1
|
Chen J, Jia Y, Zhong J, Zhang K, Dai H, He G, Li F, Zeng L, Fan C, Xu H. Novel mutation leading to splice donor loss in a conserved site of DMD gene causes Duchenne muscular dystrophy with cryptorchidism. J Med Genet 2024; 61:741-749. [PMID: 38621993 PMCID: PMC11287555 DOI: 10.1136/jmg-2024-109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND As one of the most common congenital abnormalities in male births, cryptorchidism has been found to have a polygenic aetiology according to previous studies of common variants. However, little is known about genetic predisposition of rare variants for cryptorchidism, since rare variants have larger effective size on diseases than common variants. METHODS In this study, a cohort of 115 Chinese probands with cryptorchidism was analysed using whole-genome sequencing, alongside 19 parental controls and 2136 unaffected men. Additionally, CRISPR-Cas9 editing of a conserved variant was performed in a mouse model, with MRI screening used to observe the phenotype. RESULTS In 30 of 115 patients (26.1%), we identified four novel genes (ARSH, DMD, MAGEA4 and SHROOM2) affecting at least five unrelated patients and four known genes (USP9Y, UBA1, BCORL1 and KDM6A) with the candidate rare pathogenic variants affecting at least two cases. Burden tests of rare variants revealed the genome-wide significances for newly identified genes (p<2.5×10-6) under the Bonferroni correction. Surprisingly, novel and known genes were mainly found on X chromosome (seven on X and one on Y) and all rare X-chromosomal segregating variants exhibited a maternal inheritance rather than de novo origin. CRISPR-Cas9 mouse modelling of a splice donor loss variant in DMD (NC_000023.11:g.32454661C>G), which resides in a conserved site across vertebrates, replicated bilateral cryptorchidism phenotypes, confirmed by MRI at 4 and 10 weeks. The movement tests further revealed symptoms of Duchenne muscular dystrophy (DMD) in transgenic mice. CONCLUSION Our results revealed the role of the DMD gene mutation in causing cryptorchidism. The results also suggest that maternal-X inheritance of pathogenic defects could have a predominant role in the development of cryptorchidism.
Collapse
Affiliation(s)
- Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Yangying Jia
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongzheng Dai
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuping Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zeng
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li N, Xiahou Z, Li Z, Zhang Z, Song Y, Wang Y. Identification of hub genes and therapeutic siRNAs to develop novel adjunctive therapy for Duchenne muscular dystrophy. BMC Musculoskelet Disord 2024; 25:386. [PMID: 38762732 PMCID: PMC11102231 DOI: 10.1186/s12891-024-07206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/15/2024] [Indexed: 05/20/2024] Open
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by various defects in the dystrophin gene and still no universal therapy. This study aims to identify the hub genes unrelated to excessive immune response but responsible for DMD progression and explore therapeutic siRNAs, thereby providing a novel treatment. METHODS Top ten hub genes for DMD were identified from GSE38417 dataset by using GEO2R and PPI networks based on Cytoscape analysis. The hub genes unrelated to excessive immune response were identified by GeneCards, and their expression was further verified in mdx and C57 mice at 2 and 4 months (M) by (RT-q) PCR and western blotting. Therapeutic siRNAs were deemed as those that could normalize the expression of the validated hub genes in transfected C2C12 cells. RESULTS 855 up-regulated and 324 down-regulated DEGs were screened from GSE38417 dataset. Five of the top 10 hub genes were considered as the candidate genes unrelated to excessive immune response, and three of these candidates were consistently and significantly up-regulated in mdx mice at 2 M and 4 M when compared with age-matched C57 mice, including Col1a2, Fbn1 and Fn1. Furthermore, the three validated up-regulated candidate genes can be significantly down-regulated by three rational designed siRNA (p < 0.0001), respectively. CONCLUSION COL1A2, FBN1 and FN1 may be novel biomarkers for DMD, and the siRNAs designed in our study were help to develop adjunctive therapy for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Na Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
- School of Sports Science, Beijing Sport University, Beijing, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Zhuo Li
- School of Sports Science, Beijing Sport University, Beijing, China
| | - Zilian Zhang
- School of Sports Science, Beijing Sport University, Beijing, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
Svirsky R, Sharabi-Nov A, Sagi T, Meiri H, Adi O, Kugler N, Maymon R. High sensitivity and specificity in fetal gender identification in the first trimester, using ultrasound and Noninvasive Prenatal Screening (NIPS) in twin pregnancies, a prospective study. BMC Pregnancy Childbirth 2023; 23:812. [PMID: 37993805 PMCID: PMC10664379 DOI: 10.1186/s12884-023-06133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Determination of the fetal gender in the first trimester is important in twin pregnancy cases of familial X-linked genetic syndromes and helps determine chorionicity. We assessed and compared the accuracy of first-trimester ultrasound scans, and cell-free fetal DNA (CfDNA) in determining fetal gender in the first trimester of twin pregnancies. METHODS Women with twin pregnancies were recruited prospectively during the first trimester. Fetal gender was determined using both ultrasound scans and CfDNA screening. Both results were compared to the newborn gender after delivery. RESULTS A total of 113 women with twin pregnancies were enrolled. There was 100% sensitivity and specificity in Y chromosome detection using CfDNA. Gender assignment using ultrasound in any first-trimester scans was 79.7%. Accuracy level increased from 54.2% in CRL 45-54 mm to 87.7% in CRL 55-67 mm and 91.5% in CRL 67-87 mm. Male fetuses had significantly higher chances of a gender assignment error compared to female fetuses, odds ratio = 23.574 (CI 7.346 - 75.656). CONCLUSIONS CfDNA is highly sensitive and specific in determining the presence of the Y chromosome in twin pregnancies in the first trimester. Between CRL 55-87 mm, ultrasound scanning offers a highly accurate determination of fetal gender in twin pregnancies.
Collapse
Affiliation(s)
- Ran Svirsky
- Department of Obstetrics and Gynecology, Genetic Unit, Samson Assuta Ashdod University Hospital, Ashdod, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Department of Obstetrics and Gynecology, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel.
| | - Adi Sharabi-Nov
- Department of Statistics, Ziv Medical Center, Safed and Tel Hai Academic College, Tel Hai, Israel
| | - Tal Sagi
- Department of Obstetrics and Gynecology, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Hamutal Meiri
- PreTwin Screen Consortium and TeleMarpe Ltd, Tel Aviv, Israel
| | - Orenstein Adi
- Department of Obstetrics and Gynecology, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Nadav Kugler
- Department of Obstetrics and Gynecology, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Maymon
- Department of Obstetrics and Gynecology, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Roy A, Koike TE, Joshi AS, Tomaz da Silva M, Mathukumalli K, Wu M, Kumar A. Targeted regulation of TAK1 counteracts dystrophinopathy in a DMD mouse model. JCI Insight 2023; 8:e164768. [PMID: 37071470 PMCID: PMC10322678 DOI: 10.1172/jci.insight.164768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Muscular dystrophies make up a group of genetic neuromuscular disorders that involve severe muscle wasting. TGF-β-activated kinase 1 (TAK1) is an important signaling protein that regulates cell survival, growth, and inflammation. TAK1 has been recently found to promote myofiber growth in the skeletal muscle of adult mice. However, the role of TAK1 in muscle diseases remains poorly understood. In the present study, we have investigated how TAK1 affects the progression of dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). TAK1 is highly activated in the dystrophic muscle of mdx mice during the peak necrotic phase. While targeted inducible inactivation of TAK1 inhibits myofiber injury in young mdx mice, it results in reduced muscle mass and contractile function. TAK1 inactivation also causes loss of muscle mass in adult mdx mice. By contrast, forced activation of TAK1 through overexpression of TAK1 and TAB1 induces myofiber growth without having any deleterious effect on muscle histopathology. Collectively, our results suggest that TAK1 is a positive regulator of skeletal muscle mass and that targeted regulation of TAK1 can suppress myonecrosis and ameliorate disease progression in DMD.
Collapse
|
5
|
Hahn D, Quick JD, Thompson BR, Crabtree A, Hackel BJ, Bates FS, Metzger JM. Rapid restitution of contractile dysfunction by synthetic copolymers in dystrophin-deficient single live skeletal muscle fibers. Skelet Muscle 2023; 13:9. [PMID: 37208786 PMCID: PMC10197332 DOI: 10.1186/s13395-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, a cytoskeletal protein essential for the preservation of the structural integrity of the muscle cell membrane. DMD patients develop severe skeletal muscle weakness, degeneration, and early death. We tested here amphiphilic synthetic membrane stabilizers in mdx skeletal muscle fibers (flexor digitorum brevis; FDB) to determine their effectiveness in restoring contractile function in dystrophin-deficient live skeletal muscle fibers. After isolating FDB fibers via enzymatic digestion and trituration from thirty-three adult male mice (9 C57BL10, 24 mdx), these were plated on a laminin-coated coverslip and treated with poloxamer 188 (P188; PEO75-PPO30-PEO75; 8400 g/mol), architecturally inverted triblock (PPO15-PEO200-PPO15, 10,700 g/mol), and diblock (PEO75-PPO16-C4, 4200 g/mol) copolymers. We assessed the twitch kinetics of sarcomere length (SL) and intracellular Ca2+ transient by Fura-2AM by field stimulation (25 V, 0.2 Hz, 25 °C). Twitch contraction peak SL shortening of mdx FDB fibers was markedly depressed to 30% of the dystrophin-replete control FDB fibers from C57BL10 (P < 0.001). Compared to vehicle-treated mdx FDB fibers, copolymer treatment robustly and rapidly restored the twitch peak SL shortening (all P < 0.05) by P188 (15 μM = + 110%, 150 μM = + 220%), diblock (15 μM = + 50%, 150 μM = + 50%), and inverted triblock copolymer (15 μM = + 180%, 150 μM = + 90%). Twitch peak Ca2+ transient from mdx FDB fibers was also depressed compared to C57BL10 FDB fibers (P < 0.001). P188 and inverted triblock copolymer treatment of mdx FDB fibers increased the twitch peak Ca2+ transient (P < 0.001). This study shows synthetic block copolymers with varied architectures can rapidly and highly effectively enhance contractile function in live dystrophin-deficient skeletal muscle fibers.
