1
|
Gómez-Cabrera AS, González-Santiago AE, Rodríguez-Mora JF, Zúñiga-González GM, Gómez-Meda BC, Baptista-Rosas RC, Castañeda-Arellano R, Mercado-Sesma AR, Zúñiga LY, Sánchez-Parada MG. Amelioration of Cytogenotoxic Damage in Drug Abusers Supplemented with Folic Acid. Biomedicines 2024; 12:352. [PMID: 38397954 PMCID: PMC10886587 DOI: 10.3390/biomedicines12020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cytogenotoxic damage caused by the consumption of legal and illegal drugs in drug abusers has been demonstrated, primarily due to alterations in their antioxidant capacity, cellular repair mechanisms, and increased production of free radicals. Folic acid shows antioxidant activity by acting as a reducing agent, neutralizing present free radicals, and reducing genomic damage. METHODS The intervention involved administering 15 mg of folic acid, divided into three doses per day, to a group of 44 drug abusers. The frequency of nuclear abnormalities (NAs) was determined; micronuclei (MNs), nuclear buds (NBUDs), binucleated cells (BNs), abnormally condensed chromatin (CC), karyorrhexis (KX), pyknotic nuclei (PNs), and karyolysis (KL) were determined at different pre-treatment (baseline) and post-treatment time points at 15 and 30 days. Additionally, a group of 44 healthy individuals was used as the control group. RESULTS We observed a statistically significant decrease in the frequency of NAs in the drug abuser group (28.45 ± 17.74 before supplementation vs. 11.18 ± 7.42 at 15 days and 9.11 ± 10.9 at 30 days of supplementation). Specifically, it decreased the frequency of NBUDs, BNs, CC, KX, and PNs (p < 0.05). CONCLUSION Our study demonstrates a clear improvement in cytogenotoxic damage in drug abusers supplemented with folic acid.
Collapse
Affiliation(s)
- Alejandro Salvador Gómez-Cabrera
- Departamento de Ciencias Biomédicas, División de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico; (A.S.G.-C.); (J.F.R.-M.)
| | - Ana Elizabeth González-Santiago
- Departamento de Ciencias Biomédicas, División de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico; (A.S.G.-C.); (J.F.R.-M.)
| | - José Francisco Rodríguez-Mora
- Departamento de Ciencias Biomédicas, División de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico; (A.S.G.-C.); (J.F.R.-M.)
| | - Guillermo Moisés Zúñiga-González
- Laboratorio de Mutagénesis, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico;
| | - Belinda Claudia Gómez-Meda
- Instituto de Genética Humana Dr. Enrique Corona Rivera, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Raúl Cuauhtémoc Baptista-Rosas
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico (R.C.-A.); (L.Y.Z.)
- Unidad de Intervención de Medicina Crítica, Hospital General de Occidente, Secretaría de Salud Jalisco, Zapopan 45170, Jalisco, Mexico
| | - Rolando Castañeda-Arellano
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico (R.C.-A.); (L.Y.Z.)
| | - Arieh Roldán Mercado-Sesma
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico (R.C.-A.); (L.Y.Z.)
| | - Laura Yareni Zúñiga
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico (R.C.-A.); (L.Y.Z.)
| | - María Guadalupe Sánchez-Parada
- Departamento de Ciencias Biomédicas, División de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Jalisco, Mexico; (A.S.G.-C.); (J.F.R.-M.)
| |
Collapse
|
2
|
Porcher L, Vijayraghavan S, McCollum J, Mieczkowski PA, Saini N. Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574575. [PMID: 38260495 PMCID: PMC10802451 DOI: 10.1101/2024.01.07.574575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers. Moreover, a mutation signature specific to acetaldehyde exposure is widespread in alcohol and smoking-associated cancers. However, the pathways that repair acetaldehyde-induced DNA damage and thus prevent mutagenesis are vaguely understood. Here, we used Saccharomyces cerevisiae to systematically delete genes in each of the major DNA repair pathways to identify those that alter acetaldehyde-induced mutagenesis. We found that deletion of the nucleotide excision repair (NER) genes, RAD1 or RAD14, led to an increase in mutagenesis upon acetaldehyde exposure. Acetaldehyde-induced mutations were dependent on translesion synthesis as well as DNA inter-strand crosslink (ICL) repair in Δrad1 strains. Moreover, whole genome sequencing of the mutated isolates demonstrated an increase in C→A changes coupled with an enrichment of gCn→A changes in the acetaldehyde-treated Δrad1 isolates. The gCn→A mutation signature has been shown to be diagnostic of acetaldehyde exposure in yeast and in human cancers. We also demonstrated that the deletion of the two DNA-protein crosslink (DPC) repair proteases, WSS1 and DDI1, also led to increased acetaldehyde-induced mutagenesis. Defects in base excision repair (BER) led to a mild increase in mutagenesis, while defects in mismatch repair (MMR), homologous recombination repair (HR) and post replicative repair pathways did not impact mutagenesis upon acetaldehyde exposure. Our results in yeast were further corroborated upon analysis of whole exome sequenced liver cancers, wherein, tumors with defects in ERCC1 and ERCC4 (NER), FANCD2 (ICL repair) or SPRTN (DPC repair) carried a higher gCn→A mutation load than tumors with no deleterious mutations in these genes. Our findings demonstrate that multiple DNA repair pathways protect against acetaldehyde-induced mutagenesis.
