1
|
Hawkins SJ, Gärtner Y, Offner T, Weiss L, Maiello G, Hassenklöver T, Manzini I. The olfactory network of larval Xenopus laevis regenerates accurately after olfactory nerve transection. Eur J Neurosci 2024; 60:3719-3741. [PMID: 38758670 DOI: 10.1111/ejn.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Yvonne Gärtner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Guido Maiello
- Department of Experimental Psychology, Justus Liebig University Gießen, Gießen, Germany
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
2
|
Ordoñez-Razo RM, Gutierrez-López Y, Araujo-Solis MA, Benitez-King G, Ramírez-Sánchez I, Galicia G. Overexpression of miR-25 Downregulates the Expression of ROBO2 in Idiopathic Intellectual Disability. Int J Mol Sci 2024; 25:3953. [PMID: 38612763 PMCID: PMC11011991 DOI: 10.3390/ijms25073953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Idiopathic intellectual disability (IID) encompasses the cases of intellectual disability (ID) without a known cause and represents approximately 50% of all cases. Neural progenitor cells (NPCs) from the olfactory neuroepithelium (NEO) contain the same information as the cells found in the brain, but they are more accessible. Some miRNAs have been identified and associated with ID of known etiology. However, in idiopathic ID, the effect of miRNAs is poorly understood. The aim of this study was to determine the miRNAs regulating the expression of mRNAs that may be involved in development of IID. Expression profiles were obtained using NPC-NEO cells from IID patients and healthy controls by microarray. A total of 796 miRNAs and 28,869 mRNAs were analyzed. Several miRNAs were overexpressed in the IID patients compared to controls. miR-25 had the greatest expression. In silico analysis showed that ROBO2 was the target for miR-25, with the highest specificity and being the most down-regulated. In vitro assay showed an increase of miR-25 expression induced a decrease in ROBO2 expression. In neurodevelopment, ROBO2 plays a crucial role in episodic learning and memory, so its down-regulation, caused by miR-25, could have a fundamental role in the intellectual disability that, until now, has been considered idiopathic.
Collapse
Affiliation(s)
- Rosa María Ordoñez-Razo
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico; (Y.G.-L.); (G.G.)
| | - Yessica Gutierrez-López
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico; (Y.G.-L.); (G.G.)
| | - María Antonieta Araujo-Solis
- Departamento Clínico de Genética Médica, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico;
| | - Gloria Benitez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Mexico City CP 14370, Mexico;
| | - Israel Ramírez-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City CP 07738, Mexico;
| | - Gabriela Galicia
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06725, Mexico; (Y.G.-L.); (G.G.)
| |
Collapse
|
3
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
4
|
Bousquet C, Bouchoucha K, Bensafi M, Ferdenzi C. Phantom smells: a prevalent COVID-19 symptom that progressively sets in. Eur Arch Otorhinolaryngol 2022; 280:1219-1229. [PMID: 36173444 PMCID: PMC9521006 DOI: 10.1007/s00405-022-07649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE One of the long-term symptoms of COVID-19 is phantosmia, a type of Olfactory Disorder (OD) that has deleterious impacts on patients' quality of life. The aim of this article was to study how this poorly understood qualitative OD manifests itself in the COVID-19. METHODS 4691 patients with COVID-19 responded to our online questionnaire focusing on COVID-19-related OD. We first analyzed the prevalence of phantosmia in this population. Then, with the help of Natural Language Processing techniques, we investigated the qualitative descriptions of phantom smells by the 1723 respondents who reported phantosmia. RESULTS The prevalence of phantosmia was of 37%. Women were more likely to report phantosmia than men, as well as respondents for whom OD was described as fluctuating rather than permanent, lasted longer, was partial rather than total and appeared progressively rather than suddenly. The relationship between OD duration and phantosmia followed a logarithmic function, with a prevalence of phantosmia increasing strongly during the first 2 months of the disease before reaching a plateau and no decrease over the 15 months considered in this study. Qualitative analyses of phantosmia descriptions with a sentiment analysis revealed that the descriptions were negatively valenced for 78% of the respondents. Reference to "tobacco" was more frequent in non-smokers. Source names and odor characteristics were used differently according to age and OD duration. CONCLUSION The results of this descriptive study of phantosmia contribute to the current efforts of the medical community to better understand and treat this rapidly increasing COVID-19-related OD.
Collapse
Affiliation(s)
- Christophe Bousquet
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Kamar Bouchoucha
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Moustafa Bensafi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Camille Ferdenzi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| |
Collapse
|
5
|
Expression pattern of Stomatin-domain proteins in the peripheral olfactory system. Sci Rep 2022; 12:11447. [PMID: 35794236 PMCID: PMC9259621 DOI: 10.1038/s41598-022-15572-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.
Collapse
|
6
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
7
|
Tu YK, Hsueh YH, Huang HC. Human olfactory ensheathing cell-derived extracellular vesicles: miRNA profile and neuroprotective effect. Curr Neurovasc Res 2021; 18:395-408. [PMID: 34645375 DOI: 10.2174/1567202618666211012162111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular vesicle (EV)-based therapy has been identified as a leading alternative approach in several disease models. EV derived from the olfactory ensheathing cell (OEC) has been documented for its strong neuro-regenerative capacity. However, no information on its cargo that may contribute to its therapeutic effect has been available. OBJECTIVE To report the first miRNA profile of human OEC (hOEC) -EV, and investigate the neuroprotective effects. METHODS hOEC-EV was isolated and sequenced. We established in vitro experiments to assess the therapeutic potential of hOEC-EVs with respect to insulted neural progenitor cells (NPCs), and the angiogenesis effect. Secondary post-injury insults were imitated using t-BHP-mediated oxidative stress. RESULTS We noted a strong abundance of hOEC-EV-miRNAs, including hsa-miR148a-3p, has-miR151a-3p and several members of let-7 family. The common targets of 15 miRNAs among the top 20 miRNAs were thrombospondin 1 and cyclin dependent kinase 6. We demonstrated that hOEC-EVs promote normal NPC proliferation and differentiation to neuron-like morphologies with prolonged axons. hOEC-EVs protect cells from t-BHP mediated apoptosis. We also found that the migration rate of either NPCs or endothelial cells significantly improved with hOEC-EVs. Furthermore, in vitro tube formation assays indicated that angiogenesis, an important process for tissue repair, was significantly enhanced in human umbilical vein endothelial cells exposed to hOEC-EVs. CONCLUSION Our results revealed that hOEC-EVs exert neuroprotective effects by protecting cells from apoptosis and promoting in vitro biological processes that are important to neural tissue repair, including neural cell proliferation, axonal growth, and cell migration, in addition to enhancing angiogenesis. </p>.
Collapse
Affiliation(s)
- Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Hsien-Chang Huang
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| |
Collapse
|
8
|
Ursavas S, Darici H, Karaoz E. Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. J Neurosci Res 2021; 99:1579-1597. [PMID: 33605466 DOI: 10.1002/jnr.24817] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is generally the consequence of physical damage, which may result in devastating consequences such as paraplegia or paralysis. Some certain candidates for SCI repair are olfactory ensheathing cells (OECs), which are unique glial cells located in the transition region of the peripheral nervous system and central nervous system and perform neuron regeneration in the olfactory system throughout life. Culture studies have clarified many properties of OECs, but their mechanisms of actions are not fully understood. Successful results achieved in animal models showcased that SCI treatment with OEC transplants is suitable for clinical trials. However, clinical trials are limited by difficulties like cell acquisition for autograft transplantation. Despite the improvements in both animal and clinical studies so far, there is still insufficient information about the mechanism of actions, adverse effects, proper application methods, effective subtypes, and sources of cells. This review summarizes pre-clinical and clinical literature focused on the cellular characterization of both OECs in vitro and post-transplantation. We highlight the roles and effects of OECs on (a) the injury-induced glial milieu, (b) neuronal growth/regeneration, and (c) functional recovery after injury. Due to the shown benefits of OECs with in vitro and animal studies and a limited number of clinical trials, where safety and effectivity were shown, it is necessary to conduct more studies on OECs to obtain effective and feasible treatment methods.