Collapse
Affiliation(s)
- Dongwoo Hahn
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph D Quick
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Adelyn Crabtree
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Benjamin J Hackel
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Frank S Bates
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Walker SG, Langland CJ, Viles J, Hecker LA, Wallrath LL. Drosophila Models Reveal Properties of Mutant Lamins That Give Rise to Distinct Diseases. Cells 2023; 12:cells12081142. [PMID: 37190051 DOI: 10.3390/cells12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Sydney G Walker
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent Researcher, Gowrie, IA 50543, USA
| | - Laura A Hecker
- Department of Biology, Clarke University, Dubuque, IA 52001, USA
| | - Lori L Wallrath
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Frederick CE, Zenisek D. Ribbon Synapses and Retinal Disease: Review. Int J Mol Sci 2023; 24:5090. [PMID: 36982165 PMCID: PMC10049380 DOI: 10.3390/ijms24065090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Synaptic ribbons are presynaptic protein complexes that are believed to be important for the transmission of sensory information in the visual system. Ribbons are selectively associated with those synapses where graded changes in membrane potential drive continuous neurotransmitter release. Defective synaptic transmission can arise as a result of the mutagenesis of a single ribbon component. Visual diseases that stem from malfunctions in the presynaptic molecular machinery of ribbon synapses in the retina are rare. In this review, we provide an overview of synaptopathies that give rise to retinal malfunction and our present understanding of the mechanisms that underlie their pathogenesis and discuss muscular dystrophies that exhibit ribbon synapse involvement in the pathology.
Collapse
Affiliation(s)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208026, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther 2023; 243:108357. [PMID: 36764462 DOI: 10.1016/j.pharmthera.2023.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Skeletal muscle contraction is essential for the movement of our musculoskeletal system. Tendons and ligaments that connect the skeletal muscles to bones in the correct position at the appropriate time during development are also required for movement to occur. Since the musculoskeletal system is essential for maintaining basic bodily functions as well as enabling interactions with the environment, dysfunctions of these tissues due to disease can significantly reduce quality of life. Unfortunately, as people live longer, skeletal muscle and tendon/ligament diseases are becoming more common. Sarcopenia, a disease in which skeletal muscle function declines, and tendinopathy, which involves chronic tendon dysfunction, are particularly troublesome because there have been no significant advances in their treatment. In this review, we will summarize previous reports on the development and regeneration/healing of skeletal muscle and tendon tissues, including a discussion of the molecular and cellular mechanisms involved that may be used as potential therapeutic targets.
Collapse
|
9
|
Abstract
Viltolarsen is a phosphorodiamidate morpholino antisense oligonucleotide (PMO) designed to skip exon 53 of the DMD gene for the treatment of Duchenne muscular dystrophy (DMD), one of the most common lethal genetic disorders characterized by progressive degeneration of skeletal muscles and cardiomyopathy. It was developed by Nippon Shinyaku in collaboration with the National Center of Neurology and Psychiatry (NCNP) in Japan based on the preclinical studies conducted in the DMD dog model at the NCNP. After showing hopeful results in pre-clinical trials and several clinical trials across North America and Japan, it received US Food and Drug Administration (FDA) approval for DMD in 2020. Viltolarsen restores the reading frame of the DMD gene by skipping exon 53 and produces a truncated but functional form of dystrophin. It can treat approximately 8-10% of the DMD patient population. This paper aims to summarize the development of viltolarsen from preclinical trials to clinical trials to, finally, FDA approval, and discusses the challenges that come with fighting DMD using antisense therapy.
Collapse
Affiliation(s)
- Rohini Roy Roshmi
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, Canada.
| |
Collapse
|
10
|
Sheri N, Yokota T. In Vivo Evaluation of Exon 51 Skipping in hDMD/Dmd-null Mice. Methods Mol Biol 2023; 2640:327-336. [PMID: 36995605 DOI: 10.1007/978-1-0716-3036-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked condition that affects 1 in 3500-6000 newborn boys a year. An out-of-frame mutation in the DMD gene typically causes the condition. Exon skipping therapy is an emerging approach that uses antisense oligonucleotides (ASOs), short synthetic DNA-like molecules that can splice out mutated or frame-disrupting mRNA fragments, to restore the reading frame. The restored reading frame will be in-frame and will produce a truncated, yet functional protein. ASOs called phosphorodiamidate morpholino oligomers (PMO), including eteplirsen, golodirsen, and viltolarsen, have recently been approved by the US Food and Drug Administration as the first ASO-based drugs for DMD. ASO-facilitated exon skipping has been extensively studied in animal models. An issue that arises with these models is that the DMD sequence differs from the human DMD sequence. A solution to this issue is to use double mutant hDMD/Dmd-null mice, which only carry the human DMD sequence and are null for the mouse Dmd sequence. Here, we describe intramuscular and intravenous injections of an ASO to skip exon 51 in hDMD/Dmd-null mice, and the evaluation of its efficacy in vivo.
Collapse
Affiliation(s)
- Narin Sheri
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Kariyawasam D, D’Silva A, Mowat D, Russell J, Sampaio H, Jones K, Taylor P, Farrar M. Incidence of Duchenne muscular dystrophy in the modern era; an Australian study. Eur J Hum Genet 2022; 30:1398-1404. [PMID: 35754057 PMCID: PMC9712523 DOI: 10.1038/s41431-022-01138-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an X-linked recessive condition is maternally inherited in two-thirds of affected boys. It is important to establish carrier status of female relatives to restore reproductive confidence for non-carriers and facilitate reproductive options and cardiac surveillance for carriers. This study investigates disease incidence within an Australian model of cascade screening and evolving genetic diagnostic technologies. A retrospective population-based cohort study of all genetically and/or histopathologically confirmed males with DMD, born in New South Wales and the Australian Capital Territory was undertaken from 2002-2012. Cases were identified using state-wide molecular laboratory and clinical databases. The annual disease incidence and "theoretically" preventable cases were extrapolated over the study period. Proband genotype/phenotype, pedigree analysis, carrier-risk and extent of cascade screening were also determined. The cumulative incidence of disease was 19.7 per 100,000 male live births and 1 in 5076 live born males were diagnosed with DMD. Differences in disease incidence were not statistically different when compared between 2002-2007 and 2008-2012 (incidence rate ratio = 1.13, 95% CI 0.76-1.69, p = 0.52). The incidence rate ratio of theoretically preventable cases did not significantly change between 2002-2007 and 2008-2012 (incidence rate ratio = 2.07, 95% CI 0.58-9.21, p = 0.23). Current diagnostic and cascade screening models have limitations in their impact on disease incidence, due to a spectrum of logistical, patient and condition related factors. Innovative approaches to reduce DMD incidence may be better achieved by preconception or early pregnancy carrier screening, prenatal exome sequencing and newborn screening.
Collapse
Affiliation(s)
- Didu Kariyawasam
- Department of Neurology, Sydney Children's Hospital, Randwick, Sydney, NSW, Australia. .,School of Clinical Medicine, UNSW Medicine and Health, Randwick Clinical Campus, Discipline of Paediatrics, University of New South Wales, Sydney, NSW, Australia.
| | - Arlene D’Silva
- grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Medicine and Health, Randwick Clinical Campus, Discipline of Paediatrics, University of New South Wales, Sydney, NSW Australia
| | - David Mowat
- grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Medicine and Health, Randwick Clinical Campus, Discipline of Paediatrics, University of New South Wales, Sydney, NSW Australia ,grid.414009.80000 0001 1282 788XCentre for Clinical Genetics, Sydney Children’s Hospital, Randwick, Sydney, NSW Australia
| | - Jacqui Russell
- grid.414009.80000 0001 1282 788XCentre for Clinical Genetics, Sydney Children’s Hospital, Randwick, Sydney, NSW Australia
| | - Hugo Sampaio
- grid.414009.80000 0001 1282 788XDepartment of Neurology, Sydney Children’s Hospital, Randwick, Sydney, NSW Australia
| | - Kristi Jones
- grid.413973.b0000 0000 9690 854XDepartment of Clinical Genetics, Children’s Hospital Westmead, Westmead, NSW Australia ,grid.1013.30000 0004 1936 834XPaediatrics and Child Health, Sydney Medical School, University of Sydney NSW Australia, Sydney, NSW Australia
| | - Peter Taylor
- Genomic Diagnostics, Healius Pathology, Melbourne, Vic Australia
| | - Michelle Farrar
- grid.414009.80000 0001 1282 788XDepartment of Neurology, Sydney Children’s Hospital, Randwick, Sydney, NSW Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Medicine and Health, Randwick Clinical Campus, Discipline of Paediatrics, University of New South Wales, Sydney, NSW Australia
| |
Collapse
|
12
|
Strategies for Bottlenecks of rAAV-Mediated Expression in Skeletal and Cardiac Muscle of Duchenne Muscular Dystrophy. Genes (Basel) 2022; 13:genes13112021. [DOI: 10.3390/genes13112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Gene therapy using the adeno-associated virus (rAAV) to deliver mini/micro- dystrophin is the current promising strategy for Duchenne Muscular Dystrophy (DMD). However, the further transformation of this strategy still faces many “bottlenecks”. Most gene therapies are only suitable for infants with strong muscle cell regeneration and immature immune system, and the treatment depends heavily on the high dose of rAAV. However, high-dose rAAV inevitably causes side effects such as immune response and acute liver toxicity. Therefore, how to reduce the degree of fibrosis and excessive immune response in older patients and uncouple the dependence association between therapeutic effect and high dose rAAV are crucial steps for the transformation of rAAV-based gene therapy. The article analyzes the latest research and finds that the application of utrophin, the homologous protein of dystrophin, could avoid the immune response associated with dystrophin, and the exploration of methods to improve the expression level of mini/micro-utrophin in striated muscle, combined with the novel MyoAAV with high efficiency and specific infection of striated muscle, is expected to achieve the same therapeutic efficacy under the condition of reducing the dose of rAAV. Furthermore, the delivery of allogeneic cardio sphere-derived cells (CDCs) with anti-inflammatory and anti-fibrotic characteristics combined with immune suppression can provide a continuous and appropriate “window period” for gene therapy. This strategy can expand the number of patients who could benefit from gene therapy.
