1
|
Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 2015; 86:207-17. [PMID: 25772189 DOI: 10.1016/j.neuron.2015.02.033] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/18/2015] [Accepted: 02/14/2015] [Indexed: 01/05/2023]
Abstract
Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation.
Collapse
|
2
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Thun J, Persson AK, Fried K. Differential expression of neuronal voltage-gated sodium channel mRNAs during the development of the rat trigeminal ganglion. Brain Res 2009; 1269:11-22. [PMID: 19269275 DOI: 10.1016/j.brainres.2009.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 02/19/2009] [Accepted: 02/22/2009] [Indexed: 11/29/2022]
Abstract
The developmental pattern of sodium channel expression in neurons of primary sensory ganglia is likely reflected in the electrical behavior of these cells. Little information is available on how voltage-gated sodium channels in sensory neurons are expressed during development in the trigeminal-innervated craniofacial region, where sensitivity is fundamental during early stages of life. Using in situ hybridization, we here demonstrate a differential both regional and transcript-dependent distribution of sodium channel alpha- and beta-subunits between Embryonic day (E)15 and Postnatal day (P)5/6 in the rat trigeminal ganglion. Na(v)1.3 mRNA was strongly expressed at E15, but declined to low levels at P5/P6. Na(v)1.8 was expressed at E15, increased to reach maximum levels at P1 and then decreased. Na(v)1.9 mRNA was detected at E19, reached a maximum at P1, and was then reduced. beta1 mRNA showed a steady rise in expression from E17, while beta2 mRNA was widely expressed from P1. beta 3 mRNA was detected at E15, reached a maximum at E19 followed by a decrease in expression. In the ophthalmic TG portion, there was a higher expression level of Na(v)1.8 and Na(v)1.9 between E19 and P5/P6 as compared to the maxillary/mandibular part, indicating an unexpected positional difference in channel distribution. mRNA levels of p11, which facilitates the expression of Na(v)1.8, were high at all stages. These findings show that trigeminal ganglion sodium channel transcripts mature in steps that are specific for each transcript. They also raise the possibility that different facial regions could differ in the ability to transmit sensory signals during early life.
Collapse
Affiliation(s)
- Jonas Thun
- Center for Oral Biology, Novum, Karolinska Institutet, POB 4064, SE-141 04 Huddinge, Sweden
| | | | | |
Collapse
|
4
|
Xu P, Hall AK. Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience 2007; 150:665-74. [PMID: 17964731 DOI: 10.1016/j.neuroscience.2007.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/10/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
Calcitonin gene-related peptide (CGRP) increases in sensory neurons after inflammation and plays an important role in abnormal pain responses, but how this neuropeptide is regulated is not well understood. Both activin A and nerve growth factor (NGF) increase in skin after inflammation and induce CGRP in neurons in vivo and in vitro. This study was designed to understand how neurons integrate these two signals to regulate the neuropeptide important for inflammatory pain. In adult dorsal root ganglion neurons, NGF but not activin alone produced a dose-dependent increase in CGRP mRNA. When added together with NGF, activin synergistically increased CGRP mRNA, indicating that sensory neurons combine these signals. Studies were then designed to learn if that combination occurred at a common receptor or shared intracellular signals. Studies with activin IB receptor or tyrosine receptor kinase A inhibitors suggested that each ligand required its cognate receptor to stimulate the neuropeptide. Further, activin did not augment NGF-initiated intracellular mitogen-activated protein kinase signals but instead stimulated Smad phosphorylation, suggesting these ligands initiated parallel signals in the cytoplasm. Activin synergy required several NGF intracellular signals to be present. Because activin did not further stimulate, but did require NGF intracellular signals, it appears that activin and NGF converge not in receptor or cytoplasmic signals, but in transcriptional mechanisms to regulate CGRP in rat sensory neurons after inflammation.
Collapse
Affiliation(s)
- P Xu
- Department of Neurosciences, Case Western Reserve University, School of Medicine,Cleveland, OH 44106, USA
| | | |
Collapse
|
5
|
Atherton DD, Taherzadeh O, Facer P, Elliot D, Anand P. The potential role of nerve growth factor (NGF) in painful neuromas and the mechanism of pain relief by their relocation to muscle. ACTA ACUST UNITED AC 2006; 31:652-6. [PMID: 16928414 DOI: 10.1016/j.jhsb.2006.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/30/2006] [Accepted: 06/25/2006] [Indexed: 01/30/2023]
Abstract
Painful neuromas have been successfully treated by surgical procedures including relocation to muscle, but the underlying molecular mechanism remains unclear. Nerve growth factor (NGF) is secreted by tissues and promotes the expression of ion channels and neuropeptides in sensory neurons involved in pain transmission. We hypothesised that excess of NGF may lead to pain in neuromas and that the efficacy of surgical relocation results from deprivation of NGF, i.e. translocation from NGF-rich regions, particularly sub-cutaneous structures associated with injury or inflammation, to NGF-poor structures such as muscle or bone. Using immunohistological methods with primary antibodies to rhNGF, we report that NGF levels were elevated in 13 painful neuromas in comparison with six control nerves. However, in four painful neuromata re-located into muscle with pain relief, the NGF level was similar to that of controls. NGF levels suggest an explanation for the development of painful neuromas and the efficacy of relocation.
Collapse
Affiliation(s)
- D D Atherton
- Peripheral Neuropathy Unit, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | |
Collapse
|
6
|
Hoffmann G, Dietzel ID. Thyroid hormone regulates excitability in central neurons from postnatal rats. Neuroscience 2004; 125:369-79. [PMID: 15062980 DOI: 10.1016/j.neuroscience.2004.01.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2004] [Indexed: 02/06/2023]
Abstract
A lack of thyroid hormone in the postnatal period causes an irreversible mental retardation, characterized by a slowing of thoughts and movements accompanied by prolonged latencies of several evoked potentials and slowed electroencephalographic rhythms. Here we show that in cultured hippocampal and cortical neurons from postnatal rats treatment with thyroid hormone not only up-regulates Na(+)-current densities but also increases rates of rise, amplitudes and firing frequencies of action potentials. Furthermore, we show that the regulation of the Na(+)-current density by thyroid hormones also occurs in vivo: recordings from acutely isolated cortical neurons obtained from hypothyroid, euthyroid and hyperthyroid postnatal rats showed that hypothyroidism decreases the ratio of Na(+) inward- to K(+) outward-currents while hyperthyroidism upregulates Na(+)-currents with respect to K(+)-currents. Our observation of a regulation of neuronal excitability by thyroid hormone offers a direct explanation for the origin of various neurological symptoms related to thyroid dysfunction.
