1
|
Carpéné C, Marti L, Morin N. Increased monoamine oxidase activity and imidazoline binding sites in insulin-resistant adipocytes from obese Zucker rats. World J Biol Chem 2022; 13:15-34. [PMID: 35126867 PMCID: PMC8790288 DOI: 10.4331/wjbc.v13.i1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite overt insulin resistance, adipocytes of genetically obese Zucker rats accumulate the excess of calorie intake in the form of lipids.
AIM To investigate whether factors can replace or reinforce insulin lipogenic action by exploring glucose uptake activation by hydrogen peroxide, since it is produced by monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) in adipocytes.
METHODS 3H-2-deoxyglucose uptake (2-DG) was determined in adipocytes from obese and lean rats in response to insulin or MAO and SSAO substrates such as tyramine and benzylamine. 14C-tyramine oxidation and binding of imidazolinic radioligands [3H-Idazoxan, 3H-(2-benzofuranyl)-2-imidazoline] were studied in adipocytes, the liver, and muscle. The influence of in vivo administration of tyramine + vanadium on glucose handling was assessed in lean and obese rats.
RESULTS 2-DG uptake and lipogenesis stimulation by insulin were dampened in adipocytes from obese rats, when compared to their lean littermates. Tyramine and benzylamine activation of hexose uptake was vanadate-dependent and was also limited, while MAO was increased and SSAO decreased. These changes were adipocyte-specific and accompanied by a greater number of imidazoline I2 binding sites in the obese rat, when compared to the lean. In vitro, tyramine precluded the binding to I2 sites, while in vivo, its administration together with vanadium lowered fasting plasma levels of glucose and triacylglycerols in obese rats.
CONCLUSION The adipocytes from obese Zucker rats exhibit increased MAO activity and imidazoline binding site number. However, probably as a consequence of SSAO down-regulation, the glucose transport stimulation by tyramine is decreased as much as that of insulin in these insulin-resistant adipocytes. The adipocyte amine oxidases deserve more studies with respect to their putative contribution to the management of glucose and lipid handling.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, Toulouse 31342, France
| | - Luc Marti
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, Toulouse 31342, France
| | - Nathalie Morin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, Toulouse 31342, France
- Faculté de Pharmacie de Paris, Paris University, Paris 75270, France
| |
Collapse
|
2
|
High doses of tyramine stimulate glucose transport in human fat cells. J Physiol Biochem 2022; 78:543-556. [DOI: 10.1007/s13105-021-00864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
|
3
|
Carpéné C, Boulet N, Grolleau JL, Morin N. High doses of catecholamines activate glucose transport in human adipocytes independently from adrenoceptor stimulation or vanadium addition. World J Diabetes 2022; 13:37-53. [PMID: 35070058 PMCID: PMC8771263 DOI: 10.4239/wjd.v13.i1.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND When combined with vanadium salts, catecholamines strongly activate glucose uptake in rat and mouse adipocytes.
AIM To test whether catecholamines activate glucose transport in human adipocytes.
METHODS The uptake of 2-deoxyglucose (2-DG) was measured in adipocytes isolated from pieces of abdominal subcutaneous tissue removed from women undergoing reconstructive surgery. Pharmacological approaches with amine oxidase inhibitors, adrenoreceptor agonists and antioxidants were performed to unravel the mechanisms of action of noradrenaline or adrenaline (also named epinephrine).
RESULTS In human adipocytes, 45-min incubation with 100 µmol/L adrenaline or noradrenaline activated 2-DG uptake up to more than one-third of the maximal response to insulin. This stimulation was not reproduced with millimolar doses of dopamine or serotonin and was not enhanced by addition of vanadate to the incubation medium. Among various natural amines and adrenergic agonists tested, no other molecule was more efficient than adrenaline and noradrenaline in stimulating 2-DG uptake. The effect of the catecholamines was not impaired by pargyline and semicarbazide, contrarily to that of benzylamine or methylamine, which are recognized substrates of semicarbazide-sensitive amine oxidase. Hydrogen peroxide at 1 mmol/L activated hexose uptake but not pyrocatechol or benzoquinone, and only the former was potentiated by vanadate. Catalase and the phosphoinositide 3-kinase inhibitor wortmannin inhibited adrenaline-induced activation of 2-DG uptake.