Collapse
|
13
|
A New Method of Myostatin Inhibition in Mice via Oral Administration of Lactobacillus casei Expressing Modified Myostatin Protein, BLS-M22. Int J Mol Sci 2022; 23:ijms23169059. [PMID: 36012334 PMCID: PMC9409196 DOI: 10.3390/ijms23169059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.
Collapse
|
14
|
Ponzetti M, Ucci A, Maurizi A, Giacchi L, Teti A, Rucci N. Lipocalin 2 Influences Bone and Muscle Phenotype in the MDX Mouse Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23020958. [PMID: 35055145 PMCID: PMC8780970 DOI: 10.3390/ijms23020958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Lipocalin 2 (Lcn2) is an adipokine involved in bone and energy metabolism. Its serum levels correlate with bone mechanical unloading and inflammation, two conditions representing hallmarks of Duchenne Muscular Dystrophy (DMD). Therefore, we investigated the role of Lcn2 in bone loss induced by muscle failure in the MDX mouse model of DMD. We found increased Lcn2 serum levels in MDX mice at 1, 3, 6, and 12 months of age. Consistently, Lcn2 mRNA was higher in MDX versus WT muscles. Immunohistochemistry showed Lcn2 expression in mononuclear cells between muscle fibres and in muscle fibres, thus confirming the gene expression results. We then ablated Lcn2 in MDX mice, breeding them with Lcn2−/− mice (MDXxLcn2−/−), resulting in a higher percentage of trabecular volume/total tissue volume compared to MDX mice, likely due to reduced bone resorption. Moreover, MDXxLcn2−/− mice presented with higher grip strength, increased intact muscle fibres, and reduced serum creatine kinase levels compared to MDX. Consistently, blocking Lcn2 by treating 2-month-old MDX mice with an anti-Lcn2 monoclonal antibody (Lcn2Ab) increased trabecular volume, while reducing osteoclast surface/bone surface compared to MDX mice treated with irrelevant IgG. Grip force was also increased, and diaphragm fibrosis was reduced by the Lcn2Ab. These results suggest that Lcn2 could be a possible therapeutic target to treat DMD-induced bone loss.
Collapse
|
15
|
Rocha CT, Escolar DM. Treatment and Management of Muscular Dystrophies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kiriaev L, Kueh S, Morley JW, North KN, Houweling PJ, Head SI. Lifespan Analysis of Dystrophic mdx Fast-Twitch Muscle Morphology and Its Impact on Contractile Function. Front Physiol 2021; 12:771499. [PMID: 34950049 PMCID: PMC8689589 DOI: 10.3389/fphys.2021.771499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mdx mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4–22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mdx mice. In old age groups, there was minimal force recovery ∼24% after 120 min, correlated with a dramatic increase in the number and complexity of branched fibers. This data supports our two-phase model where a “tipping point” is reached when branched fibers rupture irrevocably on EC. These findings have important implications for pre-clinical drug studies and genetic rescue strategies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- *Correspondence: Leonit Kiriaev,
| | - Sindy Kueh
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Kathryn N. North
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Peter J. Houweling
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Stewart I. Head
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Kiriaev L, Kueh S, Morley JW, Houweling PJ, Chan S, North KN, Head SI. Dystrophin-negative slow-twitch soleus muscles are not susceptible to eccentric contraction induced injury over the lifespan of the mdx mouse. Am J Physiol Cell Physiol 2021; 321:C704-C720. [PMID: 34432537 DOI: 10.1152/ajpcell.00122.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration. Previously, using the mdx mouse model of DMD, we have proposed that once the number and complexity of branched fibers present in dystrophic fast-twitch EDL muscle surpasses a stable level, we term the "tipping point," the branches, in and of themselves, mechanically weaken the muscle by rupturing when subjected to high forces during eccentric contractions. Here, we use the slow-twitch soleus muscle from the dystrophic mdx mouse to study prediseased "periambulatory" dystrophy at 2-3 wk, the peak regenerative "adult" phase at 6-9 wk, and "old" at 58-112 wk. Using isolated mdx soleus muscles, we examined contractile function and response to eccentric contraction correlated with the amount and complexity of regenerated branched fibers. The intact muscle was enzymatically dispersed into individual fibers in order to count fiber branching and some muscles were optically cleared to allow laser scanning confocal microscopy. We demonstrate throughout the lifespan of the mdx mouse that dystrophic slow-twitch soleus muscle is no more susceptible to eccentric contraction-induced injury than age-matched littermate controls and that this is correlated with a reduction in the number and complexity of branched fibers compared with fast-twitch dystrophic EDL muscles.
Collapse
MESH Headings
- Age Factors
- Animals
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Kinetics
- Male
- Mice, Inbred mdx
- Muscle Contraction
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Strength
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mutation
- Mice
Collapse
Affiliation(s)
- Leonit Kiriaev
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sindy Kueh
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Stephen Chan
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Nagabushana D, Polavarapu K, Bardhan M, Arunachal G, Gunasekaran S, Preethish-Kumar V, Anjanappa RM, Thomas P, Sadasivan A, Vengalil S, Nashi S, Chawla T, Warrier M, Keerthipriya M, Raju S, Mohan D, Nalini A. Comparison of The Carrier Frequency of Pathogenic Variants of DMD Gene in an Indian Cohort. J Neuromuscul Dis 2021; 8:525-535. [PMID: 33843695 DOI: 10.3233/jnd-210658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked disorder caused due to large deletions, duplications,and small pathogenic variants. This article compares the carrier frequency of different pathogenic variants in the DMD gene for the first time in an Indian cohort. METHODS Ninety-one mothers of genetically confirmed DMD probands are included in this study. Pathogenic variants in the DMD gene in probands were detected by multiplex ligation-dependent probe amplification (MLPA) or next-generation sequencing (NGS). Maternal blood samples were evaluated either by MLPA or Sanger sequencing. The demographic and clinical details for screening of muscle weakness and cardiomyopathy were collected from the confirmed carriers. RESULTS Out of 91 probands, large deletions and duplications were identified in 46 and 6 respectively, while 39 had small variants. Among the small variants, substitutions predicted to cause nonsense mutations were the most common (61.5%), followed by frameshift causing small insertion/deletions (25.6%) and splice affecting intronic variants (12.8%). Notably, 19 novel small variants predicted to be disease-causing were identified. Of the 91 mothers, 53 (58.7%) were confirmed to be carriers. Exonic deletions had a significantly lower carrier frequency of 47.8% as compared to small variants (64.1%). The mean age of the carriers at evaluation was 30 years. Among the carriers, two were symptomatic with onset in the 4th decade, manifesting with progressive proximal muscle weakness and dilated cardiomyopathy. CONCLUSION Carrier frequency of small pathogenic variants differs significantly from large deletions. Small pathogenic variants are more commonly inherited, whereas large deletions arise de novo.
Collapse
Affiliation(s)
- Divya Nagabushana
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.,Children's Hospital of Eastern Ontario Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, ON, Canada
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Swetha Gunasekaran
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Ram Murthy Anjanappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - PriyaTreesa Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun Sadasivan
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Tanushree Chawla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Manjusha Warrier
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Muddasu Keerthipriya
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Dhaarini Mohan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
19
|
Zou X, Ouyang H, Pang D, Han R, Tang X. Pathological alterations in the gastrointestinal tract of a porcine model of DMD. Cell Biosci 2021; 11:131. [PMID: 34266495 PMCID: PMC8281460 DOI: 10.1186/s13578-021-00647-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Patients with Duchenne muscular dystrophy (DMD) develop severe skeletal and cardiac muscle pathologies, which result in premature death. Therefore, the current therapeutic efforts are mainly targeted to correct dystrophin expression in skeletal muscle and heart. However, it was reported that DMD patients may also exhibit gastrointestinal and nutritional problems. How the pathological alterations in gastrointestinal tissues contribute to the disease are not fully explored. Results Here we employed the CRISPR/Cas9 system combined with somatic nuclear transfer technology (SCNT) to establish a porcine model of DMD and explored their pathological alterations. We found that genetic disruption of dystrophin expression led to morphological gastrointestinal tract alterations, weakened the gastrointestinal tract digestion and absorption capacity, and eventually led to malnutrition and gastric dysfunction in the DMD pigs. Conclusions This work provides important insights into the pathogenesis of DMD and highlights the need to consider the gastrointestinal dysfunction as an additional therapeutic target for DMD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00647-9.
Collapse
Affiliation(s)
- Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
20
|
Zhong X, Cui S, Liu L, Yang Y, Kong X. DMD/BMD prenatal diagnosis and treatment expectation in a single centre in China for 15 years. BMC Med Genomics 2021; 14:181. [PMID: 34238289 PMCID: PMC8268296 DOI: 10.1186/s12920-021-01024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE DMD/BMD prenatal diagnosis for 931 foetuses. BACKGROUND DMD is the most common fatal X-linked recessive muscular disease. There is no effective clinical treatment method at present. Accurate gene diagnosis and prenatal diagnosis technology are important ways for early detection, early prevention and early treatment. METHODS A total of 931 prenatal diagnoses were performed for pregnant women with a definite family history of DMD or a history of DMD childbirth between 2005 and 2019. This report may be considered the largest DMD prenatal diagnosis report in a single centre worldwide. Multiple ligation-dependent probe amplification (MLPA) and next-generation sequencing were used in combination. Techniques and short tandem repeat (STR) linkage analysis were used to determine the location of the DMD gene mutation in the pregnant woman and then to detect the DMD gene in the foetuses. RESULTS There were 872 families in our study. Among all 931 foetuses, 20.73% (193/931) were males expected to develop DMD and 16.33% (152/931) were female carriers. In addition, gonadal mosaicism was observed in 5 mothers, and gene recombination was identified in three foetuses. The results of the prenatal diagnosis were consistent with the results of the CPK analysis, and the results of the prenatal diagnosis were 100% accurate. CONCLUSIONS MLPA and Sanger sequencing, when combined with STR linkage analyses, can provide an accurate and rapid prenatal diagnosis. Due to the high de novo rate, prenatal diagnosis and genetic counselling should be given great attention.