Collapse
Affiliation(s)
- Selin Ursavas
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Hakan Darici
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Erdal Karaoz
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey.,Center for Stem Cell and Tissue Engineering Research & Practice, Istinye University, Istanbul, Turkey.,Center for Regenerative Medicine and Stem Cell Research and Manufacturing, Liv Hospital, Istanbul, Turkey
| |
Collapse
|
9
|
Nakashima N, Nakashima K, Nakashima A, Takano M. Olfactory marker protein interacts with adenosine nucleotide derivatives. Biochem Biophys Rep 2021; 25:100887. [PMID: 33490644 PMCID: PMC7806522 DOI: 10.1016/j.bbrep.2020.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Olfactory marker protein (OMP) is a genetic signature for mature olfactory receptor neurons (ORNs). Recently, it has been proposed that OMP directly captures odour-induced cAMP to swiftly terminate the olfactory signal transduction to maintain neuronal sensitivity. In the present study, we show that OMP can also interact with other adenosine nucleotides as ATP, ADP and AMP with different affinities. We performed bioluminescent resonant energy transfer (BRET) assay to measure the binding actions of the adenosine nucleotide derivatives in competition to cAMP. Amongst all, ATP showed the bell-shape affinity to OMP in the presence of cAMP; ADP and AMP showed fewer affinities to OMP than ATP. In the absence of cAMP analogues, ATP alone bound to OMP in a dose dependent manner with a lower affinity than to cAMP. Thus, OMP possessed different affinities to ATP in the presence or absence of cAMP. OMP may interact differentially with ATP and cAMP depending on its supply and demand along the cAMP-associated signalling in the limited spaces of cilia of ORNs. Olfactory marker protein (OMP) contains cAMP-binding sites. The affinity of OMP towards adenosine nucleotide derivatives was studied. OMP showed sigmoid-shaped affinity towards ATP. OMP showed U-shaped affinity towards ATP in competition with cAMP. OMP dose-dependently and differentially captured ATP.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Kie Nakashima
- Laboratory of Developmental Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto, 606-8501, Japan
| | - Akiko Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
10
|
Nakashima N, Nakashima K, Nakashima A, Takano M. Olfactory marker protein elevates basal cAMP concentration. Biochem Biophys Res Commun 2020; 531:203-208. [PMID: 32792198 DOI: 10.1016/j.bbrc.2020.07.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
Olfactory marker protein (OMP), which is expressed abundantly in mature olfactory receptor neurons, operates as a cAMP-binding protein. OMP captures phasic cAMP surges induced by sensory stimuli and punctuates the downstream signalling in the cilia. On the other hand, OMP is also abundant in the soma. At equilibrium, OMP should exhibit association/dissociation reactions with cAMP. To examine the steady-state function of OMP, we expressed OMP in an HEK293 heterologous expression system and measured the activity of cAMP-dependent protein kinase (PKA) using a cAMP response element/luciferase reporter assay. In the presence of OMP, the basal activity level of PKA was elevated to approximately twice as much as that in the absence of OMP. Upon tonic stimulation by membrane-permeable cAMP, the PKA activity increased in a dose-dependent manner and was greater in the presence of OMP at all doses until saturation. These results indicate that OMP, a cytosolic cAMP-binding protein, operates as a cAMP reservoir by increases the basal cAMP concentration and enhances tonic cAMP actions. Together with the previous finding that OMP acutely sequesters cAMP-related responses, these results indicate that OMP can buffer acute surges in cAMP and tonic production, which stabilizes the basal cAMP pool in the long run.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Kie Nakashima
- Laboratory of Developmental Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto, 606-8501, Japan
| | - Akiko Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
11
|
Russo C, Patanè M, Vicario N, Di Bella V, Cosentini I, Barresi V, Gulino R, Pellitteri R, Russo A, Stanzani S. Olfactory Ensheathing Cells express both Ghrelin and Ghrelin Receptor in vitro: a new hypothesis in favor of a neurotrophic effect. Neuropeptides 2020; 79:101997. [PMID: 31784044 DOI: 10.1016/j.npep.2019.101997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Olfactory Ensheathing Cells (OECs) are glial cells able to secrete different neurotrophic growth factors and thus promote axonal growth, also acting as a mechanical support. In the olfactory system, during development, they drive the non-myelinated axons of the Olfactory Receptor Neurons (ORNs) towards the Olfactory Bulb (OB). Ghrelin (Ghre), a gut-brain peptide hormone, and its receptor (GHS-R 1a) are expressed in different parts of the central nervous system. In the last few years, this peptide has stimulated particular interest as results show it to be a neuroprotective factor with antioxidant, anti-inflammatory and anti-apoptotic properties. Our previous studies showed that OB mitral cells express Ghre, thus being able to play an important role in regulating food behavior in response to odors. In this study, we investigated the presence of Ghre and GHS-R 1a in primary mouse OECs. The expression of both Ghre and its receptor was assessed by an immunocytochemical technique, Western Blot and Polymerase Chain Reaction (PCR) analysis. Our results demonstrated that OECs are able to express both Ghre and GHS-R 1a and that these proteins are detectable after extensive passages in vitro; in addition, PCR analysis further confirmed these data. Therefore, we can hypothesize that Ghre and GHS-R 1a interact with a reinforcement function, in the peripheral olfactory circuit, providing a neurotrophic support to the synaptic interaction between ORNs and mitral cells.
Collapse
Affiliation(s)
- Cristina Russo
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Martina Patanè
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Nunzio Vicario
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Virginia Di Bella
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Ilaria Cosentini
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Vincenza Barresi
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Rosario Gulino
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Rosalia Pellitteri
- Inst for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Antonella Russo
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy.
| | - Stefania Stanzani
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| |
Collapse
|
12
|
Walkden H, Delbaz A, Nazareth L, Batzloff M, Shelper T, Beacham IR, Chacko A, Shah M, Beagley KW, Tello Velasquez J, St John JA, Ekberg JAK. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl Trop Dis 2020; 14:e0008017. [PMID: 31978058 PMCID: PMC7002012 DOI: 10.1371/journal.pntd.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.