Collapse
Affiliation(s)
- G Hoffmann
- Department of Molecular Neurobiochemistry, Ruhr-University Bochum, NC7-170, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | |
Collapse
|
7
|
Al-Hadlaq SM, Bradley RM, MacCallum DK, Mistretta CM. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties. Neuroscience 2003; 118:145-59. [PMID: 12676146 DOI: 10.1016/s0306-4522(02)00814-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Geniculate ganglion neurons provide a major source of innervation to mammalian taste organs, including taste buds in the soft palate and in fungiform papillae on the anterior two thirds of the tongue. In and around the fungiform papillae, before taste buds form, neurotrophin mRNAs are expressed in selective spatial and temporal patterns. We hypothesized that neurotrophins would affect electrophysiological properties in embryonic geniculate neurons. Ganglia were explanted from rats at gestational day 16, when growing neurites have entered the papilla core, and maintained in culture with added brain-derived neurotrophic factor (BDNF), neurotrophin 4 (NT4), nerve growth factor (NGF) or neurotrophin 3 (NT3). Neuron survival with BDNF or NT4 was about 80%, whereas with NGF or NT3 less than 15% of neurons survived over 6 days in culture. Whole cell recordings from neurons in ganglion explants with each neurotrophin condition demonstrated distinctive neurophysiological properties related to specific neurotrophins. Geniculate neurons cultured with either BDNF or NT4 had similar passive-membrane and action potential properties, but these characteristics were significantly different from those of neurons cultured with NGF or NT3. NGF-maintained neurons had features of increased excitability including a higher resting membrane potential and a lower current threshold for the action potential. About 70% of neurons produced repetitive action potentials at threshold. Furthermore, compared with neurons cultured with other neurotrophins, a decreased proportion had an inflection on the falling phase of the action potential. NT3-maintained neurons had action potentials that were of relatively large amplitude and short duration, with steep rising and falling slopes. In addition, about 20% responded with a repetitive train of action potentials at threshold. In contrast, with BDNF or NT4 repetitive action potential trains were not observed. The data demonstrate different neurophysiological properties in developing geniculate ganglion neurons maintained with specific neurotrophins. Therefore, we suggest that neurotrophins might influence acquisition of distinctive neurophysiological properties in embryonic geniculate neurons that are fundamental to the formation of peripheral taste circuits and a functioning taste system.
Collapse
Affiliation(s)
- S M Al-Hadlaq
- Department of Biologic and Materials Sciences, School of Dentistry, Room 6217, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.
| |
Collapse
|
9
|
Hains BC, Black JA, Waxman SG. Primary motor neurons fail to up-regulate voltage-gated sodium channel Na(v)1.3/brain type III following axotomy resulting from spinal cord injury. J Neurosci Res 2002; 70:546-52. [PMID: 12404508 DOI: 10.1002/jnr.10402] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Epilepsy occurs in a small proportion of patients with spinal cord injury (SCI), but whether it is due to concomitant traumatic head injury or to changes in cortical motor neurons secondary to axotomy within the spinal cord is not known. Na(v)1.3/brain type III sodium channel expression is up-regulated following peripheral axotomy of dorsal root ganglion (DRG) and facial motor neurons, but, to date, Na(v)1.3 expression has not been examined in upper (cortical) motor neurons following axotomy associated with SCI. In the present study, we examine Na(v)1.3 expression in upper motor neurons within rat primary motor cortex following midthoracic (T9) dorsal column transection, which severs the axons of those cells. Axotomized pyramidal cells were identified by retrograde transport of fluorogold. Immunolabeled cells were confined to layer V of the primary motor cortex and exhibited low levels of Na(v)1.3 staining. After axotomy, no significant changes were detected in Na(v)1.3 density or distribution in injured or uninjured cells, compared with control brains, in contrast to up-regulation of Na(v)1.3 in ipsilateral DRG neurons after sciatic nerve transection. These results do not preclude a role for voltage-gated sodium channels in post-SCI epilepsy but suggest that up-regulated expression of Na(v)1.3 channel is not involved.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Neurology and Paralyzed Veterans of America/Eastern Paralyzed Veterans Association Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
10
|
Zhang YH, Vasko MR, Nicol GD. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons. J Physiol 2002; 544:385-402. [PMID: 12381813 PMCID: PMC2290585 DOI: 10.1113/jphysiol.2002.024265] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Because nerve growth factor (NGF) is elevated during inflammation and is known to activate the sphingomyelin signalling pathway, we examined whether NGF and its putative second messenger, ceramide, could modulate the excitability of capsaicin-sensitive adult and embryonic sensory neurons. Using the whole-cell patch-clamp recording technique, exposure of isolated sensory neurons to either 100 ng ml(-1) NGF or 1 microM N-acetyl sphingosine (C2-ceramide) produced a 3- to 4-fold increase in the number of action potentials (APs) evoked by a ramp of depolarizing current in a time-dependent manner. Intracellular perfusion with bacterial sphingomyelinase (SMase) also increased the number of APs suggesting that the release of native ceramide enhanced neuronal excitability. Glutathione, an inhibitor of neutral SMase, completely blocked the NGF-induced augmentation of AP firing, whereas dithiothreitol, an inhibitor of acidic SMase, was without effect. In the presence of glutathione and NGF, exogenous ceramide still enhanced the number of evoked APs, indicating that the sensitizing action of ceramide was downstream of NGF. To investigate the mechanisms of action for NGF and ceramide, isolated membrane currents were examined. Both NGF and ceramide facilitated the peak amplitude of the TTX-resistant sodium current (TTX-R I(Na)) by approximately 1.5-fold and shifted the activation to more hyperpolarized voltages. In addition, NGF and ceramide suppressed an outward potassium current (I(K)) by approximately 35 %. Ceramide reduced I(K) in a concentration-dependent manner. Isolation of the NGF- and ceramide-sensitive currents indicates that they were delayed rectifier types of I(K). The inflammatory prostaglandin, PGE(2), produced an additional suppression of I(K) after exposure to ceramide (approximately 35 %), suggesting that these agents might act on different targets. Thus, our findings indicate that the pro-inflammatory agent, NGF, can rapidly enhance the excitability of sensory neurons. This NGF-induced sensitization is probably mediated by activation of the sphingomyelin signalling pathway to liberate ceramide(s), wherein ceramide appears to be the second messenger involved in modulating neuronal excitability.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
11
|
