1
|
Li S, Wang Y, Liu Y, Liu C, Xu W, Lu Y, Ye Z. Sucrose synthase gene SUS3 could enhance cold tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2024; 14:1324401. [PMID: 38333039 PMCID: PMC10850397 DOI: 10.3389/fpls.2023.1324401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Tomatoes are susceptible to damage from cold temperatures in all stages of growth. Therefore, it is important to identify genetic resources and genes that can enhance tomato's ability to tolerate cold. In this study, a population of 223 tomato accessions was used to identify the sensitivity or tolerance of plants to cold stress. Transcriptome analysis of these accessions revealed that SUS3, a member of the sucrose synthase gene family, was induced by cold stress. We further investigated the role of SUS3 in cold stress by overexpression (OE) and RNA interference (RNAi). Compared with the wild type, SUS3-OE lines accumulated less MDA and electrolyte leakage and more proline and soluble sugar, maintained higher activities of SOD and CAT, reduced superoxide radicals, and suffered less membrane damage under cold. Thus, our findings indicate that SUS3 plays a crucial role in the response to cold stress. This study indicates that SUS3 may serve as a direct target for genetic engineering and improvement projects, which aim to augment the cold tolerance of tomato crops.
Collapse
Affiliation(s)
- Shouming Li
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization (Xinjiang Production and Construction Crops), College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Facility Horticulture Research Institute, Shihezi Academy of Agriculture Science, Shihezi, China
| | - Ying Wang
- Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Changhao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization (Xinjiang Production and Construction Crops), College of Agriculture, Shihezi University, Shihezi, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Fugate KK, Eide JD, Martins DN, Grusak MA, Deckard EL, Finger FL. Colocalization of sucrose synthase expression and sucrose storage in the sugarbeet taproot indicates a potential role for sucrose catabolism in sucrose accumulation. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153016. [PMID: 31400718 DOI: 10.1016/j.jplph.2019.153016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Sucrose metabolism is believed to have a central role in promoting sink strength and sucrose storage in the sugarbeet taproot. How sucrose accumulation is increased by sucrose-degrading enzymes, however, is a paradox. To elucidate roles for sucrose-degrading activities in sucrose accumulation, relationships between the intercellular location of sucrose-catabolizing enzymes and sites of sucrose accumulation were determined in the sugarbeet taproot. Sucrose storage was evident in parenchyma cells of the outer cortex, rays, and rings of parenchyma tissue, but was absent in phloem, the vascular cambium, cells surrounding these tissues, or cells surrounding xylem. Sucrose synthase, which was primarily responsible for sucrose catabolism throughout the taproot, was expressed in similar cell and tissue types to those accumulating sucrose. Colocalization of sucrose synthase with sucrose accumulation, as well as sucrose synthase localization near the tonoplast, suggests a role for the enzyme in generating metabolic energy to fuel sucrose sequestration in the vacuole. Localization near the plasma membrane also suggests a role for sucrose synthase in supplying substrates for cell wall biosynthesis. By utilizing sucrose for ATP or cell wall biosynthesis, sucrose synthase likely maintains the source-to-sink sucrose gradient that drives sucrose transport into the root, thereby promoting sugarbeet root sink strength.
Collapse
Affiliation(s)
- Karen K Fugate
- USDA-ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA.
| | - John D Eide
- USDA-ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA.
| | - Daniel N Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-000, Viçosa, MG, Brazil.
| | - Michael A Grusak
- USDA-ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA.
| | - Edward L Deckard
- Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND, 58108, USA.
| | - Fernando L Finger
- Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
3
|
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Indicates That Redox Homeostasis Is Involved in High- and Low-Temperature Stress Tolerance in a Novel Wucai ( Brassica campestris L.) Genotype. Int J Mol Sci 2019; 20:ijms20153760. [PMID: 31374822 PMCID: PMC6696267 DOI: 10.3390/ijms20153760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The genotype WS-1, previously identified from novel wucai germplasm, is tolerant to both low-temperature (LT) and high-temperature (HT) stress. However, it is unclear which signal transduction pathway or acclimation mechanisms are involved in the temperature-stress response. In this study, we used the proteomic method of tandem mass tag (TMT) coupled with liquid chromatography-mass spectrometry (LC-MS/MS) to identify 1022 differentially expressed proteins (DEPs) common to WS-1, treated with either LT or HT. Among these 1022 DEPs, 172 were upregulated in response to both LT and HT, 324 were downregulated in response to both LT and HT, and 526 were upregulated in response to one temperature stress and downregulated in response to the other. To illustrate the common regulatory pathway in WS-1, 172 upregulated DEPs were further analyzed. The redox homeostasis, photosynthesis, carbohydrate metabolism, heat-shockprotein, and chaperones and signal transduction pathways were identified to be associated with temperature stress tolerance in wucai. In addition, 35S:BcccrGLU1 overexpressed in Arabidopsis, exhibited higher reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and less oxidative damage under temperature stress. This result is consistent with the dynamic regulation of the relevant proteins involved in redox homeostasis. These data demonstrate that maintaining redox homeostasis is an important common regulatory pathway for tolerance to temperature stress in novel wucai germplasm.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
4
|
Stein O, Granot D. An Overview of Sucrose Synthases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:95. [PMID: 30800137 PMCID: PMC6375876 DOI: 10.3389/fpls.2019.00095] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 05/04/2023]
Abstract
Sucrose is the end product of photosynthesis and the primary sugar transported in the phloem of most plants. Sucrose synthase (SuSy) is a glycosyl transferase enzyme that plays a key role in sugar metabolism, primarily in sink tissues. SuSy catalyzes the reversible cleavage of sucrose into fructose and either uridine diphosphate glucose (UDP-G) or adenosine diphosphate glucose (ADP-G). The products of sucrose cleavage by SuSy are available for many metabolic pathways, such as energy production, primary-metabolite production, and the synthesis of complex carbohydrates. SuSy proteins are usually homotetramers with an average monomeric molecular weight of about 90 kD (about 800 amino acids long). Plant SuSy isozymes are mainly located in the cytosol or adjacent to plasma membrane, but some SuSy proteins are found in the cell wall, vacuoles, and mitochondria. Plant SUS gene families are usually small, containing between four to seven genes, with distinct exon-intron structures. Plant SUS genes are divided into three separate clades, which are present in both monocots and dicots. A comprehensive phylogenetic analysis indicates that a first SUS duplication event may have occurred before the divergence of the gymnosperms and angiosperms and a second duplication event probably occurred in a common angiosperm ancestor, leading to the existence of all three clades in both monocots and dicots. Plants with reduced SuSy activity have been shown to have reduced growth, reduced starch, cellulose or callose synthesis, reduced tolerance to anaerobic-stress conditions and altered shoot apical meristem function and leaf morphology. Plants overexpressing SUS have shown increased growth, increased xylem area and xylem cell-wall width, and increased cellulose and starch contents, making SUS high-potential candidate genes for the improvement of agricultural traits in crop plants. This review summarizes the current knowledge regarding plant SuSy, including newly discovered possible developmental roles for SuSy in meristem functioning that involve sugar and hormonal signaling.
