1
|
Bovo S, Ribani A, Fanelli F, Galimberti G, Martelli PL, Trevisi P, Bertolini F, Bolner M, Casadio R, Dall'Olio S, Gallo M, Luise D, Mazzoni G, Schiavo G, Taurisano V, Zambonelli P, Bosi P, Pagotto U, Fontanesi L. Merging metabolomics and genomics provides a catalog of genetic factors that influence molecular phenotypes in pigs linking relevant metabolic pathways. Genet Sel Evol 2025; 57:11. [PMID: 40050712 PMCID: PMC11887101 DOI: 10.1186/s12711-025-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Metabolomics opens novel avenues to study the basic biological mechanisms underlying complex traits, starting from characterization of metabolites. Metabolites and their levels in a biofluid represent simple molecular phenotypes (metabotypes) that are direct products of enzyme activities and relate to all metabolic pathways, including catabolism and anabolism of nutrients. In this study, we demonstrated the utility of merging metabolomics and genomics in pigs to uncover a large list of genetic factors that influence mammalian metabolism. RESULTS We obtained targeted characterization of the plasma metabolome of more than 1300 pigs from two populations of Large White and Duroc pig breeds. The metabolomic profiles of these pigs were used to identify genetically influenced metabolites by estimating the heritability of the level of 188 metabolites. Then, combining breed-specific genome-wide association studies of single metabolites and their ratios and across breed meta-analyses, we identified a total of 97 metabolite quantitative trait loci (mQTL), associated with 126 metabolites. Using these results, we constructed a human-pig comparative catalog of genetic factors influencing the metabolomic profile. Whole genome resequencing data identified several putative causative mutations for these mQTL. Additionally, based on a major mQTL for kynurenine level, we designed a nutrigenetic study feeding piglets that carried different genotypes at the candidate gene kynurenine 3-monooxygenase (KMO) varying levels of tryptophan and demonstrated the effect of this genetic factor on the kynurenine pathway. Furthermore, we used metabolomic profiles of Large White and Duroc pigs to reconstruct metabolic pathways using Gaussian Graphical Models, which included perturbation of the identified mQTL. CONCLUSIONS This study has provided the first catalog of genetic factors affecting molecular phenotypes that describe the pig blood metabolome, with links to important metabolic pathways, opening novel avenues to merge genetics and nutrition in this livestock species. The obtained results are relevant for basic and applied biology and to evaluate the pig as a biomedical model. Genetically influenced metabolites can be further exploited in nutrigenetic approaches in pigs. The described molecular phenotypes can be useful to dissect complex traits and design novel feeding, breeding and selection programs in pigs.
Collapse
Affiliation(s)
- Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| | - Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Flaminia Fanelli
- Endocrinology Research Group, Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Endocrinology and Prevention and Care of Diabetes, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacology and Biotechnology, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Laboratory on Animal Nutrition and Feeding for Livestock Sustainability and Resilience, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matteo Bolner
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacology and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefania Dall'Olio
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | - Diana Luise
- Laboratory on Animal Nutrition and Feeding for Livestock Sustainability and Resilience, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Gianluca Mazzoni
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Zambonelli
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Laboratory on Animal Nutrition and Feeding for Livestock Sustainability and Resilience, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Uberto Pagotto
- Endocrinology Research Group, Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Endocrinology and Prevention and Care of Diabetes, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Degutis M, Łażewska D, Barut J, Białoń M, Latacz G, Szczepańska K, Pietruś W, Werner T, Karcz T, Stark H, Kreiner G, Kieć-Kononowicz K, Starowicz K, Popiolek-Barczyk K. Histamine H 3 receptor blockade alleviates neuropathic pain through the regulation of glial cells activation. Biomed Pharmacother 2025; 183:117850. [PMID: 39818100 DOI: 10.1016/j.biopha.2025.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H3 receptor (H3R); thus, we aimed to determine the influence of a novel H3R antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve). We investigated the effects of single intraperitoneal (i.p.) (1, 5, 10, 20 mg/kg) and intrathecal (i.th.) (10, 30, 60 µg/5 µL) E-98-injections on mechanical (von Frey) and thermal (cold plate, tail flick) stimuli. The effect of chronic E-98 (10 mg/kg, i.p.) treatment and its influence on glia activation within the lumbar spinal cord was investigated. The anti-inflammatory properties of E-98 (10 µM) were screened in primary microglial and astroglial cell cultures. We assessed the presence of H3R within the spinal cord of control and neuropathic animals and in cell cultures. E-98 attenuated nociceptive responses in a dose- and time-dependent manner, and this effect is correlated with reduced microglia and increased astroglia activation. In vitro studies showed a decreased pro-inflammatory IL-6 level in both cell cultures. We observed co-localization of H3R with spinal neurons, microglia, and astrocytes and in primary glial cell cultures. We suggest that an analgesic effect of E-98 is partially due to the modulation of glial activation. We explore a new mechanism of H3R antagonists/inverse agonists analgesic action, bringing the potential benefits in pain management strategies.
Collapse
Affiliation(s)
- Maciej Degutis
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland
| | - Dorota Łażewska
- Jagiellonian University Medical College, Department of Technology and Biotechnology of Drugs, Medyczna 9, Krakow 30-688, Poland
| | - Justyna Barut
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 12 Smetna Str., Krakow 31-343, Poland
| | - Magdalena Białoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland
| | - Gniewomir Latacz
- Jagiellonian University Medical College, Department of Technology and Biotechnology of Drugs, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Szczepańska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smetna Str., Krakow 31-343, Poland
| | - Wojciech Pietruś
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smetna Str., Krakow 31-343, Poland
| | - Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Tadeusz Karcz
- Jagiellonian University Medical College, Department of Technology and Biotechnology of Drugs, Medyczna 9, Krakow 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Grzegorz Kreiner
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, 12 Smetna Str., Krakow 31-343, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Department of Technology and Biotechnology of Drugs, Medyczna 9, Krakow 30-688, Poland
| | - Katarzyna Starowicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland
| | - Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland.
| |
Collapse
|
3
|
Arumuham A, Shatalina E, Nour MM, Veronese M, Onwordi EC, Kaar SJ, Jauhar S, Rabiner EA, Howes OD. Working memory processes and the histamine-3 receptor in schizophrenia: a [ 11C]MK-8278 PET-fMRI study. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06730-6. [PMID: 39710764 DOI: 10.1007/s00213-024-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
RATIONALE Working memory impairment is a prominent feature of schizophrenia which predicts clinical and functional outcomes. Preclinical data suggest histamine-3 receptor (H3R) expression in cortical pyramidal neurons may have a role in working memory, and post-mortem data has found disruptions of H3R expression in schizophrenia. OBJECTIVES We examined the role of H3R in vivo to elucidate its role on working memory impairment in schizophrenia. METHODS We used positron emission tomography (PET) with the selective H3R radioligand [11C]MK-8278 to measure H3R availability, and employed a task during functional magnetic resonance imaging (fMRI) to assess working memory-evoked brain activation and cognitive task performance, in patients with schizophrenia (n = 12) and matched healthy volunteers (n = 12). We assessed the relationship between H3R availability and both task performance and working memory-evoked brain activation in regions of interest (ROIs), including the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC). RESULTS Patients with schizophrenia showed a strong positive correlation, after corrections for multiple comparisons, between ACC H3R availability and task performance (rho = 0.73, p = 0.007), which was absent in the control group (rho = 0.03, p = 0.94). Further ROI analysis did not find a significant relationship between H3R availability and working memory-evoked brain activation. CONCLUSIONS These results provide support for the role of H3R on working memory processes in patients with schizophrenia.
Collapse
Affiliation(s)
- Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
| | - Ekaterina Shatalina
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing research, London, WC1B 5EH, UK
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK
| | - Stephen J Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK
- Division of Psychology and Mental Health, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, M13 9WL, England
- Greater Manchester Mental Health NHS Foundation Trust, Addictions Services, Manchester, M25 3BL, England
| | - Sameer Jauhar
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College, London, UK
| | | | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- H Lundbeck A/s, 3 Abbey View, Everard Close, St Albans, AL1 2PS, UK.