Collapse
Affiliation(s)
- Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| |
Collapse
|
3
|
Cerretelli G, Zhou Y, Müller MF, Adams DJ, Arends MJ. Acetaldehyde and defective mismatch repair increase colonic tumours in a Lynch syndrome model with Aldh1b1 inactivation. Dis Model Mech 2023; 16:dmm050240. [PMID: 37395714 PMCID: PMC10417510 DOI: 10.1242/dmm.050240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
ALDH1B1 expressed in the intestinal epithelium metabolises acetaldehyde to acetate, protecting against acetaldehyde-induced DNA damage. MSH2 is a key component of the DNA mismatch repair (MMR) pathway involved in Lynch syndrome (LS)-associated colorectal cancers. Here, we show that defective MMR (dMMR) interacts with acetaldehyde, in a gene/environment interaction, enhancing dMMR-driven colonic tumour formation in a LS murine model of Msh2 conditional inactivation (Lgr5-CreER; Msh2flox/-, or Msh2-LS) combined with Aldh1b1 inactivation. Conditional (Aldh1b1flox/flox) or constitutive (Aldh1b1-/-) Aldh1b1 knockout alleles combined with the conditional Msh2flox/- intestinal knockout mouse model of LS (Msh2-LS) received either ethanol, which is metabolised to acetaldehyde, or water. We demonstrated that 41.7% of ethanol-treated Aldh1b1flox/flox Msh2-LS mice and 66.7% of Aldh1b1-/- Msh2-LS mice developed colonic epithelial hyperproliferation and adenoma formation, in 4.5 and 6 months, respectively, significantly greater than 0% in water-treated control mice. Significantly higher numbers of dMMR colonic crypt foci precursors and increased plasma acetaldehyde levels were observed in ethanol-treated Aldh1b1flox/flox Msh2-LS and Aldh1b1-/- Msh2-LS mice compared with those in water-treated controls. Hence, ALDH1B1 loss increases acetaldehyde levels and DNA damage that interacts with dMMR to accelerate colonic, but not small intestinal, tumour formation.
Collapse
Affiliation(s)
- Guia Cerretelli
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Ying Zhou
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Mike F. Müller
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - David J. Adams
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Mark J. Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
4
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|
6
|
Cerretelli G, Zhou Y, Müller MF, Adams DJ, Arends MJ. Ethanol-induced formation of colorectal tumours and precursors in a mouse model of Lynch syndrome. J Pathol 2021; 255:464-474. [PMID: 34543445 PMCID: PMC9291843 DOI: 10.1002/path.5796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/02/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Lynch syndrome (LS) confers inherited cancer predisposition due to germline mutations in a DNA mismatch repair (MMR) gene, e.g. MSH2. MMR is a repair pathway for removal of base mismatches and insertion/deletion loops caused by endogenous and exogenous factors. Loss of MMR through somatic alteration of the wild-type allele in LS results in defective MMR (dMMR). Lifestyle/environmental factors can modify colorectal cancer risk in sporadic and LS patients. Ethanol and its metabolite acetaldehyde are classified as group one carcinogens, and acetaldehyde causes a range of DNA lesions. However, DNA repair pathways responsible for correcting most of such DNA lesions remain uncharacterised. We hypothesised that MMR plays a role in protecting colorectal epithelium from ethanol/acetaldehyde-induced DNA damage. Here, an LS mouse model (intestinal epithelial conditional-knockout for Msh2) was used to determine if there is a gene-environment interaction between dMMR and ethanol/acetaldehyde that accelerates colorectal tumourigenesis in LS. Mice underwent either long-term ethanol treatment or water treatment. Most ethanol-treated mice demonstrated colonic hyperproliferation and adenoma formation (with some invasive adenocarcinomas) within 6 months (15/23, 65%), compared with one colonic tumour after 15 months in water-treated mice (1/23, 4%) (p < 0.0001, Fisher's exact test). A significantly greater number of dMMR colonic crypt foci precursors were observed in ethanol-treated compared with water-treated mice (p = 0.0029, Student's t-test). Moreover, increased plasma acetaldehyde levels were detected in ethanol-treated compared with water-treated mice (p = 0.0019, Mann-Whitney U-test), along with significantly increased DNA damage response in the colonic epithelium. Long-term ethanol treatment was associated with significantly increased colonic epithelial proliferation and markedly reduced apoptosis in dMMR adenomas, consistent with enhanced survival of aberrant dMMR relative to MMR-proficient colonic epithelium. In conclusion, there is strong evidence for a gene-environment interaction between dMMR and acetaldehyde, causing acceleration of dMMR-driven colonic tumour formation in this LS model, indicating that advice to limit alcohol consumption should be considered for LS patients. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Guia Cerretelli
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Ying Zhou
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Mike F Müller
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | | | - Mark J Arends
- Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| |
Collapse
|
7
|
Hoes L, Dok R, Verstrepen KJ, Nuyts S. Ethanol-Induced Cell Damage Can Result in the Development of Oral Tumors. Cancers (Basel) 2021; 13:cancers13153846. [PMID: 34359747 PMCID: PMC8345464 DOI: 10.3390/cancers13153846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Alcohol consumption is linked to 26.4% of all lip and oral cavity cancer cases worldwide. Despite this clear causal relationship, the exact molecular mechanisms by which ethanol damages cells are still under investigation. It is well-established that the metabolism of ethanol plays an important role. Ethanol metabolism yields reactive metabolites that can directly damage the DNA. If the damage is repaired incorrectly, mutations can be fixed in the DNA sequence. Whenever mutations affect key regulatory genes, for instance cell cycle regulating genes, uncontrolled cell growth can be the consequence. Recently, global patterns of mutations have been identified. These so-called mutational signatures represent a fingerprint of the different mutational processes over time. Interestingly, there were ethanol-related signatures discovered that did not associate with ethanol metabolism. This finding highlights there might be other molecular effects of ethanol that are yet to be discovered. Abstract Alcohol consumption is an underestimated risk factor for the development of precancerous lesions in the oral cavity. Although alcohol is a well-accepted recreational drug, 26.4% of all lip and oral cavity cancers worldwide are related to heavy drinking. Molecular mechanisms underlying this carcinogenic effect of ethanol are still under investigation. An important damaging effect comes from the first metabolite of ethanol, being acetaldehyde. Concentrations of acetaldehyde detected in the oral cavity are relatively high due to the metabolization of ethanol by oral microbes. Acetaldehyde can directly damage the DNA by the formation of mutagenic DNA adducts and interstrand crosslinks. Additionally, ethanol is known to affect epigenetic methylation and acetylation patterns, which are important regulators of gene expression. Ethanol-induced hypomethylation can activate the expression of oncogenes which subsequently can result in malignant transformation. The recent identification of ethanol-related mutational signatures emphasizes the role of acetaldehyde in alcohol-associated carcinogenesis. However, not all signatures associated with alcohol intake also relate to acetaldehyde. This finding highlights that there might be other effects of ethanol yet to be discovered.
Collapse
Affiliation(s)
- Lore Hoes
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospital Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-7600; Fax: +32-1634-7623
| |
Collapse
|
8
|
Li X, Fan K, Liu Y, Liu Y, Liu PF. Administration of a recombinant ALDH7A1 (rA7) indicates potential regulation of the metabolite and immunology pathways in Atlantic salmon infected with Aeromonas salmonicida. JOURNAL OF FISH DISEASES 2021; 44:961-977. [PMID: 33645734 DOI: 10.1111/jfd.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The bacterium Aeromonas salmonicida is the pathogen responsible for furunculosis, which is a serious disease of salmonids. This disease has a significant economic impact on the economic benefits of the global salmon farming industry. However, the pathogenesis of this disease in fish is still unknown. Members of the aldehyde dehydrogenase gene (ALDH) superfamily play a key role in the enzyme detoxification of endogenous and exogenous aldehydes. In this study, we obtained a recombinant aldehyde dehydrogenase 7A1 (ALDH7A1) protein to find its functions on Atlantic salmon infected by A. salmonicida. The transcriptional response in the liver of Atlantic salmon (Salmo salar) with differing levels of A. salmonicida infection was analysed and compared in order to reveal mechanisms by which ALDH7A1 may confer infection resistance. With the addition of ALDH7A1 protein, it was found that a total of 13,369 genes were annotated with one or more KEGG and localized to 360 KEGG pathways in the high concentration infection group. The differential expression genes were more enriched in immune signalling pathways such as the Toll-like receptor signalling pathway, NF-kappa B signalling pathway and TNF signalling pathway. On the other hand, at low concentrations of infection, KEGG enriched a smaller number of differential expression genes. However, these differential genes were more concentrated in immune signalling pathways such as the PI3K-Akt signalling pathway, JAK-STAT signalling pathway and complement and coagulation cascades. In addition, several known immune-related genes including HSP90α, HSP70, DNA damage-inducible transcript 4, integrin alpha 5 and microtubule-associated protein 2 were among the differentially expressed transcripts. These data provide the first insights into the host-ALDH7A1 vaccine interactome. The results of this study contribute to identifying the potential resistance mechanisms of Atlantic salmon to A. salmonicida infection and determining future treatment strategies.