Collapse
Affiliation(s)
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
5
|
Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS, Chakrabarty D, Nautiyal CS. Elucidation of Complex Nature of PEG Induced Drought-Stress Response in Rice Root Using Comparative Proteomics Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:1466. [PMID: 27746797 PMCID: PMC5040710 DOI: 10.3389/fpls.2016.01466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/14/2016] [Indexed: 05/22/2023]
Abstract
Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions. A total of 510 protein spots were observed by PDQuest analysis and 125 differentially regulated spots were subjected for MALDI-TOF MS-MS analysis out of which 102 protein spots identified which further led to identification of 78 proteins with a significant score. These 78 differentially expressed proteins appeared to be involved in different biological pathways. The largest percentage of identified proteins was involved in bioenergy and metabolism (29%) and mainly consists of malate dehydrogenase, succinyl-CoA, putative acetyl-CoA synthetase, and pyruvate dehydrogenase etc. This was followed by proteins related to cell defense and rescue (22%) such as monodehydroascorbate reductase and stress-induced protein sti1, then by protein biogenesis and storage class (21%) e.g. putative thiamine biosynthesis protein, putative beta-alanine synthase, and cysteine synthase. Further, cell signaling (9%) proteins like actin and prolyl endopeptidase, and proteins with miscellaneous function (19%) like Sgt1 and some hypothetical proteins were also represented a large contribution toward drought regulatory mechanism in rice. We propose that protein biogenesis, cell defense, and superior homeostasis may render better drought-adaptation. These findings might expedite the functional determination of the drought-responsive proteins and their prioritization as potential molecular targets for perfect adaptation.
Collapse
|
6
|
You C, Zhu H, Xu B, Huang W, Wang S, Ding Y, Liu Z, Li G, Chen L, Ding C, Tang S. Effect of Removing Superior Spikelets on Grain Filling of Inferior Spikelets in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1161. [PMID: 27547210 PMCID: PMC4974274 DOI: 10.3389/fpls.2016.01161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/19/2016] [Indexed: 05/18/2023]
Abstract
Large-panicle rice cultivars often fail to reach their yield potential due to the poor grain filling of inferior spikelets (IS). Thus, it is important to determine the causes of poor IS grain filling. In this study, we attempted to identify whether inferior grain filling of large panicles is restricted by superior spikelets (SS) and their physiological mechanism. SS were removed from two homozygous japonica rice strains (W1844 and WJ165) during flowering in an attempt to force photosynthate transport to the IS. We measured the effects of SS removal on seed setting rate, grain weight, grain filling rate, sucrose content, as well as hormone levels, activities of key enzymes, and expression of genes involved in sucrose to starch metabolism in rice IS during grain filling. The results showed that SS removal improved IS grain filling by increasing the seed setting rate, grain weight, sucrose content, and hormone levels. SS removal also enhanced the activities of key enzymes and the expression levels of genes involved in sucrose to starch metabolism. These results suggest that sucrose and several hormones act as signal substances and play a vital role in grain filling by regulating enzyme activities and gene expression. Therefore, IS grain filling is restricted by SS, which limit assimilate supply and plant hormones, leading to poor grain filling of IS.
Collapse
Affiliation(s)
- Cuicui You
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| | - Honglei Zhu
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| | - Beibei Xu
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| | - Wenxiao Huang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
- *Correspondence: Shaohua Wang,
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| | - Lin Chen
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| | - Chengqiang Ding
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| | - She Tang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of AgricultureNanjing, China
| |
Collapse
|
7
|
Genome sequence of the date palm Phoenix dactylifera L. Nat Commun 2014; 4:2274. [PMID: 23917264 PMCID: PMC3741641 DOI: 10.1038/ncomms3274] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/09/2013] [Indexed: 02/03/2023] Open
Abstract
Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4 Mb in size and covers >90% of the genome (~671 Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm’s unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants. The date palm is one of the most economically important plants of the palm family. Here, the authors present a high-quality genome assembly of the date palm Phoenix dactylifera, and reveal insights into the unique sugar metabolism underlying fruit ripening.