| |
Collapse
|
4
|
Khakpai F, Golshani SP, Alijanpour S, Ebrahimi-Ghiri M, Zarrindast MR. Anxiolytic- and antidepressive-like effects of harmaline in mice are mediated via histamine H3 receptor blockade. Biochem Biophys Res Commun 2024; 736:150879. [PMID: 39467356 DOI: 10.1016/j.bbrc.2024.150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Many neuropsychiatric disorders can be caused by neurotransmitter dysfunction. Experimental studies have demonstrated that histamine and the harmaline affect physiological processes through interaction with other neurotransmitter systems. The objective of these experiments was to investigate the involvement of the histaminergic system in the effects of harmaline on anxiety- and depressive-related effects in male NMRI mice. Behavioral tests were employed to evaluate anxiety-related symptoms (elevated plus maze; EPM), depressive-like symptoms (forced swim test; FST), and cognitive decline (step-down test). The histamine H3 receptor (H3R) agonist α-methylhistamine dihydrobromide (α-MH; 5 mg/kg, i.p.) had anxiolytic- and depressive-like effects, while the H3R antagonist thioperamide (10 mg/kg, i.p.) showed an antidepressive-like property. The subthreshold dose of α-MH resulted in an increase in the tendency of mice treated with the harmaline (2.5 mg/kg) to remain in the EPM open-arms. A subthreshold dose of thioperamide (5 mg/kg) increased the time spent in the open-arms in mice treated with harmaline (2.5 and 5 mg/kg) while a high dose of harmaline decreased the immobility time. Furthermore, two higher doses of harmaline resulted in a reduction in the number of open-arm entries. Similarly, mice administered with thioperamide and a low dose of harmaline decreased locomotor activity in the EPM. Ultimately, the combined thioperamide and harmaline did not impair memory retrieval of mice. These experiments demonstrate that the histaminergic system is implicated in the anxiety- and depressive-related effects of harmaline. The combination of thioperamide and harmaline is effective in treating anxiety and depression without having an adverse effect on memory formation.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Iran
| | - Seyed Parsa Golshani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wang Y, Fang F, Liu X. Targeting histamine in metabolic syndrome: Insights and therapeutic potential. Life Sci 2024; 358:123172. [PMID: 39461668 DOI: 10.1016/j.lfs.2024.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Metabolic syndrome is a complex disorder defined by a cluster of interconnected factors including obesity, insulin resistance, hypertension, hyperlipidemia and hyperglycemia which increase the risk of cardiovascular disease, non-alcoholic fatty liver disease, type 2 diabetes mellitus and other related diseases. Histamine, as a biogenic amine, participates in various physiological processes. Increasing evidence suggests histamine plays critical roles in Metabolic syndrome as well as its associated diseases by interacting with four histamine receptors. In this review, we summarize the functions and mechanisms of histamine in Metabolic syndrome, indicating histamine as a possible target in treating Metabolic syndrome and its associated diseases.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
6
|
Goncalves-Garcia M, Davies S, Savage DD, Hamilton DA. The histamine H 3 receptor inverse agonist SAR-152954 reverses deficits in long-term potentiation associated with moderate prenatal alcohol exposure. Alcohol 2024; 118:45-55. [PMID: 38705312 PMCID: PMC11409852 DOI: 10.1016/j.alcohol.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.
Collapse
Affiliation(s)
| | - Suzy Davies
- Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daniel D Savage
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Derek A Hamilton
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
7
|
Gao M, Ooms JF, Leurs R, Vischer HF. Histamine H 3 Receptor Isoforms: Insights from Alternative Splicing to Functional Complexity. Biomolecules 2024; 14:761. [PMID: 39062475 PMCID: PMC11274711 DOI: 10.3390/biom14070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Henry F. Vischer
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.G.); (J.F.O.); (R.L.)
| |
Collapse
|
8
|
Thomas SD, Abdalla S, Eissa N, Akour A, Jha NK, Ojha S, Sadek B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer's Disease, Parkinson's Disease, and Autism Spectrum Disorder. Pharmaceuticals (Basel) 2024; 17:831. [PMID: 39065682 PMCID: PMC11279978 DOI: 10.3390/ph17070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3β pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Sabna Abdalla
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
9
|
Mena S, Cruikshank A, Best J, Nijhout HF, Reed MC, Hashemi P. Modulation of serotonin transporter expression by escitalopram under inflammation. Commun Biol 2024; 7:710. [PMID: 38851804 PMCID: PMC11162477 DOI: 10.1038/s42003-024-06240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/10/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part because of their variable clinical efficacy and in part because of their delayed onset of action. Because of the complexities involved in replicating human disease and clinical dosing in animal models, the scientific community has not reached a consensus on the reasons for these phenomena. In this work, we create a theoretical hippocampal model incorporating escitalopram's pharmacokinetics, pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT) internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-state. We show escitalopram's chemical efficacy is diminished under inflammation. Our model thus offers mechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance of optimized dose and time for future antidepressant discoveries.
Collapse
Affiliation(s)
- Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - H F Nijhout
- Department of Biology, Duke University, Durham, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Michalska B, Dzięgielewski M, Godyń J, Werner T, Bajda M, Karcz T, Szczepańska K, Stark H, Więckowska A, Walczyński K, Staszewski M. 4-Oxypiperidine Ethers as Multiple Targeting Ligands at Histamine H 3 Receptors and Cholinesterases. ACS Chem Neurosci 2024; 15:1206-1218. [PMID: 38440987 PMCID: PMC10958501 DOI: 10.1021/acschemneuro.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Collapse
Affiliation(s)
- Beata Michalska
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Dzięgielewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tobias Werner
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Walczyński
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Staszewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
11
|
You Z, Wang C, Lan X, Li W, Shang D, Zhang F, Ye Y, Liu H, Zhou Y, Ning Y. The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: A metabolomic analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110849. [PMID: 37659714 DOI: 10.1016/j.pnpbp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Approximately one-third of major depressive disorder (MDD) patients do not respond to standard antidepressants and develop treatment-resistant depression (TRD). We aimed to reveal metabolic differences and discover promising potential biomarkers in TRD. METHODS Our study recruited 108 participants including healthy controls (n = 40) and patients with TRD (n = 35) and first-episode drug-naive MDD (DN-MDD) (n = 33). Plasma samples were presented to ultra performance liquid chromatography-tandem mass spectrometry. Then, a machine-learning algorithm was conducted to facilitate the selection of potential biomarkers. RESULTS TRD appeared to be a distinct metabolic disorder from DN-MDD and healthy controls (HCs). Compared to HCs, 199 and 176 differentially expressed metabolites were identified in TRD and DN-MDD, respectively. Of all the metabolites that were identified, spermine, spermidine, and carnosine were considered the most promising biomarkers for diagnosing TRD and DN-MDD patients, with the resulting area under the ROC curve of 0.99, 0.99, and 0.93, respectively. Metabolic pathway analysis yielded compelling evidence of marked changes or imbalances in both polyamine metabolism and energy metabolism, which could potentially represent the primary altered pathways associated with MDD. Additionally, L-glutamine, Beta-alanine, and spermine were correlated with HAMD score. CONCLUSIONS A more disordered metabolism structure is found in TRD than in DN-MDD and HCs. Future investigations should prioritize the comprehensive analysis of potential roles played by these differential metabolites and disturbances in polyamine pathways in the pathophysiology of TRD and depression.
Collapse
Affiliation(s)
- Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
12
|
Arumuham A, Nour MM, Veronese M, Onwordi EC, Rabiner EA, Howes OD. The histamine system and cognitive function: An in vivo H3 receptor PET imaging study in healthy volunteers and patients with schizophrenia. J Psychopharmacol 2023; 37:1011-1022. [PMID: 37329185 PMCID: PMC10612380 DOI: 10.1177/02698811231177287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND The histamine-3 receptor (H3R) is an auto- and heteroreceptor that inhibits the release of histamine and other neurotransmitters. Post-mortem evidence has found altered H3R expression in patients with psychotic disorders, which may underlie cognitive impairment associated with schizophrenia (CIAS). AIMS We used positron emission tomography (PET) imaging to compare brain uptake of an H3R selective tracer between patients with schizophrenia and matched controls (healthy individuals). Regions of interest included the dorsolateral prefrontal cortex (DLPFC) and striatum. We explored correlations between tracer uptake and symptoms, including cognitive domains. METHODS A total of 12 patients and 12 matched controls were recruited to the study and were assessed with psychiatric and cognitive rating scales. They received a PET scan using the H3R-specific radioligand [11C]MK-8278 to determine H3R availability. RESULTS There was no statistically significant difference in tracer uptake between patients and controls in the DLPFC (t19 = 0.79, p = 0.44) or striatum (t21 = 1.18, p = 0.25). An exploratory analysis found evidence for lower volume of distribution in the left cuneus (pFWE-corrected = 0.01). DLPFC tracer uptake was strongly correlated with cognition in controls (trail making test (TMT) A: r = 0.77, p = 0.006; TMT B: rho = 0.74, p = 0.01), but not in patients (TMT A: r = -0.18, p = 0.62; TMT B: rho = -0.06, p = 0.81). CONCLUSIONS These findings indicate H3R in the DLPFC might play a role in executive function and this is disrupted in schizophrenia in the absence of major alterations in H3R availability as assessed using a selective radiotracer for H3R. This provides further evidence for the role of H3R in CIAS.