CONCLUSION High doses of catecholamines exert insulin-like actions on glucose transport in human adipocytes. At submillimolar doses, vanadium did not enhance this catecholamine activation of glucose transport. Consequently, this dismantles our previous suggestion to combine the metal ion with catecholamines to improve the benefit/risk ratio of vanadium-based antidiabetic approaches.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse 31432, France
| | - Nathalie Boulet
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse 31432, France
| | | | - Nathalie Morin
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, Paris 75006, France
| |
Collapse
|
4
|
Oral Supplementation with Benzylamine Delays the Onset of Diabetes in Obese and Diabetic db-/- Mice. Nutrients 2021; 13:nu13082622. [PMID: 34444782 PMCID: PMC8401126 DOI: 10.3390/nu13082622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Substrates of semicarbazide-sensitive amine oxidase (SSAO) exert insulin-like actions in adipocytes. One of them, benzylamine (Bza) exhibits antihyperglycemic properties in several rodent models of diabetes. To further study the antidiabetic potential of this naturally occurring amine, a model of severe type 2 diabetes, the obese db-/- mouse, was subjected to oral Bza administration. To this end, db-/- mice and their lean littermates were treated at 4 weeks of age by adding 0.5% Bza in drinking water for seven weeks. Body mass, fat content, blood glucose and urinary glucose output were followed while adipocyte insulin responsiveness and gene expression were checked at the end of supplementation, together with aorta nitrites. Bza supplementation delayed the appearance of hyperglycemia, abolished polydypsia and glycosuria in obese/diabetic mice without any detectable effect in lean control, except for a reduction in food intake observed in both genotypes. The improvement of glucose homeostasis was observed in db-/- mice at the expense of increased fat deposition, especially in the subcutaneous white adipose tissue (SCWAT), without sign of worsened inflammation or insulin responsiveness and with lowered circulating triglycerides and uric acid, while NO bioavailability was increased in aorta. The higher capacity of SSAO in oxidizing Bza in SCWAT, found in the obese mice, was unaltered by Bza supplementation and likely involved in the activation of glucose utilization by adipocytes. We propose that Bza oxidation in tissues, which produces hydrogen peroxide mainly in SCWAT, facilitates insulin-independent glucose utilization. Bza could be considered as a potential agent for dietary supplementation aiming at preventing diabetic complications.
Collapse
|
5
|
Fontaine J, Tavernier G, Morin N, Carpéné C. Vanadium-dependent activation of glucose transport in adipocytes by catecholamines is not mediated via adrenoceptor stimulation or monoamine oxidase activity. World J Diabetes 2020; 11:622-643. [PMID: 33384769 PMCID: PMC7754167 DOI: 10.4239/wjd.v11.i12.622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Benzylamine and methylamine activate glucose uptake in adipocytes. For tyramine, this effect has even been extended to cardiomyocytes. AIM To investigate the effects of catecholamines and other amines on glucose uptake. METHODS A screening compared 25 biogenic amines on 2-deoxyglucose (2-DG) uptake activation in rat adipocytes. Pharmacological approaches and transgenic mouse models were then used to decipher the mode of action of several hits. RESULTS In rat adipocytes, insulin stimulation of 2-DG uptake was reproduced with catecholamines. 100 µmol/L or 1 mmol/L adrenaline, noradrenaline, dopamine and deoxyepinephrine, maximally activated hexose transport only when sodium orthovanadate was added at 100 µmol/L. Such activation was similar to that already reported for benzylamine, methylamine and tyramine, well-recognized substrates of semicarbazide-sensitive amine oxidase (SSAO) and monoamine oxidase (MAO). Several, but not all, tested agonists of β-adrenoreceptors (β-ARs) also activated glucose transport while α-AR agonists were inactive. Lack of blockade by α- and β-AR antagonists indicated that catecholamine-induced 2-DG uptake was not mediated by AR stimulation. Adipocytes from mice lacking β1-, β2- and β3-ARs (triple KO) also responded to millimolar doses of adrenaline or noradrenaline by activating hexose transport in the presence of 100 µmol/L vanadate. The MAO blocker pargyline, and SSAO inhibitors did not block the effects of adrenaline or noradrenaline plus vanadate, which were blunted by antioxidants. CONCLUSION Catecholamines exert unexpected insulin-like actions in adipocytes when combined with vanadium. For limiting insulin resistance by activating glucose consumption at least in fat stores, we propose that catecholamine derivatives combined with vanadium can generate novel complexes that may have low toxicity and promising anti-diabetic properties.