Collapse
|
8
|
An X, Chen Z, Wang J, Ye M, Ji L, Wang J, Liao W, Ma H. Identification and characterization of the Populus sucrose synthase gene family. Gene 2014; 539:58-67. [PMID: 24508272 DOI: 10.1016/j.gene.2014.01.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 12/11/2022]
Abstract
In this study, we indentified 15 sucrose synthase (SS) genes in Populus and the results of RT-qPCR revealed that their expression patterns were constitutive and partially overlapping but diverse. The release of the most recent Populus genomic data in Phytozome v9.1 has revealed the largest SS gene family described to date, comprising 15 distinct members. This information will now enable the analysis of transcript expression profiles for those that have not been previously reported. Here, we performed a comprehensive analysis of SS genes in Populus by describing the gene structure, chromosomal location and phylogenetic relationship of each family member. A total of 15 putative SS gene members were identified in the Populus trichocarpa (Torr. & Gray) genome using the SS domain and amino acid sequences from Arabidopsis thaliana as a probe. A phylogenetic analysis indicated that the 15 members could be classified into four groups that fall into three major categories: dicots, monocots & dicots 1 (M & D 1), and monocots & dicots 2 (M & D 2). In addition, the 15 SS genes were found to be unevenly distributed on seven chromosomes. The two conserved domains (sucrose synthase and glycosyl transferase) were found in this family. Meanwhile, the expression profiles of all 15 gene members in seven different organs were investigated in Populus tomentosa (Carr.) by using RT-qPCR. Additional analysis indicated that the poplar SS gene family is also involved in response to water-deficit. The current study provides basic information that will assist in elucidating the functions of poplar SS family.
Collapse
Affiliation(s)
- Xinmin An
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China.
| | - Zhong Chen
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China
| | - Jingcheng Wang
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China; Chinese Academy for Environmental Planning, Ministry of Environmental Protection of the People's Republic of China, Beijing 100012, China
| | - Meixia Ye
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China
| | - Lexiang Ji
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China
| | - Jia Wang
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China
| | - Weihua Liao
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China
| | - Huandi Ma
- National Engineering Laboratory for Tree Breeding, NDRC, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, SFA, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No.35, Haidian District, Beijing 100083, China
| |
Collapse
|
9
|
Castrillón-Arbeláez PA, Martínez-Gallardo N, Arnaut HA, Tiessen A, Délano-Frier JP. Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory. BMC PLANT BIOLOGY 2012; 12:163. [PMID: 22966837 PMCID: PMC3515461 DOI: 10.1186/1471-2229-12-163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/03/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Amaranthus cruentus and A. hypochondriacus are crop plants grown for grain production in subtropical countries. Recently, the generation of large-scale transcriptomic data opened the possibility to study representative genes of primary metabolism to gain a better understanding of the biochemical mechanisms underlying tolerance to defoliation in these species. A multi-level approach was followed involving gene expression analysis, enzyme activity and metabolite measurements. RESULTS Defoliation by insect herbivory (HD) or mechanical damage (MD) led to a rapid and transient reduction of non-structural carbohydrates (NSC) in all tissues examined. This correlated with a short-term induction of foliar sucrolytic activity, differential gene expression of a vacuolar invertase and its inhibitor, and induction of a sucrose transporter gene. Leaf starch in defoliated plants correlated negatively with amylolytic activity and expression of a β-amylase-1 gene and positively with a soluble starch synthase gene. Fatty-acid accumulation in roots coincided with a high expression of a phosphoenolpyruvate/phosphate transporter gene. In all tissues there was a long-term replenishment of most metabolite pools, which allowed damaged plants to maintain unaltered growth and grain yield. Promoter analysis of ADP-glucose pyrophosphorylase and vacuolar invertase genes indicated the presence of cis-regulatory elements that supported their responsiveness to defoliation. HD and MD had differential effects on transcripts, enzyme activities and metabolites. However, the correlation between transcript abundance and enzymatic activities was very limited. A better correlation was found between enzymes, metabolite levels and growth and reproductive parameters. CONCLUSIONS It is concluded that a rapid reduction of NSC reserves in leaves, stems and roots followed by their long-term recovery underlies tolerance to defoliation in grain amaranth. This requires the coordinate action of genes/enzymes that are differentially affected by the way leaf damage is performed. Defoliation tolerance in grain is a complex process that can't be fully explained at the transcriptomic level only.
Collapse
Affiliation(s)
- Paula Andrea Castrillón-Arbeláez
- Unidad de Biotecnología e Ingeniería Genética de Plantas (Cinvestav-Irapuato), Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto, México
| | - Norma Martínez-Gallardo
- Unidad de Biotecnología e Ingeniería Genética de Plantas (Cinvestav-Irapuato), Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto, México
| | - Hamlet Avilés Arnaut
- Unidad de Biotecnología e Ingeniería Genética de Plantas (Cinvestav-Irapuato), Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto, México
- Present address: Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán s/n, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México
| | - Axel Tiessen
- Unidad de Biotecnología e Ingeniería Genética de Plantas (Cinvestav-Irapuato), Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto, México
| | - John Paul Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas (Cinvestav-Irapuato), Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821, Irapuato, Gto, México
| |
Collapse
|
10
|
Cho JI, Kim HB, Kim CY, Hahn TR, Jeon JS. Identification and characterization of the duplicate rice sucrose synthase genes OsSUS5 and OsSUS7 which are associated with the plasma membrane. Mol Cells 2011; 31:553-61. [PMID: 21533550 PMCID: PMC3887615 DOI: 10.1007/s10059-011-1038-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022] Open
Abstract
Systematic searches using the complete genome sequence of rice (Oryza sativa) identified OsSUS7, a new member of the rice sucrose synthase (OsSUS) gene family, which shows only nine single nucleotide substitutions in the OsSUS5 coding sequence. Comparative genomic analysis revealed that the synteny between OsSUS5 and OsSUS7 is conserved, and that significant numbers of transposable elements are scattered at both loci. In particular, a 17.6-kb genomic region containing transposable elements was identified in the 5' upstream sequence of the OsSUS7 gene. GFP fusion experiments indicated that OsSUS5 and OsSUS7 are largely associated with the plasma membrane and partly with the cytosol in maize mesophyll protoplasts. RT-PCR analysis and transient expression assays revealed that OsSUS5 and OsSUS7 exhibit similar expression patterns in rice tissues, with the highest expression evident in roots. These results suggest that two redundant genes, OsSUS5 and OsSUS7, evolved via duplication of a chromosome region and through the transposition of transposable elements.