Collapse
Affiliation(s)
- Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Eugenii A Rabiner
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Invicro, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- H Lundbeck A/s, St Albans, UK
| |
Collapse
|
13
|
Coles TA, Briggs AM, Hambly MG, Céspedes N, Fellows AM, Kaylor HL, Adams AD, Van Susteren G, Bentil RE, Robert MA, Riffell JA, Lewis EE, Luckhart S. Ingested histamine and serotonin interact to alter Anopheles stephensi feeding and flight behavior and infection with Plasmodium parasites. Front Physiol 2023; 14:1247316. [PMID: 37555020 PMCID: PMC10405175 DOI: 10.3389/fphys.2023.1247316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Blood levels of histamine and serotonin (5-HT) are altered in human malaria, and, at these levels, we have shown they have broad, independent effects on Anopheles stephensi following ingestion by this invasive mosquito. Given that histamine and 5-HT are ingested together under natural conditions and that histaminergic and serotonergic signaling are networked in other organisms, we examined effects of combinations of these biogenic amines provisioned to A. stephensi at healthy human levels (high 5-HT, low histamine) or levels associated with severe malaria (low 5-HT, high histamine). Treatments were delivered in water (priming) before feeding A. stephensi on Plasmodium yoelii-infected mice or via artificial blood meal. Relative to effects of histamine and 5-HT alone, effects of biogenic amine combinations were complex. Biogenic amine treatments had the greatest impact on the first oviposition cycle, with high histamine moderating low 5-HT effects in combination. In contrast, clutch sizes were similar across combination and individual treatments. While high histamine alone increased uninfected A. stephensi weekly lifetime blood feeding, neither combination altered this tendency relative to controls. The tendency to re-feed 2 weeks after the first blood meal was altered by combination treatments, but this depended on mode of delivery. For blood delivery, malaria-associated treatments yielded higher percentages of fed females relative to healthy-associated treatments, but the converse was true for priming. Female mosquitoes treated with the malaria-associated combination exhibited enhanced flight behavior and object inspection relative to controls and healthy combination treatment. Mosquitoes primed with the malaria-associated combination exhibited higher mean oocysts and sporozoite infection prevalence relative to the healthy combination, with high histamine having a dominant effect on these patterns. Compared with uninfected A. stephensi, the tendency of infected mosquitoes to take a second blood meal revealed an interaction of biogenic amines with infection. We used a mathematical model to project the impacts of different levels of biogenic amines and associated changes on outbreaks in human populations. While not all outbreak parameters were impacted the same, the sum of effects suggests that histamine and 5-HT alter the likelihood of transmission by mosquitoes that feed on hosts with symptomatic malaria versus a healthy host.
Collapse
Affiliation(s)
- Taylor A. Coles
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Anna M. Briggs
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Alexandria D. Adams
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Michael A. Robert
- Department of Mathematics, Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
14
|
Davies S, Lujan KS, Rappaport EJ, Valenzuela CF, Savage DD. Effect of moderate prenatal ethanol exposure on the differential expression of two histamine H3 receptor isoforms in different brain regions of adult rat offspring. Front Neurosci 2023; 17:1192096. [PMID: 37449267 PMCID: PMC10338121 DOI: 10.3389/fnins.2023.1192096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
We have reported that prenatal alcohol exposure (PAE) elevates histamine H3 receptor (H3R) agonist-mediated inhibition of glutamatergic neurotransmission in the dentate gyrus. Here, we hypothesized that PAE alters the expression of two prominent H3R isoforms namely, the rH3A and rH3C isoforms, which have differing intrinsic activities for H3R agonists, in a manner that may contribute to heightened H3R function in PAE rats. In contrast to our predictions, we found different effects of sex and PAE in various brain regions with significant interactions between sex and PAE in dentate gyrus and entorhinal cortex for both isoforms. Subsequently, to confirm the PAE-and sex-induced differences on H3R isoform mRNA expression, we developed a polyclonal antibody selective for the rH3A inform. Western blots of rH3A mRNA-transfected HEK-293 cells identified a ~ 48 kDa band of binding consistent with the molecular weight of rH3A, thus confirming antibody sensitivity for rH3A protein. In parallel, we also established a pan-H3R knockout mice line to confirm antibody specificity in rodent brain membranes. Both qRT-PCR and H3R agonist-stimulated [35S]-GTPγS binding confirmed the absence of mH3A mRNA and H3 receptor-effector coupling in H3R knockout (KO) mice. Subsequent western blotting studies in both rat and mouse brain membranes were unable to detect rH3A antibody binding at ~48 kDa. Rather, the H3RA antibody bound to a ~ 55 kDa band in both rat and mouse membranes, including H3R KO mice, suggesting H3RA binding was not specific for H3Rs in rodent membranes. Subsequent LC/MS analysis of the ~55 kDa band in frontal cortical membranes identified the highly abundant beta subunit of ATPase in both WT and KO mice. Finally, LC/MS analysis of the ~48 kDa band from rH3A mRNA-transfected HEK-293 cell membranes was able to detect rH3A protein, but its presence was below the limits of quantitative reliability. We conclude that PAE alters rH3A and rH3C mRNA expression in some of the same brain regions where we have previously reported PAE-induced alterations in H3R-effector coupling. However, interpreting the functional consequences of altered H3R isoform expression was limited given the technical challenges of measuring the relatively low abundance of rH3A protein in native membrane preparations.
Collapse
Affiliation(s)
| | | | | | | | - Daniel D. Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
15
|
Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. Histaminergic regulation of food intake. Front Endocrinol (Lausanne) 2023; 14:1202089. [PMID: 37448468 PMCID: PMC10338010 DOI: 10.3389/fendo.2023.1202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.
Collapse
Affiliation(s)
- Axelle Khouma
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Moein Minbashi Moeini
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Medicine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
16
|
Zhu J, Ma R, Li G. Drug repurposing: Clemastine fumarate and neurodegeneration. Biomed Pharmacother 2023; 157:113904. [PMID: 36370521 DOI: 10.1016/j.biopha.2022.113904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases have been a weighty problem in elder people who might be stricken with motor or/and cognition defects with lower life quality urging for effective treatment. Drugs are costly from development to market, so that drug repurposing, exploration of existing drugs for novel therapeutic purposes, becomes a wise and popular strategy to raise new treatment options. Clemastine fumarate, different from anti-allergic effect as H1 histamine antagonist, was screened and identified as promising drug for remyelination and autophagy enhancement. Surprisingly, fumarate salt also has similar effect. Hence, whether clemastine fumarate would make a protective impact on neurodegenerative diseases and what contribution fumarate probably makes are intriguing to us. In this review, we summarize the potential mechanism surrounding clemastine fumarate in current literature, and try to distinguish independent or synergistic effect between clemastine and fumarate, aiming to find worthwhile research direction for neurodegeneration diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Berger SN, Baumberger B, Samaranayake S, Hersey M, Mena S, Bain I, Duncan W, Reed MC, Nijhout HF, Best J, Hashemi P. An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger. Int J Mol Sci 2022; 23:14862. [PMID: 36499189 PMCID: PMC9738190 DOI: 10.3390/ijms232314862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.
Collapse
Affiliation(s)
- Shane N. Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Physiology, Pharmacology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - William Duncan
- Department of Mathematics, Montana State University, Bozeman, MT 59717, USA
| | - Michael C. Reed
- Department of Mathematics, Duke University, Durham, NC 27710, USA
| | | | - Janet Best
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Wang J, Liu B, Sun F, Xu Y, Luan H, Yang M, Wang C, Zhang T, Zhou Z, Yan H. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation. Int Immunopharmacol 2022; 110:109045. [DOI: 10.1016/j.intimp.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
|
19
|
Hersey M, Reneaux M, Berger SN, Mena S, Buchanan AM, Ou Y, Tavakoli N, Reagan LP, Clopath C, Hashemi P. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J Neuroinflammation 2022; 19:167. [PMID: 35761344 PMCID: PMC9235270 DOI: 10.1186/s12974-022-02508-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Stress-induced mental illnesses (mediated by neuroinflammation) pose one of the world’s most urgent public health challenges. A reliable in vivo chemical biomarker of stress would significantly improve the clinical communities’ diagnostic and therapeutic approaches to illnesses, such as depression. Methods Male and female C57BL/6J mice underwent a chronic stress paradigm. We paired innovative in vivo serotonin and histamine voltammetric measurement technologies, behavioral testing, and cutting-edge mathematical methods to correlate chemistry to stress and behavior. Results Inflammation-induced increases in hypothalamic histamine were co-measured with decreased in vivo extracellular hippocampal serotonin in mice that underwent a chronic stress paradigm, regardless of behavioral phenotype. In animals with depression phenotypes, correlations were found between serotonin and the extent of behavioral indices of depression. We created a high accuracy algorithm that could predict whether animals had been exposed to stress or not based solely on the serotonin measurement. We next developed a model of serotonin and histamine modulation, which predicted that stress-induced neuroinflammation increases histaminergic activity, serving to inhibit serotonin. Finally, we created a mathematical index of stress, Si and predicted that during chronic stress, where Si is high, simultaneously increasing serotonin and decreasing histamine is the most effective chemical strategy to restoring serotonin to pre-stress levels. When we pursued this idea pharmacologically, our experiments were nearly identical to the model’s predictions. Conclusions This work shines the light on two biomarkers of chronic stress, histamine and serotonin, and implies that both may be important in our future investigations of the pathology and treatment of inflammation-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02508-9.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Melissa Reneaux
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Navid Tavakoli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.,Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
20
|
Abdulrazzaq YM, Bastaki SMA, Adeghate E. Histamine H3 receptor antagonists - Roles in neurological and endocrine diseases and diabetes mellitus. Biomed Pharmacother 2022; 150:112947. [PMID: 35447544 DOI: 10.1016/j.biopha.2022.112947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022] Open
Abstract
Human histamine H3 receptor (H3R) was initially described in the brain of rat in 1983 and cloned in 1999. It can be found in the human brain and functions as a regulator of histamine synthesis and release. H3 receptors are predominantly resident in the presynaptic region of neurons containing histamine, where they modulate the synthesis and release of histamine (autoreceptor) or other neurotransmitters such as dopamine, norepinephrine, gamma-aminobutyric acid (GABA), glutamate, acetylcholine and serotonin (all heteroreceptors). The human histamine H3 receptor has twenty isoforms of which eight are functional. H3 receptor expression is seen in the cerebral cortex, neurons of the basal ganglia and hippocampus, which are important for process of cognition, sleep and homoeostatic regulation. In addition, histamine H3R antagonists stimulate insulin release, through inducing the release of acetylcholine and cause significant reduction in total body weight and triglycerides in obese subjects by causing a feeling of satiety in the hypothalamus. The ability of histamine H3R antagonist to reduce diabetes-induced hyperglycaemia is comparable to that of metformin. It is reasonable therefore, to claim that H3 receptor antagonists may play an important role in the therapy of disorders of cognition, the ability to sleep, oxidative stress, inflammation and anomaly of glucose homoeostasis. A large number of H3R antagonists are being developed by pharmaceutical companies and university research centres. As examples of these new drugs, this review will discuss a number of drugs, including the first histamine H3R receptor antagonist produced.
