophagy in Cancer Cells: A Concise Review. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212796813666191111142824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is a well-maintained process by which the cells recycle intracellular
materials to maintain homeostasis in various cellular functions. However, autophagy is a defensive
mechanism that maintains cell survival under antagonistic conditions, the induction
of the autophagic process may substantially lead to cell death. The conflicting roles of autophagy
including allowing cell survival or promoting cell death could have a troublesome impact
on the efficiency of chemotherapeutic agents. Accordingly, understanding the role of
autophagy in cancer is a vital need for its optimal manipulation in therapy.
Collapse
Affiliation(s)
- Eman S. El-Shafey
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Eslam S. Elsherbiny
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
50
|
The Lysosomotropic Activity of Hydrophobic Weak Base Drugs is Mediated via Their Intercalation into the Lysosomal Membrane. Cells 2020; 9:cells9051082. [PMID: 32349204 PMCID: PMC7290590 DOI: 10.3390/cells9051082] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lipophilic weak base therapeutic agents, termed lysosomotropic drugs (LDs), undergo marked sequestration and concentration within lysosomes, hence altering lysosomal functions. This lysosomal drug entrapment has been described as luminal drug compartmentalization. Consistent with our recent finding that LDs inflict a pH-dependent membrane fluidization, we herein demonstrate that LDs undergo intercalation and concentration within lysosomal membranes. The latter was revealed experimentally and computationally by (a) confocal microscopy of fluorescent compounds and drugs within lysosomal membranes, and (b) molecular dynamics modeling of the pH-dependent membrane insertion and accumulation of an assortment of LDs, including anticancer drugs. Based on the multiple functions of the lysosome as a central nutrient sensory hub and a degradation center, we discuss the molecular mechanisms underlying the alteration of morphology and impairment of lysosomal functions as consequences of LDs’ intercalation into lysosomes. Our findings bear important implications for drug design, drug induced lysosomal damage, diseases and pertaining therapeutics.
Collapse
|