Collapse
Affiliation(s)
| | | | | | | | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
11
|
Boris KV, Ryzhova NN, Kochieva EZ. Identification and characterization of intraspecific variability of the sucrose synthase gene Sus4 of potato (Solanum tuberosum). RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411020074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK. Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Funct Integr Genomics 2010; 11:157-78. [PMID: 20821243 DOI: 10.1007/s10142-010-0187-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 01/04/2023]
Abstract
Water-deficit stress is detrimental for rice growth, development, and yield. Transcriptome analysis of 1-week-old rice (Oryza sativa L. var. IR64) seedling under water-deficit stress condition using Affymetrix 57 K GeneChip® has revealed 1,563 and 1,746 genes to be up- and downregulated, respectively. In an effort to amalgamate data across laboratories, we identified 5,611 differentially expressing genes under varying extrinsic water-deficit stress conditions in six vegetative and one reproductive stage of development in rice. Transcription factors (TFs) involved in ABA-dependent and ABA-independent pathways have been found to be upregulated during water-deficit stress. Members of zinc-finger TFs namely, C₂H₂, C₂C₂, C₃H, LIM, PHD, WRKY, ZF-HD, and ZIM, along with TF families like GeBP, jumonji, MBF1 and ULT express differentially under water-deficit conditions. NAC (NAM, ATAF and CUC) TF family emerges to be a potential key regulator of multiple abiotic stresses. Among the 12 TF genes that are co-upregulated under water-deficit, salt and cold stress conditions, five belong to the NAC TF family. We identified water-deficit stress-responsive genes encoding key enzymes involved in biosynthesis of osmoprotectants like polyols and sugars; amino acid and quaternary ammonium compounds; cell wall loosening and structural components; cholesterol and very long chain fatty acid; cytokinin and secondary metabolites. Comparison of genes responsive to water-deficit stress conditions with genes preferentially expressed during panicle and seed development revealed a significant overlap of transcriptome alteration and pathways.
Collapse
Affiliation(s)
- Swatismita Ray
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abid G, Silue S, Muhovski Y, Jacquemin JM, Toussaint A, Baudoin JP. Role of myo-inositol phosphate synthase and sucrose synthase genes in plant seed development. Gene 2009; 439:1-10. [PMID: 19306919 DOI: 10.1016/j.gene.2009.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 03/07/2009] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
Abstract
The aim of this review is to highlight the role of myo-inositol phosphate synthase (MIPS), which catalyses the first step in inositol biosynthesis and of sucrose synthase (Sus), an enzyme involved in UDP-glucose formation, the principal nucleoside diphosphate in the sucrose cleavage reaction and in trehalose biosynthesis. These two enzymes are involved in various physiological processes including seed growth and resistance to biotic and abiotic stresses. The study of mutated MIPS and Sus genes in some crops, such as soybean and cotton, has shown that these two proteins are directly involved in embryogenesis. They exhibit several isoforms that are essential for normal seed development. The possible role of both genes in seed development is discussed in this review.
Collapse
Affiliation(s)
- Ghassen Abid
- Unit of Tropical Crop Husbandry and Horticulture, Gembloux Agricultural University, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
14
|
Cloning and characterization of a sucrose synthase-encoding gene from muskmelon. Mol Biol Rep 2009; 37:695-702. [PMID: 19415524 DOI: 10.1007/s11033-009-9539-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
A full-length cDNA clone encoding sucrose synthase (SS; EC 2.4.1.13) was isolated from muskmelon (Cucumis melo L.) by RT-PCR and RACE. The clone, designated as CmSS1, contains 2,585 nucleotides with an open reading frame of 2,412 nucleotides. The deduced 804 amino acid sequence showed high identities with other plant sucrose synthase. Real time PCR analysis indicated that CmSS1 expression differed among root, stem, leaf, flower and fruit tissues. The analysis during fruit development indicated that CmSS1 mRNA showed its maximum level at 5 days after pollination (DAP) and decreased gradually during fruit development until its minimum level in mature fruit. The sucrose content was very low in fruit before 20 DAP but increased dramatically between 20 and 30 DAP during fruit development. However, SS activities in both direction of sucrose synthesis and sucrose cleavage were very low and changed little during fruit development, suggesting that SS may play little role in determining sucrose accumulation during muskmelon fruit.
Collapse
|
15
|
Tang T, Xie H, Wang Y, Lü B, Liang J. The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2641-52. [PMID: 19401410 DOI: 10.1093/jxb/erp114] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rice grain filling is a process of conversion of sucrose into starch catalysed by a series of enzymes. Sucrose synthase (SUS) is considered as a key enzyme regulating this process. This study investigated the possible roles of sucrose and abscisic acid (ABA) in mediating the activity and expression of SUS protein of grains during grain filling in rice (Oryza sativa). Field-grown rice plants and detached cultured panicles were used as experimental materials. Several treatments, including spikelet thinning, leaf cutting, and applications of different concentrations of exogenous sucrose and ABA, were imposed during grain filling. A higher SUS activity was found in superior grains than in inferior grains in the earlier stage of grain filling, which was significantly and closely related to a higher grain filling rate and starch accumulation. An increase in sucrose concentration in grains as a result of different treatments increased both SUS activity and SUS protein expression in grains. An increase in ABA concentration gave similar results. Furthermore, effects of interactions between sucrose and ABA on the activity and expression of SUS protein in grains were also found. It was suggested that sucrose- and ABA-mediated rice grain filling is largely due to an increase in SUS activity and SUS protein expression.