Collapse
Affiliation(s)
- Heidi Walkden
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ali Delbaz
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Todd Shelper
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Anu Chacko
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Kenneth W. Beagley
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - James A. St John
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jenny A. K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
13
|
Reshamwala R, Shah M, Belt L, Ekberg JAK, St John JA. Reliable cell purification and determination of cell purity: crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regen Res 2020; 15:2016-2026. [PMID: 32394949 PMCID: PMC7716040 DOI: 10.4103/1673-5374.282218] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transplantation of olfactory ensheathing cells, the glia of the primary olfactory nervous system, has been trialed for spinal cord injury repair with promising but variable outcomes in animals and humans. Olfactory ensheathing cells can be harvested either from the lamina propria beneath the neuroepithelium in the nasal cavity, or from the olfactory bulb in the brain. As these areas contain several other cell types, isolating and purifying olfactory ensheathing cells is a critical part of the process. It is largely unknown how contaminating cells such as fibroblasts, other glial cell types and supporting cells affect olfactory ensheathing cell function post-transplantation; these cells may also cause unwanted side-effects. It is also, however, possible that the presence of some of the contaminant cells can improve outcomes. Here, we reviewed the last decade of olfactory ensheathing cell transplantation studies in rodents, with a focus on olfactory ensheathing cell purity. We analyzed how purification methods and resultant cell purity differed between olfactory mucosa- and olfactory bulb-derived cell preparations. We analyzed how the studies reported on olfactory ensheathing cell purity and which criteria were used to define cells as olfactory ensheathing cells. Finally, we analyzed the correlation between cell purity and transplantation outcomes. We found that olfactory bulb-derived olfactory ensheathing cell preparations are typically purer than mucosa-derived preparations. We concluded that there is an association between high olfactory ensheathing cell purity and favourable outcomes, but the lack of olfactory ensheathing cell-specific markers severely hampers the field.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lucy Belt
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Reshamwala R, Shah M, St John J, Ekberg J. Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies. Cell Transplant 2019; 28:132S-159S. [PMID: 31726863 PMCID: PMC7016467 DOI: 10.1177/0963689719883823] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - James St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Jenny Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Murtaza M, Chacko A, Delbaz A, Reshamwala R, Rayfield A, McMonagle B, St John JA, Ekberg JAK. Why are olfactory ensheathing cell tumors so rare? Cancer Cell Int 2019; 19:260. [PMID: 31632194 PMCID: PMC6788004 DOI: 10.1186/s12935-019-0989-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
The glial cells of the primary olfactory nervous system, olfactory ensheathing cells (OECs), are unusual in that they rarely form tumors. Only 11 cases, all of which were benign, have been reported to date. In fact, the existence of OEC tumors has been debated as the tumors closely resemble schwannomas (Schwann cell tumors), and there is no definite method for distinguishing the two tumor types. OEC transplantation is a promising therapeutic approach for nervous system injuries, and the fact that OECs are not prone to tumorigenesis is therefore vital. However, why OECs are so resistant to neoplastic transformation remains unknown. The primary olfactory nervous system is a highly dynamic region which continuously undergoes regeneration and neurogenesis throughout life. OECs have key roles in this process, providing structural and neurotrophic support as well as phagocytosing the axonal debris resulting from turnover of neurons. The olfactory mucosa and underlying tissue is also frequently exposed to infectious agents, and OECs have key innate immune roles preventing microbes from invading the central nervous system. It is possible that the unique biological functions of OECs, as well as the dynamic nature of the primary olfactory nervous system, relate to the low incidence of OEC tumors. Here, we summarize the known case reports of OEC tumors, discuss the difficulties of correctly diagnosing them, and examine the possible reasons for their rare incidence. Understanding why OECs rarely form tumors may open avenues for new strategies to combat tumorigenesis in other regions of the nervous system.
Collapse
Affiliation(s)
- Mariyam Murtaza
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Anu Chacko
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ali Delbaz
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ronak Reshamwala
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Andrew Rayfield
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Brent McMonagle
- 4Department of Otolaryngology-Head and Neck Surgery, Gold Coast University Hospital, 1 Hospital Boulevard, Southport, QLD 4215 Australia
| | - James A St John
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Jenny A K Ekberg
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| |
Collapse
|
16
|
Calvo-Ochoa E, Byrd-Jacobs CA. The Olfactory System of Zebrafish as a Model for the Study of Neurotoxicity and Injury: Implications for Neuroplasticity and Disease. Int J Mol Sci 2019; 20:ijms20071639. [PMID: 30986990 PMCID: PMC6480214 DOI: 10.3390/ijms20071639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
The olfactory system, composed of the olfactory organs and the olfactory bulb, allows organisms to interact with their environment and through the detection of odor signals. Olfaction mediates behaviors pivotal for survival, such as feeding, mating, social behavior, and danger assessment. The olfactory organs are directly exposed to the milieu, and thus are particularly vulnerable to damage by environmental pollutants and toxicants, such as heavy metals, pesticides, and surfactants, among others. Given the widespread occurrence of olfactory toxicants, there is a pressing need to understand the effects of these harmful compounds on olfactory function. Zebrafish (Danio rerio) is a valuable model for studying human physiology, disease, and toxicity. Additionally, the anatomical components of the zebrafish olfactory system are similar to those of other vertebrates, and they present a remarkable degree of regeneration and neuroplasticity, making it an ideal model for the study of regeneration, reorganization and repair mechanisms following olfactory toxicant exposure. In this review, we focus on (1) the anatomical, morphological, and functional organization of the olfactory system of zebrafish; (2) the adverse effects of olfactory toxicants and injury to the olfactory organ; and (3) remodeling and repair neuroplasticity mechanisms following injury and degeneration by olfactory toxicant exposure.
Collapse
Affiliation(s)
- Erika Calvo-Ochoa
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| | - Christine A Byrd-Jacobs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
17
|
Primary Cultures of Olfactory Neurons from the Avian Olfactory Epithelium. Methods Mol Biol 2019. [PMID: 29959715 DOI: 10.1007/978-1-4939-8600-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The culture of the olfactory epithelium has been a useful model for the study of neurogenesis since olfactory neurons regenerate continuously throughout the adult lifespan. Structurally and functionally mature olfactory neurons are generated in vitro from non-neuronal precursors in a process that resembles the in vivo counterparts. This chapter describes a technique for culture of olfactory neurons from the avian olfactory epithelium of embryonic chickens; this enables the controlled laboratory study of a critical sensory system that is unstudied in this major vertebrate class. The techniques described here are broadly applicable to other endothermic vertebrate species.
Collapse
|
18
|
Saito-Diaz K, Zeltner N. Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review. Clin Auton Res 2019; 29:367-384. [PMID: 30631982 DOI: 10.1007/s10286-018-00587-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The autonomic nervous system (ANS) regulates all organs in the body independent of consciousness, and is thus essential for maintaining homeostasis of the entire organism. Diseases of the ANS can arise due to environmental insults such as injury, toxins/drugs and infections or due to genetic lesions. Human studies and animal models have been instrumental to understanding connectivity and regulation of the ANS and its disorders. However, research into cellular pathologies and molecular mechanisms of ANS disorders has been hampered by the difficulties in accessing human patient-derived ANS cells in large numbers to conduct meaningful research, mainly because patient neurons cannot be easily biopsied and primary human neuronal cultures cannot be expanded.Human-induced pluripotent stem cell (hiPSC) technology can elegantly bridge these issues, allowing unlimited access of patient-derived ANS cell types for cellular, molecular and biochemical analysis, facilitating the discovery of novel therapeutic targets, and eventually leading to drug discovery. Additionally, such cells may provide a source for cell replacement therapy to replenish lost or injured ANS tissue in patients.Here, we first review the anatomy and embryonic development of the ANS, as this knowledge is crucial for understanding disease modeling approaches. We then review the current advances in human stem cell technology for modeling diseases of the ANS, recent strides toward cell replacement therapy and drug discovery initiatives.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA. .,Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
19
|
Scaros AT, Croll RP, Baratte S. Immunohistochemical Approach to Understanding the Organization of the Olfactory System in the Cuttlefish, Sepia officinalis. ACS Chem Neurosci 2018; 9:2074-2088. [PMID: 29578683 DOI: 10.1021/acschemneuro.8b00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cephalopods are nontraditional but captivating models of invertebrate neurobiology, particularly in evolutionary comparisons. Cephalopod olfactory systems have striking similarities and fundamental differences with vertebrates, arthropods, and gastropods, raising questions about the ancestral origins of those systems. We describe here the organization and development of the olfactory system of the common cuttlefish, Sepia officinalis, using immunohistochemistry and in situ hybridization. FMRFamide and/or related peptides and histamine are putative neurotransmitters in olfactory sensory neurons. Other neurotransmitters, including serotonin and APGWamide within the olfactory and other brain lobes, suggest efferent control of olfactory input and/or roles in the processing of olfactory information. The distributions of neurotransmitters, along with staining patterns of phalloidin, anti-acetylated α-tubulin, and a synaptotagmin riboprobe, help to clarify the structure of the olfactory lobe. We discuss a key difference, the lack of identifiable olfactory glomeruli, in cuttlefish in comparison to other models, and suggest its implications for the evolution of olfaction.