Collapse
Affiliation(s)
- Xiaohao Li
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Kunpeng Fan
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yafang Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Peng-Fei Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
9
|
Peterson LA, Balbo S, Fujioka N, Hatsukami DK, Hecht SS, Murphy SE, Stepanov I, Tretyakova NY, Turesky RJ, Villalta PW. Applying Tobacco, Environmental, and Dietary-Related Biomarkers to Understand Cancer Etiology and Evaluate Prevention Strategies. Cancer Epidemiol Biomarkers Prev 2020; 29:1904-1919. [PMID: 32051197 PMCID: PMC7423750 DOI: 10.1158/1055-9965.epi-19-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
Many human cancers are caused by environmental and lifestyle factors. Biomarkers of exposure and risk developed by our team have provided critical data on internal exposure to toxic and genotoxic chemicals and their connection to cancer in humans. This review highlights our research using biomarkers to identify key factors influencing cancer risk as well as their application to assess the effectiveness of exposure intervention and chemoprevention protocols. The use of these biomarkers to understand individual susceptibility to the harmful effects of tobacco products is a powerful example of the value of this type of research and has provided key data confirming the link between tobacco smoke exposure and cancer risk. Furthermore, this information has led to policy changes that have reduced tobacco use and consequently, the tobacco-related cancer burden. Recent technological advances in mass spectrometry led to the ability to detect DNA damage in human tissues as well as the development of adductomic approaches. These new methods allowed for the detection of DNA adducts in tissues from patients with cancer, providing key evidence that exposure to carcinogens leads to DNA damage in the target tissue. These advances will provide valuable insights into the etiologic causes of cancer that are not tobacco-related.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Fujioka
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalia Y Tretyakova
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
10
|
The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol 2020; 110:105011. [PMID: 32980528 DOI: 10.1016/j.oraloncology.2020.105011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Oral cancer (OC) is among the top twenty occurring cancers in the world, with a mortality rate of 50%. A shift to a functionally inflammatory or a 'disease state' oral microbiome composition has been observed amongst patients with premalignant disorders and OC, with evidence suggesting alcohol could be exacerbating the inflammatory influence of the oral microorganisms. Alcohol dehydrogenase (ADH, EC 1.1.1.1) converts alcohol into a known carcinogenic metabolite, acetaldehyde and while ADH levels in oral mucosa are low, several oral commensal species possess ADH and could produce genotoxic levels of acetaldehyde. With a direct association between oral microbiome status, alcohol and poor oral health status combining to induce chronic inflammation with increased acetaldehyde levels - this leads to a tumour promoting environment. This new disease state increases the production of reactive oxygen species (ROS), while impairing anti-oxidant systems thus activating the redox signalling required for the promotion and survival of tumours. This review aims to highlight the evidence linking these processes in the progression of oral cancer.
Collapse
|
11
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
13
|
Rehm J, Shield K. Alcohol Use and Cancers of the Gastrointestinal Tract. Epidemiology and Preventive Implications. Front Oncol 2020; 10:403. [PMID: 32269967 PMCID: PMC7109294 DOI: 10.3389/fonc.2020.00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction: Alcohol is a carcinogen for human cancer. This contribution summarizes the relationships between alcohol use and gastrointestinal cancers, and implications for prevention. Methods: Comparative risk assessment and narrative literature review. Results: The following gastrointestinal cancer sites were found to be causally impacted by alcohol use: lip and oral cavity, pharynx other than nasopharynx, esophagus, colon and rectum, and liver. Globally, 368,000 deaths (304,000 men and 64,000 women) and more than 10 million disability-adjusted life years (DALYs) lost (10.1 million; 8.4 million men and 1.6 million women) in 2016 were attributable to alcohol use, making up about 10% of all deaths and DALYs lost due to these cancers, respectively. There are effective and cost-effective alcohol control policies available to reduce this burden, namely the best buys of increasing taxation, reducing availability, and banning advertisement. In addition, public knowledge about the alcohol-cancer link should be increased. Discussion: There are a number of assumptions underlying these estimates, but overall all of them seem to be conservative.
Collapse
Affiliation(s)
- Jürgen Rehm
- Centre for Addiction and Mental Health (CAMH), Institute for Mental Health Policy Research, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, School of Science, Technische Universität Dresden, Dresden, Germany
- Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kevin Shield
- Centre for Addiction and Mental Health (CAMH), Institute for Mental Health Policy Research, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| |
Collapse
|
14
|
Fainsod A, Bendelac-Kapon L, Shabtai Y. Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions. Subcell Biochem 2020; 95:197-225. [PMID: 32297301 DOI: 10.1007/978-3-030-42282-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a complex set of developmental malformations, neurobehavioral anomalies and mental disabilities induced by exposing human embryos to alcohol during fetal development. Several experimental models and a series of developmental and biochemical approaches have established a strong link between FASD and reduced retinoic acid (RA) signaling. RA signaling is involved in the regulation of numerous developmental decisions from patterning of the anterior-posterior axis, starting at gastrulation, to the differentiation of specific cell types within developing organs, to adult tissue homeostasis. Being such an important regulatory signal during embryonic development, mutations or environmental perturbations that affect the level, timing or location of the RA signal can induce multiple and severe developmental malformations. The evidence connecting human syndromes to reduced RA signaling is presented here and the resulting phenotypes are compared to FASD. Available data suggest that competition between ethanol clearance and RA biosynthesis is a major etiological component in FASD.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel.
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| |
Collapse
|
15
|
Application of the comet assay in human biomonitoring: An hCOMET perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 783:108288. [PMID: 32192646 DOI: 10.1016/j.mrrev.2019.108288] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
The comet assay is a well-accepted biomonitoring tool to examine the effect of dietary, lifestyle, environmental and occupational exposure on levels of DNA damage in human cells. With such a wide range of determinants for DNA damage levels, it becomes challenging to deal with confounding and certain factors are inter-related (e.g. poor nutritional intake may correlate with smoking status). This review describes the effect of intrinsic (i.e. sex, age, tobacco smoking, occupational exposure and obesity) and extrinsic (season, environmental exposures, diet, physical activity and alcohol consumption) factors on the level of DNA damage measured by the standard or enzyme-modified comet assay. Although each factor influences at least one comet assay endpoint, the collective evidence does not indicate single factors have a large impact. Thus, controlling for confounding may be necessary in a biomonitoring study, but none of the factors is strong enough to be regarded a priori as a confounder. Controlling for confounding in the comet assay requires a case-by-case approach. Inter-laboratory variation in levels of DNA damage and to some extent also reproducibility in biomonitoring studies are issues that have haunted the users of the comet assay for years. Procedures to collect specimens, and their storage, are not standardized. Likewise, statistical issues related to both sample-size calculation (before sampling of specimens) and statistical analysis of the results vary between studies. This review gives guidance to statistical analysis of the typically complex exposure, co-variate, and effect relationships in human biomonitoring studies.