Collapse
Affiliation(s)
- Tang Tang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, PR China
| | | | | | | | | |
Collapse
|
16
|
Trebbi D, McGrath JM. Functional differentiation of the sugar beet root system as indicator of developmental phase change. PHYSIOLOGIA PLANTARUM 2009; 135:84-97. [PMID: 19121102 DOI: 10.1111/j.1399-3054.2008.01169.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Developmental phase transitions in the plant root system have not been well characterized. In this study we compared the dynamics of sucrose accumulation with changes in gene expression analyzed with cDNA-amplified fragment length polymorphism (AFLP) in the developing tap root of sugar beet (Beta vulgaris, L.) during the first 9 weeks after emergence (WAE). Although differences between lines were evident as soon as 9 WAE, sucrose showed a marked increase in the rate of accumulation between 4 and 6 WAE and a remarkable shift in gene expression was observed between 5 and 6 WAE. These changes were evident in two unrelated genetic backgrounds and suggest that physiological and gene expression changes represent a functional differentiation of the tap root. These changes were considered as indicators of a developmental change in the sugar beet root system. To identify genes and metabolic pathways involved in this developmental shift, a root cDNA library was hybridized with probes enriched for 3- and 7-WAE transcripts and differentially expressed transcripts were analyzed by cDNA microarray. Several genes involved in the regulation of tissue development were found to be differentially regulated. Genes involved in protein metabolism, disease-related and secretory system were upregulated before the functional differentiation transition, while genes under hormonal control were upregulated after the functional differentiation transition. This developmental phase change of the root system is important to understand plant developmental regulation at the whole-plant level and will likely be useful as early selection parameter in breeding programs.
Collapse
Affiliation(s)
- Daniele Trebbi
- Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325, USA.
| | | |
Collapse
|
17
|
Smith AM. Prospects for increasing starch and sucrose yields for bioethanol production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:546-58. [PMID: 18476862 DOI: 10.1111/j.1365-313x.2008.03468.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the short term, the production of bioethanol as a liquid transport fuel is almost entirely dependent on starch and sugars from existing food crops. The sustainability of this industry would be enhanced by increases in the yield of starch/sugar per hectare without further inputs into the crops concerned. Efforts to achieve increased yields of starch over the last three decades, in particular via manipulation of the enzyme ADPglucose pyrophosphorylase, have met with limited success. Other approaches have included manipulation of carbon partitioning within storage organs in favour of starch synthesis, and attempts to manipulate source-sink relationships. Some of the most promising results so far have come from manipulations that increase the availability of ATP for starch synthesis. Future options for achieving increased starch contents could include manipulation of starch degradation in organs in which starch turnover is occurring, and introduction of starch synthesis into the cytosol. Sucrose accumulation is much less well understood than starch synthesis, but recent results from research on sugar cane suggest that total sugar content can be greatly increased by conversion of sucrose into a non-metabolizable isomer. A better understanding of carbohydrate storage and turnover in relation to carbon assimilation and plant growth is required, both for improvement of starch and sugar crops and for attempts to increase biomass production in second-generation biofuel crops.
Collapse
Affiliation(s)
- Alison M Smith
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
18
|
Rotthues A, Kappler J, Lichtfuss A, Kloos DU, Stahl DJ, Hehl R. Post-harvest regulated gene expression and splicing efficiency in storage roots of sugar beet (Beta vulgaris L.). PLANTA 2008; 227:1321-1332. [PMID: 18324413 DOI: 10.1007/s00425-008-0704-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
Sixteen post-harvest upregulated genes from sugar beet comprising five novel sequences were isolated by subtractive cloning. Transcription profiles covering a period of up to 49 days after harvest under controlled storage conditions and in field clamps are reported. Post-harvest induced genes are involved in wound response, pathogen defense, dehydration stress, and detoxification of reactive oxygen species. An early induction of a cationic peroxidase indicates a response to post-harvest damage. Wound response reactions may also involve genes required for cell division such as a regulator of chromatin condensation and a precursor of the growth stimulating peptide phytohormone phytosulfokine-alpha. Surprisingly, also three putative non-protein coding genes were isolated. Two of these genes show intron specific and storage temperature dependent splicing of a precursor mRNA. The temperature dependent splicing of an intron containing sugar beet mRNA is also maintained in transgenic Arabidopsis thaliana. The storage induced genes are integrated into a model that proposes the response to several post-harvest stress conditions. Temperature regulated splicing may be a mechanism to sense seasonal temperature changes.