Collapse
Affiliation(s)
- Alexia T. Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sébastien Baratte
- Sorbonne Université,
MNHN, UNICAEN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes
Aquatiques (BOREA), Paris 75005, France
| |
Collapse
|
20
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
21
|
Powell MA, Black RT, Smith TL, Reeves TM, Phillips LL. Mild Fluid Percussion Injury Induces Diffuse Axonal Damage and Reactive Synaptic Plasticity in the Mouse Olfactory Bulb. Neuroscience 2018; 371:106-118. [PMID: 29203228 PMCID: PMC5809206 DOI: 10.1016/j.neuroscience.2017.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Despite the regenerative capacity of the olfactory bulb (OB), head trauma causes olfactory disturbances in up to 30% of patients. While models of olfactory nerve transection, olfactory receptor neuron (ORN) ablation, or direct OB impact have been used to examine OB recovery, these models are severe and not ideal for study of OB synaptic repair. We posited that a mild fluid percussion brain injury (mFPI), delivered over mid-dorsal cortex, would produce diffuse OB deafferentation without confounding pathology. Wild type FVB/NJ mice were subjected to mFPI and OB probed for ORN axon degeneration and onset of reactive synaptogenesis. OB extracts revealed 3 d postinjury elevation of calpain-cleaved 150-kDa αII-spectrin, an indicator of axon damage, in tandem with reduced olfactory marker protein (OMP), a protein specific to intact ORN axons. Moreover, mFPI also produced a 3-d peak in GFAP+ astrocyte and IBA1+ microglial reactivity, consistent with postinjury inflammation. OB glomeruli showed disorganized ORN axons, presynaptic degeneration, and glial phagocytosis at 3 and 7 d postinjury, all indicative of deafferentation. At 21 d after mFPI, normal synaptic structure re-emerged along with OMP recovery, supporting ORN afferent reinnervation. Robust 21 d postinjury upregulation of GAP-43 was consistent with the time course of ORN axon sprouting and synapse regeneration reported after more severe olfactory insult. Together, these findings define a cycle of synaptic degeneration and recovery at a site remote to non-contusive brain injury. We show that mFPI models diffuse ORN axon damage, useful for the study of time-dependent reactive synaptogenesis in the deafferented OB.
Collapse
Affiliation(s)
- Melissa A Powell
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Raiford T Black
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Terry L Smith
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| |
Collapse
|
22
|
Cheetham CEJ, Park U, Belluscio L. Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat Commun 2016; 7:10729. [PMID: 26898529 PMCID: PMC4764868 DOI: 10.1038/ncomms10729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/15/2016] [Indexed: 02/01/2023] Open
Abstract
Incorporation of new neurons enables plasticity and repair of circuits in the adult brain. Adult neurogenesis is a key feature of the mammalian olfactory system, with new olfactory sensory neurons (OSNs) wiring into highly organized olfactory bulb (OB) circuits throughout life. However, neither when new postnatally generated OSNs first form synapses nor whether OSNs retain the capacity for synaptogenesis once mature, is known. Therefore, how integration of adult-born OSNs may contribute to lifelong OB plasticity is unclear. Here, we use a combination of electron microscopy, optogenetic activation and in vivo time-lapse imaging to show that newly generated OSNs form highly dynamic synapses and are capable of eliciting robust stimulus-locked firing of neurons in the mouse OB. Furthermore, we demonstrate that mature OSN axons undergo continuous activity-dependent synaptic remodelling that persists into adulthood. OSN synaptogenesis, therefore, provides a sustained potential for OB plasticity and repair that is much faster than OSN replacement alone.
Collapse
Affiliation(s)
- Claire E. J. Cheetham
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Una Park
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Finas D, Janine SF, Benjamin S, Gereon H, Achim R, Thorsten B, Kerstin LB. SPIO processing in macrophages for MPI: The breast cancer MPI-SNLB-concept. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2015. [DOI: 10.1515/cdbme-2016-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Introduction
Breast cancer (BC) is the most common cancer in women worldwide. We aim to develop a new sentinel lymph node biopsy (SLNB) method with superparamagnetic iron oxide nanoparticles (SPIOs) and magnetic particle imaging (MPI) in BC to avoid tissue damaging while axillary surgery. As we know from i.v. SPIO application in magnetic resonance imaging (MRI), macrophages (MP) are key role player in processing of SPIOs (e.g. in liver) causing a drop of signal intensity. But, knowledge lacks concerning enrichment processes of SPIOs after injection in breast tissue, the adjacent lymphatic tissues and associated cells, especially in BC and metastatic lymph nodes. We already evaluated the distribution of SPIOs in an in vivo healthy and tumor mouse model. Based on these studies we investigate the processing of the SPIOs in MP.
Material and Methods
To evaluate SPIO processing, a mouse MP cell line J774A.1 was incubated either by Resovist in culture medium (RPMI, FBS), or culture medium only as control. MP were than analyzed by transmission electron microscopy (TEM). Additionally, this process was observed in vivo by multiphoton microscopy. Detection of SPIOs was realized by excitation at 1200 nm.
Results
Resovist had no toxic effects on cells.MP showed activity in phagocytosis of Resovist after incubation in TEM as well as in multiphoton microscopy. SPIOs were detectable within intracellular vesicles by TEM and 3-photon process. The first cell associated SPIO signal was detected after 1,5 min of incubation by in vivo imaging.
Conclusion
To our knowledge this is the first time a 3-photon device was used to image SPIOs in a bio-medical context. System wide scanning is known (MRI, MPI), but nowwe are also able to identify the link to subcellular processing and localization of SPIOs. Further processing of SPIOs in MP is under development.