Collapse
|
16
|
Song BJ, Abdelmegeed MA, Cho YE, Akbar M, Rhim JS, Song MK, Hardwick JP. Contributing Roles of CYP2E1 and Other Cytochrome P450 Isoforms in Alcohol-Related Tissue Injury and Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:73-87. [PMID: 31576541 DOI: 10.1007/978-3-030-22254-3_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to briefly summarize the roles of alcohol (ethanol) and related compounds in promoting cancer and inflammatory injury in many tissues. Long-term chronic heavy alcohol exposure is known to increase the chances of inflammation, oxidative DNA damage, and cancer development in many organs. The rates of alcohol-mediated organ damage and cancer risks are significantly elevated in the presence of co-morbidity factors such as poor nutrition, unhealthy diets, smoking, infection with bacteria or viruses, and exposure to pro-carcinogens. Chronic ingestion of alcohol and its metabolite acetaldehyde may initiate and/or promote the development of cancer in the liver, oral cavity, esophagus, stomach, gastrointestinal tract, pancreas, prostate, and female breast. In this chapter, we summarize the important roles of ethanol/acetaldehyde in promoting inflammatory injury and carcinogenesis in several tissues. We also review the updated roles of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and other cytochrome P450 isozymes in the metabolism of various potentially toxic substrates, and consequent toxicities, including carcinogenesis in different tissues. We also briefly describe the potential implications of endogenous ethanol produced by gut bacteria, as frequently observed in the experimental models and patients of nonalcoholic fatty liver disease, in promoting DNA mutation and cancer development in the liver and other tissues, including the gastrointestinal tract.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.,Department of Food Science and Nutrition, Andong National University, Andong, Republic of Korea
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Johng S Rhim
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Min-Kyung Song
- Investigational Drug Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - James P Hardwick
- Biochemistry and Molecular Pathology in the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
17
|
Bishehsari F, Zhang L, Voigt RM, Maltby N, Semsarieh B, Zorub E, Shaikh M, Wilber S, Armstrong AR, Mirbagheri SS, Preite NZ, Song P, Stornetta A, Balbo S, Forsyth CB, Keshavarzian A. Alcohol Effects on Colon Epithelium are Time-Dependent. Alcohol Clin Exp Res 2019; 43:1898-1908. [PMID: 31237690 PMCID: PMC6722020 DOI: 10.1111/acer.14141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol intake increases the risk of developing colon cancer. Circadian disruption promotes alcohol's effect on colon carcinogenesis through unknown mechanisms. Alcohol's metabolites induce DNA damage, an early step in carcinogenesis. We assessed the effect of time of alcohol consumption on markers of tissue damage in the colonic epithelium. METHODS Mice were treated by alcohol or phosphate-buffered saline (PBS), at 4-hour intervals for 3 days, and their colons were analyzed for (i) proliferation (Ki67) and antiapoptosis (Bcl-2) markers, (ii) DNA damage (γ-H2AX), and (iii) the major acetaldehyde (AcH)-DNA adduct, N2 -ethylidene-dG. To model circadian disruption, mice were shifted once weekly for 12 h and then were sacrificed at 4-hour intervals. Samples of mice with a dysfunctional molecular clock were analyzed. The dynamics of DNA damage repair from AcH treatment as well as role of xeroderma pigmentosum, complementation group A (XPA) in their repair were studied in vitro. RESULTS Proliferation and survival of colonic epithelium have daily rhythmicity. Alcohol induced colonic epithelium proliferation in a time-dependent manner, with a stronger effect during the light/rest period. Alcohol-associated DNA damage also occurred more when alcohol was given at light. Levels of DNA adduct did not vary by time, suggesting rather lower repair efficiency during the light versus dark. XPA gene expression, a key excision repair gene, was time-dependent, peaking at the beginning of the dark. XPA knockout colon epithelial cells were inefficient in repair of the DNA damage induced by alcohol's metabolite. CONCLUSIONS Time of day of alcohol intake may be an important determinant of colon tissue damage and carcinogenicity.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Lijuan Zhang
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Robin M. Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Natalie Maltby
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Bita Semsarieh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Eyas Zorub
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Andrew R Armstrong
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Seyed Sina Mirbagheri
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Nailliw Z. Preite
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Peter Song
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Christopher B. Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA
- Department of Physiology, Rush University Medical Center, Chicago, IL USA
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht Netherlands
- Department of Pharmacology, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
18
|
Bioanalytical and Mass Spectrometric Methods for Aldehyde Profiling in Biological Fluids. TOXICS 2019; 7:toxics7020032. [PMID: 31167424 PMCID: PMC6630274 DOI: 10.3390/toxics7020032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Human exposure to aldehydes is implicated in multiple diseases including diabetes, cardiovascular diseases, neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s Diseases), and cancer. Because these compounds are strong electrophiles, they can react with nucleophilic sites in DNA and proteins to form reversible and irreversible modifications. These modifications, if not eliminated or repaired, can lead to alteration in cellular homeostasis, cell death and ultimately contribute to disease pathogenesis. This review provides an overview of the current knowledge of the methods and applications of aldehyde exposure measurements, with a particular focus on bioanalytical and mass spectrometric techniques, including recent advances in mass spectrometry (MS)-based profiling methods for identifying potential biomarkers of aldehyde exposure. We discuss the various derivatization reagents used to capture small polar aldehydes and methods to quantify these compounds in biological matrices. In addition, we present emerging mass spectrometry-based methods, which use high-resolution accurate mass (HR/AM) analysis for characterizing carbonyl compounds and their potential applications in molecular epidemiology studies. With the availability of diverse bioanalytical methods presented here including simple and rapid techniques allowing remote monitoring of aldehydes, real-time imaging of aldehydic load in cells, advances in MS instrumentation, high performance chromatographic separation, and improved bioinformatics tools, the data acquired enable increased sensitivity for identifying specific aldehydes and new biomarkers of aldehyde exposure. Finally, the combination of these techniques with exciting new methods for single cell analysis provides the potential for detection and profiling of aldehydes at a cellular level, opening up the opportunity to minutely dissect their roles and biological consequences in cellular metabolism and diseases pathogenesis.