Collapse
Affiliation(s)
- Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Geneviève Tavernier
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Nathalie Morin
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
- INSERM UMR 1139 Faculté de Pharmacie, Université de Paris, Paris 75006, France
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| |
Collapse
|
6
|
Zorzano A, Palacín M, Marti L, García-Vicente S. Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem 2009; 103:559-66. [PMID: 19246098 DOI: 10.1016/j.jinorgbio.2009.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/24/2008] [Accepted: 01/16/2009] [Indexed: 01/27/2023]
Abstract
Vanadium compounds show insulin-like effects in vivo and in vitro. Several clinical studies have shown the efficacy of vanadium compounds in type 2 diabetic subjects. However, a major concern is safety, which calls for the development of more potent vanadium compounds. For that reason different laboratories develop strategies to decrease the therapeutic dose of vanadate. One of these strategies use substrates of semicarbazide-sensitive amine oxidase (SSAO)/vascular adhesion protein-1 (VAP-1), a bifunctional protein with amine oxidase activity and adhesive properties implicated in lymphocyte homing at inflammation sites. Substrates of SSAO combined with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 glucose transporter recruitment to the plasma membrane in 3T3-L1 adipocytes and in rat adipocytes. This combination also shows anti-diabetic effects in various animal models of type 1 and type 2 diabetes. Benzylamine/vanadate administration generates peroxovanadium locally in pancreatic islets, which stimulates insulin secretion, and also produces peroxovanadium in adipose tissue, thereby activating glucose metabolism in adipocytes and in neighboring muscle. This opens up the possibility of using the SSAO/VAP-1 activity as a local generator of protein tyrosine phosphatase inhibitors in anti-diabetic therapy. More recently a novel class of arylalkylaminevanadium salts have shown potent insulin-mimetic effects downstream of the insulin receptor. Administration of these compounds lowers glycemia and normalizes the plasma lipid profile in type 1 and type 2 models of diabetes. The combination of different approaches to decrease vanadium doses, among them chelating agents and SSAO substrates, should permit to develop safe and efficient vanadium based agents safe for diabetes treatment.
Collapse
Affiliation(s)
- Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, Spain.
| | | | | | | |
Collapse
|
7
|
Visentin V, Prévot D, Marti L, Carpéné C. Inhibition of rat fat cell lipolysis by monoamine oxidase and semicarbazide-sensitive amine oxidase substrates. Eur J Pharmacol 2003; 466:235-43. [PMID: 12694806 DOI: 10.1016/s0014-2999(03)01562-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been demonstrated that amine oxidase substrates stimulate glucose transport in cardiomyocytes and adipocytes, promote adipogenesis in pre-adipose cell lines and lower blood glucose in diabetic rats. These insulin-like effects are dependent on amine oxidation by semicarbazide-sensitive amine oxidase or by monoamine oxidase. The present study aimed to investigate whether amine oxidase substrates also exhibit another insulin-like property, the inhibition of lipolysis. We therefore tested the influence of tyramine and benzylamine on lipolytic activity in rat adipocytes. These amines did not modify basal lipolysis but dose-dependently counteracted the stimulation induced by lipolytic agents. The response to 10 nM isoprenaline was totally inhibited by tyramine 1 mM. The blockade produced by inhibition of amine oxidase activity or by 1 mM glutathione suggested that the generation of oxidative species, which occurs during amine oxidation, was involved in tyramine antilipolytic effect. Among the products resulting from amine oxidation, only hydrogen peroxide was antilipolytic in a manner that was potentiated by vanadate, as for tyramine or benzylamine. Antilipolytic responses to tyramine and to insulin were sensitive to wortmannin. These data suggest that inhibition of lipolysis is a novel insulin-like effect of amine oxidase substrates which is mediated by hydrogen peroxide generated during amine oxidation.