Collapse
Affiliation(s)
- Dominique Finas
- Evangelical Hospital Bielefeld, Burgsteig 13, 33617 Bielefeld, Germany, phone +49 521 772 75381, fax +49 521 772 75384
| | | | - Sauer Benjamin
- University of Lübeck, Institute of Biomedical Optics, Germany
| | - Hüttmann Gereon
- University of Lübeck, Institute of Biomedical Optics, Germany
| | - Rody Achim
- University of Lübeck, Department of Obstetrics and Gynecology, Germany
| | - Buzug Thorsten
- University of Lübeck, Institute of Medical Engineering, Germany
| | | |
Collapse
|
24
|
White EJ, Kounelis SK, Byrd-Jacobs CA. Plasticity of glomeruli and olfactory-mediated behavior in zebrafish following detergent lesioning of the olfactory epithelium. Neuroscience 2014; 284:622-631. [PMID: 25450960 DOI: 10.1016/j.neuroscience.2014.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The zebrafish olfactory system is a valuable model for examining neural regeneration after damage due to the remarkable plasticity of this sensory system and of fish species. We applied detergent to the olfactory organ and examined the effects on both morphology and function of the olfactory system in adult zebrafish. Olfactory organs were treated once with Triton X-100 unilaterally to study glomerular innervation patterns or bilaterally to study odor detection. Fish were allowed to recover for 4-10 days and were compared to untreated control fish. Axonal projections were analyzed using whole mount immunocytochemistry with anti-keyhole limpet hemocyanin, a marker of olfactory axons in teleosts. Chemical lesioning of the olfactory organ with a single dose of Triton X-100 had profound effects on glomerular distribution in the olfactory bulb at 4 days after treatment, with the most significant effects in the medial region of the bulb. Glomeruli had returned by 7 days post-treatment. Analysis of the ability of the fish to detect cocktails of amino acids or bile salts consisted of counting the number of turns the fish made before and after odorant delivery. Control fish turned more after exposure to both odorants. Fish tested 4 and 7 days after chemical lesioning made more turns in response to amino acids but did not respond to bile salts. At 10 days post-lesion, these fish had regained the ability to detect bile salts. Thus, the changes seen in bulbar innervation patterns correlated to odorant-mediated behavior. We show that the adult zebrafish brain has the capacity to recover rapidly from detergent damage of the olfactory epithelium, with both glomerular distribution and odorant-mediated behavior returning in 10 days.
Collapse
Affiliation(s)
- E J White
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5410, USA.
| | - S K Kounelis
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5410, USA.
| | - C A Byrd-Jacobs
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
25
|
Carvalho LA, Vitorino LC, Guimarães RPM, Allodi S, de Melo Reis RA, Cavalcante LA. Selective stimulatory action of olfactory ensheathing glia-conditioned medium on oligodendroglial differentiation, with additional reference to signaling mechanisms. Biochem Biophys Res Commun 2014; 449:338-43. [PMID: 24853803 DOI: 10.1016/j.bbrc.2014.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
We examined the effects of conditioned medium from olfactory ensheathing glia (OEGCM) on the differentiation of oligodendrocytes in mixed cultures of early postnatal hippocampi. Differentiation was judged from the numerical density (ND) of cells immunoreactive to 2'3' cyclic nucleotide 3'phosphodiesterase (CNPase) and O4 antibodies. NDs increased according to inverted-U dose-response curves, particularly for CNPase+ cells (9-fold at optimal dilution) and these changes were blocked by inhibitors of ERK1, p38-MAPK, and PI3K. Our results raise the possibility that OEG secreted factor(s) may counteract demyelination induced by trauma, neurodegenerative diseases, and advanced age, and should stimulate novel methods to deliver these factors and/or potentiating chemicals.
Collapse
Affiliation(s)
- Litia A Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Louise C Vitorino
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Roberta P M Guimarães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Ricardo A de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil
| | - Leny A Cavalcante
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, 21949-902 Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Barbour HR, Plant CD, Harvey AR, Plant GW. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion. BMC Neurosci 2013; 14:106. [PMID: 24070030 PMCID: PMC3849889 DOI: 10.1186/1471-2202-14-106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022] Open
Abstract
Background It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. Results OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was observed at both time points following glial SCs transplantation. In addition, OEG transplants showed significantly decreased chondroitin proteoglycan synthesis in the lesion site, suggesting a more CNS tolerant graft. Conclusions These results show that transplantation of OEG and SCs in a sub-acute phase can improve anatomical outcomes after a contusion injury to the spinal cord, by increasing the number of spared/regenerated supraspinal fibers, reducing cavitation and enhancing tissue integrity. This provides important information on the time window of glial transplantation for the repair of the spinal cord.
Collapse
Affiliation(s)
- Helen R Barbour
- Department of Neurosurgery, Stanford Partnership for Spinal Cord Injury and Repair, Stanford University, Lorry I Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
27
|
Díaz D, Gómez C, Muñoz-Castañeda R, Baltanás F, Alonso JR, Weruaga E. The Olfactory System as a Puzzle: Playing With Its Pieces. Anat Rec (Hoboken) 2013; 296:1383-400. [DOI: 10.1002/ar.22748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- D. Díaz
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - C. Gómez
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - R. Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - F. Baltanás
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - J. R. Alonso
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
- Institute for High Research, Universidad de Tarapacá; Arica Chile
| | - E. Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| |
Collapse
|
28
|
Youngentob SL, Kent PF, Youngentob LM. Gestational naltrexone ameliorates fetal ethanol exposures enhancing effect on the postnatal behavioral and neural response to ethanol. Exp Biol Med (Maywood) 2012; 237:1197-208. [PMID: 23045720 DOI: 10.1258/ebm.2012.012132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The association between gestational exposure to ethanol and adolescent ethanol abuse is well established. Recent animal studies support the role of fetal ethanol experience-induced chemosensory plasticity as contributing to this observation. Previously, we established that fetal ethanol exposure, delivered through a dam's diet throughout gestation, tuned the neural response of the peripheral olfactory system of early postnatal rats to the odor of ethanol. This occurred in conjunction with a loss of responsiveness to other odorants. The instinctive behavioral response to the odor of ethanol was also enhanced. Importantly, there was a significant contributory link between the altered response to the odor of ethanol and increased ethanol avidity when assessed in the same animals. Here, we tested whether the neural and behavioral olfactory plasticity, and their relationship to enhanced ethanol intake, is a result of the mere exposure to ethanol or whether it requires the animal to associate ethanol's reinforcing properties with its odor attributes. In this later respect, the opioid system is important in the mediation (or modulation) of the reinforcing aspects of ethanol. To block endogenous opiates during prenatal life, pregnant rats received daily intraperitoneal administration of the opiate antagonist naltrexone from gestational day 6-21 jointly with ethanol delivered via diet. Relative to control progeny, we found that gestational exposure to naltrexone ameliorated the enhanced postnatal behavioral response to the odor of ethanol and postnatal drug avidity. Our findings support the proposition that in utero ethanol-induced olfactory plasticity (and its relationship to postnatal intake) requires, at least in part, the associative pairing between ethanol's odor quality and its reinforcing aspects. We also found suggestive evidence that fetal naltrexone ameliorated the untoward effects of gestational ethanol exposure on the neural response to non-fetal-exposure odorants. Thus, gestational naltrexone may also have a neuroprotective and/or neuroproliferative impact on olfactory development.
Collapse
Affiliation(s)
- Steven L Youngentob
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
29
|
Matsumura K, Matsumoto M, Kurahashi T, Takeuchi H. Recordings from cultured newt olfactory receptor cells. Zoolog Sci 2012; 29:340-5. [PMID: 22559969 DOI: 10.2108/zsj.29.340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Freshly dissociated olfactory receptor cells (ORCs) are commonly used in electrophysiological research investigations of the physicochemical mechanisms of olfactory signal transduction. Because the morphology of cultured cells clearly becomes worse over time, the ORCs are examined traditionally within several days after dissociation. However, there has been a major concern that cells are affected soon after dissociation. To gain a better understanding of the reliability of data obtained from solitary cells, we obtained electrical data during the lifetime of single ORCs dissociated from the newt. The time course for the deterioration could be revealed by monitoring the membrane properties during culture. Although the number of living cells that were identified by trypan blue extrusion declined day by day, the remaining cells retained morphology and their fundamental electrical features until day 19. In some cells, the cilia and dendrite were observed until day 21, and the bipolar morphology until day 31. The fundamental features of cell excitation were maintained during culture without showing remarkable changes when they retained morphological features. The results suggest that electrical properties of cells are almost unchanged within several days. Furthermore, the dissociated newt ORCs can be used for several weeks that are almost comparable to the intrinsic lifetime of the ORCs in vivo.