Collapse
Affiliation(s)
- Alexander Rotthues
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Klotz KL, Haagenson DM. Wounding, anoxia and cold induce sugarbeet sucrose synthase transcriptional changes that are unrelated to protein expression and activity. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:423-34. [PMID: 17395334 DOI: 10.1016/j.jplph.2007.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 05/07/2023]
Abstract
Wounding, anoxia, and cold are often encountered during crop production and postharvest storage of plant products. Although the effect of these stresses on the expression of sucrose synthase, a key enzyme in the carbon metabolism of many storage organs, has been investigated in several starch-accumulating plant organs, little information on their effect on sucrose synthase expression in sucrose-storing organs is available. To determine the effect of wounding, anoxia and cold on a sucrose-storing organ, sugarbeet (Beta vulgaris) roots were wounded, subjected to anoxic conditions, or exposed to cold temperatures, and transcript and protein levels for the organ's two sucrose synthase genes (SBSS1 and SBSS2) and sucrose synthase enzyme activity were determined during 24h and 7d time course experiments. Wounding, anoxia and cold were associated with several-fold changes in sucrose synthase transcript levels. SBSS1 transcript levels were elevated in wounded, anoxic and cold-treated roots; SBSS2 transcript levels were elevated in response to wounding, cold, and short exposures (3-12h) to anoxic conditions and reduced in roots exposed to anoxic conditions for more than 24h. SBSS1 and SBSS2 protein levels, however, exhibited little change in stressed roots, even after 7d. Enzyme activity was also relatively unchanged in stressed roots, except for small activity differences of 1-2d duration that were unrelated to transcriptional changes. The disparity between transcript levels, protein abundance and enzyme activity indicate that SBSS1 and SBSS2 expression in response to wounding, anoxia and cold may be regulated by post-transcriptional mechanisms. The unresponsiveness of sucrose synthase protein levels or enzyme activity to wounding, anoxia and cold questions the importance of this enzyme to stress responses in sugarbeet root.
Collapse
Affiliation(s)
- Karen L Klotz
- USDA-ARS, Northern Crop Science Laboratory, University Station, Fargo, ND 58105-5677, USA.
| | | |
Collapse
|
20
|
Bellin D, Schulz B, Soerensen TR, Salamini F, Schneider K. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:699-715. [PMID: 17307746 DOI: 10.1093/jxb/erl245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Field-grown sugar beets were analysed for morphological characters, sucrose content, and reproducible transcript profiles by macroarray analyses with 11,520 unique sugar-beet cDNA targets in two different years. Seasonal differences were partly compensated by expressing sampling dates as thermal time. During early beet development the number of cambial rings, root length, and sucrose concentration had already achieved >40% of their final values. Sucrose levels rose from 10% to 17% over the thermal time of 1300-1400 degrees Cd with only small changes later when lower concentrations were restricted to the exterior zone at the minimum of the spatial sucrose gradient through the beet. The number of leaves and root diameter followed the same temporal growth pattern, but mass increased until beet maturity at around 2000 degrees Cd. Cluster analysis identified 543 transcripts with reproducible preferential expression between 1300-1400 degrees Cd, and 170 showing the highest transcript levels later. In maturing beets, 373 transcripts were over-represented in the inner zone and 148 in the outer zone. During early development, genes involved in cytoskeletal reorganization and transport processes showed the highest transcript levels. Cell wall biogenesis-, defence-, stress-, and degradation-related transcripts were identified in all samples, and associated with pathogen attack during late development and in the outer zone. Candidates with potential roles in carbohydrate metabolism appeared to serve anaplerotic functions by converting excess intermediates to sucrose production. Transcripts preferentially occurring in sucrose-accumulating young beet cells and newly generated peripheral cells of mature beets are discussed as potential breeding targets to improve sink strength and growth.
Collapse
Affiliation(s)
- Diana Bellin
- Max-Planck-Institute for Plant Breeding Research, Department of Plant Breeding and Yield Physiology, Carl-von-Linné Weg 10, D-50827 Köln, Germany
| | | | | | | | | |
Collapse
|
21
|
Godt D, Roitsch T. The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:656-65. [PMID: 17095237 DOI: 10.1016/j.plaphy.2006.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/26/2006] [Indexed: 05/12/2023]
Abstract
Sucrose utilisation in sink tissues depend on its cleavage and is mediated by two different classes of enzymes, invertase and sucrose synthase, which determine the mechanism of phloem unloading. Cloning of two extracellular (BIN35 and BIN46) and one vacuolar invertase (BIN44) provided the basis for a detailed molecular analysis of the relative contribution of the sucrose cleaving enzymes to the sink metabolism of sugar beets (Beta vulgaris) during development. The determination of the steady state levels of mRNAs has been complemented by the analysis of the corresponding enzyme activities. The present study demonstrates an inverse regulation of extracellular invertase and sucrose synthase during tap root development indicating a transition between functional unloading pathways. Extracellular cleavage by invertase is the dominating mechanism to supply hexoses via an apoplasmic pathway at early stages of storage root development. Only at later stages sucrose synthase takes over the function of the key sink enzyme to contribute to the sink strength of the tap root via symplasmic phloem unloading. Whereas mRNAs for both extracellular invertase BIN35 and sucrose synthase were shown to be induced by mechanical wounding of mature leaves of adult plants, only sucrose synthase mRNA was metabolically induced by glucose in this source organ supporting the metabolic flexibility of this species.
Collapse
Affiliation(s)
- D Godt
- Lehrstuhl für Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | |
Collapse
|
22
|
Haagenson DM, Klotz KL, McGrath JM. Sugarbeet sucrose synthase genes differ in organ-specific and developmental expression. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:102-6. [PMID: 16360809 DOI: 10.1016/j.jplph.2005.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 05/17/2005] [Indexed: 05/05/2023]
Abstract
A full-length sucrose synthase (SBSS2) cDNA clone was isolated from sugarbeet. Comparison of its composition and organ-specific and developmental expression with a previously isolated sugarbeet sucrose synthase gene (SBSS1) revealed distinct differences between the two genes. The two genes share 80% similarity in deduced amino acid sequence but belong to different sucrose synthase subclasses based on phylogenic analysis. Both sucrose synthases were highly expressed in roots, and had low levels of expression in leaf tissue. Transcript abundance of SBSS2, relative to SBSS1, was greater in young vegetative and floral tissues, and reduced in mature vegetative tissues. The organ-specific and developmental expression of SBSS1 and SBSS2 proteins was similar to SBSS1 and SBSS2 transcript levels, although developmental changes in protein abundance lagged transcriptional changes by many weeks. The similarities and differences in transcript and protein abundance suggest that both transcriptional and post-transcriptional regulatory mechanisms are likely to contribute to sucrose synthase expression in sugarbeet.