Grigaliunas A, Bradley RM, MacCallum DK, Mistretta CM. Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture. J Neurophysiol 2002; 88:2058-74. [PMID: 12364528 DOI: 10.1152/jn.2002.88.4.2058] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurons in trigeminal and geniculate ganglia extend neurites that share contiguous target tissue fields in the fungiform papillae and taste buds of the mammalian tongue and thereby have principal roles in lingual somatosensation and gustation. Although functional differentiation of these neurons is central to formation of lingual sensory circuits, there is little known about electrophysiological properties of developing trigeminal and geniculate ganglia or the extrinsic factors that might regulate neural development. We used whole cell recordings from embryonic day 16 rat ganglia, maintained in culture as explants for 3-10 days with neurotrophin support to characterize basic properties of trigeminal and geniculate neurons over time in vitro and in comparison to each other. Each ganglion was cultured with the neurotrophin that supports maximal neuron survival and that would be encountered by growing neurites at highest concentration in target fields. Resting membrane potential and time constant did not alter over days in culture, whereas membrane resistance decreased and capacitance increased in association with small increases in trigeminal and geniculate soma size. Small gradual differences in action potential properties were observed for both ganglion types, including an increase in threshold current to elicit an action potential and a decrease in duration and increase in rise and fall slopes so that action potentials became shorter and sharper with time in culture. Using a period of 5-8 days in culture when neural properties are generally stable, we compared trigeminal and geniculate ganglia and revealed major differences between these embryonic ganglia in passive membrane and action potential characteristics. Geniculate neurons had lower resting membrane potential and higher input resistance and smaller, shorter, and sharper action potentials with lower thresholds than trigeminal neurons. Whereas all trigeminal neurons produced a single action potential at threshold depolarization, 35% of geniculate neurons fired repetitively. Furthermore, all trigeminal neurons produced TTX-resistant action potentials, but geniculate action potentials were abolished in the presence of low concentrations of TTX. Both trigeminal and geniculate neurons had inflections on the falling phase of the action potential that were reduced in the presence of various pharmacological blockers of calcium channel activation. Use of nifedipine, omega-conotoxin-MVIIA and GVIA, and omega-agatoxin-TK indicated that currents through L-, N-, and P/Q- type calcium channels participate in the action potential inflection in embryonic trigeminal and geniculate neurons. The data on passive membrane, action potential, and ion channel characteristics demonstrate clear differences between trigeminal and geniculate ganglion neurons at an embryonic stage when target tissues are innervated but receptor organs have not developed or are still immature. Therefore these electrophysiological distinctions between embryonic ganglia are present before neural activity from differentiated receptive fields can influence functional phenotype.
Collapse
Affiliation(s)
- Arturas Grigaliunas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|
12
|
Shembalkar PK, Till S, Boettger MK, Terenghi G, Tate S, Bountra C, Anand P. Increased sodium channel SNS/PN3 immunoreactivity in a causalgic finger. Eur J Pain 2002; 5:319-23. [PMID: 11558987 DOI: 10.1053/eujp.2001.0251] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The sodium channels SNS/PN3 and NaN/SNS2 are regulated by the neurotrophic factors-nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF), and may play an important role in the development of pain after nerve injury or inflammation. These key molecules have been studied in an amputated causalgic finger and control tissues by immunohistochemistry. There was a marked increase in the number and intensity of SNS/PN3-immunoreactive nerve terminals in the affected finger, while GDNF-immunoreactivity was not observed, in contrast to controls. No differences were observed for NGF, trk A, NT-3 or NaN/SNS2-immunoreactivity. While further studies are required, these findings suggest that accumulation of SNS/PN3 and/or loss of GDNF may contribute to pain in causalgia, and that selective blockers of SNS/PN3 and/or rhGDNF may provide effective novel treatments.
Collapse
Affiliation(s)
- P K Shembalkar
- Peripheral Neuropathy Unit, Department of Neurology, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Song JH, Ham SS, Shin YK, Lee CS. Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. Eur J Pharmacol 2000; 401:297-305. [PMID: 10936487 DOI: 10.1016/s0014-2999(00)00460-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of amitriptyline, a tricyclic antidepressant, on tetrodotoxin-sensitive and tetrodotoxin-resistant Na(+) currents in rat dorsal root ganglion neurons were studied using the whole-cell patch clamp method. Amitriptyline blocked both types of Na(+)currents in a dose-and holding potential-dependent manner. At the holding potential of -80 mV, the apparent dissociation constants (K(d)) for amitriptyline to block tetrodotoxin-sensitive and tetrodotoxin-resistant Na(+) channels were 4.7 and 105 microM, respectively. These values increased to 181 and 193 microM, respectively, when the membrane was held at a potential negative enough to remove the steady-state inactivation. Amitriptyline dose-dependently shifted the steady-state inactivation curves in the hyperpolarizing direction and increased the values of the slope factors for both types of Na(+) channels. The voltage dependence of the activation of both types of Na(+) channels was shifted in the depolarizing direction. It was concluded that amitriptyline blocked the two types of Na(+) channels in rat sensory neurons by modulating the activation and the inactivation kinetics.
Collapse
Affiliation(s)
- J H Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221 Heuk-Suk Dong, Dong-Jak Ku, 156-756, Seoul, South Korea.
| | | | | | | |
Collapse
|
14
|
Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P. Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 2000; 85:41-50. [PMID: 10692601 DOI: 10.1016/s0304-3959(99)00251-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel SNS/PN3 and the newly discovered NaN/SNS2 are expressed in sensory neurones, particularly in nociceptors. Using specific antibodies, we have studied, for the first time in humans, the presence of SNS/PN3 and NaN/SNS2 in peripheral nerves, including tissues from patients with chronic neurogenic pain. In brachial plexus injury patients, there was an acute decrease of SNS/PN3- and NaN/SNS2-like immunoreactivity in sensory cell bodies of cervical dorsal root ganglia (DRG) whose central axons had been avulsed from spinal cord, with gradual return of the immunoreactivity to control levels over months. In contrast, there was increased intensity of immunoreactivity to both channels in some peripheral nerve fibers just proximal to the site of injury in brachial plexus trunks, and in neuromas. These findings suggest that the expression of these sodium channels in neuronal cell bodies is reduced after spinal cord root avulsion injury in man, but that pre-synthesized channel proteins may undergo translocation with accumulation at sites of nerve injury, as in animal models of peripheral axotomy. The latter may contribute to positive symptoms, as our patients all showed a positive Tinel's sign. Nerve terminals in distal limb neuromas and skin from patients with chronic local hyperalgesia and allodynia all showed marked increases of SNS/PN3-immunoreactive fibers, but little or no NaN/SNS2-immunoreactivity, suggesting that the former may be related to the persistent hypersensitive state. Axonal immunoreactivity to both channels was similar to control nerves in sural nerve biopsies in a selection of neuropathies, irrespective of nerve inflammation, demyelination or spontaneous pain, including a patient with congenital insensitivity to pain. Our studies suggest that the best target for SNS/PN3 blocking agents is likely to be chronic local hypersensitivity.