Collapse
Affiliation(s)
- Virgile Visentin
- Institut Louis Bugnard, Institut National de la Santé et de la Recherche Médicale, Unité 586, C.H.U. Rangueil, Toulouse Cedex F-31403, France
| | | | | | | |
Collapse
|
8
|
Marti L, Abella A, Carpéné C, Palacín M, Testar X, Zorzano A. Combined treatment with benzylamine and low dosages of vanadate enhances glucose tolerance and reduces hyperglycemia in streptozotocin-induced diabetic rats. Diabetes 2001; 50:2061-8. [PMID: 11522672 DOI: 10.2337/diabetes.50.9.2061] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) is highly expressed in adipose cells, and substrates of SSAO, such as benzylamine, in combination with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 recruitment in 3T3-L1 and rat adipocytes. Here we examined whether acute and chronic administration of benzylamine and vanadate in vivo enhances glucose tolerance and reduces hyperglycemia in diabetic rats. Acute intravenous administration of these drugs enhanced glucose tolerance in nondiabetic rats and in streptozotocin (STZ)-induced diabetic rats. This occurred in the absence of changes in plasma insulin concentrations. However, the administration of benzylamine or vanadate alone did not improve glucose tolerance. The improvement caused by benzylamine plus vanadate was abolished when rats were pretreated with the SSAO-inhibitor semicarbazide. Chronic administration of benzylamine and vanadate exerted potent antidiabetic effects in STZ-induced diabetic rats. Although daily administration of vanadate alone (50 and 25 micromol x kg(-1) x day(-1) i.p.) for 2 weeks had little or no effect on glycemia, vanadate plus benzylamine reduced hyperglycemia in diabetic rats, enhanced basal and insulin-stimulated glucose transport, and upregulated GLUT4 expression in isolated adipocytes. In all, our results substantiated that acute and chronic administration of benzylamine with low dosages of vanadate have potent antidiabetic effects in rats.
Collapse
Affiliation(s)
- L Marti
- Departament de Bioquìmica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2001. [PMID: 11077984 DOI: 10.1139/y00-053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia,Vancouver, Canada
| | | | | |
Collapse
|
10
|
Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J 2001. [PMID: 10926841 DOI: 10.1042/bj3500171] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It has been shown that the combination of benzylamine or tyramine and low concentrations of vanadate markedly stimulates glucose transport in rat adipocytes by a mechanism that requires semicarbazide-sensitive amine oxidase (SSAO) activity and H(2)O(2) formation. Here we have further analysed the insulin-like effects of the combination of SSAO substrates and vanadate and we have studied the signal-transduction pathway activated in rat adipocytes. We found that several SSAO substrates (benzylamine, tyramine, methylamine, n-decylamine, histamine, tryptamine or beta-phenylethylamine), in combination with low concentrations of vanadate, stimulate glucose transport in isolated rat adipocytes. Furthermore, SSAO substrates together with vanadate stimulated the recruitment of GLUT4 to the cell surface in isolated rat adipocytes. Benzylamine plus vanadate also stimulated glucose transport and GLUT4 translocation in 3T3-L1 adipocytes. Benzylamine or tyramine in combination with vanadate potently stimulated the tyrosine phosphorylation of both insulin receptor substrate (IRS)-1 and IRS-3. In contrast, benzylamine and vanadate caused only a weak stimulation of insulin receptor kinase. Benzylamine or tyramine in combination with vanadate also stimulated phosphoinositide 3-kinase activity; wortmannin abolished the stimulatory effect of benzylamine and vanadate on glucose transport in adipose cells. Furthermore, the administration of benzylamine and vanadate in vivo caused a rapid lowering of plasma glucose levels, which took place in the absence of alterations in plasma insulin. On the basis of these results we propose that SSAO activity regulates glucose transport in adipocytes. SSAO oxidative activity stimulates glucose transport via the translocation of GLUT4 carriers to the cell surface, resulting from a potent tyrosine phosphorylation of IRS-1 and IRS-3 and phosphoinositide 3-kinase activation. Our results also indicate that substrates of SSAO might regulate glucose disposal in vivo.