Collapse
Affiliation(s)
- Darrin M Haagenson
- USDA-ARS, Northern Crop Science Laboratory, University Station, Fargo, ND 58105-5677, USA
| | | | | |
Collapse
|
23
|
González MC, Roitsch T, Cejudo FJ. Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. PLANTA 2005; 222:386-95. [PMID: 16052318 DOI: 10.1007/s00425-005-1542-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 03/14/2005] [Indexed: 05/03/2023]
Abstract
The expression pattern of the genes coding for vacuolar and extracellular invertase activity was analyzed in sugar beet (Beta vulgaris) and compared with the expression of sucrose synthase in this important sucrose-storing crop. Northern blot analysis revealed that sucrose synthase is the predominant sucrose-cleaving enzyme in tap roots, whereas vacuolar invertase was specifically expressed in petioles. Extracellular invertase transcripts showed low abundance in all the sugar beet organs and were not detected in northern blots. Relative RT-PCR analysis revealed differential expression of the two extracellular invertase genes: BVInv-CW1 was almost exclusively expressed in tap roots and BVInv-CW2 was widely expressed in all the organs analyzed. A remarkable result of this analysis was the high expression of vacuolar invertase (BVInv-V3) in petioles. Two factors had a clear influence on vacuolar invertase gene expression in petioles: light and the developmental stage, so that expression was higher in petioles from juvenile plants. BVInv-V3 transcripts showed circadian oscillation in petioles, with maximal accumulation during the light period. A similar pattern of diurnal oscillation was also observed for the vacuolar invertase activity, showing a delay with respect to the level of transcripts. The analysis of sugars in petioles revealed oscillation of the hexoses, with a remarkably higher content of glucose than fructose. In contrast, the level of sucrose in petioles was very low. This pattern of expression suggests an important role of petiole vacuolar invertase in plant development and photoassimilate partitioning.
Collapse
Affiliation(s)
- María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | |
Collapse
|
24
|
Baud S, Vaultier MN, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:397-409. [PMID: 14739263 DOI: 10.1093/jxb/erh047] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The release of the complete genome sequence of Arabidopsis enabled the largest sucrose synthase family described to date, comprising six distinct members, for which expression profiles were not yet available, to be identified. Aimed at understanding the precise function of each AtSUS member among the family, a comparative study of protein structure was performed, together with an expression profiling of the whole gene family using the technique of real-time quantitative reverse transcriptase-polymerase chain reaction. Transcript levels were analysed in several plant organs, including both developing and germinating seeds. A series of treatments such as oxygen deprivation, dehydration, cold treatment, or various sugar feedings were then carried out to characterize the members of the family further. The AtSUS genes exhibit distinct but partially redundant expression profiles. Under anaerobic conditions, for instance, both AtSUS1 and AtSUS4 mRNA levels increase, but in a distinct manner. AtSUS2 is specifically and highly induced in seeds at 12 d after flowering and appears as a marker of seed maturation. AtSUS3 seems to be induced in various organs under dehydration conditions including leaves deprived of water or submitted to osmotic stress as well as late-maturing seeds. AtSUS5 and AtSUS6 are expressed in nearly all plant organs and do not exhibit any transcriptional response to stresses. These results add new insights on the expression of SUS genes and are discussed in relation to distinct functions for each member of the AtSUS family.
Collapse
Affiliation(s)
- Sébastien Baud
- Unité de Biologie des Semences, UMR 204, INA-PG-INRA, RD 10, 78026 Versailles cedex, France
| | | | | |
Collapse
|
25
|
Li CR, Zhang XB, Huang CH, Hew CS. Cloning, characterization and tissue specific expression of a sucrose synthase gene from tropical epiphytic CAM orchid Mokara Yellow. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:87-94. [PMID: 15002668 DOI: 10.1078/0176-1617-01157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A full-length cDNA encoding sucrose synthase was isolated from the tropical epiphytic CAM orchid Mokara Yellow. The cDNA is 2748bp in length containing an open reading frame of 2447bp encoding 816 amino acids with a predicted molecular mass of 93.1 kDa. The deduced amino acid sequence of M. Yellow sucrose synthase (Msus1) shares more than 80% identity with those from other monocotyledonous plants. The sucrose synthase gene was demonstrated to encode a functional sucrose synthase protein by expression as recombinant protein in Escherichia coli. Northern blot analysis showed that the expression pattern of Msus1 mRNA is tissue specific with highest levels in strong sinks such as expanding leaves and root tips, but not detectable in mature leaves and flowers. Incubation with sugars resulted in a significant increase in the steady-state Msus1 mRNA levels in shoots of seedlings.
Collapse
Affiliation(s)
- Chang Run Li
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | |
Collapse
|
26
|
Li XQ, Zhang D. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato. PLANT & CELL PHYSIOLOGY 2003; 44:630-6. [PMID: 12826628 DOI: 10.1093/pcp/pcg080] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of sweet potato (Ipomoea batatas) storage root coincides with starch accumulation made using cleaved products of imported photoassimilate sucrose. The genes and pathways are predominantly active for sucrose metabolism in developing storage root were unknown. In this study, we used both an expressed sequence tag (EST) approach and a reverse transcription-polymerase chain reaction (RT-PCR) approach to answer this question. Sucrose synthase (SuSy) was found to be significantly more frequent in storage root ESTs than in fibrous root ESTs. SuSy was the most abundant carbohydrate-metabolism gene in the storage-root ESTs. RT-PCR results confirmed this by showing that invertase was active in fibrous roots but rapidly decreased to an undetectable level during storage root development while SuSy became predominant. Invertase expression was also detectable in young immature storage root and shoot tips, suggesting an involvement in cell formation. SuSy expression pattern showed considerable similarity to that of ADP-glucose pyrophosphorylase, an essential enzyme for starch synthesis. The results indicated that (i). SuSy was the most actively expressed enzyme in sucrose metabolism in developing storage root and was correlated with sink strength, and (ii). whereas invertase was active at cell formation stages, SuSy pathway was predominant for sucrose cleavage related to starch-accumulation.