Collapse
Affiliation(s)
- Xingjian Zhong
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China
| | - Siying Cui
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China
| | - Lina Liu
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China
| | - Yuxia Yang
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China.
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China.
| |
Collapse
|
21
|
Shastry A, Aravind S, Sunil M, Ramesh K, Ashley B, T. N, Ramprasad VL, Gupta R, Seshagiri S, Nongthomba U, Phalke S. Matrilineal analysis of mutations in the DMD gene in a multigenerational South Indian cohort using DMD gene panel sequencing. Mol Genet Genomic Med 2021; 9:e1633. [PMID: 33960727 PMCID: PMC8172192 DOI: 10.1002/mgg3.1633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterised by progressive irreversible muscle weakness, primarily of the skeletal and the cardiac muscles. DMD is characterised by mutations in the dystrophin gene, resulting in the absence or sparse quantities of dystrophin protein. A precise and timely molecular detection of DMD mutations encourages interventions such as carrier genetic counselling and in undertaking therapeutic measures for the DMD patients. RESULTS In this study, we developed a 2.1 Mb custom DMD gene panel that spans the entire DMD gene, including the exons and introns. The panel also includes the probes against 80 additional genes known to be mutated in other muscular dystrophies. This custom DMD gene panel was used to identify single nucleotide variants (SNVs) and large deletions with precise breakpoints in 77 samples that included 24 DMD patients and their matrilineage across four generations. We used this panel to evaluate the inheritance pattern of DMD mutations in maternal subjects representing 24 DMD patients. CONCLUSION Here we report our observations on the inheritance pattern of DMD gene mutations in matrilineage samples across four generations. Additionally, our data suggest that the DMD gene panel designed by us can be routinely used as a single genetic test to identify all DMD gene variants in DMD patients and the carrier mothers.
Collapse
Affiliation(s)
- Arun Shastry
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | - Sankaramoorthy Aravind
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
- Indian Institute of Science (IISc)BangaloreIndia
| | | | - Keerthi Ramesh
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | - Berty Ashley
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | | | | | | | | | | | - Sameer Phalke
- MedGenome LabsBangaloreIndia
- SciGenom Labs Pvt LtdCochinIndia
| |
Collapse
|
22
|
Botzenhart UU, Keil C, Tsagkari E, Zeidler-Rentzsch I, Gredes T, Gedrange T. Influence of botulinum toxin A on craniofacial morphology after injection into the right masseter muscle of dystrophin deficient (mdx-) mice. Ann Anat 2021; 236:151715. [PMID: 33675949 DOI: 10.1016/j.aanat.2021.151715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Severe craniofacial and dental abnormalities, typical for patients with progressive Duchenne muscular dystrophy (DMD), are an exellcent demonstration of Melvin L. Moss "functional matrix theory", highlighting the influence of muscle tissue on craniofacial growth and morphology. However, the currently best approved animal model for investigation of this interplay is the mdx-mouse, which offers only a limited time window for research, due to the ability of muscle regeneration, in contrast to the human course of the disease. The aim of this study was to evaluate craniofacial morphology after BTX-A induced muscle paralysis in C57Bl- and mdx-mice, to prove the suitability of BTX-A intervention to inhibit muscle regeneration in mdx-mice and thus, mimicking the human course of the DMD disease. METHODS Paralysis of the right masseter muscle was induced in 100 days old C57Bl- and mdx-mice by a single specific intramuscular BTX-A injection. Mice skulls were obtained at 21 days and 42 days after BTX-A injection and 3D radiological evaluation was performed in order to measure various craniofacial dimensions in the sagittal, transversal and vertical plane. Statstical analysis were performed using SigmaStat®Version 3.5. In case of normal distribution, unpaired t-test and otherwise the Mann-Whitney-U test was applied. A statistical significance was given in case of p ≤ 0.05. RESULTS In contrast to C57Bl-mice, in mdx-mice, three weeks after BTX-A treatment a significant decrease of skull dimensions was noted in most of the measurements followed by a significant increase at the second investigation period. CONCLUSIONS BTX-A can induce changes in craniofacial morphology and presumably partially inhibit muscle regeneration in mdx-mice, but cannot completely intensify craniofacial effects elicited by dystrophy. Further research is necessary in order to fully understand muscle-bone interplay after BTX-A injection into dystrophic muscles.
Collapse
Affiliation(s)
| | - Christiane Keil
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Eirini Tsagkari
- Department of Orthodontics, Faculty of Dentistry School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ines Zeidler-Rentzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gredes
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gedrange
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| |
Collapse
|
23
|
Abstract
Duchenne muscular dystrophy is a severe, progressive, muscle-wasting disease that leads to difficulties with movement and, eventually, to the need for assisted ventilation and premature death. The disease is caused by mutations in DMD (encoding dystrophin) that abolish the production of dystrophin in muscle. Muscles without dystrophin are more sensitive to damage, resulting in progressive loss of muscle tissue and function, in addition to cardiomyopathy. Recent studies have greatly deepened our understanding of the primary and secondary pathogenetic mechanisms. Guidelines for the multidisciplinary care for Duchenne muscular dystrophy that address obtaining a genetic diagnosis and managing the various aspects of the disease have been established. In addition, a number of therapies that aim to restore the missing dystrophin protein or address secondary pathology have received regulatory approval and many others are in clinical development.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology and Department of Neurology, School of Medicine; Department of Biomedical Sciences, College of Veterinary Medicine; Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Eugenio Mercuri
- Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
- Peadiatric Neurology, Catholic University, Rome, Italy
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
24
|
Tyagi R, Arvind H, Goyal M, Anand A, Mohanty M. Working Memory Alterations Plays an Essential Role in Developing Global Neuropsychological Impairment in Duchenne Muscular Dystrophy. Front Psychol 2021; 11:613242. [PMID: 33519636 PMCID: PMC7843380 DOI: 10.3389/fpsyg.2020.613242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background Neuropsychological profile of Indian Duchenne muscular dystrophy (DMD) subjects remains unidentified and needs to be evaluated. Methods A total of 69 DMD and 66 controls were subjected to detailed intelligence and neuropsychological assessment. The factor indexes were derived from various components of Malin's Intelligence Scale for Indian Children (MISIC) and Rey Auditory Verbal Learning Test (RAVLT). Results Poor verbal and visual memory profiles were demonstrated by DMDs, which include RAVLT-immediate recall (IR) (p = 0.042), RAVLT-delayed recall (DR) (p = 0.009), Rey-Osterrieth complex figure test (RCFT)-IR (p = 0.001), and RCFT-DR (p = 0.001). RAVLT-memory efficiency index demonstrated poor verbal memory efficiency (p = 0.008). Significant differences in the functioning of working memory axis [RAVLT T1 (p = 0.015), recency T1 (p = 0.004), Digit Span Backward (p = 0.103)] were observed along with reduced performance in visuomotor coordination, visuospatial, and visual recognition abilities. Block designing efficiency index and attention fraction showed a normal performance in DMD kids. Conclusion Working memory deficits were found to be the crucial element of cognitive functioning in DMD cases. Working memory interventions may be beneficial to improve the neuropsychological profile in DMD.
Collapse
Affiliation(s)
- Rahul Tyagi
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harshita Arvind
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manju Mohanty
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
25
|
Wang C, Lv H, Xu X, Ma Y, Li Q. Clinical characteristics and gene mutation analysis of an adult patient with ETFDH‑related multiple acyl‑CoA dehydrogenase deficiency. Mol Med Rep 2020; 22:4396-4402. [PMID: 33000234 PMCID: PMC7533516 DOI: 10.3892/mmr.2020.11524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/27/2020] [Indexed: 11/06/2022] Open
Abstract
Multiple acyl‑CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive disorder of fatty acid metabolism caused by defects in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH). These defects are mainly classified into the neonatal and late‑onset types, based on their clinical manifestations. ETFDH gene mutations are generally considered to be associated with the late‑onset type. The present study reported an adult woman with late‑onset MADD accompanied with biochemical and muscle biopsy findings indicating metabolic disorders. Gene sequencing analysis showed that the c.1514T>C homozygous mutation in the region of the 12th exon of the ETFDH gene, which led to the amino acid substitution p.I505T (isoleucine > threonine), resulting in defective ETFDH protein function. The results of family verification revealed that the homozygous mutation originated from her parents. The female patient was treated with a large dose of vitamin B2, L‑carnitine and coenzyme Q10, and the symptoms were significantly relieved. The c.1514T>C mutation in the ETFDH gene, was considered as a novel pathogenic mutation that had not been previously reported. Therefore, it was hypothesized that this mutation was responsible for the clinical characteristics of the adult female patient. Overall, this novel mutation could expand the spectrum of the ETFDH gene mutation and provide the basis for the etiological and prenatal diagnosis of MADD.
Collapse
Affiliation(s)
- Chenyi Wang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xia Xu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yuping Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qian Li
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
26
|
Greer K, Johnsen R, Nevo Y, Fellig Y, Fletcher S, Wilton SD. Single Exon Skipping Can Address a Multi-Exon Duplication in the Dystrophin Gene. Int J Mol Sci 2020; 21:ijms21124511. [PMID: 32630425 PMCID: PMC7350004 DOI: 10.3390/ijms21124511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease typically caused by protein-truncating mutations that preclude synthesis of a functional dystrophin. Exonic deletions are the most common type of DMD lesion, however, whole exon duplications account for between 10–15% of all reported mutations. Here, we describe in vitro evaluation of antisense oligonucleotide-induced splice switching strategies to re-frame the transcript disrupted by a multi-exon duplication within the DMD gene. Phosphorodiamidate morpholino oligomers and phosphorodiamidate morpholino oligomers coupled to a cell penetrating peptide were evaluated in a Duchenne muscular dystrophy patient cell strain carrying an exon 14–17 duplication. Two strategies were employed; the conventional approach was to remove both copies of exon 17 in addition to exon 18, and the second strategy was to remove only the first copy of exon 17. Both approaches result in a larger than normal but in-frame DMD transcript, but surprisingly, the removal of only the first exon 17 appeared to be more efficient in restoring dystrophin, as determined using western blotting. The emergence of a normal sized DMD mRNA transcript that was not apparent in untreated samples may have arisen from back splicing and could also account for some of the dystrophin protein being produced.