Collapse
|
11
|
Buthelezi EP, van der Merwe MT, Lönnroth PN, Gray IP, Crowther NJ. Ethnic differences in the responsiveness of adipocyte lipolytic activity to insulin. OBESITY RESEARCH 2000; 8:171-8. [PMID: 10757203 DOI: 10.1038/oby.2000.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The goal of this study was to quantify differences in lipid metabolism and insulin sensitivity in black and white subjects to explain ethnic clinicopathological differences in type 2 diabetes. RESEARCH METHODS AND PROCEDURES The in vitro lipolytic activity of adipocytes isolated from obese black and white women was measured in the presence of insulin and isoproterenol. Insulin resistance was assessed in vivo using the euglycemic hyperinsulinemic clamp technique. RESULTS Fasting plasma levels of insulin and nonesterified fatty acid (NEFA) in black and white women were 67 +/- 5 pM vs. 152 +/- 20 pM (p < 0.01) and 863 +/- 93 microM vs. 412 +/- 34 microM (p < 0.01), respectively. Euglycemic hyperinsulinemic clamp studies showed that obese black subjects were more insulin-resistant than their white counterparts (glucose infusion rates: 1.3 +/- 0.2 vs. 2.2 +/- 0.3 mg/kg per min; p < 0.05). Isolated adipocytes from white women were more responsive to insulin than those from black women with 0.7 nM insulin causing a 55 +/- 4% inhibition of isoproterenol-stimulated lipolysis compared with 27 +/- 10% in black women (p < 0.05). DISCUSSION The low responsiveness of adipocyte lipolytic activity to insulin in black women in the presence of a relative insulinopenia may account for the high plasma NEFA levels seen in these women, which may, in turn, account for their higher in vivo insulin resistance. High NEFA levels may also contribute to the low insulin secretory activity observed in the obese black females. These data suggest that the pathogenesis of insulin resistance and type 2 diabetes within the black obese community is strongly influenced by their adipocyte metabolism.
Collapse
Affiliation(s)
- E P Buthelezi
- Department of Chemical Pathology, South African Institute for Medical Research, Parktown, South Africa
| | | | | | | | | |
Collapse
|
12
|
Ehring GR, Kerschbaum HH, Fanger CM, Eder C, Rauer H, Cahalan MD. Vanadate induces calcium signaling, Ca2+ release-activated Ca2+ channel activation, and gene expression in T lymphocytes and RBL-2H3 mast cells via thiol oxidation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:679-87. [PMID: 10623810 DOI: 10.4049/jimmunol.164.2.679] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using ratiometric Ca2+ imaging and patch-clamp measurement of Ca2+ channel activity, we investigated Ca2+ signaling induced by vanadium compounds in Jurkat T lymphocytes and rat basophilic leukemia cells. In the presence of external Ca2+, vanadium compounds produced sustained or oscillatory Ca2+ elevations; in nominally Ca2+-free medium, a transient Ca2+ rise was generated. Vanadate-induced Ca2+ signaling was blocked by heparin, a competitive inhibitor of the 1,4, 5-inositol trisphosphate (IP3) receptor, suggesting that Ca2+ influx is secondary to depletion of IP3-sensitive Ca2+ stores. In Jurkat T cells, vanadate also activated the Ca2+-dependent transcription factor, NF-AT. Intracellular dialysis with vanadate activated Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels with kinetics comparable to those of dialysis with IP3. Neither phosphatase inhibitors nor nonhydrolyzable nucleotide analogues modified CRAC channel activation. The action of vanadate, but not IP3, was prevented by the thiol-reducing agent DTT. In addition, the activation of CRAC channels by vanadate was mimicked by the thiol-oxidizing agent chloramine T. These results suggest that vanadate enhances Ca2+ signaling via thiol oxidation of a proximal element in the signal transduction cascade.