Collapse
Affiliation(s)
- K Coward
- Peripheral Neuropathy Unit, Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Area A, Ground Floor, Hammersmith Hospital, Du Cane Road, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fjell J, Cummins TR, Davis BM, Albers KM, Fried K, Waxman SG, Black JA. Sodium channel expression in NGF-overexpressing transgenic mice. J Neurosci Res 1999; 57:39-47. [PMID: 10397634 DOI: 10.1002/(sici)1097-4547(19990701)57:1<39::aid-jnr5>3.0.co;2-m] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dorsal root ganglion (DRG) neurons depend on nerve growth factor (NGF) for survival during development, and for the maintenance of phenotypic expression of neuropeptides in the adult. NGF also plays a role in the regulation of expression of functional sodium channels in both PC12 cells and DRG neurons. Transgenic mice that overexpress NGF under the keratin promoter (hyper-NGF mice) show increased levels of NGF in the skin from embryonic day 11 through adulthood, hypertrophy of the peripheral nervous system and mechanical hyperalgesia. We show here that mRNA levels for specific sodium channel isotypes are greater in small (< 30 microm diameter) DRG neurons from hyper-NGF mice compared to wild-type mice. Hybridization signals for sodium channel subunits alphaII and beta2 displayed the most substantial enhancement in hyper-NGF mice, compared to wild-type mice DRG, and mRNA levels for alphaI, NaG, Na6, SNS/PN3, NaN, and beta1 were also greater in hyper-NGF DRG. In contrast, the levels of alphaII and PN1 mRNAs were similar in neurons from hyper-NGF and wild-type DRG. Whole-cell patch-clamp studies showed no significant differences in the peak sodium current densities in hyper-NGF vs. wild-type DRG neurons. These data demonstrate that DRG neurons in wild-type mice have a heterogeneous pattern of sodium channel expression, which is similar to that previously described in rat, and suggest that transcripts of some, but not all, sodium channel mRNAs can be modulated by long-term overexpression of NGF.
Collapse
Affiliation(s)
- J Fjell
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Fjell J, Cummins TR, Dib-Hajj SD, Fried K, Black JA, Waxman SG. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:267-82. [PMID: 10216225 DOI: 10.1016/s0169-328x(99)00070-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Following sciatic nerve transection, the electrophysiological properties of small dorsal root ganglion (DRG) neurons are markedly altered, with attenuation of TTX-R sodium currents and the appearance of rapidly repriming TTX-S currents. The reduction in TTX-R currents has been attributed to a down-regulation of sodium channels SNS/PN3 and NaN. While infusion of exogenous NGF to the transected nerve restores SNS/PN3 transcripts to near-normal levels in small DRG neurons, TTX-R sodium currents are only partially rescued. Binding of the isolectin IB4 distinguishes two subpopulations of small DRG neurons: IB4+ neurons, which express receptors for the GDNF family of neurotrophins, and IB4- neurons that predominantly express TrkA. We show here that SNS/PN3 is expressed in approximately one-half of both IB4+ and IB4- DRG neurons, while NaN is preferentially expressed in IB4+ neurons. Whole-cell patch-clamp studies demonstrate that TTX-R sodium currents in IB4+ neurons have a more hyperpolarized voltage-dependence of activation and inactivation than do IB4- neurons, suggesting different electrophysiological properties for SNS/PN3 and NaN. We confirm that NGF restores SNS/PN3 mRNA levels in DRG neurons in vitro and demonstrate that the trk antagonist K252a blocks this rescue. The down-regulation of NaN mRNA is, nevertheless, not rescued by NGF-treatment in either IB4+ or IB4- neurons and NGF-treatment in vitro does not significantly increase the peak amplitude of the TTX-R current in small DRG neurons. In contrast, GDNF-treatment causes a twofold increase in the peak amplitude of TTX-R sodium currents and restores both SNS/PN3 and NaN mRNA to near-normal levels in IB4+ neurons. These observations provide a mechanism for the partial restoration of TTX-R sodium currents by NGF in axotomized DRG neurons, and demonstrate that the neurotrophins NGF and GDNF differentially regulate sodium channels SNS/PN3 and NaN.
Collapse
Affiliation(s)
- J Fjell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
17
|
Akopian AN, Okuse K, Souslova V, England S, Ogata N, Wood JN. Trans-splicing of a voltage-gated sodium channel is regulated by nerve growth factor. FEBS Lett 1999; 445:177-82. [PMID: 10069396 DOI: 10.1016/s0014-5793(99)00126-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mammalian sensory neurons express a voltage-gated sodium channel named SNS. Here we report the identification of an SNS transcript (SNS-A) that contains an exact repeat of exons 12, 13 and 14 encoding a partial repeat of domain II. Because the exons 12-14 are present in single copies in genomic DNA, the SNS-A transcript must arise by trans-splicing. Nerve growth factor, which regulates pain thresholds, and the functional expression of voltage-gated sodium channels increases the levels of the SNS-A transcript several-fold both in vivo and in vitro as measured by RNase protection methods, as well as RT-PCR. These data demonstrate a novel regulatory role for the nerve growth factor and are the first example of trans-splicing in the vertebrate nervous system.
Collapse
Affiliation(s)
- A N Akopian
- Department of Biology, University College, London, UK
| | | | | | | | | | | |
Collapse
|
18
|
Okuse K, Chaplan SR, McMahon SB, Luo ZD, Calcutt NA, Scott BP, Akopian AN, Wood JN. Regulation of expression of the sensory neuron-specific sodium channel SNS in inflammatory and neuropathic pain. Mol Cell Neurosci 1998; 10:196-207. [PMID: 9532581 DOI: 10.1006/mcne.1997.0657] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased voltage-gated sodium channel activity may contribute to the hyperexcitability of sensory neurons in inflammatory and neuropathic pain states. We examined the levels of the transcript encoding the tetrodotoxin-resistant sodium channel SNS in dorsal root ganglion neurons in a range of inflammatory and neuropathic pain models in the rat. Local Freund's adjuvant or systemic nerve growth factor-induced inflammation did not substantially alter the total levels of SNS mRNA. When NGF-treated adult rat DRG neurons in vitro were compared with NGF-depleted control neurons, SNS total mRNA levels and the levels of membrane-associated immunoreactive SNS showed a small increase (17 and 25%, respectively), while CGRP levels increased fourfold. SNS expression is thus little dependent on NGF even though SNS transcript levels dropped by more than 60% 7-14 days after axotomy. In the streptozotocin diabetic rat SNS levels fell 25%, while in several manipulations of the L5/6 tight nerve ligation rat neuropathic pain model, SNS levels fell 40-80% in rat strains that are either susceptible or relatively resistant to the development of allodynia. Increased expression of SNS mRNA is thus unlikely to underlie sensory neuron hyperexcitability associated with inflammation, while lowered SNS transcript levels are associated with peripheral nerve damage.