Collapse
Affiliation(s)
- Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Russell Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Yoram Nevo
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University,Tel-Aviv 62919, Israel
| | - Yakov Fellig
- Pathology Department, Hadassah-Hebrew-University Medical Center, Jerusalem 91120, Israel
| | - Susan Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Perth 6009, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
27
|
Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, Baehr A, Schneider CM, Sinnecker D, Klett K, Fröhlich T, Rahman FA, Haufe T, Sun S, Jurisch V, Kessler B, Hinkel R, Dirschinger R, Martens E, Jilek C, Graf A, Krebs S, Santamaria G, Kurome M, Zakhartchenko V, Campbell B, Voelse K, Wolf A, Ziegler T, Reichert S, Lee S, Flenkenthaler F, Dorn T, Jeremias I, Blum H, Dendorfer A, Schnieke A, Krause S, Walter MC, Klymiuk N, Laugwitz KL, Wolf E, Wurst W, Kupatt C. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 2020; 26:207-214. [PMID: 31988462 PMCID: PMC7212064 DOI: 10.1038/s41591-019-0738-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022]
Abstract
Frameshift mutations in the DMD gene, encoding dystrophin, cause Duchenne muscular dystrophy (DMD), leading to terminal muscle and heart failure in patients. Somatic gene editing by sequence-specific nucleases offers new options for restoring the DMD reading frame, resulting in expression of a shortened but largely functional dystrophin protein. Here, we validated this approach in a pig model of DMD lacking exon 52 of DMD (DMDΔ52), as well as in a corresponding patient-derived induced pluripotent stem cell model. In DMDΔ52 pigs1, intramuscular injection of adeno-associated viral vectors of serotype 9 carrying an intein-split Cas9 (ref. 2) and a pair of guide RNAs targeting sequences flanking exon 51 (AAV9-Cas9-gE51) induced expression of a shortened dystrophin (DMDΔ51-52) and improved skeletal muscle function. Moreover, systemic application of AAV9-Cas9-gE51 led to widespread dystrophin expression in muscle, including diaphragm and heart, prolonging survival and reducing arrhythmogenic vulnerability. Similarly, in induced pluripotent stem cell-derived myoblasts and cardiomyocytes of a patient lacking DMDΔ52, AAV6-Cas9-g51-mediated excision of exon 51 restored dystrophin expression and amelioreate skeletal myotube formation as well as abnormal cardiomyocyte Ca2+ handling and arrhythmogenic susceptibility. The ability of Cas9-mediated exon excision to improve DMD pathology in these translational models paves the way for new treatment approaches in patients with this devastating disease.
Collapse
Affiliation(s)
- A Moretti
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| | - L Fonteyne
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - F Giesert
- Institute of Developmental Genetics, Helmholtz Centre and Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - P Hoppmann
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - A B Meier
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Bozoglu
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - A Baehr
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - C M Schneider
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - D Sinnecker
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - K Klett
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Fröhlich
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - F Abdel Rahman
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Haufe
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - S Sun
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - V Jurisch
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - B Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - R Hinkel
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - R Dirschinger
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - E Martens
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - C Jilek
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - A Graf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - S Krebs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - G Santamaria
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - M Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - V Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - B Campbell
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - K Voelse
- Reseach Unit Apoptosis in Hemopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Munich, Germany
| | - A Wolf
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - T Ziegler
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - S Reichert
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich, Germany
| | - S Lee
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - F Flenkenthaler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - T Dorn
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - I Jeremias
- Reseach Unit Apoptosis in Hemopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Munich, Germany
| | - H Blum
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - A Dendorfer
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - A Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - S Krause
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich, Germany
| | - M C Walter
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich, Germany
| | - N Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - K L Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - E Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Centre and Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - C Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
28
|
Aravind S, Ashley B, Mannan A, Ganapathy A, Ramesh K, Ramachandran A, Nongthomba U, Shastry A. Targeted sequencing of the DMD locus: A comprehensive diagnostic tool for all mutations. Indian J Med Res 2019; 150:282-289. [PMID: 31719299 PMCID: PMC6886143 DOI: 10.4103/ijmr.ijmr_290_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background & objectives: Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder and is caused mainly by deletion, duplication and point mutations in the DMD gene. Diagnosis of DMD has been a challenge as the mutations in the DMD gene are heterogeneous and require more than one diagnostic strategy for the validation of the mutation. This study was planned to evaluate the targeted next-generation sequencing (NGS) as a single platform to detect all types of mutations in the DMD gene, thereby reducing the time and costs compared to conventional sequential testing and also provide precise genetic information for emerging gene therapies. Methods: The study included 20 unrelated families and 22 patients from an Indian population who were screened for DMD based on phenotypes such as scoliosis, toe walking and loss of ambulation. Peripheral blood DNA was isolated and subjected to multiplex ligation-dependent probe amplification (MLPA) and targeted NGS of the DMD gene to identify the nature of the mutation. Results: In the study patients, 77 per cent of large deletion mutations and 23 per cent single-nucleotide variations (SNVs) were identified. Novel mutations were also identified along with reported deletions, point mutations and partial deletions within the exon of the DMD gene. Interpretation & conclusions: Our findings showed the importance of NGS in the routine diagnostic practice in the identification of DMD mutations over sequential testing. It may be used as a single-point diagnostic strategy irrespective of the mutation type, thereby reducing the turnaround time and cost for multiple diagnostic tests such as MLPA and Sanger sequencing. Though MLPA is a sensitive technique and is the first line of a diagnostic test, the targeted NGS of the DMD gene may have an advantage of having a single diagnostic test. A study on a larger number of patients is needed to highlight NGS as a single, comprehensive platform for the diagnosis of DMD.
Collapse
Affiliation(s)
- Sankaramoorthy Aravind
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science; Dystrophy Annihilation Research Trust, Bengaluru, Karnataka, India
| | - Berty Ashley
- Dystrophy Annihilation Research Trust, Bengaluru, Karnataka, India
| | - Ashraf Mannan
- Strand Life Sciences Private Limited, Bengaluru, Karnataka, India
| | - Aparna Ganapathy
- Strand Life Sciences Private Limited, Bengaluru, Karnataka, India
| | - Keerthi Ramesh
- Dystrophy Annihilation Research Trust, Bengaluru, Karnataka, India
| | | | - Upendra Nongthomba
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Arun Shastry
- Dystrophy Annihilation Research Trust, Bengaluru, Karnataka, India
| |
Collapse
|
29
|
Villela D, Che H, Van Ghelue M, Dehaspe L, Brison N, Van Den Bogaert K, Devriendt K, Lewi L, Bayindir B, Vermeesch JR. Fetal sex determination in twin pregnancies using non-invasive prenatal testing. NPJ Genom Med 2019; 4:15. [PMID: 31285848 PMCID: PMC6609680 DOI: 10.1038/s41525-019-0089-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/31/2019] [Indexed: 01/23/2023] Open
Abstract
Non-invasive prenatal testing (NIPT) is accurate for fetal sex determination in singleton pregnancies, but its accuracy is not well established in twin pregnancies. Here, we present an accurate sex prediction model to discriminate fetal sex in both dichorionic diamniotic (DCDA) and monochorionic diamniotic/monochorionic monoamniotic (MCDA/MCMA) twin pregnancies. A retrospective analysis was performed using a total of 198 twin pregnancies with documented sex. The prediction was based on a multinomial logistic regression using the normalized frequency of X and Y chromosomes, and fetal fraction estimation. A second-step regression analysis was applied when one or both twins were predicted to be male. The model determines fetal sex with 100% sensitivity and specificity when both twins are female, and with 98% sensitivity and 95% specificity when a male is present. Since sex determination can be clinically important, implementing fetal sex determination in twins will improve overall twin pregnancies management.
Collapse
Affiliation(s)
- Darine Villela
- 1Department of Human Genetics, KU Leuven, Leuven, Belgium.,2Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Huiwen Che
- 1Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marijke Van Ghelue
- 1Department of Human Genetics, KU Leuven, Leuven, Belgium.,3Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,4Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Luc Dehaspe
- 1Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Koen Devriendt
- 1Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Liesbeth Lewi
- 5Clinical Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium.,6Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Baran Bayindir
- 1Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
30
|
Wada E, Hamano T, Matsui I, Yoshida M, Hayashi YK, Matsuda R. Renal involvement in the pathogenesis of mineral and bone disorder in dystrophin-deficient mdx mouse. J Physiol Sci 2019; 69:661-671. [PMID: 31079351 PMCID: PMC10717053 DOI: 10.1007/s12576-019-00683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy is a severe muscular disorder, often complicated with osteoporosis, and impaired renal function has recently been featured. We aimed to clarify the involvement of renal function in the pathogenesis of mineral and bone disorder in mdx mice, a murine model of the disease. We clearly revealed renal dysfunction in adult mdx mice, in which dehydration and hypercalcemia were contributed. We also examined the effects of dietary phosphorus (P) overload on phosphate metabolism. Serum phosphate and parathyroid hormone (PTH) levels were significantly increased in mdx mice by dietary P in a dose-dependent manner; however, bone alkaline phosphatase levels were significantly lower in mdx mice. Additionally, bone mineral density in mdx mice were even worsened by increased dietary P in a dose-dependent manner. These results suggested that the uncoupling of bone formation and resorption was enhanced by skeletal resistance to PTH due to renal failure in mdx mice.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| | - Takayuki Hamano
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate of School Medicine, B6-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Isao Matsui
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate of School Medicine, B6-2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mizuko Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, 160-8402, Japan
| | - Ryoichi Matsuda
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| |
Collapse
|
31
|
Emami MR, Young CS, Ji Y, Liu X, Mokhonova E, Pyle AD, Meng H, Spencer MJ. Polyrotaxane Nanocarriers Can Deliver CRISPR/Cas9 Plasmid to Dystrophic Muscle Cells to Successfully Edit the DMD Gene. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Emami
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
| | - Courtney S. Young
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ying Ji
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ekaterina Mokhonova
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| | - April D. Pyle
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Huan Meng
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Melissa J. Spencer
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
32
|
Creation of a novel algorithm to identify patients with Becker and Duchenne muscular dystrophy within an administrative database and application of the algorithm to assess cardiovascular morbidity. Cardiol Young 2019; 29:290-296. [PMID: 30683166 PMCID: PMC6433485 DOI: 10.1017/s1047951118002226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Outcome analyses in large administrative databases are ideal for rare diseases such as Becker and Duchenne muscular dystrophy. Unfortunately, Becker and Duchenne do not yet have specific International Classification of Disease-9/-10 codes. We hypothesised that an algorithm could accurately identify these patients within administrative data and improve assessment of cardiovascular morbidity. METHODS Hospital discharges (n=13,189) for patients with muscular dystrophy classified by International Classification of Disease-9 code: 359.1 were identified from the Pediatric Health Information System database. An identification algorithm was created and then validated at three institutions. Multi-variable generalised linear mixed-effects models were used to estimate the associations of length of stay, hospitalisation cost, and 14-day readmission with age, encounter severity, and respiratory disease accounting for clustering within the hospital. RESULTS The identification algorithm improved identification of patients with Becker and Duchenne from 55% (code 359.1 alone) to 77%. On bi-variate analysis, left ventricular dysfunction and arrhythmia were associated with increased cost of hospitalisation, length of stay, and mortality (p<0.001). After adjustment, Becker and Duchenne patients with left ventricular dysfunction and arrhythmia had increased length of stay with rate ratio 1.4 and 1.2 (p<0.001 and p=0.004) and increased cost of hospitalization with rate ratio 1.4 and 1.4 (both p<0.001). CONCLUSIONS Our algorithm accurately identifies patients with Becker and Duchenne and can be used for future analysis of administrative data. Our analysis demonstrates the significant effects of cardiovascular disease on length of stay and hospitalisation cost in patients with Becker and Duchenne. Better recognition of the contribution of cardiovascular disease during hospitalisation with earlier more intensive evaluation and therapy may help improve outcomes in this patient population.