Collapse
Affiliation(s)
- G R Ehring
- Department of Physiology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Vanadium is an ultratrace element, widely distributed in nature, yet with no presently known specific physiological function in mammals. The apparent role of vanadium in regulation of intracellular signaling, as a cofactor of enzymes essential in energy metabolism, and as a possible therapeutic agent in diabetes is of increasing interest as more and more research reports present evidence of vanadium's potentially unique biological function. In this mini-review, the author summarizes current knowledge of the bioinorganic chemistry of vanadium, the basic features of diabetes mellitus and its metabolic sequelae, and the in vitro and in vivo effects of both inorganic and organically-chelated vanadium compounds. Results of clinical trials to date, as well as kinetic studies of tissue uptake are covered. Examples of ways to enhance the positive effects of vanadium as an oral therapeutic adjunct in diabetic control, while minimizing potential toxicity, are compared with regard to desirable features and possible drawbacks.
Collapse
Affiliation(s)
- K H Thompson
- Medicinal Inorganic Chemistry Group, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Fain JN, Gokmen-Polar Y, Bahouth SW. Wortmannin converts insulin but not oxytocin from an antilipolytic to a lipolytic agent in the presence of forskolin. Metabolism 1997; 46:62-6. [PMID: 9005971 DOI: 10.1016/s0026-0495(97)90169-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin is an important regulator of glucose transport and lipolysis in adipocytes. The present studies compared the effects of insulin in rat adipocytes with the effects of oxytocin and peroxovanadate, which mimic some effects of insulin. The antilipolytic effects of peroxovanadate and oxytocin were unaffected by 500 nmol/L wortmannin, which blocked the antilipolytic action of insulin. However, wortmannin, which is a relatively specific inhibitor of phosphatidylinositol 3-kinase, did block most of the stimulation of glucose metabolism by peroxovanadate while having little effect on that due to oxytocin. Under appropriate conditions, it was also possible to demonstrate a lipolytic action of insulin, especially with low (0.1 to 1 nmol/L) concentrations of insulin after exposure of adipocytes to 50 nmol/L wortmannin. The data provide additional support for the hypothesis that oxytocin and peroxovanadate affect adipose tissue metabolism by mechanisms distinctly different from those involved in insulin action.
Collapse
Affiliation(s)
- J N Fain
- Department of Biochemistry, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
15
|
Boden G, Chen X, Ruiz J, van Rossum GD, Turco S. Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 1996; 45:1130-5. [PMID: 8781301 DOI: 10.1016/s0026-0495(96)90013-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The safety and efficacy of vanadyl sulfate (VS) was tested in a single-blind, placebo-controlled study. Eight patients (four men and four women) with non-insulin-dependent diabetes mellitus (NIDDM) received VS (50 mg twice daily orally) for 4 weeks. Six of these patients (four men and two women) continued in the study and were given a placebo for an additional 4 weeks. Euglycemic-hyperinsulinemic clamps were performed before and after the VS and placebo phases. VS was associated with gastrointestinal side effects in six of eight patients during the first week, but was well tolerated after that. VS administration was associated with a 20% decrease in fasting glucose concentration (from 9.3 +/- 1.8 to 7.4 +/- 1.4 mmol/L, P < .05) and a decrease in hepatic glucose output (HGO) during hyperinsulinemia (from 5.0 +/- 1.0 pre-VS to 3.1 +/- 0.9 micromol/kg x min post-VS, P < .02). The improvement in fasting plasma glucose and HGO that occurred during VS treatment was maintained during the placebo phase. VS had no significant effects on rates of total-body glucose uptake, glycogen synthesis, glycolysis, carbohydrate (CHO) oxidation, or lipolysis during euglycemic-hyperinsulinemic clamps. We conclude that VS at the dose used was well tolerated and resulted in modest reductions of fasting plasma glucose and hepatic insulin resistance. However, the safety of larger doses and use of vanadium salts for longer periods remains uncertain.