Collapse
Affiliation(s)
- Kyohei Matsumura
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | |
Collapse
|
30
|
Carr VM, Robinson AM, Kern RC. Tissue-specific effects of allergic rhinitis in mouse nasal epithelia. Chem Senses 2012; 37:655-68. [PMID: 22490702 DOI: 10.1093/chemse/bjs048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Allergic rhinitis (AR) can cause significant olfactory loss, but few studies have specifically investigated AR effects on olfactory and nasal respiratory tissues per se. To address this, we used a murine AR protocol employing nasal allergen infusion for both sensitization and challenges. Seven- to 11-week BALB/c mice were bilaterally infused with 1% ovalbumin (OVA) in phosphate-buffered saline (PBS) or PBS alone for 6 or 11 weeks, given single bilateral PBS or OVA infusions 24 h before sacrifice, or left untreated. High OVA-specific IgE serum levels and eosinophil infiltration confirmed AR induction. Olfactory (OE) and respiratory (RE) epithelia showed distinctly different responses, most conspicuously, massive eosinophil infiltration of immediately RE-subjacent lamina propria. In OE, such infiltration was minimal. Significant RE hypertrophy and hyperplasia also occurred, although OE organization was generally maintained and extensive disruption localized despite a 20% reduction in sensory neurons and globose basal cells after 11 weeks OVA. Pronounced Bowman's gland hypertrophy crowded both OE and olfactory nerve bundles. Cellular proliferation was widely distributed in RE but in OE was localized to normally thinner OE and RE-proximal OE, suggesting possible indirect RE influences. Terminal deoxynucleotide transferase (TdT) nick end labeling was greater in OE than RE and, in contrast to other effects, occurred with acute infusions and chronic PBS alone, often unilaterally. Following chronic OVA, AR-related bilateral increases appeared superimposed on those. These findings indicate AR effects on olfactory function may be complex, reflecting various levels of RE/OE responses and interactions.
Collapse
Affiliation(s)
- Virginia McMillan Carr
- Department of Otolaryngology, Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
31
|
Raisman G, Barnett SC, Ramón-Cueto A. Repair of central nervous system lesions by transplantation of olfactory ensheathing cells. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:541-549. [PMID: 23098735 DOI: 10.1016/b978-0-444-52137-8.00033-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Clinical conditions affecting the central nervous system (CNS) fall into two main categories - degenerative conditions in which nerve cells are lost (Alzheimer's, Parkinson's, Huntington's disease, etc.), and traumatic insults which sever nerve fibers but leave their cell bodies and initial parts of the severed axons intact (spinal cord injury, cerebrovascular accidents, or tumors affecting fiber tracts). After injuries of this second type, the survival of the nerve cell bodies and the local sprouting at the severed ends of the proximal stumps of the axons raise the tantalizing possibility of one day learning how to induce these severed fibers to regenerate to their original targets and restore lost functions. This chapter gives an overview of current research into the strategy of transplantation of olfactory ensheathing cells into axotomizing injuries.
Collapse
|
32
|
Broad KD, Keverne EB. The post-natal chemosensory environment induces epigenetic changes in vomeronasal receptor gene expression and a bias in olfactory preference. Behav Genet 2011; 42:461-71. [PMID: 22179772 DOI: 10.1007/s10519-011-9523-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/06/2011] [Indexed: 12/20/2022]
Abstract
Vomeronasal stem cells are generated throughout the life of a mouse and differentiate into neurons that express one vomeronasal type 1 (V1r), one or two vomeronasal type 2 (V2r), or one olfactory receptor. Vomeronasal stem cells can be induced to differentiate into neurons by treatment with lipocalins from mouse urine or by epigenetic modification following treatment with histone deacetylase inhibitors. An important question is, do chemosensory signals, modify the detection capabilities of the vomeronasal organ and affect behaviour. Rearing mice in the presence of urine (and its pheromonal signals) derived from a different mouse strain, affected the behavioural preference for non-kin which were accompanied by changes in vomeronasal receptor expression. Significant changes in the expression of vomeronasal V1r, V2r and olfactory receptors, major urinary proteins, and a number of genes thought to be involved in transcriptional regulation were also observed following urine treatment. These results suggest that modification of a mouse's urinary environment may exert epigenetic effects on developing vomeronasal neurons, which modify the type of vomeronasal receptors that are expressed. This may provide a mechanism by which environmental changes are able to modify the detection capabilities of the vomeronasal organ to respond optimally to the most likely social environment that a mouse will encounter when mature.
Collapse
Affiliation(s)
- Kevin D Broad
- Sub-Dept of Animal Behaviour, University of Cambridge, Madingley, Cambridge, UK.
| | | |
Collapse
|
33
|
Ferretti P. Is there a relationship between adult neurogenesis and neuron generation following injury across evolution? Eur J Neurosci 2011; 34:951-62. [DOI: 10.1111/j.1460-9568.2011.07833.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Paskin TR, Iqbal TR, Byrd-Jacobs CA. Olfactory bulb recovery following reversible deafferentation with repeated detergent application in the adult zebrafish. Neuroscience 2011; 196:276-84. [PMID: 21933699 DOI: 10.1016/j.neuroscience.2011.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
The neuroplasticity and regenerative properties of the olfactory system make it a useful model for studying the ability of the nervous system to recover from damage. We have developed a novel method for examining the effects of long-term deafferentation and regeneration of the olfactory organ and resulting influence on the olfactory bulb in adult zebrafish. To test the hypothesis that repeated damage to the olfactory epithelium causes reduced olfactory bulb afferent input and cessation of treatment allows recovery, we chronically ablated the olfactory organ every 2-3 days for 3 weeks with the detergent Triton X-100 while another group was allowed 3 weeks of recovery following treatment. Animals receiving chronic treatment showed severe morphological disruption of the olfactory organ, although small pockets of epithelium remained. These pockets were labeled by anti-calretinin, indicating the presence of mature olfactory sensory neurons (OSNs). Following a recovery period, the epithelium was more extensive and neuronal labeling increased, with three different morphologies of sensory neurons observed. Repeated peripheral exposure to Triton X-100 also affected the olfactory bulb. Bulb volumes and anti-tyrosine hydroxylase-like immunoreactivity, which is an indicator of afferent activity, were diminished in the olfactory bulb of the chronically treated group compared to the control side. In the recovery group, there was little difference in bulb volume or antibody staining. These results suggest that repeated, long-term nasal irrigation with Triton X-100 eliminates a substantial number of mature OSNs and reduces afferent input to the olfactory bulb. It also appears that these effects are reversible and regeneration will occur in both the peripheral olfactory organ and the olfactory bulb when given time to recover following cessation of treatment. We report here a new method that allows observation not only of the effects of deafferentation on the olfactory bulb but also the effects of reinnervation.