Collapse
Affiliation(s)
- Xiu-Qing Li
- Potato Research Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, PO Box 20280, Fredericton, NB, E3B 4Z7 Canada.
| | | |
Collapse
|
27
|
Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2002. [PMID: 11741042 DOI: 10.1093/jexbot/53.366.61] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The purpose of this work was 2-fold; first, a molecular/evolutionary characterization of three sucrose synthase genes from citrus, and second, an analysis of their differential expression related to potential physiological function. Three non-allelic genes (CitSUS1, CitSUSA and CitSUS2) encoding sucrose synthase were isolated from citrus fruit (Citrus unshiu Marc.). Phylogenetic analysis from the deduced amino acid sequences showed that CitSUS1 and CitSUS2 could be classified into a dicot group. However, CitSUSA, together with Arabidopsis SSA, sugar beet SS and pea SusA defined another dicot group designated SUSA. Unlike other dicot sucrose synthases, these show a distinctive, monocot-like arrangement of introns and exons. The CitSUS1 and CitSUSA were also differentially expressed in leaf, flower and fruit tissues. Contrasting expression patterns were observed for CitSUS1 and CitSUSA in edible tissue (juice sacs/segment epidermis) and peel tissue (albedo/flavedo) of fruit: CitSUS1 mRNA levels decreased throughout fruit development, whereas those of CitSUSA increased. Various sugars also influenced the transcript levels of the CitSUS1 and CITSUSA: These results indicate that the CitSUS1 and CitSUSA genes for sucrose synthase in citrus differ markedly in their molecular structure and potential physiological roles. Sucrose synthase activity in edible tissue was high in the early stages and decreased until mid-develoment, then rapidly increased during maturation. The increase in activity during maturation paralleled that of sucrose accumulation. This result suggests that sucrose synthase has important roles on sugar metabolism when sucrose is accumulated in fruit.
Collapse
MESH Headings
- Citrus/enzymology
- Citrus/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Exons
- Fruit/enzymology
- Fruit/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes/genetics
- Glucosyltransferases/genetics
- Glucosyltransferases/metabolism
- Introns
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Phylogeny
- Plant Stems/enzymology
- Plant Stems/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sucrose/metabolism
Collapse
Affiliation(s)
- Akira Komatsu
- Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa 214-0033, Japan.
| | | | | | | | | |
Collapse
|
28
|
Roessner U, Willmitzer L, Fernie AR. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. PLANT PHYSIOLOGY 2001; 127:749-764. [PMID: 11706160 DOI: 10.1104/pp.010316] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We conducted a comprehensive metabolic phenotyping of potato (Solanum tuberosum L. cv Desiree) tuber tissue that had been modified either by transgenesis or exposure to different environmental conditions using a recently developed gas chromatography-mass spectrometry profiling protocol. Applying this technique, we were able to identify and quantify the major constituent metabolites of the potato tuber within a single chromatographic run. The plant systems that we selected to profile were tuber discs incubated in varying concentrations of fructose, sucrose, and mannitol and transgenic plants impaired in their starch biosynthesis. The resultant profiles were then compared, first at the level of individual metabolites and then using the statistical tools hierarchical cluster analysis and principal component analysis. These tools allowed us to assign clusters to the individual plant systems and to determine relative distances between these clusters; furthermore, analyzing the loadings of these analyses enabled identification of the most important metabolites in the definition of these clusters. The metabolic profiles of the sugar-fed discs were dramatically different from the wild-type steady-state values. When these profiles were compared with one another and also with those we assessed in previous studies, however, we were able to evaluate potential phenocopies. These comparisons highlight the importance of such an approach in the functional and qualitative assessment of diverse systems to gain insights into important mediators of metabolism.
Collapse
Affiliation(s)
- U Roessner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
29
|
Rouhier H, Usuda H. Spatial and temporal distribution of sucrose synthase in the radish hypocotyl in relation to thickening growth. PLANT & CELL PHYSIOLOGY 2001; 42:583-593. [PMID: 11427677 DOI: 10.1093/pcp/pce071] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sucrose synthase (SuSy) is a key enzyme in the development of storage root of radish. Clarification of its spatial and temporal expression during the thickening growth of radish hypocotyl, which later develops into storage root, was carried out immunologically using light microscopy. Sequential harvests at 3, 7, 11 and 13 d after sowing (DAS) were performed on two radish cultivars having different sink capacity. A very low level of SuSy was observed 3 DAS for both cultivars. White Cherrish (WC; strong storage root) showed the maximum level of SuSy between 7 and 11 DAS with increased cell development (thickening), while in Kosena (K; low storage root) the level remained high after 13 d of growth. A high level of SuSy was found in companion cells, which was consistent with previous observations, but SuSy was also found in the xylem parenchyma and in some cortical cells. The level of SuSy differed according to the localization and depended highly on cell development. Both cell division and cell enlargement were stimulated in WC compared with K. The role of SuSy during thickening growth of radish hypocotyl is discussed in terms of utilizing photosynthates.
Collapse
Affiliation(s)
- H Rouhier
- Laboratory of Chemistry, Teikyo University, School of Medicine, 359 Ohtsuka, Hachioji, 192-0395 Japan
| | | |
Collapse
|