Collapse
Affiliation(s)
- G Boden
- Division of Endocrinology/Diabetes/Metabolism and the General Clinical Research Center, Temple University Schools of Medicine and Pharmacy, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
16
|
Eriksson JW, Lönnroth P, Posner BI, Shaver A, Wesslau C, Smith UP. A stable peroxovanadium compound with insulin-like action in human fat cells. Diabetologia 1996; 39:235-42. [PMID: 8635677 DOI: 10.1007/bf00403968] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aqueous solutions of peroxovanadium (pV) compounds are potent insulin-mimics in various types of cell. Since chemical instability is a problem with these agents, we studied the insulin-like action in human fat cells of a stable pV complex, bpV(pic). It enhanced 14C-U-glucose uptake in a dose-dependent manner by approximately twofold which was slightly less than the effect of insulin (approximately threefold). The pV complex did not alter cell-surface insulin binding and submaximal concentrations did not influence cellular sensitivity to insulin action on glucose uptake. The bpV(pic) inhibited the lipolytic effect of isoprenaline to the same extent as insulin; however, when the cGMP-inhibitable low-K(m) phosphodiesterase (cGI-PDE) was blocked with the specific inhibitor OPC 3911, the antilipolytic effect of insulin, but not that of bpV(pic), was completely prevented. Moreover, when lipolysis was stimulated by the non-hydrolysable cAMP analogue N6-monobutyryl cAMP, bpV(pic), in contrast to insulin, maintained an antilipolytic effect. These findings indicate that bpV(pic) exerts its antilipolytic effect not only through cGI-PDE activation, similar to the effect of insulin, but also by means of other mechanisms. The tyrosine kinase activity of insulin receptors from human placenta was not altered by the pV compound itself, whereas bpV(pic) clearly enhanced insulin-stimulated activity. In contrast, in situ tyrosine phosphorylation of the insulin receptor beta-subunit as well as that of several other proteins was clearly increased in cells which were treated with bpV(pic), whereas vanadate only amplified insulin-stimulated tyrosine phosphorylation. In conclusion, bpV(pic) exerts powerful insulin-like effects in human fat cells and may be a new and potentially useful agent in the management of insulin-resistant states.
Collapse
Affiliation(s)
- J W Eriksson
- Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Yu ZW, Posner BI, Smith U, Eriksson JW. Effects of peroxovanadate and vanadate on insulin binding, degradation and sensitivity in rat adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1310:103-9. [PMID: 9244182 DOI: 10.1016/0167-4889(95)00153-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of vanadate and the stable peroxovanadate compound bpV(pic) on insulin binding and degradation were investigated in rat adipocytes under conditions of ongoing receptor cycling. Both bpV(pic) and vanadate increased 125I-insulin binding to intact cells through an increase in apparent receptor affinity. The maximal effect of bpV(pic) was to increase binding approximately 4-fold (EC50 0.06 +/- 0.01 mM), whereas vanadate increased binding approximately 2-fold (EC50 1.4 +/- 0.2 mM). Removal of cell surface insulin-receptor complexes with trypsin showed that the effects on binding exerted by bpV(pic) and vanadate were due to a similar increase in both cell surface binding and intracellular accumulation of radioactivity. Both bpV(pic) and vanadate inhibited the degradation of 125I-insulin in medium containing 1% bovine serum albumin. The ratio of degraded/intact intracellular 125I-insulin was also markedly reduced by these agents, suggesting that they inhibit intracellular insulin-degrading proteases. Similar to previous findings with vanadate, bpV(pic) stimulated glucose transport and, at low concentrations, enhanced insulin sensitivity. Taken together, these data demonstrate that both bpV(pic) and vanadate inhibit insulin degradation. In addition, they significantly enhance cell surface insulin binding in rat fat cells and this is associated with an improved insulin sensitivity.