Collapse
|
33
|
Hewitt JE, Pollard AK, Lesanpezeshki L, Deane CS, Gaffney CJ, Etheridge T, Szewczyk NJ, Vanapalli SA. Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of Caenorhabditis elegans and its functional response to drugs. Dis Model Mech 2018; 11:dmm036137. [PMID: 30396907 PMCID: PMC6307913 DOI: 10.1242/dmm.036137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Muscle strength is a key clinical parameter used to monitor the progression of human muscular dystrophies, including Duchenne and Becker muscular dystrophies. Although Caenorhabditis elegans is an established genetic model for studying the mechanisms and treatments of muscular dystrophies, analogous strength-based measurements in this disease model are lacking. Here, we describe the first demonstration of the direct measurement of muscular strength in dystrophin-deficient C. elegans mutants using a micropillar-based force measurement system called NemaFlex. We show that dys-1(eg33) mutants, but not dys-1(cx18) mutants, are significantly weaker than their wild-type counterparts in early adulthood, cannot thrash in liquid at wild-type rates, display mitochondrial network fragmentation in the body wall muscles, and have an abnormally high baseline mitochondrial respiration. Furthermore, treatment with prednisone, the standard treatment for muscular dystrophy in humans, and melatonin both improve muscular strength, thrashing rate and mitochondrial network integrity in dys-1(eg33), and prednisone treatment also returns baseline respiration to normal levels. Thus, our results demonstrate that the dys-1(eg33) strain is more clinically relevant than dys-1(cx18) for muscular dystrophy studies in C. elegans This finding, in combination with the novel NemaFlex platform, can be used as an efficient workflow for identifying candidate compounds that can improve strength in the C. elegans muscular dystrophy model. Our study also lays the foundation for further probing of the mechanism of muscle function loss in dystrophin-deficient C. elegans, leading to knowledge translatable to human muscular dystrophy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Amelia K Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Christopher J Gaffney
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
- Lancaster Medical School, Furness College, Lancaster University, Lancaster LA1 4YG, UK
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
34
|
González-Sánchez J, Sánchez-Temprano A, Cid-Díaz T, Pabst-Fernández R, Mosteiro CS, Gallego R, Nogueiras R, Casabiell X, Butler-Browne GS, Mouly V, Relova JL, Pazos Y, Camiña JP. Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. J Cachexia Sarcopenia Muscle 2018; 9:1063-1078. [PMID: 30216693 PMCID: PMC6240759 DOI: 10.1002/jcsm.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This study was performed to test the therapeutic potential of obestatin, an autocrine anabolic factor regulating skeletal muscle repair, to ameliorate the Duchenne muscular dystrophy (DMD) phenotype. METHODS AND RESULTS Using a multidisciplinary approach, we characterized the ageing-related preproghrelin/GPR39 expression patterns in tibialis anterior (TA) muscles of 4-, 8-, and 18-week-old mdx mice (n = 3/group) and established the effects of obestatin administration at this level in 8-week-old mdx mice (n = 5/group). The findings were extended to in vitro effects on human immortalized DMD myotubes. An analysis of TAs revealed an age-related loss of preproghrelin expression, as precursor of obestatin, in mdx mice. Administration of obestatin resulted in a significant increase in tetanic specific force (33.0% ± 1.5%, P < 0.05), compared with control mdx mice. Obestatin-treated TAs were characterized by reduction of fibres with centrally located nuclei (10.0% ± 1.2%, P < 0.05) together with an increase in the number of type I fibres (25.2% ± 1.7%, P < 0.05) associated to histone deacetylases/myocyte enhancer factor-2 and peroxisome proliferator-activated receptor-gamma coactivator 1α axis, and down-regulation of ubiquitin E3-ligases by inactivation of FoxO1/4, indexes of muscle atrophy. Obestatin reduced the level of contractile damage and tissue fibrosis. These observations correlated with decline in serum creatine kinase (58.8 ± 15.2, P < 0.05). Obestatin led to stabilization of the sarcolemma by up-regulation of utrophin, α-syntrophin, β-dystroglycan, and α7β1-integrin proteins. These pathways were also operative in human DMD myotubes. CONCLUSIONS These results highlight the potential of obestatin as a peptide therapeutic for preserving muscle integrity in DMD, thus allowing a better efficiency of gene or cell therapy in a combined therapeutic approach.
Collapse
Affiliation(s)
- Jessica González-Sánchez
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Agustín Sánchez-Temprano
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Tania Cid-Díaz
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Regina Pabst-Fernández
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | | | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Jesús P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
35
|
Zampatti S, Mela J, Peconi C, Pagliaroli G, Carboni S, Barrano G, Zito I, Cascella R, Marella G, Milano F, Arcangeli M, Caltagirone C, Novelli A, Giardina E. Identification of Duchenne/Becker muscular dystrophy mosaic carriers through a combined DNA/RNA analysis. Prenat Diagn 2018; 38:1096-1102. [PMID: 30303263 DOI: 10.1002/pd.5369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/22/2018] [Accepted: 10/02/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The Duchenne/Becker muscular dystrophy (DMD) carrier screening includes the evaluation of mutations in DMD gene, and the most widely used analysis is the multiplex ligation-dependent probe amplification (MLPA) for the DMD deletions/duplications detection. The high frequency of de novo mutations permits to estimate a risk up to 20% of mosaicisms for mothers of sporadic DMD children. The purpose of this study is to evaluate alternative analytical strategy for the detection of mosaics carrier women, in order to improve the recurrence risk estimation. METHOD Different DNA and RNA analyses were conducted on samples from a woman that conceived a DMD fetus without previous family history of dystrophynopathy. RESULTS Standard MLPA analysis failed to identify mosaicism, even if MLPA doses suggested it. Electrophoresis and direct sequencing conducted on RNA permitted to detect two different amplicons of cDNAs, demonstrating the presence of somatic mosaicism. Subsequent detection of a second affected fetus confirmed the mosaic status on the mother. CONCLUSION The implementation of RNA analysis in diagnostic algorithm can increase the sensitivity of carrier test for mothers of sporadic affected patients, permitting detection of mosaic status. A revision of analytical guidelines is needed in order to improve the recurrence risk estimation and support prenatal genetic counseling.
Collapse
Affiliation(s)
- Stefania Zampatti
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Julia Mela
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Cristina Peconi
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Giulia Pagliaroli
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Stefania Carboni
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Giuseppe Barrano
- S. Pietro Fatebenefratelli Hospital, UOSD Medical Genetics, Rome, Italy
| | - Ilaria Zito
- S. Pietro Fatebenefratelli Hospital, UOSD Medical Genetics, Rome, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy.,Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Gianluca Marella
- Department of Experimental Medicine and Surgery, School of Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Filippo Milano
- Department of Biomedicine and Prevention, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mauro Arcangeli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation
| | - Antonio Novelli
- S. Pietro Fatebenefratelli Hospital, UOSD Medical Genetics, Rome, Italy.,Medical Genetics Unit, Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Biomedicine and Prevention, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
36
|
Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy. Proc Natl Acad Sci U S A 2018; 115:E9182-E9191. [PMID: 30181272 DOI: 10.1073/pnas.1808648115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is "foreign," and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.