Collapse
|
19
|
Bellamri M, Turesky RJ. Dietary Carcinogens and DNA Adducts in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:29-55. [PMID: 31900903 DOI: 10.1007/978-3-030-32656-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PC) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of cancer-related to death in men. The major risk factors for PC are age, family history, and African American ethnicity. Epidemiological studies have reported large geographical variations in PC incidence and mortality, and thus lifestyle and dietary factors influence PC risk. High fat diet, dairy products, alcohol and red meats, are considered as risk factors for PC. This book chapter provides a comprehensive, literature-based review on dietary factors and their molecular mechanisms of prostate carcinogenesis. A large portion of our knowledge is based on epidemiological studies where dietary factors such as cancer promoting agents, including high-fat, dairy products, alcohol, and cancer-initiating genotoxicants formed in cooked meats have been evaluated for PC risk. However, the precise mechanisms in the etiology of PC development remain uncertain. Additional animal and human cell-based studies are required to further our understandings of risk factors involved in PC etiology. Specific biomarkers of chemical exposures and DNA damage in the prostate can provide evidence of cancer-causing agents in the prostate. Collectively, these studies can improve public health research, nutritional education and chemoprevention strategies.
Collapse
Affiliation(s)
- Medjda Bellamri
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Turesky
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Aldehyde-Induced DNA and Protein Adducts as Biomarker Tools for Alcohol Use Disorder. Trends Mol Med 2018; 24:144-155. [PMID: 29422263 DOI: 10.1016/j.molmed.2017.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023]
Abstract
Alcohol use disorder (AUD) screening frequently involves questionnaires complemented by laboratory work to monitor alcohol use and/or evaluate AUD-associated complications. Here we suggest that measuring aldehyde-induced DNA and protein adducts produced during alcohol metabolism may lead to earlier detection of AUD and AUD-associated complications compared with existing biomarkers. Use of aldehyde-induced adducts to monitor AUD may also be important when considering that approximately 540 million people bear a genetic variant of aldehyde dehydrogenase 2 (ALDH2) predisposing this population to aldehyde-induced toxicity with alcohol use. We posit that measuring aldehyde-induced adducts may provide a means to improve precision medicine approaches, taking into account lifestyle choices and genetics to evaluate AUD and AUD-associated complications.
Collapse
|
21
|
Kulagina TP, Gritsyna YV, Aripovsky AV, Zhalimov VK, Vikhlyantsev IM. Fatty Acid Levels in Striated Muscles of Chronic Alcohol-Fed Rats. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918050135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Shabtai Y, Fainsod A. Competition between ethanol clearance and retinoic acid biosynthesis in the induction of fetal alcohol syndrome. Biochem Cell Biol 2018; 96:148-160. [DOI: 10.1139/bcb-2017-0132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Several models have been proposed to explain the neurodevelopmental syndrome induced by exposure of human embryos to alcohol, which is known as fetal alcohol spectrum disorder (FASD). One of the proposed models suggests a competition for the enzymes required for the biosynthesis of retinoic acid. The outcome of such competition is development under conditions of reduced retinoic acid signaling. Retinoic acid is one of the biologically active metabolites of vitamin A (retinol), and regulates numerous embryonic and differentiation processes. The developmental malformations characteristic of FASD resemble those observed in vitamin A deficiency syndrome as well as from inhibition of retinoic acid biosynthesis or signaling in experimental models. There is extensive biochemical and enzymatic overlap between ethanol clearance and retinoic acid biosynthesis. Several lines of evidence suggest that in the embryo, the competition takes place between acetaldehyde and retinaldehyde for the aldehyde dehydrogenase activity available. In adults, this competition also extends to the alcohol dehydrogenase activity. Ethanol-induced developmental defects can be ameliorated by increasing the levels of retinol, retinaldehyde, or retinaldehyde dehydrogenase. Acetaldehyde inhibits the production of retinoic acid by retinaldehyde dehydrogenase, further supporting the competition model. All of the evidence supports the reduction of retinoic acid signaling as the etiological trigger in the induction of FASD.