Collapse
Affiliation(s)
- Yousef M Abdulrazzaq
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Salim M A Bastaki
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
21
|
Belardo C, Alessio N, Pagano M, De Dominicis E, Infantino R, Perrone M, Iannotta M, Galderisi U, Rinaldi B, Scuteri D, Bagetta G, Palazzo E, Maione S, Luongo L. PEA-OXA ameliorates allodynia, neuropsychiatric and adipose tissue remodeling induced by social isolation. Neuropharmacology 2022; 208:108978. [PMID: 35157898 DOI: 10.1016/j.neuropharm.2022.108978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 12/28/2022]
Abstract
Chronic social isolation generates a persistent state of stress associated with obesity along with some neuro-endocrine disorders and central behavioral sequelae (eg anxiety, depression, aggression, and allodynia). In this study, we evaluated the effect of social isolation on body weight, depressive- and anxious-aggressive-like behavior, as well as on phenotypic changes of adipocytes from visceral adipose tissue of control (group-housed) or socially isolated (single-housed) male mice. The effect of treatment with pentadecyl-2-oxazoline (PEA-OXA), a natural alpha2 antagonist and histamine H3 protean partial agonist, on these alterations was also evaluated. Single or group-housed mice treated with vehicle or PEA-OXA underwent body weight, mechanical allodynia, anxious-, depressive- and aggressive-like behavior measurements. Proliferation rate, apoptosis, senescence, expression of fat lineage genes, lipid droplets and proinflammatory cytokines were measured on white adipose tissue adipocytes from group- or single-housed mice. Single housed mice developed weight gain, mechanical allodynia at the von Frey test, aggressiveness in the resident intruder test, depression- and anxiety-like behavior in the tail suspension and hole drop tests, respectively. Single housed mice receiving PEA-OXA showed a general resolution of both, physical-metabolic and behavioral alterations associated with social isolation. Furthermore, adipocytes from the adipose tissue of socially isolated mice showed an evident inflamed phenotype (i.e. a reduced rate of proliferation, apoptosis, senescence, and ROS hyper-production together with an increased expression of IL-1β, IL-10, IL-17, and TNF-α and a decrease of IL-6). The treatment with PEA-OXA on adipocytes from single housed mice produced a protective/anti-inflammatory phenotype with an increased expression of brown adipose tissue biomarker. This study confirms that persistent stress caused by social isolation predisposes to obesity and neuropsychiatric disorders. PEA-OXA, through its multi-target activity on alpha2 adrenoceptor and histamine H3 receptors, which have recently aroused great interest in the neuropsychiatric field, reduces weight gain, systemic pro-inflammatory state, allodynia, and affective disorders associated with social isolation.
Collapse
Affiliation(s)
- Carmela Belardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Pagano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela De Dominicis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
22
|
Ghazanfari N, van Waarde A, Doorduin J, Sijbesma JWA, Kominia M, Koelewijn M, Attia K, Willemsen ATM, Visser TJ, Heeres A, Dierckx RAJO, de Vries EFJ, Elsinga PH. Pharmacokinetic Modeling of [ 11C]GSK-189254, PET Tracer Targeting H 3 Receptors, in Rat Brain. Mol Pharm 2022; 19:918-928. [PMID: 35170965 PMCID: PMC8905578 DOI: 10.1021/acs.molpharmaceut.1c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
The histamine H3 receptor has been considered as a target for the treatment of various central nervous system diseases. Positron emission tomography (PET) studies with the radiolabeled potent and selective histamine H3 receptor antagonist [11C]GSK-189254 in rodents could be used to examine the mechanisms of action of novel therapeutic drugs or to assess changes of regional H3 receptor density in animal models of neurodegenerative disease. [11C]GSK-189254 was intravenously administered to healthy Wistar rats (n = 10), and a 60 min dynamic PET scan was carried out. Arterial blood samples were obtained during the scan to generate a metabolite-corrected plasma input function. PET data were analyzed using a one-tissue compartment model (1T2k), irreversible (2T3k) or reversible two-tissue compartment models (2T4k), graphical analysis (Logan and Patlak), reference tissue models (SRTM and SRTM2), and standard uptake values (SUVs). The Akaike information criterion and the standard error of the estimated parameters were used to select the most optimal quantification method. This study demonstrated that the 2T4k model with a fixed blood volume fraction and Logan graphical analysis can best describe the kinetics of [11C]GSK-189254 in the rat brain. SUV40-60 and the reference tissue-based measurements DVR(2T4k), BPND(SRTM), and SUV ratio could also be used as a simplified method to estimate H3 receptor availability in case blood sampling is not feasible.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Aren van Waarde
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Janine Doorduin
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Jürgen W. A. Sijbesma
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Maria Kominia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | - Khaled Attia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Antoon T. M. Willemsen
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | | | - Rudi A. J. O. Dierckx
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Erik F. J. de Vries
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Philip H. Elsinga
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
23
|
Structures 4-n-propyl Piperazines as Non-Imidazole Histamine H3 Antagonists. MATERIALS 2021; 14:ma14227094. [PMID: 34832494 PMCID: PMC8621284 DOI: 10.3390/ma14227094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
Seven new low-temperature structures of 4-n-propylpiperazine derivatives, potential H3 receptor antagonists, have been determined by X-ray crystallography, with the following symmetry and unit cell parameters: 2-(4-propyl-piperazin-1-yl)oxazolo[4,5-c]pyridine (compound 1), P-1, 5.9496 Å, 12.4570 Å, 12.8656 Å, 112.445°, 95.687°, 103.040°; 2-(4-propyl-piperazin-1-yl)thia-zolo[4,5-c]pyridine (compound 2), I2/a, 22.2087 Å, 7.5519 Å, 19.9225 Å, β = 92.368°; 2-(4-propyl-piperazin-1-yl)oxazolo[5,4-c]pyridine (compound 3), C2/c, 51.1351 Å, 9.36026 Å, 7.19352 Å, β = 93.882°; 2-(4-propyl-piperazin-1-yl)thiazolo[5,4-c]pyridine (compound 4), Pbcn, 19.2189 Å, 20.6172 Å, 7.4439 Å; 2-(4-propylpiperazin-1-yl)[1,3]oxazolo[4,5-b]pyridine, hydrate (structure 5), Pbca, 7.4967 Å, 12.2531 Å, 36.9527 Å; 2-(4-propylpiperazin-1-yl)[1,3]oxazolo[4,5-b]pyridine, first polymorph (structure 6), P-1, 7.2634 Å, 11.1261 Å, 18.5460 Å, 80.561°, 80.848°, 76.840°; 2-(4-propylpiperazin-1-yl)[1,3]oxazolo[4,5-b]pyridine, second polymorph (structure 7), P21, 8.10852 Å, 7.06025 Å, 12.41650 Å, β = 92.2991°. All the compounds crystallized out as hydrobromides. Oxazole structures show a much greater tendency to form twin crystals than thiazole structures. All the investigated structures display N-H···Br hydrogen bonding. (ADME) analysis, including the assessment of absorption, distribution, metabolism, and excretion, determined the physicochemical properties, pharmacokinetics, drug similarity, and bioavailability radar, and confirmed the usefulness of the compounds in question for pharmaceutical utility. This work is a continuation of the research searching for a new lead of non-imidazole histamine H3 receptor antagonists.