Collapse
MESH Headings
- Animals
- Axotomy
- CHO Cells
- Cells, Cultured
- Cricetinae
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Down-Regulation/genetics
- Female
- Freund's Adjuvant/administration & dosage
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Inflammation/etiology
- Inflammation/genetics
- Inflammation/metabolism
- Injections, Subcutaneous
- Ligation
- Male
- NAV1.8 Voltage-Gated Sodium Channel
- Nerve Growth Factors/administration & dosage
- Nerve Growth Factors/pharmacology
- Neurons, Afferent/metabolism
- Pain/genetics
- Pain/metabolism
- Pain/physiopathology
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Sodium Channels/biosynthesis
- Sodium Channels/genetics
- Spinal Nerves/physiology
- Transcription, Genetic
- Up-Regulation/genetics
Collapse
Affiliation(s)
- K Okuse
- Department of Biology, University College, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
In order to study the factors that govern the expression of sodium channel alpha-, beta1- and beta2-subunits, the influence that Schwann cells (SC) exert in the expression of sodium channels in DRG neurons was examined with in situ hybridization, immunocytochemistry, and patch clamp recording. The expression of sodium channel alpha-, beta1-, and beta2-subunit mRNAs in DRG neurons isolated from E15 rats cultured in defined medium in the absence (control) or presence of SC, or in SC-conditioned medium, was examined with isoform-specific riboprobes for sodium channel alpha-subunits I, II, III, NaG, Na6, hNE/PN1, SNS, and beta1- and beta2-subunits. DRG neurons cultured in the presence of SC displayed a significant (P < 0.05) increase in the hybridization signal for NaG, Na6, SNS, and Na beta2 mRNAs in comparison to control DRG neurons. In contrast, in SC-conditioned medium, only the hybridization signal for SNS mRNA was significantly increased. The upregulation of sodium channel mRNAs in DRG neurons co-cultured with SC was paralleled by an increase in sodium channel immunoreactivity of these cells. An increase in the mean sodium current density in DRG neurons in the presence of SC was also observed. These results demonstrate that a SC-derived factor selectively upregulates sodium channel alpha- and beta-subunit mRNAs in DRG neurons isolated from E15 rats that is reflected in an increase in functional sodium channels in these cells. This culture system may allow elucidation of the SC factor(s) that modulate the expression of sodium channels in DRG neurons.
Collapse
Affiliation(s)
- A W Hinson
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
20
|
Black JA, Langworthy K, Hinson AW, Dib-Hajj SD, Waxman SG. NGF has opposing effects on Na+ channel III and SNS gene expression in spinal sensory neurons. Neuroreport 1997; 8:2331-5. [PMID: 9243635 DOI: 10.1097/00001756-199707070-00046] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Following sciatic nerve transection, the expression of sodium channel III (alpha-III) transcripts increases and SNS (alpha-SNS) transcripts decreases in small (< 25 microns diameter) dorsal root ganglion (DRG) neurons, which may reflect an interruption of retrograde transport of peripherally derived factor(s) involved in the regulation of these channels. To test the hypothesis that the neurotrophin nerve growth factor (NGF), which is abundant in peripheral targets, participates in the modulation of the expression of these sodium channel transcripts, we examined the hybridization signal of alpha-SNS and alpha-III mRNAs in small DRG neurons from adult rats that had been dissociated and maintained for 7 days in the absence or presence of exogenous NGF. Neurons maintained in control (no added NGF) cultures showed changes in alpha-III and alpha-SNS hybridization signal similar to those induced by axotomy, with increased alpha-III mRNA levels and decreased alpha-SNS mRNA levels, compared with those observed in small DRG neurons at 1 day in vitro. The addition of exogenous NGF to DRG cultures attenuated these alterations in transcript levels, decreasing alpha-III mRNA and increasing alpha-SNS mRNA expression. These results suggest that NGF participates in the regulation of membrane excitability in small DRG neurons by pathways that include opposing effects on different sodium channel genes.
Collapse
Affiliation(s)
- J A Black
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
21
|
Gu XQ, Dib-Hajj S, Rizzo MA, Waxman SG. TTX-sensitive and -resistant Na+ currents, and mRNA for the TTX-resistant rH1 channel, are expressed in B104 neuroblastoma cells. J Neurophysiol 1997; 77:236-46. [PMID: 9120565 DOI: 10.1152/jn.1997.77.1.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To examine the molecular basis for membrane excitability in a neuroblastoma cell line, we used whole cell patch-clamp methods and reverse transcription-polymerase chain reaction (RT-PCR) to study Na+ currents and channels in B104 cells. We distinguished Tetrodotoxin (TTX)-sensitive and -resistant Na+ currents and detected the mRNA for the cardiac rH1 channel in B104 cells. Na+ currents could be recorded in 65% of cells. In the absence of TTX, mean peak Na+ current density was 126 +/- 19 pA/pF, corresponding to a channel density of 2.7 +/- 0.4/micron 2 (mean +/- SE). Time-to-peak (t-peak), activation (tau m), and inactivation time constants (tau h) for Na+ currents in B104 cells were 1.0 +/- 0.04, 0.4 +/- 0.06, and 0.9 +/- 0.04 ms at -10 mV. The peak conductance-voltage relationship had a V 1/2 of -39.8 +/- 1.5 mV. V 1/2 for steady-state inactivation was -81.6 +/- 1.5 mV. TTX-sensitive and -resistant components of the Na current had half-maximal inhibitions (IC50), respectively, of 1.2 nM and, minimally, 575.5 nM. The TTX-sensitive and -resistant Na+ currents were kinetically distinct; time-to-peak, tau m, and tau h for TTX-sensitive currents were shorter than for TTX-resistant currents. Steady-state voltage dependence of the two currents was indistinguishable. The presence of TTX-sensitive and -resistant Na+ currents, which are pharmacologically and kinetically distinct, led us to search for mRNAs known to be associated with TTX-resistant channels, in addition to the alpha subunit mRNAs, which have previously been shown to be expressed in these cells. Using RT-PCR and restriction enzyme mapping, we were unable to detect alpha SNS, but detected mRNA for rH1, which is known to encode a TTX-resistant channel, in B104 cells. B104 neuroblastoma cells thus express TTX-sensitive and -resistant Na+ currents. These appear to be encoded by neuronal-type and cardiac Na+ channel mRNAs including the RH1 transcript. This cell line may be useful for studies on the rH1 channel, which is known to be mutated in the long-QT syndrome.