Collapse
Affiliation(s)
- Yehuda Shabtai
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Abraham Fainsod
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
23
|
Hoyt LR, Randall MJ, Ather JL, DePuccio DP, Landry CC, Qian X, Janssen-Heininger YM, van der Vliet A, Dixon AE, Amiel E, Poynter ME. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biol 2017; 12:883-896. [PMID: 28463821 PMCID: PMC5413213 DOI: 10.1016/j.redox.2017.04.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774) amplifies IL-1β secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells), effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K+ efflux or Zn2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD+. Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH) mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1β hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1β hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation. Chronic ethanol exposure amplifies NLRP3 inflammasome-induced IL-1β secretion. NO and mitochondrial ROS mediate chronic ethanol-augmented IL-1β secretion. Alcohol dehydrogenase-generated metabolites cause NLRP3 inflammasome over-activation.
Collapse
Affiliation(s)
- Laura R Hoyt
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Matthew J Randall
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jennifer L Ather
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Daniel P DePuccio
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Christopher C Landry
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Xi Qian
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Yvonne M Janssen-Heininger
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Albert van der Vliet
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Anne E Dixon
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Eyal Amiel
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Matthew E Poynter
- Vermont Lung Center, University of Vermont, Burlington, VT 05405, USA; Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
24
|
Müller MF, Zhou Y, Adams DJ, Arends MJ. Effects of long-term ethanol consumption and Aldh1b1 depletion on intestinal tumourigenesis in mice. J Pathol 2017; 241:649-660. [PMID: 28026023 DOI: 10.1002/path.4869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Ethanol and its metabolite acetaldehyde have been classified as carcinogens for the upper aerodigestive tract, liver, breast, and colorectum. Whereas mechanisms related to oxidative stress and Cyp2e1 induction seem to prevail in the liver, and acetaldehyde has been proposed to play a crucial role in the upper aerodigestive tract, pathological mechanisms in the colorectum have not yet been clarified. Moreover, all evidence for a pro-carcinogenic role of ethanol in colorectal cancer is derived from correlations observed in epidemiological studies or from rodent studies with additional carcinogen application or tumour suppressor gene inactivation. In the current study, wild-type mice and mice with depletion of aldehyde dehydrogenase 1b1 (Aldh1b1), an enzyme which has been proposed to play an important role in acetaldehyde detoxification in the intestines, received ethanol in drinking water for 1 year. Long-term ethanol consumption led to intestinal tumour development in wild-type and Aldh1b1-depleted mice, but no intestinal tumours were observed in water-treated controls. Moreover, a significant increase in DNA damage was detected in the large intestinal epithelium of ethanol-treated mice of both genotypes compared with the respective water-treated groups, along with increased proliferation of the small and large intestinal epithelium. Aldh1b1 depletion led to increased plasma acetaldehyde levels in ethanol-treated mice, to a significant aggravation of ethanol-induced intestinal hyperproliferation, and to more advanced features of intestinal tumours, but it did not affect intestinal tumour incidence. These data indicate that ethanol consumption can initiate intestinal tumourigenesis without any additional carcinogen treatment or tumour suppressor gene inactivation, and we provide evidence for a role of Aldh1b1 in protection of the intestines from ethanol-induced damage, as well as for both carcinogenic and tumour-promoting functions of acetaldehyde, including increased progression of ethanol-induced tumours. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mike F Müller
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Ying Zhou
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| |
Collapse
|
25
|
Wang Z, Song J, Zhang L, Huang S, Bao L, Chen F, Zhao X. Increased expression of microRNA-378a-5p in acute ethanol exposure of rat cardiomyocytes. Cell Stress Chaperones 2017; 22:245-252. [PMID: 28160209 PMCID: PMC5352598 DOI: 10.1007/s12192-016-0760-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/18/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
Alcohol abuse is a risk factor for a distinct form of congestive heart failure, known as alcoholic cardiomyopathy (ACM). Here, we investigate how microRNAs may participate in the induction of cardiomyocyte apoptosis associated with ethanol exposure in vitro. Increasing the concentrations of ethanol to primary rat cardiomyocytes resulted in elevated apoptosis assessed by annexin V and propidium iodide staining, and reduced expression of an enzyme for alcohol detoxification aldehyde dehydrogenase 2 (ALDH2). These ethanol effects were accompanied by a substantial elevation of miR-378a-5p. Driving miR-378a-5p overexpression in cardiomyocytes decreased ALDH2. The specific interaction of miR-378a-5p with the 3'UTR of ALDH2 was examined by luciferase reporter assays, and we found that miR-378a-5p activity depends on a complementary base pairing at the 3'-UTR region of ALDH2 mRNA. Finally, ethanol-induced apoptosis in cardiomyocytes was attenuated in the presence of anti-miR378a-5p. Collectively, these data implicate a likely involvement of miR-378a-5p in the stimulation of cardiomyocyte apoptosis through ALDH2 gene suppression, which might play a potential role in the pathogenesis of ACM.