Collapse
|
24
|
Wang J, Liu B, Xu Y, Luan H, Wang C, Yang M, Zhao R, Song M, Liu J, Sun L, You J, Wang W, Sun F, Yan H. Thioperamide attenuates neuroinflammation and cognitive impairments in Alzheimer's disease via inhibiting gliosis. Exp Neurol 2021; 347:113870. [PMID: 34563511 DOI: 10.1016/j.expneurol.2021.113870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, which characterized by deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, neuronal loss, and accompanied by neuroinflammation. Neuroinflammatory processes are well acknowledged to contribute to the progression of AD pathology. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia and astrocytes. H3R antagonist has been reported to have anti-inflammatory efficacy. However, whether inhibition of H3R is responsible for the anti-neuroinflammation in glial cells and neuroprotection on APPswe, PSEN1dE9 (APP/PS1 Tg) mice remain unclear. In this study, we found that inhibition of H3R by thioperamide reduced the gliosis and induced a phenotypical switch from A1 to A2 in astrocytes, and ultimately attenuated neuroinflammation in APP/PS1 Tg mice. Additionally, thioperamide rescued the decrease of cyclic AMP response element-binding protein (CREB) phosphorylation and suppressed the phosphorylated P65 nuclear factor kappa B (p-P65 NF-κB) in APP/PS1 Tg mice. H89, an inhibitor of CREB signaling, abolished these effects of thioperamide to suppress gliosis and proinflammatory cytokine release. Lastly, thioperamide alleviated the deposition of amyloid-β (Aβ) and cognitive dysfunction in APP/PS1 mice, which were both reversed by administration of H89. Taken together, these results suggested the H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated gliosis and inflammation inhibiting, which contributed to Aβ clearance. This study uncovered a novel mechanism involving inflammatory regulating behind the therapeutic effect of thioperamide in AD.
Collapse
Affiliation(s)
- Jiangong Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Xu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haiyun Luan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Chaoyun Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Runming Zhao
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mengmeng Song
- Department of Thyroid Breast Surgery, Dongying People's Hospital, Dongying, China
| | - Jing Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Linshan Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China; Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
25
|
Bönisch H, Fink KB, Malinowska B, Molderings GJ, Schlicker E. Serotonin and beyond-a tribute to Manfred Göthert (1939-2019). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1829-1867. [PMID: 33991216 PMCID: PMC8376721 DOI: 10.1007/s00210-021-02083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
Manfred Göthert, who had served Naunyn-Schmiedeberg's Arch Pharmacol as Managing Editor from 1998 to 2005, deceased in June 2019. His scientific oeuvre encompasses more than 20 types of presynaptic receptors, mostly on serotoninergic and noradrenergic neurones. He was the first to identify presynaptic receptors for somatostatin and ACTH and described many presynaptic receptors, known from animal preparations, also in human tissue. In particular, he elucidated the pharmacology of presynaptic 5-HT receptors. A second field of interest included ligand-gated and voltage-dependent channels. The negative allosteric effect of anesthetics at peripheral nACh receptors is relevant for the peripheral clinical effects of these drugs and modified the Meyer-Overton hypothesis. The negative allosteric effect of ethanol at NMDA receptors in human brain tissue occurred at concentrations found in the range of clinical ethanol intoxication. Moreover, the inhibitory effect of gabapentinoids on P/Q Ca2+ channels and the subsequent decrease in AMPA-induced noradrenaline release may contribute to their clinical effect. Another ligand-gated ion channel, the 5-HT3 receptor, attracted the interest of Manfred Göthert from the whole animal via isolated preparations down to the cellular level. He contributed to that molecular study in which 5-HT3 receptor subtypes were disclosed. Finally, he found altered pharmacological properties of 5-HT receptor variants like the Arg219Leu 5-HT1A receptor (which was also shown to be associated with major depression) and the Phe124Cys 5-HT1B receptor (which may be related to sumatriptan-induced vasospasm). Manfred Göthert was a brilliant scientist and his papers have a major impact on today's pharmacology.
Collapse
Affiliation(s)
- H Bönisch
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany
| | - K B Fink
- Merz Pharmaceuticals, Frankfurt/Main, Germany
| | - B Malinowska
- Department of Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - G J Molderings
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Schlicker
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany.
| |
Collapse
|
26
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
27
|
Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin. J Neurosci 2021; 41:6564-6577. [PMID: 34083254 DOI: 10.1523/jneurosci.2618-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/11/2023] Open
Abstract
Commonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.
Collapse
|
28
|
Wang J, Liu B, Xu Y, Yang M, Wang C, Song M, Liu J, Wang W, You J, Sun F, Wang D, Liu D, Yan H. Activation of CREB-mediated autophagy by thioperamide ameliorates β-amyloid pathology and cognition in Alzheimer's disease. Aging Cell 2021; 20:e13333. [PMID: 33682314 PMCID: PMC7963336 DOI: 10.1111/acel.13333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, and the imbalance between production and clearance of β-amyloid (Aβ) is involved in its pathogenesis. Autophagy is an intracellular degradation pathway whereby leads to removal of aggregated proteins, up-regulation of which may be a plausible therapeutic strategy for the treatment of AD. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Our previous study showed that thioperamide, as an antagonist of H3R, enhances autophagy and protects against ischemic injury. However, the effect of thioperamide on autophagic function and Aβ pathology in AD remains unknown. In this study, we found that thioperamide promoted cognitive function, ameliorated neuronal loss, and Aβ pathology in APP/PS1 transgenic (Tg) mice. Interestingly, thioperamide up-regulated autophagic level and lysosomal function both in APP/PS1 Tg mice and in primary neurons under Aβ-induced injury. The neuroprotection by thioperamide against AD was reversed by 3-MA, inhibitor of autophagy, and siRNA of Atg7, key autophagic-related gene. Furthermore, inhibition of activity of CREB, H3R downstream signaling, by H89 reversed the effect of thioperamide on promoted cell viability, activated autophagic flux, and increased autophagic-lysosomal proteins expression, including Atg7, TFEB, and LAMP1, suggesting a CREB-dependent autophagic activation by thioperamide in AD. Taken together, these results suggested that H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated autophagy and lysosomal pathway, which contributed to Aβ clearance. This study uncovered a novel mechanism involving autophagic regulating behind the therapeutic effect of thioperamide in AD.
Collapse
Affiliation(s)
- Jiangong Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Xu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Chaoyun Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mengmeng Song
- Department of Thyroid Breast Surgery, Dongying People's Hospital, Dongying, China
| | - Jing Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dunjiang Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
29
|
Best J, Duncan W, Sadre-Marandi F, Hashemi P, Nijhout HF, Reed M. Autoreceptor control of serotonin dynamics. BMC Neurosci 2020; 21:40. [PMID: 32967609 PMCID: PMC7509944 DOI: 10.1186/s12868-020-00587-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding involves genomics, neurochemistry, electrophysiology, and behavior. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders. This paper presents a new deterministic model of serotonin metabolism and a new systems population model that takes into account the large variation in enzyme and transporter expression levels, tryptophan input, and autoreceptor function. RESULTS We discuss the steady state of the model and the steady state distribution of extracellular serotonin under different hypotheses on the autoreceptors and we show the effect of tryptophan input on the steady state and the effect of meals. We use the deterministic model to interpret experimental data on the responses in the hippocampus of male and female mice, and to illustrate the short-time dynamics of the autoreceptors. We show there are likely two reuptake mechanisms for serotonin and that the autoreceptors have long-lasting influence and compare our results to measurements of serotonin dynamics in the substantia nigra pars reticulata. We also show how histamine affects serotonin dynamics. We examine experimental data that show very variable response curves in populations of mice and ask how much variation in parameters in the model is necessary to produce the observed variation in the data. Finally, we show how the systems population model can potentially be used to investigate specific biological and clinical questions. CONCLUSIONS We have shown that our new models can be used to investigate the effects of tryptophan input and meals and the behavior of experimental response curves in different brain nuclei. The systems population model incorporates individual variation and can be used to investigate clinical questions and the variation in drug efficacy. The codes for both the deterministic model and the systems population model are available from the authors and can be used by other researchers to investigate the serotonergic system.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, The Ohio State University, 231 W 18th Ave., Columbus, OH 43210 USA
| | - William Duncan
- Department of Mathematics, Duke University, Durham, NC 27708 USA
| | | | - Parastoo Hashemi
- Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC 27708 USA
| |
Collapse
|
30
|