Collapse
|
37
|
Addicks GC, Marshall P, Jasmin BJ, Renaud JM, Zhang H, Menzies KJ. Critical Assessment of the mdx Mouse with Ex Vivo Eccentric Contraction of the Diaphragm Muscle. ACTA ACUST UNITED AC 2018; 8:e49. [PMID: 30106518 DOI: 10.1002/cpmo.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Muscle function and health progressively deteriorate during the progression of muscle dystrophies. The ability to objectively characterize muscle function and muscle damage is useful not only when comparing variants of dystrophy models, but also for characterizing the effects of interventions aiming to improve or halt the progressive decline of muscle function and muscle health. The protocols in this chapter describe the use of ex vivo eccentric contraction of the diaphragm muscle as a measure of muscle susceptibility to damage. Because muscle has a robust regenerative capacity, unhealthy muscle may be functionally close to normal; therefore, protocols for ex vivo characterization of muscle are often essential for assessing the effects of interventions. Additional methods that can be applied for assessment of dystrophic muscle are also highlighted. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Gregory C Addicks
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Phillip Marshall
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Cellular and Molecular Medicine Department, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Cellular and Molecular Medicine Department, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, and The Department of Histology and Embryology of Zhongshan School of Medicine, Sun-Yat Sen University, Guangzhou, China
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Tyers L, Davids LM, Wilmshurst JM, Esterhuizen AI. Skin cells for use in an alternate diagnostic method for Duchenne muscular dystrophy. Neuromuscul Disord 2018; 28:553-563. [PMID: 29958823 DOI: 10.1016/j.nmd.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
The importance of molecular diagnosis and identification of disease-associated variants for Duchenne muscular dystrophy (DMD) is evident in the age of gene-based therapies and personalised medicine. Detection of the causative DMD variant and determination of its effects on dystrophin expression is best achieved by analysis of RNA extracted from muscle biopsy material. However, this is not done routinely, as the procedure can be traumatic, especially to young children, and carries risk of complications related to the use of anaesthetic. As skin biopsies are safer and straightforward to perform than muscle biopsies, we investigated the utility of cultured human epidermal melanocytes and dermal fibroblasts as alternative tools for RNA-based diagnosis of DMD. Shallow skin biopsies from 5 boys with genetically confirmed diagnoses of DMD were used to culture fibroblasts and melanocytes. Biopsies were sampled, and tolerated without complications, using local anaesthetic cream. Dystrophin expression in the cultured cells was assessed using immunocytochemical staining, quantitative real-time PCR and cDNA sequencing methodologies. We observed differential expression of the full-length dystrophin muscle transcript, with significantly more robust expression in melanocytes, compared to that in fibroblasts. Our results suggest that cultured skin melanocytes may present an alternative tool for RNA-based genetic diagnosis of DMD.
Collapse
Affiliation(s)
- Lynn Tyers
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7935, South Africa.
| | | | - Jo M Wilmshurst
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7935, South Africa; Department of Paediatric Neurology and Neurophysiology, Neuroscience Institute, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Alina I Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7935, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Observatory, Cape Town 7935, South Africa
| |
Collapse
|
39
|
Sui T, Lau YS, Liu D, Liu T, Xu L, Gao Y, Lai L, Li Z, Han R. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech 2018; 11:dmm.032201. [PMID: 29871865 PMCID: PMC6031364 DOI: 10.1242/dmm.032201] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disorder caused by mutations in the dystrophin gene, with an incidence of 1 in 3500 in new male births. Mdx mice are widely used as an animal model for DMD. However, these mice do not faithfully recapitulate DMD patients in many aspects, rendering the preclinical findings in this model questionable. Although larger animal models of DMD, such as dogs and pigs, have been generated, usage of these animals is expensive and only limited to several facilities in the world. Here, we report the generation of a rabbit model of DMD by co-injection of Cas9 mRNA and sgRNA targeting exon 51 into rabbit zygotes. The DMD knockout (KO) rabbits exhibit the typical phenotypes of DMD, including severely impaired physical activity, elevated serum creatine kinase levels, and progressive muscle necrosis and fibrosis. Moreover, clear pathology was also observed in the diaphragm and heart at 5 months of age, similar to DMD patients. Echocardiography recording showed that the DMD KO rabbits had chamber dilation with decreased ejection fraction and fraction shortening. In conclusion, this novel rabbit DMD model generated with the CRISPR/Cas9 system mimics the histopathological and functional defects in DMD patients, and could be valuable for preclinical studies. This article has an associated First Person interview with the first author of the paper. Summary: The DMD KO rabbit engineered by CRISPR genome editing faithfully recapitulates the DMD pathologies, and could be a valuable tool for basic and translational studies to combat this disease.
Collapse
Affiliation(s)
- Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, 130062, China
| | - Yeh Siang Lau
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, US
| | - Di Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, 130062, China
| | - Tingjun Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, 130062, China
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, US
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, US
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, 130062, China
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, US
| |
Collapse
|
40
|
Kogelman B, Khmelinskii A, Verhaart I, van Vliet L, Bink DI, Aartsma-Rus A, van Putten M, van der Weerd L. Influence of full-length dystrophin on brain volumes in mouse models of Duchenne muscular dystrophy. PLoS One 2018; 13:e0194636. [PMID: 29601589 PMCID: PMC5877835 DOI: 10.1371/journal.pone.0194636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects besides muscle also the brain, resulting in memory and behavioral problems. The consequences of dystrophinopathy on gross macroscopic alterations are unclear. To elucidate the effect of full-length dystrophin expression on brain morphology, we used high-resolution post-mortem MRI in mouse models that either express 0% (mdx), 100% (BL10) or a low amount of full-length dystrophin (mdx-XistΔhs). While absence or low amounts of full-length dystrophin did not significantly affect whole brain volume and skull morphology, we found differences in volume of individual brain structures. The results are in line with observations in humans, where whole brain volume was found to be reduced only in patients lacking both full-length dystrophin and the shorter isoform Dp140.
Collapse
Affiliation(s)
- Bauke Kogelman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Artem Khmelinskii
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Percuros B.V., Enschede, the Netherlands
| | - Ingrid Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura van Vliet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diewertje I. Bink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
41
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle 2017; 7:23. [PMID: 29078808 PMCID: PMC5660454 DOI: 10.1186/s13395-017-0140-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Methods Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Results Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. Conclusion As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration. Electronic supplementary material The online version of this article (10.1186/s13395-017-0140-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan.
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Akira Iwamura
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| |
Collapse
|
43
|
Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy. J Pers Med 2017; 7:jpm7040013. [PMID: 29035327 PMCID: PMC5748625 DOI: 10.3390/jpm7040013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA) conditionally approved the first AO-based drug, eteplirsen (Exondys 51), developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.
Collapse
|
44
|
Hughes DC, Marcotte GR, Marshall AG, West DWD, Baehr LM, Wallace MA, Saleh PM, Bodine SC, Baar K. Age-related Differences in Dystrophin: Impact on Force Transfer Proteins, Membrane Integrity, and Neuromuscular Junction Stability. J Gerontol A Biol Sci Med Sci 2017; 72:640-648. [PMID: 27382038 DOI: 10.1093/gerona/glw109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
The loss of muscle strength with age has been studied from the perspective of a decline in muscle mass and neuromuscular junction (NMJ) stability. A third potential factor is force transmission. The purpose of this study was to determine the changes in the force transfer apparatus within aging muscle and the impact on membrane integrity and NMJ stability. We measured an age-related loss of dystrophin protein that was greatest in the flexor muscles. The loss of dystrophin protein occurred despite a twofold increase in dystrophin mRNA. Importantly, this disparity could be explained by the four- to fivefold upregulation of the dystromir miR-31. To compensate for the loss of dystrophin protein, aged muscle contained increased α-sarcoglycan, syntrophin, sarcospan, laminin, β1-integrin, desmuslin, and the Z-line proteins α-actinin and desmin. In spite of the adaptive increase in other force transfer proteins, over the 48 hours following lengthening contractions, the old muscles showed more signs of impaired membrane integrity (fourfold increase in immunoglobulin G-positive fibers and 70% greater dysferlin mRNA) and NMJ instability (14- to 96-fold increases in Runx1, AchRδ, and myogenin mRNA). Overall, these data suggest that age-dependent alterations in dystrophin leave the muscle membrane and NMJ more susceptible to contraction-induced damage even before changes in muscle mass are obvious.
Collapse
Affiliation(s)
| | | | - Andrea G Marshall
- Department of Neurobiology, Physiology and Behavior and.,Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | - Daniel W D West
- Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | - Leslie M Baehr
- Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | | | | | - Sue C Bodine
- Department of Neurobiology, Physiology and Behavior and.,Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior and.,Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| |
Collapse
|
45
|
Ding S, Wang F, Liu Y, Li S, Zhou G, Hu P. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discov 2017; 3:17003. [PMID: 28417015 PMCID: PMC5385392 DOI: 10.1038/cddiscovery.2017.3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/07/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
Pig is an important food source and an excellent system to model human diseases. Careful characterization of the swine skeletal muscle stem cells (satellite cells) will shed lights on generation of swine skeletal muscle disease model and efficient production of porcine meat for the food industry. Paired box protein 7 (Pax7) is a highly conserved transcription factor shared by satellite cells from various species. However, the sequence of Pax7 has not been characterized in pig. The lack of method to isolate highly purified satellite cells hinders the thorough characterization of the swine satellite cells. Here we found molecular markers for swine satellite cells and revealed that the porcine satellite cells were heterogeneous in various pieces of skeletal muscle. We further developed a method to isolate highly purified satellite cells directly from porcine muscles using fluorescence-activated cell sorting. We next characterized the proliferation and differentiation abilities of isolated satellite cells in vitro; and found that long-term culturing of satellite cells in vitro led to stemness loss.