Collapse
Affiliation(s)
- Zhongkai Wang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Songqun Huang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lizhi Bao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Feng Chen
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
26
|
Balansky R, Ganchev G, Iltcheva M, Nikolov M, La Maestra S, Micale RT, Steele VE, De Flora S. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model. Toxicology 2016; 373:54-62. [PMID: 27840117 DOI: 10.1016/j.tox.2016.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/11/2023]
Abstract
Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol attenuated cigarette smoke clastogenicity. In conclusion, preclinical studies provide evidence that, in spite of its pulmonary toxicity, ethanol may mitigate some noxious effects of cigarette smoke in the respiratory tract.
Collapse
Affiliation(s)
- Roumen Balansky
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria; Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Gancho Ganchev
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria.
| | - Marietta Iltcheva
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria.
| | - Manasi Nikolov
- National Center of Oncology, Str. Plovdivsko pole 6, Sofia, 1756, Bulgaria.
| | - S La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Vernon E Steele
- National Cancer Institute, Chemoprevention Agent Development Research Group, Division of Cancer Prevention,9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| |
Collapse
|
27
|
Balansky R, La Maestra S, Micale RT, Iltcheva M, Kirov K, De Flora S. Modulation by Ethanol of Cigarette Smoke Clastogenicity in Cells of Adult Mice and of Transplacentally Exposed Fetuses. PLoS One 2016; 11:e0167239. [PMID: 27907070 PMCID: PMC5131976 DOI: 10.1371/journal.pone.0167239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/10/2016] [Indexed: 11/20/2022] Open
Abstract
Cigarette smoke (CS) and ethanol (EtOH) are known to synergize in the causation of cancers of the upper aerodigestive tract and of the liver. Little is known about possible interactions between these agents in other organs. These premises prompted us to evaluate the clastogenic effects resulting from the inhalation for 3 weeks of mainstream CS and oral administration of EtOH, which were tested either individually or in combination in cells of adult BDF1 mice and their fetuses. CS exerted clastogenic effects in haematopoietic cells of adult male mice by increasing the frequency of micronucleated erythroid cells both in bone marrow and in peripheral blood as well as the frequency of micronucleated and polynucleated pulmonary alveolar macrophages. Likewise, exposure to CS of pregnant mice resulted in a clastogenic damage in maternal bone marrow cells and in the liver and peripheral blood of their fetuses. Under all experimental conditions, EtOH was consistently devoid of clastogenic effects when given alone. In adult mice, EtOH exhibited a mild stimulating effect on the clastogenicity of CS in haematopoietic cells, while an opposite effect was observed in the respiratory tract, where EtOH attenuated the cytogenetic alterations induced by CS in pulmonary alveolar macrophages. At variance with the mild synergism observed in haematopoietic cells of adult mice, EtOH inhibited the clastogenicity of CS in the liver and peripheral blood cells of transplacentally exposed fetuses. Therefore, the effects of EtOH in CS-exposed mice show different trends depending both on the life stage and on the cells analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
28
|
Affiliation(s)
- Ian N Olver
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA
| |
Collapse
|
29
|
Hemeryck LY, Vanhaecke L. Diet-related DNA adduct formation in relation to carcinogenesis. Nutr Rev 2016; 74:475-89. [PMID: 27330144 DOI: 10.1093/nutrit/nuw017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Lynn Vanhaecke
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
30
|
Yokoyama A, Kamada Y, Imazeki H, Hayashi E, Murata S, Kinoshita K, Yokoyama T, Kitagawa Y. Effects of ADH1B and ALDH2 Genetic Polymorphisms on Alcohol Elimination Rates and Salivary Acetaldehyde Levels in Intoxicated Japanese Alcoholic Men. Alcohol Clin Exp Res 2016; 40:1241-50. [DOI: 10.1111/acer.13073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Akira Yokoyama
- National Hospital Organization Kurihama Medical and Addiction Center; Yokosuka Kanagawa Japan
| | - Yoko Kamada
- Suntory Business Expert Limited; Suntory World Research Center; Soraku-gun Kyoto Japan
| | - Hiromi Imazeki
- National Hospital Organization Kurihama Medical and Addiction Center; Yokosuka Kanagawa Japan
| | - Emiko Hayashi
- National Hospital Organization Kurihama Medical and Addiction Center; Yokosuka Kanagawa Japan
| | - Shigenori Murata
- School of Pharmaceutical Science; Mukogawa Women's University; Nishinomiya Hyogo Japan
| | - Kenji Kinoshita
- School of Pharmaceutical Science; Mukogawa Women's University; Nishinomiya Hyogo Japan
| | - Tetsuji Yokoyama
- Department of Health Promotion; National Institute of Public Health; Wako Saitama Japan
| | - Yoshinori Kitagawa
- Suntory Business Expert Limited; Suntory World Research Center; Soraku-gun Kyoto Japan
| |
Collapse
|
31
|
The c.*229C > T gene polymorphism in 3′UTR region of the topoisomerase IIβ binding protein 1 gene and LOH in BRCA1/2 regions and their effect on the risk and progression of human laryngeal carcinoma. Tumour Biol 2015; 37:4541-57. [DOI: 10.1007/s13277-015-4276-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
|