Collapse
Affiliation(s)
- X Q Gu
- Department of Neurology, Yale Medical School, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
22
|
Van den Berg RJ, Wang Z, Grouls RJ, Korsten HH. The local anesthetic, n-butyl-p-aminobenzoate, reduces rat sensory neuron excitability by differential actions on fast and slow Na+ current components. Eur J Pharmacol 1996; 316:87-95. [PMID: 8982655 DOI: 10.1016/s0014-2999(96)00638-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effects of the local anesthetic, n-butyl-p-aminobenzoate, at a concentration of 100 microM, were investigated using the whole-cell voltage clamp on dorsal root ganglion neurons cultured from neonatal rat in a serum-enriched medium. During current clamp conditions, the drug either increased the firing threshold or blocked tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ action potentials. These actions were reversible. Under voltage clamp conditions, inactivation of the Na+ current revealed the existence of 3 fast Na+ current components, termed F1, F2 and F3 (tetrodotoxin-sensitive) and 2 slow ones, termed S1 and S2 (tetrodotoxin-resistant). The local anesthetic shifted the midpoint potentials of Na+ inactivation curves for F1, F2 and F3 currents by 7, 21 and 6 mV, respectively, towards hyperpolarizing membrane voltages whereas it did not influence these potentials for the slow currents. The amplitudes of only F3 and S2 currents were reduced by n-butyl-p-aminobenzoate to 24 and 11%, respectively, of their control values. These results show that the local anesthetic has a differential mode of action on the 5 types of Na+ currents, which are apparently present in cultured sensory neurons. This differential action can play an important role in the selective analgesic effect observed after epidural administration of a 10% n-butyl-p-amino-benzoate suspension.
Collapse
Affiliation(s)
- R J Van den Berg
- Department of Physiology and Physiological Physics, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
23
|
Zur KB, Oh Y, Waxman SG, Black JA. Differential up-regulation of sodium channel alpha- and beta 1-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGF. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:97-105. [PMID: 7609649 DOI: 10.1016/0169-328x(94)00283-k] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although the pattern of expression of various sodium channel alpha- and beta-subunits changes as development proceeds, the mechanisms that control the expression of these subunits are not yet understood. To study the role of nerve growth factor (NGF) in modulating the expression of sodium channel subunits, we used in situ hybridization cytochemistry to examine the distribution of sodium channel alpha- and beta 1-subunit mRNAs in embryonic day 16 (E16) dorsal root ganglia (DRG) neurons cultured in the absence or presence of NGE. At 4 days in vitro in the absence of NGF, sodium channel alpha-subunit II mRNA was expressed at low-to-moderate levels in DRG neurons, but the transcripts for sodium channel alpha-subunits I, III and NaG and beta 1-subunit were not detectable. In the presence of NGF, DRG neurons expressed low-to-moderate levels of sodium channel alpha-I, high levels of alpha-II and low levels of alpha-III; NaG mRNA was not detectable. Sodium channel beta 1 mRNA was up-regulated and was expressed at high levels in DRG neurons in NGF-containing media. These observations demonstrate that the NGF exerts a differential up-regulation of sodium channel alpha- and beta-subunit mRNAs in DRG neurons derived from E16 embryos.
Collapse
Affiliation(s)
- K B Zur
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
24
|
Pearce RJ, Duchen MR. Differential expression of membrane currents in dissociated mouse primary sensory neurons. Neuroscience 1994; 63:1041-56. [PMID: 7535391 DOI: 10.1016/0306-4522(94)90571-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The whole cell configuration of the patch clamp technique has been applied to identify the membrane currents expressed by populations of dissociated mouse primary sensory neurons. Three discrete populations of cells were distinguished on the basis of cell size and the array of currents expressed. Group 1 cells (capacitance 10-30 pF) expressed a Na+ current resistant to tetrodotoxin (1 microM) and a prominent, low threshold, inactivating, K+ current sensitive to 4-aminopyridine (IA). A population (53%) of these small cells responded to capsaicin (10 microM) with an inward current, suggesting a functional correlate with nociceptive "C"-cells. The cells of Group 2 (capacitance 55-85 pF) were characterized by the expression of a Na+ current sensitive to tetrodotoxin and a prominent inward current activated by hyperpolarization (IH). They also showed a variant of the A-type K+ current, which was a low threshold, but sustained K+ current, sensitive to dendrotoxin (30 nM). Group 3 cells, of intermediate size (capacitance 30-55 pF) were similar to Group 2 cells, in that they expressed a tetrodotoxin-sensitive Na+ current and (through reduced in amplitude), IH. The most notable feature of Group 3 cells was the expression of a transient, low threshold Ca2+ current. The differential expression of these conductances was reflected in the behaviour of cells under current clamp control. Each group of cells could thus be distinguished by the selective expression of specific ionic conductances which correlated clearly with cell size, suggesting a correlation with well recognised functional differentiation of sensory neurons. The selective expression of specific subsets of membrane channels may provide valuable markers in studying the developmental regulation of phenotype in this population of cells.