Annamalai B, Ragu Varman D, Horton RE, Daws LC, Jayanthi LD, Ramamoorthy S. Histamine Receptors Regulate the Activity, Surface Expression, and Phosphorylation of Serotonin Transporters. ACS Chem Neurosci 2020; 11:466-476. [PMID: 31916747 DOI: 10.1021/acschemneuro.9b00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reuptake and clearance of released serotonin (5-HT) are critical in serotonergic neurotransmission. Serotonin transporter (SERT) is mainly responsible for clearing the extracellular 5-HT. Controlled trafficking, phosphorylation, and protein stability have been attributed to robust SERT activity. H3 histamine receptors (H3Rs) act in conjunction and regulate 5-HT release. H3Rs are expressed in the nervous system and located at the serotonergic terminals, where they act as heteroreceptors. Although histaminergic and serotonergic neurotransmissions are thought to be two separate events, whether H3Rs influence SERT in the CNS to control 5-HT reuptake has never been addressed. With a priori knowledge gained from our studies, we explored the possibility of using rat hippocampal synaptosomal preparations. We found that treatment with H3R/H4R-agonists immepip and (R)-(-)-α-methyl-histamine indeed resulted in a time- and concentration-dependent decrease in 5-HT transport. On the other hand, treatment with H3R/H4R-inverse agonist thioperamide caused a moderate increase in 5-HT uptake while blocking the inhibitory effect of H3R/H4R agonists. When investigated further, immepip treatment reduced the level of SERT on the plasma membrane and its phosphorylation. Likewise, CaMKII inhibitor KN93 or calcineurin inhibitor cyclosporine A also inhibited SERT function; however, an additive effect with immepip was not seen. High-speed in vivo chronoamperometry demonstrated that immepip delayed 5-HT clearance while thioperamide accelerated 5-HT clearance from the extracellular space. Immepip selectively inhibited SERT activity in the hippocampus and cortex but not in the striatum, midbrain, and brain stem. Thus, we report here a novel mechanism of regulating SERT activity by H3R-mediated CaMKII/calcineurin pathway in a brain-region-specific manner and perhaps synaptic 5-HT in the CNS that controls 5-HT clearance.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rebecca E. Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
31
|
Zhao YX, Pan JB, Wang YN, Zou Y, Guo L, Tang QQ, Qian SW. Stimulation of histamine H4 receptor participates in cold-induced browning of subcutaneous white adipose tissue. Am J Physiol Endocrinol Metab 2019; 317:E1158-E1171. [PMID: 31550180 DOI: 10.1152/ajpendo.00131.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although many studies have shown that histamine and its signaling regulate energy homeostasis through the central nervous system, their roles in adipose tissues remain poorly understood. Here, we identified that the histamine H4 receptor (HrH4) was highly expressed in adipocytes at a level higher than that of the other three receptors (i.e., HrH1, HrH2, and HrH3). The HrH4 expression in adipocytes responded to cold through thermogenesis and lipolysis, supported by results from both mouse and cell models. When HrH4 expression was knocked down in the subcutaneous white adipose tissue (scWAT), browning and lipolysis effects triggered by cold were ablated, and the oxygen consumption was also lowered both at the normal and cold conditions. Moreover, mice exhibited browned scWAT, accelerated metabolic rates, and tolerance to hypothermia when 4-methylhistamine (4MH), a selective HrH4 agonist, was adjacently injected to the scWAT. Consistent with these findings, 4MH also triggered the browning and lipolytic effects in cultured C3H10T1/2 adipocytes. Mechanically, we demonstrated that p38/MAPK and ERK/MAPK pathways were involved in these processes. In conclusion, our findings have uncovered an effective role of HrH4 in adipose tissue browning.
Collapse
Affiliation(s)
- Ya-Xin Zhao
- Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia-Bao Pan
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Na Wang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Zou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Guo
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu-Wen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Popiolek‐Barczyk K, Łażewska D, Latacz G, Olejarz A, Makuch W, Stark H, Kieć‐Kononowicz K, Mika J. Antinociceptive effects of novel histamine H 3 and H 4 receptor antagonists and their influence on morphine analgesia of neuropathic pain in the mouse. Br J Pharmacol 2018; 175:2897-2910. [PMID: 29486058 PMCID: PMC6016676 DOI: 10.1111/bph.14185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The histaminergic system is a promising target for the development of new analgesics, as histamine H3 and H4 receptors are expressed in regions concerned with nociceptive transmission. Here we have determined the analgesic effects of new H3 and H4 receptor antagonists in naive and neuropathic mice. EXPERIMENTAL APPROACH We used chronic constriction injury (CCI) to the sciatic nerve in mice to model neuropathy. Effects of a new H3 receptor antagonist, E-162(1-(5-(naphthalen-1-yloxy)pentyl)piperidine) and H4 receptor antagonist, TR-7(4-(4-chlorophenyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine) were assessed on mechanical (von Frey) and thermal (cold plate, tail flick) stimuli in mice with and without CCI (7 days after injury). Effects of these antagonists on morphine analgesia were also evaluated, along with the possible participation of H1 receptors in their effects. We analysed the compounds in binding and functional cAMP assays at the H3 and H4 receptors and determined metabolic stability. KEY RESULTS E-162 and TR-7 attenuated nociceptive responses and profound morphine analgesia in males with CCI. These antagonists showed analgesia in naive mice (tail flick test) and produced prolonged analgesia in neuropathic females. E-162-induced analgesia was reversed by pyrilamine, an H1 receptor antagonist. E-162 bound potently to H3 receptors (Ki = 55 nM) and inhibited cAMP accumulation (IC50 = 165 nM). TR-7 showed lower affinity for H4 receptors (Ki = 203 nM) and IC50 of 512 nM. CONCLUSIONS AND IMPLICATIONS We describe a therapeutic use for new H3 (E-162) and H4 receptor (TR-7) antagonists in neuropathy. Targeting H3 and H4 receptors enhanced morphine analgesia, consistent with multimodal pain therapy.
Collapse
Affiliation(s)
- Katarzyna Popiolek‐Barczyk
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
- Department of Pain Pharmacology, Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katarzyna Kieć‐Kononowicz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical CollegeKrakowPoland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| |
Collapse
|
33
|
Olszewska B, Stasiak A, McNaught Flores D, Fogel WA, Leurs R, Walczyński K. 4-Hydroxypiperidines and Their Flexible 3-(Amino)propyloxy Analogues as Non-Imidazole Histamine H₃ Receptor Antagonist: Further Structure⁻Activity Relationship Exploration and In Vitro and In Vivo Pharmacological Evaluation. Int J Mol Sci 2018; 19:ijms19041243. [PMID: 29671795 PMCID: PMC5979327 DOI: 10.3390/ijms19041243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/30/2022] Open
Abstract
Presynaptic histamine H3 receptors (H3R) act as auto- or heteroreceptors controlling, respectively, the release of histamine and of other neurotransmitters in the central nervous system (CNS). The extracellular levels of several neurotransmitters are enhanced by H3R antagonists, and there is a great interest for potent, brain-penetrating H3 receptor antagonists/inverse agonists to compensate for the neurotransmitter deficits present in various neurological disorders. We have shown that 1-[(benzylfuran-2-yl)methyl]piperidinyl-4-oxyl- and benzyl- derivatives of N-propylpentan-1-amines exhibit high in vitro potencies toward the guinea pig H3 receptor (jejunum), with pA2 = 8.47 and 7.79, respectively (the reference compound used was thioperamide with pA2 = 8.67). Furthermore, following the replacement of 4-hydroxypiperidine with a 3-(methylamino)propyloxy chain, the pA2 value for the first group decreased, whereas it increased for the second group. Here, we present data on the impact of elongating the aliphatic chain between the nitrogen of 4-hydroxypiperidine or 3-(methylamino)propan-1-ol and the lipophilic residue. Additionally, the most active compound in this series of non-imidazole H3 receptor antagonists/inverse agonists, i.e., ADS-003, was evaluated for its affinity to the recombinant rat and human histamine H3 receptors transiently expressed in HEK-293T cells. It was shown that ADS-003, given parenterally for 5 days, reduced the food intake of rats, as well as changed histamine and noradrenaline concentrations in the rats’ brain in a manner and degree similar to the reference H3 antagonist Ciproxifan.
Collapse
Affiliation(s)
- Beata Olszewska
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego Street 1, 90-145 Łódź, Poland.
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Żeligowskiego Street 7/9, 90-752 Łódź, Poland.
| | - Daniel McNaught Flores
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Wiesława Agnieszka Fogel
- Department of Hormone Biochemistry, Medical University of Lodz, Żeligowskiego Street 7/9, 90-752 Łódź, Poland.
| | - Rob Leurs
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego Street 1, 90-145 Łódź, Poland.
| |
Collapse
|
34
|
Varaschin RK, Allen NA, Rosenberg MJ, Valenzuela CF, Savage DD. Prenatal Alcohol Exposure Increases Histamine H 3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus. Alcohol Clin Exp Res 2018; 42:295-305. [PMID: 29315624 PMCID: PMC5785429 DOI: 10.1111/acer.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H3 receptor number and function. METHODS Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. RESULTS Radiohistochemical studies in adult offspring revealed that specific [3 H]-A349821 binding to histamine H3 receptors was not different in PAE rats compared to controls. However, H3 receptor-mediated Gi /Go protein-effector coupling, as measured by methimepip-stimulated [35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H3 receptor population without significantly altering the affinities of H3 receptor subpopulations. In agreement with the [35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. CONCLUSIONS These results suggest that a PAE-induced elevation in H3 receptor-mediated inhibition of glutamate release from perforant path terminals as 1 mechanism contributing the LTP deficits previously observed in the dentate gyrus of PAE rats, as well as providing a mechanistic basis for the efficacy of H3 receptor inverse agonists for ameliorating these deficits.