Collapse
Affiliation(s)
- T R Paskin
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA
| | | | | |
Collapse
|
35
|
Ramón-Cueto A, Muñoz-Quiles C. Clinical application of adult olfactory bulb ensheathing glia for nervous system repair. Exp Neurol 2011; 229:181-94. [DOI: 10.1016/j.expneurol.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/13/2022]
|
36
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Kachramanoglou C, Li D, Andrews P, East C, Carlstedt T, Raisman G, Choi D. Novel strategies in brachial plexus repair after traumatic avulsion. Br J Neurosurg 2010; 25:16-27. [PMID: 20979435 DOI: 10.3109/02688697.2010.522744] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinical trials in spinal cord injury (SCI) can be affected by many confounding variables including spontaneous recovery, variation in the lesion type and extend. However, the clinical need and the paucity of effective therapies has spawned a large number of animal studies and clinical trials for SCI. In this review, we suggest that brachial plexus avulsion injury, a longitudinal spinal cord lesion, is a simpler model to test methods of spinal cord repair. We explore reconstructive techniques currently explored for the repair of brachial plexus avulsion and focus on the use of olfactory ensheathing cell transplantation as an adjunct treatment in brachial plexus repair.
Collapse
|
38
|
Xia J, Broad KD, Emson PC, Keverne EB. Epigenetic modification of vomeronasal (V2r) precursor neurons by histone deacetylation. Neuroscience 2010; 169:1462-72. [PMID: 20594945 DOI: 10.1016/j.neuroscience.2010.05.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 12/14/2022]
Abstract
Vomeronasal neurons undergo continuous neurogenesis throughout development and adult life. These neurons originate as stem cells in the apical zone of the lumen of the vomeronasal organ (VNO) and are described as nestin-expressing glia-like progenitor cells (Murdoch and Roskams, 2008). They then migrate horizontally along the basal zone where they differentiate into functional VNO neurons (Kaba et al., 1988). We harvested progenitor cells from the adult VNO and, after 3-6 months of invitro culture, these VNO neurons remained in a stable undifferentiated state expressing nestin, beta-tubulin III and vomeronasal type 2 (V2r), but not vomeronasal type 1 (V1r) receptors. Application of histone-deacetylase inhibitors induced development of a neural phenotype that expressed V2r receptors, a down-regulation of nestin expression and no change in any specific genetic markers associated with glial cells. Treatment with valproic acid induced extensive changes in gene expression in the axon guidance pathway. The adult VNO is known to functionally adapt throughout life as a consequence of changes in both a mouse's physiological status and its social environment. These pluripotent cultured neurons may provide valuable insights into how changes in both physiology and environment, exert epigenetic effects on vomeronasal neurons as they undergo continuous neurogenesis and development throughout the life of a mouse.
Collapse
Affiliation(s)
- J Xia
- Babraham Institute, Babraham, Cambridge CB22 4AT, UK
| | | | | | | |
Collapse
|
39
|
Raisman G, Carlstedt T, Choi D, Li Y. Clinical prospects for transplantation of OECs in the repair of brachial and lumbosacral plexus injuries: opening a door. Exp Neurol 2010; 229:168-73. [PMID: 20488179 DOI: 10.1016/j.expneurol.2010.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 01/24/2023]
Abstract
The reparative effects of olfactory ensheathing cells have largely been examined in lesions entirely within the CNS. There is, however, evidence that they can induce the ingrowth of severed dorsal root axons and increase the outgrowth of severed ventral root axons. The ingrowth of dorsal root axons results in reinnervation of appropriate regions in the spinal cord and dorsal column nuclei with restoration of electrical transmission and muscular control. This article discusses the further possibilities of these observations in rat studies and their potential translation to clinical injuries. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Geoffrey Raisman
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, Queen Square, London, UK.
| | | | | | | |
Collapse
|
40
|
Immunoreactivity and Protein Levels of Olfactory Marker Protein and Tyrosine Hydroxylase are not changed in the Dog Main Olfactory Bulb during Normal Ageing. J Comp Pathol 2010; 142:147-56. [DOI: 10.1016/j.jcpa.2009.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/15/2009] [Accepted: 10/10/2009] [Indexed: 11/19/2022]
|
41
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
42
|
Eade AM, Sheehe PR, Youngentob SL. Ontogeny of the enhanced fetal-ethanol-induced behavioral and neurophysiologic olfactory response to ethanol odor. Alcohol Clin Exp Res 2009; 34:206-13. [PMID: 19951301 DOI: 10.1111/j.1530-0277.2009.01083.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies report a fundamental relationship between chemosensory function and the responsiveness to ethanol, its component orosensory qualities, and its odor as a consequence of fetal ethanol exposure. Regarding odor, fetal exposed rats display enhanced olfactory neural and behavioral responses to ethanol odor at postnatal (P) day 15. Although these consequences are absent in adults (P90), the behavioral effect has been shown to persist into adolescence (P37). Given the developmental timing of these observations, we explored the decay in the response to ethanol odor by examining ages between P37 and young adulthood. Moreover, we sought to determine whether the P15 neurophysiologic effect persists, at least, to P40. METHODS Behavioral and olfactory epithelial (OE) responses of fetal ethanol exposed and control rats were tested at P40, P50, P60, or P70. Whole-body plethysmography was used to quantify each animal's innate behavioral response to ethanol odor. We then mapped the odorant-induced activity across the OE in response to different odorants, including ethanol, using optical recording methods. RESULTS Relative to controls, ethanol exposed animals showed an enhanced behavioral response to ethanol odor that, while significant at each age, decreased in magnitude. These results, in conjunction with previous findings, permitted the development of an ontologic odor response model of fetal exposure. The fitted model exemplifies that odor-mediated effects exist at birth, peak in adolescence and then decline, becoming absent by P90. There was no evidence of an effect on the odor response of the OE at any age tested. CONCLUSIONS Fetal exposure yields an enhanced behavioral response to ethanol odor that peaks in adolescence and wanes through young adulthood. This occurs absent an enhanced response of the OE. This latter finding suggests that by P40 the OE returns to an ethanol "neutral" status and that central mechanisms, such as ethanol-induced alterations in olfactory bulb circuitry, underlie the enhanced behavioral response. Our study provides a more comprehensive understanding of the ontogeny of fetal-ethanol-induced olfactory functional plasticity and the behavioral response to ethanol odor.
Collapse
Affiliation(s)
- Amber M Eade
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | | | | |
Collapse
|
43
|
Mucignat-Caretta C, Bondí M, Rubini A, Calabrese F, Barbato A. The olfactory system is affected by steroid aerosol treatment in mice. Am J Physiol Lung Cell Mol Physiol 2009; 297:L1073-81. [PMID: 19801453 DOI: 10.1152/ajplung.00014.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma needs continuous treatment often for years. In humans, some drugs are administered via aerosol, therefore they come in contact with both respiratory and olfactory mucosa. We explored the possibility that antiasthma corticosteroid treatment could influence the olfactory function by passage through the nose. A group of mice was exposed twice daily for 42 days to fluticasone propionate aerosol and was compared with a control group. Olfactory behavior, respiratory mechanics, histology, and immunoreactivity in the olfactory system were assessed. Fluticasone-treated mice were slower in retrieving a piece of hidden food, but both groups were similarly fast when the food was visible. When a clearly detectable odor was present in the environment, all mice behaved in a similar way. Respiratory mechanics indices were similar in all mice except for the viscose resistance, which was reduced in fluticasone-treated mice. Olfactory mucosa of fluticasone-treated mice was thicker than that of controls. Slight but consistent differences in staining were present for Olfactory Marker Protein but not for other proteins. A mild impairment of olfactory function is present in mice chronically treated with fluticasone aerosol, apparently accompanied by slight modifications of the olfactory receptor cells, and suggests monitoring of olfactory function modifications in long-term steroid users.