Collapse
Affiliation(s)
- R J Pearce
- Department of Physiology, University College London, U.K
| | | |
Collapse
|
25
|
Abstract
Bradykinin is a nonapeptide that plays a central role in the production of pain and inflammation. A horizontal spinal cord slice preparation with attached dorsal root and dorsal root ganglion was used to study the effect of bradykinin on afferent fibers. Intracellular recordings were made from dorsal root ganglion and dorsal horn neurons. Bath application of bradykinin (1 microM) to the dorsal root ganglion compartment produced a depolarization (5 +/+ 0.8 mV) and firing of action potentials in eight out of eighteen dorsal root ganglion neurons tested. Simultaneous intracellular recordings from dorsal horn neurons revealed that the application of bradykinin to dorsal root ganglion, peripheral nerve trunk or dorsal root resulted in the synaptic activation of dorsal horn neurons. The depolarizing effect of bradykinin on the dorsal root ganglion neurons and its synaptic excitatory effect on dorsal horn neurons was abolished by pretreatment of the same segment of sensory neurons by a B2 bradykinin receptor antagonist (D-Arg0,Hyp3,beta-Thi5,8,D-Phe7)-bradykinin (5 microM). Bath application of tetrodotoxin (TTX; 0.2-1 microM) to the sensory neurons blocked electrically-evoked action potentials in large dorsal root ganglion neurons and, consequently, excitatory postsynaptic potentials in dorsal horn neurons evoked by electrical activation of low threshold afferent fibers. However, the stimulatory effects, both depolarization and firing of action potentials, of bradykinin were resistant to TTX. Replacement of sodium ions with TRIS completely abolished the stimulatory effect of bradykinin on the sensory neurons. Bradykinin potentiated the postsynaptic potentials induced by electrical stimulation of TTX-resistant afferent fibers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Jeftinija
- Department of Veterinary Anatomy, Iowa State University, Ames 50011
| |
Collapse
|
26
|
Waxman SG, Kocsis JD, Black JA. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 1994; 72:466-70. [PMID: 7965028 PMCID: PMC2605356 DOI: 10.1152/jn.1994.72.1.466] [Citation(s) in RCA: 427] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. In situ hybridization with subtype-specific probes was used to ask whether there is a change in the types of sodium channels that are expressed in dorsal root ganglion (DRG) neurons after axotomy. 2. Types I and II sodium channel mRNA are expressed at moderate-to-high levels in control DRG neurons of adult rat, but type III sodium channel mRNA is not detectable. 3. When adult rat DRG neurons are examined by in situ hybridization 7-9 days following axotomy, type III sodium channel mRNA is expressed at moderate-to-high levels, in addition to types I and II mRNA that are present at relatively high levels. 4. To determine whether the expression of type III sodium channel mRNA following axotomy represents up-regulation of a gene that had been expressed at earlier developmental stages, we also studied DRG neurons from embryonic (E17) rats. In these embryonic DRG neurons, type I sodium channel mRNA is expressed at low levels, type II mRNA at high levels, and type III at high levels. 5. These results demonstrate altered expression of sodium channel mRNA in DRG neurons following axotomy, and suggest that in at least some DRG neurons, there is a de-differentiation after axotomy that includes a reversion to an embryonic mode of sodium channel expression. Different channel characteristics, as well as an altered spatial distribution of sodium channels, may contribute to the electrophysiological changes that are observed in axotomized neurons.
Collapse
Affiliation(s)
- S G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven 06510
| | | | | |
Collapse
|
27
|
Abstract
1. Tetrodotoxin (TTX) has been widely used as a chemical tool for blocking Na+ channels. However, reports are accumulating that some Na+ channels are resistant to TTX in various tissues and in different animal species. Studying the sensitivity of Na+ channels to TTX may provide us with an insight into the evolution of Na+ channels. 2. Na+ channels present in TTX-carrying animals such as pufferfish and some types of shellfish, frogs, salamanders, octopuses, etc., are resistant to TTX. 3. Denervation converts TTX-sensitive Na+ channels to TTX-resistant ones in skeletal muscle cells, i.e., reverting-back phenomenon. Also, undifferentiated skeletal muscle cells contain TTX-resistant Na+ channels. Cardiac muscle cells and some types of smooth muscle cells are considerably insensitive to TTX. 4. TTX-resistant Na+ channels have been found in cell bodies of many peripheral nervous system (PNS) neurons in both immature and mature animals. However, TTX-resistant Na+ channels have been reported in only a few types of central nervous system (CNS). Axons of PNS and CNS neurons are sensitive to TTX. However, some glial cells have TTX-resistant Na+ channels. 5. Properties of TTX-sensitive and TTX-resistant Na+ channels are different. Like Ca2+ channels, TTX-resistant Na+ channels can be blocked by inorganic (Co2+, Mn2+, Ni2+, Cd2+, Zn2+, La3+) and organic (D-600) Ca2+ channel blockers. Usually, TTX-resistant Na+ channels show smaller single-channel conductance, slower kinetics, and a more positive current-voltage relation than TTX-sensitive ones. 6. Molecular aspects of the TTX-resistant Na+ channel have been described. The structure of the channel has been revealed, and changing its amino acid(s) alters the sensitivity of the Na+ channel to TTX. 7. TTX-sensitive Na+ channels seem to be used preferentially in differentiated cells and in higher animals instead of TTX-resistant Na+ channels for rapid and effective processing of information. 8. Possible evolution courses for Na+ and Ca2+ channels are discussed with regard to ontogenesis and phylogenesis.
Collapse
Affiliation(s)
- S Yoshida
- Department of Physiology, Fukui Medical School, Japan
| |
Collapse
|
28
|
Elliott JR, Elliott AA. The effects of alcohols and other surface-active compounds on neuronal sodium channels. Prog Neurobiol 1994; 42:611-83. [PMID: 7938543 DOI: 10.1016/0301-0082(94)90045-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J R Elliott
- Department of Anatomy and Physiology, University, Dundee, U.K
| | | |
Collapse
|
29
|
Abstract
Intracellular recordings from neurons in the dorsal root ganglion (DRG) and dorsal horn (DH), in an in vitro spinal cord-dorsal root ganglion preparation, were used to investigate the role of tetrodotoxin-resistant (TTX-R) afferent fibers in the sensory synaptic transmission in the superficial DH. Bath application of 25-50 mM potassium to the DRG depolarized the DRG neurons, blocked action potentials in the large neurons, evoked action potentials in slow conducting neurons, and synaptically excited dorsal horn neurons. Excitatory postsynaptic potentials (EPSP) which were evoked in DH neurons by electrical stimulation of large myelinated fibers, but not those evoked by stimulation of small unmyelinated fibers, were blocked by the potassium treatment of the primary afferents. Tetrodotoxin, when applied to the sensory neurons, abolished the action potentials in fast fibers but had no effect on the action potentials in a population of slow conducting afferents. Peripheral application of TTX blocked the fast EPSPs evoked by electrical stimulation but failed to block the electrically evoked slow EPSPs and the synaptic activation of DH neurons induced by the application of high potassium to sensory neurons. Furthermore, high potassium potentiated electrically evoked, TTX-resistant EPSPs in the majority of neurons. This effect was abolished in Na(+)-free solution. These findings indicate that high [K+]e applied to the DRG, dorsal root and peripheral process selectively activates a primary afferent input to the DH, which is sodium-dependent and tetrodotoxin resistant.