Collapse
Affiliation(s)
- Rafael K Varaschin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Nyika A Allen
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Martina J Rosenberg
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| |
Collapse
|
35
|
Best J, Nijhout HF, Samaranayake S, Hashemi P, Reed M. A mathematical model for histamine synthesis, release, and control in varicosities. Theor Biol Med Model 2017; 14:24. [PMID: 29228949 PMCID: PMC5725884 DOI: 10.1186/s12976-017-0070-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Background Histamine (HA), a small molecule that is synthesized from the amino acid histidine, plays an important role in the immune system where it is associated with allergies, inflammation, and T-cell regulation. In the brain, histamine is stored in mast cells and other non-neuronal cells and also acts as a neurotransmitter. The histamine neuron cell bodies are in the tuberomammillary (TM) nucleus of the hypothalamus and these neurons send projections throughout the central nervous system (CNS), in particular to the cerebral cortex, amygdala, basal ganglia, hippocampus, thalamus, retina, and spinal cord. HA neurons make few synapses, but release HA from the cell bodies and from varicosities when the neurons fire. Thus the HA neural system seems to modulate and control the HA concentration in projection regions. It is known that high HA levels in the extracellular space inhibit serotonin release, so HA may play a role in the etiology of depression. Results We compare model predictions to classical physiological experiments on HA half-life, the concentration of brain HA after histidine loading, and brain HA after histidine is dramatically increased or decreased in the diet. The model predictions are also consistent with in vivo experiments in which extracellular HA is measured, using Fast Scan Cyclic Voltammetry, in the premammillary nucleus (PM) after a 2 s antidromic stimulation of the TM, both without and in the presence of the H3 autoreceptor antagonist thioperamide. We show that the model predicts well the temporal behavior of HA in the extracellular space over 30 s in both experiments. Conclusions Our ability to measure in vivo histamine dynamics in the extracellular space after stimulation presents a real opportunity to understand brain function and control. The observed extracellular dynamics depends on synthesis, storage, neuronal firing, release, reuptake, glial cells, and control by autoreceptors, as well as the behavioral state of the animal (for example, depression) or the presence of neuroinflammation. In this complicated situation, the mathematical model will be useful for interpreting data and conducting in silico experiments to understand causal mechanisms. And, better understanding can suggest new therapeutic drug targets.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, Ohio State University, 231 W 18th Ave, MW 614, Columbus, 43210, OH, USA.
| | - H F Nijhout
- Department of Biology, Duke University, Durham, 27708, NC, USA
| | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, SC, USA
| | - Michael Reed
- Department of Mathematics, Duke University, Durham, 27708, NC, USA
| |
Collapse
|
36
|
Discovery of novel steroidal histamine H 3 receptor antagonists/inverse agonists. Bioorg Med Chem Lett 2017; 27:4525-4530. [PMID: 28888822 DOI: 10.1016/j.bmcl.2017.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
Emerging from an HTS campaign, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Structural moieties of the hit compounds were combined to improve binding affinities which resulted in compound 4 as lead molecule. During the lead optimization due to the versatile modifications of diamino steroid derivatives, several in vitro potent compounds with subnanomolar binding affinities to histamine H3 receptors were found. The unfavorable binding to rat muscarinic receptors was successfully reduced by tuning the basicity. Compound 20 showed significant in vivo activity in the rat dipsogenia model and could serve as a pharmacological tool in the future.
Collapse
|
37
|
Wen G, Liu Q, Hu H, Wang D, Wu S. Design, synthesis, biological evaluation, and molecular docking of novel flavones as H 3 R inhibitors. Chem Biol Drug Des 2017; 90:580-589. [PMID: 28328173 DOI: 10.1111/cbdd.12981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 11/29/2022]
Abstract
A series of novel flavone derivatives were designed, synthesized, and evaluated for their H3 R inhibitory activity. The results showed that four compounds exhibited significant anti-H3 R activity. Molecular docking experiments indicated that a salt bridge, hydrogen-bonding, and hydrophobic interactions all contributed to interactions between inhibitors and H3 R.
Collapse
Affiliation(s)
- Gang Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huabin Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Song Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Sadek B, Saad A, Schwed JS, Weizel L, Walter M, Stark H. Anticonvulsant effects of isomeric nonimidazole histamine H 3 receptor antagonists. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3633-3651. [PMID: 27853355 PMCID: PMC5106240 DOI: 10.2147/dddt.s114147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α)-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Miriam Walter
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
39
|
Kokavec A. Migraine: A disorder of metabolism? Med Hypotheses 2016; 97:117-130. [PMID: 27876120 DOI: 10.1016/j.mehy.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The treatment and prevention of migraine within the last decade has become largely pharmacological. While there is little doubt that the advent of drugs (e.g. triptans) has helped many migraine sufferers to lead a normal life, there is still little knowledge with respect to the factors responsible for precipitating a migraine attack. Evidence from biochemical and behavioural studies from a number of disciplines is integrated to put forward the proposal that migraine is part of a cascade of events, which together act to protect the organism when confronted by a metabolic challenge.
Collapse
Affiliation(s)
- Anna Kokavec
- University of New England, School of Health, Armidale, NSW 2350, United States.
| |
Collapse
|
40
|
Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez AM, Morales-Figueroa GE, Arias-Montaño JA. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol Pharmacol 2016; 90:649-673. [PMID: 27563055 DOI: 10.1124/mol.116.104752] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Among the four G protein-coupled receptors (H1-H4) identified as mediators of the biologic effects of histamine, the H3 receptor (H3R) is distinguished for its almost exclusive expression in the nervous system and the large variety of isoforms generated by alternative splicing of the corresponding mRNA. Additionally, it exhibits dual functionality as autoreceptor and heteroreceptor, and this enables H3Rs to modulate the histaminergic and other neurotransmitter systems. The cloning of the H3R cDNA in 1999 by Lovenberg et al. allowed for detailed studies of its molecular aspects. In this work, we review the characteristics of the H3R, namely, its structure, constitutive activity, isoforms, signal transduction pathways, regional differences in expression and localization, selective agonists, antagonists and inverse agonists, dimerization with other neurotransmitter receptors, and the main presynaptic and postsynaptic effects resulting from its activation. The H3R has attracted interest as a potential drug target for the treatment of several important neurologic and psychiatric disorders, such as Alzheimer and Parkinson diseases, Gilles de la Tourette syndrome, and addiction.
Collapse
Affiliation(s)
- Gustavo Nieto-Alamilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ricardo Márquez-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ana-Maricela García-Gálvez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| |
Collapse
|
41
|
Samaranayake S, Abdalla A, Robke R, Nijhout HF, Reed MC, Best J, Hashemi P. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus. J Neurochem 2016; 138:374-83. [PMID: 27167463 DOI: 10.1111/jnc.13659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 12/01/2022]
Abstract
Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated.
Collapse
Affiliation(s)
- Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Aya Abdalla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Rhiannon Robke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, Ohio, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
42
|
Khanfar MA, Affini A, Lutsenko K, Nikolic K, Butini S, Stark H. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists. Front Neurosci 2016; 10:201. [PMID: 27303254 PMCID: PMC4884744 DOI: 10.3389/fnins.2016.00201] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 01/23/2023] Open
Abstract
With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet DuesseldorfDuesseldorf, Germany; Faculty of Pharmacy, The University of JordanAmman, Jordan
| | - Anna Affini
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Kiril Lutsenko
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade Belgrade, Serbia
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena Siena, Italy
| | - Holger Stark
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| |
Collapse
|
43
|
Lin JJ, Zhao TZ, Cai WK, Yang YX, Sun C, Zhang Z, Xu YQ, Chang T, Li ZY. Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition. Oncotarget 2016; 6:17107-20. [PMID: 25940798 PMCID: PMC4627295 DOI: 10.18632/oncotarget.3672] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
Histamine receptor 3 (H3R) is expressed in various tumors and correlated with malignancy and tumor proliferation. However, the role of H3R in tumor invasion and epithelial to mesenchymal transition (EMT) remains unknown. Here, we explored the H3R in the highly invasive glioblastoma (GBM) and U87MG cells. We found that H3R mRNA and protein levels were up-regulated in the GBM and glioma cell lines compared to normal brain tissue and astrocytes. In U87MG cell line, inhibition of H3R by siRNA or the antagonist ciproxifan (CPX) suppressed proliferation, invasiveness, and the expression of EMT activators (Snail, Slug and Twist). In addition, expression of epithelial markers (E-cadherin and ZO-1) was up-regulated and expression of mesenchymal markers (vimentin and N-cadherin) was down-regulated in vitro and in vivo in a xenograft model. In addition, we also showed that inhibition of H3R by siRNA or CPX inactivated the PI3K/Akt and MEK/ERK signaling pathways, while inhibition of Akt or ERK activity with antagonists or siRNAs suppressed H3R agonist (R)-(α)-(-)- methylhistamine dihydrobromide (RAMH) mediated invasion and reorganization of cadherin-household. In conclusion, overexpression of H3R is associated with glioma progression. Inhibition of H3R leads to suppressed invasion and EMT of GBM by inactivating the PI3K/Akt and MEK/ERK pathways in gliomas.