Collapse
Affiliation(s)
- Z W Yu
- The Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, University of Göteborg, Sahlgrenska University Hospital, Sweden
| | | | | | | |
Collapse
|
18
|
Bevan AP, Drake PG, Yale JF, Shaver A, Posner BI. Peroxovanadium compounds: biological actions and mechanism of insulin-mimesis. Mol Cell Biochem 1995; 153:49-58. [PMID: 8927047 DOI: 10.1007/bf01075918] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When used alone, both vanadate and hydrogen peroxide (H2O2) are weakly insulin-mimetic, while in combination they are strongly synergistic due to the formation of aqueous peroxovanadium species pV(aq). Administration of these pV(aq) species leads to activation of the insulin receptor tyrosine kinase (IRK), autophosphorylation at tyrosine residues and inhibition of phosphotyrosine phosphatases (PTPs). We therefore undertook to synthesize a series of peroxovanadium (pV) compounds containing one or two peroxo anions, an oxo anion and an ancillary ligand in the inner co-ordination sphere of vanadium, whose properties and insulin-mimetic potencies could be assessed. These pV compounds were shown to be the most potent inhibitors of PTPs yet described. Their PTP inhibitory potency correlated with their capacity to stimulate IRK activity. Some pV compounds showed much greater potency as inhibitors of insulin receptor (IR) dephosphorylation than epidermal growth factor receptor (EGFR) dephosphorylation, implying relative specificity as PTP inhibitors. Replacement of vanadium with either molybdenum or tungsten resulted in equally potent inhibition of IR dephosphorylation. However IRK activation was reduced by greater than 80% suggesting that these compounds did not access intracellular PTPs. The insulin-like activity of these pV compounds were demonstrable in vivo. Intra venous (i.v.) administration of bpV(pic) and bpV(phen) resulted in the lowering of plasma glucose concentrations in normal rats in a dose dependent manner. The greater potency of bpV(pic) compared to bpV(phen) was explicable, in part, by the capacity of the former but not the latter to act on skeletal muscle as well as liver. Finally administration of bpV(phen) and insulin led to a synergism, where tyrosine phosphorylation of the IR beta-subunit increased by 20-fold and led to the appearance of four insulin-dependent in vivo substrates. The insulin-mimetic properties of the pV compounds raises the possibility for their use as insulin replacements in the management of diabetes mellitus.
Collapse
Affiliation(s)
- A P Bevan
- Polypeptide Hormone Laboratory, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Sandirasegarane L, Gopalakrishnan V. Limitations of the radioreceptor assay of inositol 1,4,5-trisphosphate in vanadate-treated cell suspensions. Biochem J 1994; 298 ( Pt 2):511-2. [PMID: 8135763 PMCID: PMC1137970 DOI: 10.1042/bj2980511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
MESH Headings
- Animals
- Artifacts
- Cells, Cultured
- Inositol 1,4,5-Trisphosphate/analysis
- Male
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Vanadates/pharmacology
Collapse
|
20
|
Goto Y, Kida K, Kaino Y, Ito T, Matsuda H. Actions of peroxovanadate or tungstate on glucose transport by isolated rat adipocytes. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1994; 36:20-4. [PMID: 8165903 DOI: 10.1111/j.1442-200x.1994.tb03123.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of peroxovanadate or tungstate on 3-O-methylglucose uptake were characterized using isolated rat adipocytes to elucidate the mechanism(s) of their actions. The stimulatory effect of peroxovanadate was observed from 1 mumol/L and reached the maximum at about 100 mumol/L. The concentration showing the half-maximal effect was approximately 16 mumol/L. The maximal response of peroxovanadate was 1.19 times higher than that of insulin significantly (P < 0.01). On the other hand, the stimulatory effect of tungstate was seen only at the higher concentrations of 10-30 mmol/L. Judging from the experiments using different tungsten compounds, tungstic acid (WO4(2-)) appeared responsible for the effect. The effects of 20 mmol/L tungstate and 20 nmol/L insulin were not additive. The stimulatory effects of 1 mmol/L peroxovanadate, 20 mmol/L tungstate or 20 nmol/L insulin were not seen in the adipocytes deprived of ATP by exposure to 2 mmol/L KCN. The adipocytes which had been stimulated with insulin and further exposed to 2 mmol/L KCN were used to test whether or not peroxovanadate works directly on the function of glucose transporters. In such cells on which GLUT4-rich transporters were rendered immobile, the effect of peroxovanadate was not observed. These results indicate that the effects of peroxovanadate or tungstate are ATP or energy dependent and may be exerted through the mechanism analogous to that of insulin action, and suggest that peroxovanadate does not directly activate the function of GLUT4.
Collapse
Affiliation(s)
- Y Goto
- Department of Pediatrics, Ehime University School of Medicine, Japan
| | | | | | | | | |
Collapse
|