Collapse
|
44
|
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
|
45
|
Abstract
In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.
Collapse
|
46
|
Hirata K, Kanemaru T, Minohara M, Togo A, Kira JI. Accumulation of stress-related proteins within the glomeruli of the rat olfactory bulb following damage to olfactory receptor neurons. ACTA ACUST UNITED AC 2009; 71:265-77. [PMID: 19359808 DOI: 10.1679/aohc.71.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression of stress-responsive proteins, such as nestin and a 27-kDa heat-shock protein (HSP27), was immunohistochemically examined in order to demonstrate glial responses in the rat olfactory bulb following sensory deprivation. At 3 days to 1 week after sensory deprivation, numerous nestin-expressing cells appeared within the glomerulus of the olfactory bulb. These cells were regarded as reactive astrocytes since they were immunoreactive for glial fibrillary acidic protein and showed hypertrophic features. The glomeruli, in which nestin-immunoreactive astrocytes were localized, were filled with degenerating terminals of olfactory receptor neurons and migrated microglia. A small population of nestin-immunoreactive cells was positive for a proliferating cell marker, Ki67 (8.0-9.7% at 3 days; 3.1 - 5.0% at 1 week). At 3 weeks, nestin-immunoreactive astrocytes were occasionally detected. At 6 weeks, when the olfactory receptor neurons had completely recovered, no nestin-immunoreactive astrocytes were detected. HSP 27 was also expressed within the glomerular astrocytes and showed a similar spatiotemporal expression pattern to nestin. The present study suggests that reactive astrocytes may be involved in axonal regeneration and synaptic remodeling in the olfactory system, through the recapitulation of developmentally regulated proteins, such as nestin and HSP27.
Collapse
Affiliation(s)
- Kazuho Hirata
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
47
|
Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 2009; 32:105-14. [PMID: 19569457 PMCID: PMC2678281 DOI: 10.1080/10790268.2009.11760761] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
Affiliation(s)
- Rishi S. Nandoe Tewarie
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andres Hurtado
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ronald H Bartels
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andre Grotenhuis
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin Oudega
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Eade AM, Sheehe PR, Molina JC, Spear NE, Youngentob LM, Youngentob SL. The consequence of fetal ethanol exposure and adolescent odor re-exposure on the response to ethanol odor in adolescent and adult rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2009; 5:3. [PMID: 19146665 PMCID: PMC2639612 DOI: 10.1186/1744-9081-5-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 01/15/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND An epidemiologic predictive relationship exists between fetal ethanol exposure and the likelihood for adolescent use. Further, an inverse relationship exists between the age of first experience and the probability of adult abuse. Whether and how the combined effects of prenatal and adolescent ethanol experiences contribute to this progressive pattern remains unknown. Fetal ethanol exposure directly changes the odor attributes of ethanol important for both ethanol odor preference behavior and ethanol flavor perception. These effects persist only to adolescence. Here we tested whether adolescent ethanol odor re-exposure: (Experiment 1) augments the fetal effect on the adolescent behavioral response to ethanol odor; and/or (Experiment 2) perpetuates previously observed adolescent behavioral and neurophysiological responses into adulthood. METHODS Pregnant rats received either an ethanol or control liquid diet. Progeny (observers) experienced ethanol odor in adolescence via social interaction with a peer (demonstrators) that received an intragastric infusion of either 1.5 g/kg ethanol or water. Social interactions were scored for the frequency that observers followed their demonstrator. Whole-body plethysmography evaluated the unconditioned behavioral response of observers to ethanol odor in adolescence (P37) or adulthood (P90). The olfactory epithelium of adults was also examined for its neural response to five odorants, including ethanol. RESULTS Experiment 1: Relative to fetal or adolescent exposure alone, adolescent re-exposure enhanced the behavioral response to ethanol odor in P37 animals. Compared to animals with no ethanol experience, rats receiving a single experience (fetal or adolescent) show an enhanced, yet equivalent, ethanol odor response. Fetal ethanol experience also increased olfactory-guided following of an intoxicated peer. Experiment 2: Combined exposure yielded persistence of the behavioral effects only in adult females. We found no evidence for persistence of neurophysiological effects in either sex. CONCLUSION Fetal ethanol exposure influences adolescent re-exposure, in part, by promoting interactions with intoxicated peers. Re-exposure subsequently enhances ethanol odor responsivity during a key developmental transition point for emergent abuse patterns. While persistence of behavioral effects occurred in females, the level of re-exposure necessary to uniformly yield persistence in both sexes remains unknown. Nonetheless, these results highlight an important relationship between fetal and adolescent experiences that appears essential to the progressive pattern of developing ethanol abuse.
Collapse
Affiliation(s)
- Amber M Eade
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
- State University of New York Developmental Exposure Alcohol Research Center, Syracuse & Binghamton, NY, USA
| | - Paul R Sheehe
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
- State University of New York Developmental Exposure Alcohol Research Center, Syracuse & Binghamton, NY, USA
| | - Juan C Molina
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
- Department of Psychology, Binghamton University, Binghamton, NY, USA
- State University of New York Developmental Exposure Alcohol Research Center, Syracuse & Binghamton, NY, USA
| | - Norman E Spear
- Department of Psychology, Binghamton University, Binghamton, NY, USA
- State University of New York Developmental Exposure Alcohol Research Center, Syracuse & Binghamton, NY, USA
| | - Lisa M Youngentob
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
- State University of New York Developmental Exposure Alcohol Research Center, Syracuse & Binghamton, NY, USA
| | - Steven L Youngentob
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
- State University of New York Developmental Exposure Alcohol Research Center, Syracuse & Binghamton, NY, USA
| |
Collapse
|
49
|
Markopoulos F, Neubauer FB, Berger T, Scotti AL. Reassembling a system from the sensor to cerebral representation: the olfactory system in vitro. Neuroscience 2008; 156:1048-63. [PMID: 18773940 DOI: 10.1016/j.neuroscience.2008.07.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/24/2022]
Abstract
An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.
Collapse
|
50
|
Functional maturation of the first synapse in olfaction: development and adult neurogenesis. J Neurosci 2008; 28:2919-32. [PMID: 18337423 DOI: 10.1523/jneurosci.5550-07.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first synapse in olfaction undergoes considerable anatomical plasticity in both early postnatal development and adult neurogenesis, yet we know very little concerning its functional maturation at these times. Here, we used whole-cell recordings in olfactory bulb slices to describe olfactory nerve inputs to developing postnatal neurons and to maturing adult-born cells labeled with a GFP-encoding lentivirus. In both postnatal development and adult neurogenesis, the maturation of olfactory nerve synapses involved an increase in the relative contribution of AMPA over NMDA receptors, and a decrease in the contribution of NMDA receptors containing the NR2B subunit. These postsynaptic transformations, however, were not mirrored by presynaptic changes: in all cell groups, paired-pulse depression remained constant as olfactory nerve synapses matured. Although maturing cells may therefore offer, transiently, a functionally distinct connection for inputs from the nose, presynaptic function at the first olfactory connection remains remarkably constant in the face of considerable anatomical plasticity.
Collapse
|