Collapse
Affiliation(s)
- Jia-Ji Lin
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tian-Zhi Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Yong-Xiang Yang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Qiao Xu
- Department of Pathology, The Fourth Military Medical University, Xi'an, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhu-Yi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
44
|
Lai X, Ye L, Liao Y, Jin L, Ma Q, Lu B, Sun Y, Shi Y, Zhou N. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms. J Neurochem 2016; 137:200-15. [DOI: 10.1111/jnc.13559] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Xiangru Lai
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Lingyan Ye
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Yuan Liao
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Lili Jin
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Qiang Ma
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Bing Lu
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Yi Sun
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Ying Shi
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Naiming Zhou
- Institute of Biochemistry; College of Life Science; Zijingang Campus; Zhejiang University; Hangzhou Zhejiang 310058 China
| |
Collapse
|
45
|
Schlicker E, Kathmann M. Role of the Histamine H 3 Receptor in the Central Nervous System. Handb Exp Pharmacol 2016; 241:277-299. [PMID: 27787717 DOI: 10.1007/164_2016_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The Gi/o protein-coupled histamine H3 receptor is distributed throughout the central nervous system including areas like cerebral cortex, hippocampus and striatum with the density being highest in the posterior hypothalamus, i.e. the area in which the histaminergic cell bodies are located. In contrast to the other histamine receptor subtypes (H1, H2 and H4), the H3 receptor is located presynaptically and shows a constitutive activity. In detail, H3 receptors are involved in the inhibition of histamine release (presynaptic autoreceptor), impulse flow along the histaminergic neurones (somadendritic autoreceptor) and histamine synthesis. Moreover, they occur as inhibitory presynaptic heteroreceptors on serotoninergic, noradrenergic, dopaminergic, glutamatergic, GABAergic and perhaps cholinergic neurones. This review shows for four functions of the brain that the H3 receptor represents a brake against the wake-promoting, anticonvulsant and anorectic effect of histamine (via postsynaptic H1 receptors) and its procognitive activity (via postsynaptic H1 and H2 receptors). Indeed, H1 agonists and H3 inverse agonists elicit essentially the same effects, at least in rodents; these effects are opposite in direction to those elicited by brain-penetrating H1 receptor antagonists in humans. Although the benefit for H3 inverse agonists for the symptomatic treatment of dementias is inconclusive, several members of this group have shown a marked potential for the treatment of disorders associated with excessive daytime sleepiness. In March 2016, the European Commission granted a marketing authorisation for pitolisant (WakixR) (as the first representative of the H3 inverse agonists) for the treatment of narcolepsy.
Collapse
Affiliation(s)
- Eberhard Schlicker
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Markus Kathmann
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| |
Collapse
|
46
|
García M, García-Pedraza JÁ, Villalón CM, Morán A. Pharmacological Evidence that Histamine H3Receptors Mediate Histamine-Induced Inhibition of the Vagal Bradycardic Out-flow in Pithed Rats. Basic Clin Pharmacol Toxicol 2015; 118:113-21. [DOI: 10.1111/bcpt.12475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/13/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Mónica García
- Laboratory of Pharmacology; Department of Physiology and Pharmacology; Faculty of Pharmacy; University of Salamanca; Salamanca Spain
| | - José Ángel García-Pedraza
- Laboratory of Pharmacology; Department of Physiology and Pharmacology; Faculty of Pharmacy; University of Salamanca; Salamanca Spain
| | | | - Asunción Morán
- Laboratory of Pharmacology; Department of Physiology and Pharmacology; Faculty of Pharmacy; University of Salamanca; Salamanca Spain
| |
Collapse
|
47
|
The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 2015; 106:3-12. [PMID: 26164344 DOI: 10.1016/j.neuropharm.2015.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/25/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
Abstract
The control of food intake and body weight is very complex. Key factors driving eating behavior are hunger and satiety that are controlled by an interplay of several central and peripheral neuroendocrine systems, environmental factors, the behavioral state and circadian rhythm, which all concur to alter homeostatic aspects of appetite and energy expenditure. Brain histamine plays a fundamental role in eating behavior as it induces loss of appetite and has long been considered a satiety signal that is released during food intake (Sakata et al., 1997). Animal studies have shown that brain histamine is released during the appetitive phase to provide a high level of arousal preparatory to feeding, but also mediates satiety. Furthermore, histamine regulates peripheral mechanisms such as glucose uptake and insulin function. Preclinical research indicates that activation of H1 and H3 receptors is crucial for the regulation of the diurnal rhythm of food consumption; furthermore, these receptors have been specifically recognized as mediators of energy intake and expenditure. Despite encouraging preclinical data, though, no brain penetrating H1 receptor agonists have been identified that would have anti-obesity effects. The potential role of the H3 receptor as a target of anti-obesity therapeutics was explored in clinical trials that did not meet up to the expectations or were interrupted (clinicaltrials.gov). Nonetheless, interesting results are emerging from clinical trials that evaluated the attenuating effect of betahistine (an H1 agonist/H3 antagonist) on metabolic side effects associated with chronic antipsychotics treatment. Aim of this review is to summarize recent results that suggest the clinical relevance of the histaminergic system for the treatment of feeding disorders and provide an up-to-date summary of preclinical research. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
|
48
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2015; 67:601-55. [PMID: 26084539 PMCID: PMC4485016 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
49
|
French JA, Schachter SC, Sirven J, Porter R. The Epilepsy Foundation's 4th Biennial Epilepsy Pipeline Update Conference. Epilepsy Behav 2015; 46:34-50. [PMID: 25922152 DOI: 10.1016/j.yebeh.2015.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
Abstract
On June 5 and 6, 2014, the Epilepsy Foundation held its 4th Biennial Epilepsy Pipeline Update Conference, an initiative of the Epilepsy Therapy Project, which showcased the most promising epilepsy innovations from health-care companies and academic laboratories dedicated to pioneering and advancing drugs, biologics, technologies, devices, and diagnostics for epilepsy. Speakers and attendees included emerging biotech and medical technology companies, major pharmaceutical and device companies, as well as investigators and innovators at the cutting-edge of epilepsy. The program included panel discussions on collaboration between small and large companies, how to get products in need of funding to the marketplace, who is currently funding epilepsy and CNS innovation, and how the NIH facilitates early-stage drug development. Finally, the conference featured the third annual "Shark Tank" competition. The presentations are summarized in this paper, which is followed by a compilation of the meeting poster abstracts.
Collapse
Affiliation(s)
- Jacqueline A French
- Department of Neurology, New York University Langone Medical Center, New York, NY, USA
| | - Steven C Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Consortia for Improving Medicine Through Innovation and Technology, Boston, MA, USA.
| | - Joseph Sirven
- Department of Neurology, Mayo Clinic Scottsdale, Scottsdale, AZ, USA
| | - Roger Porter
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Department of Pharmacology, USUHS, Bethesda, MD, USA
| |
Collapse
|
50
|
Lewis DY, Champion S, Wyper D, Dewar D, Pimlott S. Assessment of [125I]WYE-230949 as a novel histamine H3 receptor radiopharmaceutical. PLoS One 2014; 9:e115876. [PMID: 25542008 PMCID: PMC4277420 DOI: 10.1371/journal.pone.0115876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022] Open
Abstract
Histamine H3 receptor therapeutics have been proposed for several diseases such as schizophrenia, attention deficit hyperactivity disorder, Alzheimer's disease and obesity. We set out to evaluate the novel compound, [125I]WYE-230949, as a potential radionuclide imaging agent for the histamine H3 receptor in brain. [125I]WYE-230949 had a high in vitro affinity for the rat histamine H3 receptor (Kd of 6.9 nM). The regional distribution of [125I]WYE-230949 binding sites in rat brain, demonstrated by in vitro autoradiography, was consistent with the known distribution of the histamine H3 receptor. Rat brain uptake of intravenously injected [125I]WYE-230949 was low (0.11 %ID/g) and the ratio of specific: non-specific binding was less than 1.4, as determined by ex vivo autoradiography. In plasma, metabolism of [125I]WYE-230949 into a less lipophilic species occurred, such that less than 38% of the parent compound remained 30 minutes after injection. Brain uptake and metabolism of [125I]WYE-230949 were increased and specific binding was reduced in anaesthetised compared to conscious rats. [125I]WYE230949 is not a potential radiotracer for imaging rat histamine H3 receptors in vivo due to low brain uptake, in vivo metabolism of the parent compound and low specific binding.
Collapse
Affiliation(s)
- David Y. Lewis
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Sue Champion
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Wyper
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Deborah Dewar
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sally Pimlott
- Department of Clinical Physics, Greater Glasgow NHS Trust and University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|