Collapse
Affiliation(s)
- Shijie Ding
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Cell Biology, Center of Excellence in Molecular and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fei Wang
- State Key Laboratory of Cell Biology, Center of Excellence in Molecular and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Liu
- State Key Laboratory of Cell Biology, Center of Excellence in Molecular and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Li
- State Key Laboratory of Cell Biology, Center of Excellence in Molecular and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, Center of Excellence in Molecular and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
46
|
GRMD cardiac and skeletal muscle metabolism gene profiles are distinct. BMC Med Genomics 2017; 10:21. [PMID: 28390424 PMCID: PMC5385041 DOI: 10.1186/s12920-017-0257-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, which codes for the dystrophin protein. While progress has been made in defining the molecular basis and pathogenesis of DMD, major gaps remain in understanding mechanisms that contribute to the marked delay in cardiac compared to skeletal muscle dysfunction. Methods To address this question, we analyzed cardiac and skeletal muscle tissue microarrays from golden retriever muscular dystrophy (GRMD) dogs, a genetically and clinically homologous model for DMD. A total of 15 dogs, 3 each GRMD and controls at 6 and 12 months plus 3 older (47–93 months) GRMD dogs, were assessed. Results GRMD dogs exhibited tissue- and age-specific transcriptional profiles and enriched functions in skeletal but not cardiac muscle, consistent with a “metabolic crisis” seen with DMD microarray studies. Most notably, dozens of energy production-associated molecules, including all of the TCA cycle enzymes and multiple electron transport components, were down regulated. Glycolytic and glycolysis shunt pathway-associated enzymes, such as those of the anabolic pentose phosphate pathway, were also altered, in keeping with gene expression in other forms of muscle atrophy. On the other hand, GRMD cardiac muscle genes were enriched in nucleotide metabolism and pathways that are critical for neuromuscular junction maintenance, synaptic function and conduction. Conclusions These findings suggest differential metabolic dysfunction may contribute to distinct pathological phenotypes in skeletal and cardiac muscle. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0257-2) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Damon BM, Li K, Dortch RD, Welch EB, Park JH, Buck AKW, Towse TF, Does MD, Gochberg DF, Bryant ND. Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease. J Vis Exp 2016. [PMID: 28060254 DOI: 10.3791/52352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Quantitative magnetic resonance imaging (qMRI) describes the development and use of MRI to quantify physical, chemical, and/or biological properties of living systems. Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multi-faceted pathology. The goal of this protocol is to characterize this pathology using qMRI methods. The MRI acquisition protocol begins with localizer images (used to locate the position of the body and tissue of interest within the MRI system), quality control measurements of relevant magnetic field distributions, and structural imaging for general anatomical characterization. The qMRI portion of the protocol includes measurements of the longitudinal and transverse relaxation time constants (T1 and T2, respectively). Also acquired are diffusion-tensor MRI data, in which water diffusivity is measured and used to infer pathological processes such as edema. Quantitative magnetization transfer imaging is used to characterize the relative tissue content of macromolecular and free water protons. Lastly, fat-water MRI methods are used to characterize fibro-adipose tissue replacement of muscle. In addition to describing the data acquisition and analysis procedures, this paper also discusses the potential problems associated with these methods, the analysis and interpretation of the data, MRI safety, and strategies for artifact reduction and protocol optimization.
Collapse
Affiliation(s)
- Bruce M Damon
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Biomedical Engineering, Vanderbilt University; Department of Molecular Physiology and Biophysics, Vanderbilt University;
| | - Ke Li
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - Richard D Dortch
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - E Brian Welch
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - Jane H Park
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Amanda K W Buck
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - Theodore F Towse
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Physical Medicine and Rehabilitation, Vanderbilt University
| | - Mark D Does
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Biomedical Engineering, Vanderbilt University
| | - Daniel F Gochberg
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Physics and Astronomy, Vanderbilt University
| | - Nathan D Bryant
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| |
Collapse
|
48
|
Luce LN, Dalamon V, Ferrer M, Parma D, Szijan I, Giliberto F. MLPA analysis of an Argentine cohort of patients with dystrophinopathy: Association of intron breakpoints hot spots with STR abundance in DMD gene. J Neurol Sci 2016; 365:22-30. [PMID: 27206868 DOI: 10.1016/j.jns.2016.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/10/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
Dystrophinopathies are X-linked recessive diseases caused by mutations in the DMD gene. Our objective was to identify mutations in this gene by Multiplex Ligation Probe Amplification (MLPA), to confirm the clinical diagnosis and determine the carrier status of at-risk relatives. Also, we aimed to characterize the Dystrophinopathies argentine population and the DMD gene. We analyzed a cohort of 121 individuals (70 affected boys, 11 symptomatic women, 37 at-risk women and 3 male villus samples). The MLPA technique identified 56 mutations (45 deletions, 9 duplications and 2 point mutations). These results allowed confirming the clinical diagnosis in 63% (51/81) of patients and symptomatic females. We established the carrier status of 54% (20/37) of females at-risk and 3 male villus samples. We could establish an association between the most frequent deletion intron breakpoints and the abundance of dinucleotide microsatellites loci, despite the underlying mutational molecular mechanism remains to be elucidated. The MLPA demonstrate, again, to be the appropriate first mutation screening methodology for molecular diagnosis of Dystrophinopathies. The reported results permitted to characterize the Dystrophinopathies argentine population and lead to better understanding of the genetic and molecular basis of rearrangements in the DMD gene, useful information for the gene therapies being developed.
Collapse
Affiliation(s)
- Leonela N Luce
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | | - Marcela Ferrer
- Molecular Neurobiology Laboratory, Neurosurgery Division, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Diana Parma
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Irene Szijan
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Florencia Giliberto
- Laboratory of Dystrophinopathies, Department of Genetics, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
49
|
Gentil C, Le Guiner C, Falcone S, Hogrel JY, Peccate C, Lorain S, Benkhelifa-Ziyyat S, Guigand L, Montus M, Servais L, Voit T, Piétri-Rouxel F. Dystrophin Threshold Level Necessary for Normalization of Neuronal Nitric Oxide Synthase, Inducible Nitric Oxide Synthase, and Ryanodine Receptor-Calcium Release Channel Type 1 Nitrosylation in Golden Retriever Muscular Dystrophy Dystrophinopathy. Hum Gene Ther 2016; 27:712-26. [PMID: 27279388 DOI: 10.1089/hum.2016.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
At present, the clinically most advanced strategy to treat Duchenne muscular dystrophy (DMD) is the exon-skipping strategy. Whereas antisense oligonucleotide-based clinical trials are underway for DMD, it is essential to determine the dystrophin restoration threshold needed to ensure improvement of muscle physiology at the molecular level. A preclinical trial has been conducted in golden retriever muscular dystrophy (GRMD) dogs treated in a forelimb by locoregional delivery of rAAV8-U7snRNA to promote exon skipping on the canine dystrophin messenger. Here, we exploited rAAV8-U7snRNA-transduced GRMD muscle samples, well characterized for their percentage of dystrophin-positive fibers, with the aim of defining the threshold of dystrophin rescue necessary for normalization of the status of neuronal nitric oxide synthase mu (nNOSμ), inducible nitric oxide synthase (iNOS), and ryanodine receptor-calcium release channel type 1 (RyR1), crucial actors for efficient contractile function. Results showed that restoration of dystrophin in 40% of muscle fibers is needed to decrease abnormal cytosolic nNOSμ expression and to reduce overexpression of iNOS, these two parameters leading to a reduction in the NO level in the muscle fibers. Furthermore, the same percentage of dystrophin-positive fibers of 40% was associated with the normalization of RyR1 nitrosylation status and with stabilization of the RyR1-calstabin1 complex that is required to facilitate coupled gating. We concluded that a minimal threshold of 40% of dystrophin-positive fibers is necessary for the reinstatement of central proteins needed for proper muscle contractile function, and thus identified a rate of dystrophin expression significantly improving, at the molecular level, the dystrophic muscle physiology.
Collapse
Affiliation(s)
- Christel Gentil
- 1 Sorbonne Universités , UPMC Univ Paris 06/INSERM/CNRS/Institut de Myologie/Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | - Caroline Le Guiner
- 2 Atlantic Gene Therapies/INSERM UMR 1089 Université de Nantes , CHU de Nantes, IRT1, Nantes, France.,3 Généthon , Evry, France
| | - Sestina Falcone
- 1 Sorbonne Universités , UPMC Univ Paris 06/INSERM/CNRS/Institut de Myologie/Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | | | - Cécile Peccate
- 1 Sorbonne Universités , UPMC Univ Paris 06/INSERM/CNRS/Institut de Myologie/Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | - Stéphanie Lorain
- 1 Sorbonne Universités , UPMC Univ Paris 06/INSERM/CNRS/Institut de Myologie/Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | - Sofia Benkhelifa-Ziyyat
- 1 Sorbonne Universités , UPMC Univ Paris 06/INSERM/CNRS/Institut de Myologie/Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | - Lydie Guigand
- 5 Atlantic Gene Therapies /INRA UMR 703, ONIRIS, Nantes-Atlantic National College of Veterinary Medicine , Food Science, and Engineering, Nantes, France
| | | | - Laurent Servais
- 4 Institut de Myologie , GH Pitié-Salpêtrière, Paris, France
| | - Thomas Voit
- 1 Sorbonne Universités , UPMC Univ Paris 06/INSERM/CNRS/Institut de Myologie/Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| | - France Piétri-Rouxel
- 1 Sorbonne Universités , UPMC Univ Paris 06/INSERM/CNRS/Institut de Myologie/Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris, France
| |
Collapse
|
50
|
Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci 2016; 1:122-130. [PMID: 27482548 PMCID: PMC4965806 DOI: 10.1016/j.jacbts.2016.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac myocytes from the mdx mouse, the mouse model of Duchenne muscular dystrophy, exhibit t-tubule disarray and increased calcium sparks, but a unifying molecular mechanism has not been elucidated. Recently, improper trafficking of junctophilin (JPH)-2 on an altered microtubule network caused t-tubule derangements and calcium mishandling in a pressure-overload heart failure model. Mdx cardiac myocytes have microtubule abnormalities, but how this may affect JPH-2, t-tubules, and calcium handling has not been established. Here, we investigated the hypothesis that an inverse relationship between microtubules and JPH-2 underlies t-tubule disruptions and calcium mishandling in mdx cardiac myocytes. Confocal microscopy revealed t-tubule disorganization in mdx cardiac myocytes. Quantitative Western blot analysis demonstrated JPH-2 was decreased by 75% and showed an inverse hyperbolic relationship with α- and β-tubulin, the individual components of microtubules, in mdx hearts. Colchicine-induced microtubule depolymerization normalized JPH-2 protein levels and localization, corrected t-tubule architecture, and reduced calcium sparks. In summary, these results suggest microtubule-mediated misregulation of JPH-2 causes t-tubule derangements and altered calcium handling in mdx cardiac myocytes. Decreased junctophilin-2 levels are associated with cardiac t-tubule derangements in mdx mice, the mouse model of Duchenne muscular dystrophy (DMD). Reduced junctophilin-2 protein levels correlate with increases in total microtubule content in mdx hearts. Colchicine-mediated microtubule depolymerization increases junctophilin-2 protein levels and improves localization patterns which, in turn, are associated with t-tubule reorganization and reduced calcium sparks. This study identifies microtubule-mediated misregulation of junctophilin-2 as a novel molecular mechanism in Duchenne cardiomyopathy.
Collapse
|