Collapse
Affiliation(s)
- S Jeftinija
- Department of Veterinary Anatomy, Iowa State University, Ames 50011
| |
Collapse
|
30
|
Spitzer NC, Gu X, Olson E. Action potentials, calcium transients and the control of differentiation of excitable cells. Curr Opin Neurobiol 1994; 4:70-7. [PMID: 7513567 DOI: 10.1016/0959-4388(94)90034-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calcium influx via action potentials in differentiating nerve and muscle is regulated principally by the expression of potassium currents. Transient elevations of intracellular calcium in spontaneously active cells are necessary for normal neuronal development. The mechanisms that connect calcium elevations to long term developmental change are likely to be utilized in the mature nervous system.
Collapse
Affiliation(s)
- N C Spitzer
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
31
|
Sánchez-Vives MV, Gallego R. Effects of axotomy or target atrophy on membrane properties of rat sympathetic ganglion cells. J Physiol 1993; 471:801-15. [PMID: 8120834 PMCID: PMC1143990 DOI: 10.1113/jphysiol.1993.sp019929] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The electrical properties of rat superior cervical ganglion cells were examined in vitro with intracellular microelectrodes after axotomy or atrophy of the submandibular salivary gland. 2. Membrane time constant, input resistance and excitatory synaptic potentials (EPSPs) were decreased to about 50% of their control values 7-10 days after axotomy. 3. Axotomized ganglion cells also showed reduced action potentials and after-hyperpolarizations (AHPs). The AHP duration was reduced to 40% of the control value. 4. In 25% of the axotomized cells, the action potential was followed by an after-depolarization (ADP) instead of the AHP that was always present in control cells. In eleven out of seventeen axotomized cells with ADP, preganglionic stimulation failed to evoke an EPSP, whereas the failure of the synaptic response was never observed in control cells and occurred only in two of fifty-three axotomized cells with AHP. 5. In some axotomized cells with AHP, a depolarizing potential developed after a train of action potentials. This was never observed in control cells. 6. Sympathetic neurones innervating the submandibular gland in control animals had membrane properties similar to those observed in other ganglion cells. 7. The properties of neurones innervating the submandibular gland remained unaltered after the experimentally induced atrophy of the gland. 8. It is concluded that the marked effects of short-term axotomy on membrane properties of sympathetic ganglion cells are not reproduced by long-term atrophy of the target tissue.
Collapse
|
32
|
Jeftinija S, Urban L, Kojic L. The selective activation of dorsal horn neurons by potassium stimulation of high threshold primary afferent neurons in vitro. Neuroscience 1993; 56:473-84. [PMID: 8247274 DOI: 10.1016/0306-4522(93)90347-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intracellular recordings from neurons in the dorsal root ganglion and dorsal horn, in an in vitro spinal cord-dorsal root ganglion preparation, were used to investigate the role of large and small afferent fibers in the sensory synaptic transmission of the superficial dorsal horn. Raising the extracellular potassium concentration from 3.1 to 25-50 mM in the dorsal root ganglion compartment evoked a large amplitude depolarization and blocked action potentials in the large neurons of dorsal root ganglion, and it synaptically excited dorsal horn neurons. Excitatory postsynaptic potentials that were evoked by electrical stimulation of large myelinated fibers, but not those evoked by activation of small unmyelinated fibers, were blocked by the potassium treatment of the dorsal root. Tetrodotoxin (0.3-10 microM), when applied to the sensory neurons, abolished action potentials in large myelinated fibers but had no effect on the potassium-induced depolarization of the soma of large neurons of the dorsal root ganglion. Bath application of tetrodotoxin to the dorsal root ganglion blocked the postsynaptic potentials evoked in dorsal horn neurons by electrical stimulation of large fibers (stimulus intensity 10-20V, 0.02 ms) but failed to block postsynaptic potentials induced by electrical stimulation of slow fibers (stimulus intensity > 35 V, 0.5 ms). In addition, the tetrodotoxin failed to block the synaptic activation of dorsal horn neurons which was induced by the application of high potassium to sensory neurons. Capsaicin (10-100 microM, 10 s), applied to the sensory neurons, resulted in a prolonged synaptic activation of the dorsal horn neurons and a subsequent long lasting desensitization. During the period of capsaicin desensitization, synaptic activation of dorsal horn neurons by application of high potassium to the dorsal root ganglion and electrical stimulation of slow fibers was blocked. The opioid receptor agonist (D-Ala2, D-Leu5)-enkephalinamide (1 microM), applied to the spinal cord slice, abolished the dorsal horn neuron excitation evoked by electrical or chemical activation of slow primary afferent fibers. These findings indicate that high concentrations of K+ applied to the dorsal root ganglia selectively activate a primary afferent input to the dorsal horn, which is capsaicin sensitive and tetrodotoxin resistant.
Collapse
Affiliation(s)
- S Jeftinija
- Department of Veterinary Anatomy, Iowa State University, Ames 50011
| | | | | |
Collapse
|
33
|
Elliott AA, Elliott JR. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol 1993; 463:39-56. [PMID: 8246189 PMCID: PMC1175332 DOI: 10.1113/jphysiol.1993.sp019583] [Citation(s) in RCA: 354] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The whole-cell patch-clamp technique was used to investigate the characteristics of two types of sodium current (INa) recorded at room temperature from small diameter (13-25 microns) dorsal root ganglion (DRG) cells, isolated from adult rats and maintained overnight in culture. 2. Sodium currents were isolated pharmacologically. Internal Cs+ and external tetraethylammonium (TEA) ions were used to suppress potassium currents. A combination of internal EGTA, internal F-, a low (10 microM) concentration of external Ca2+ and a relatively high (5 mM) concentration of internal and external Mg2+ was used to block calcium channels. The remaining voltage-dependent currents reversed direction at the calculated sodium equilibrium potential. Both the reversal potential and magnitude of the currents exhibited the expected dependence on the external sodium concentration. 3. INa subtypes were characterized initially in terms of their sensitivity to tetrodotoxin (TTX). TTX-sensitive (TTXs) currents were at least 97% suppressed by 0.1 microM TTX. TTX-resistant (TTXr) INa were recorded in the presence of 0.3 microM TTX and appeared to be reduced in amplitude by less than 50% in 75 microM TTX (n = 1). 4. As in earlier studies, the peak of the current-voltage relationship, the mid-point of the normalized conductance curve and the potential (Vh) at which the steady-state inactivation parameter (h infinity) was 0.5 were found to be significantly more depolarized for the TTXr INa (by ca 10, 14 and 37 mV respectively). There was little difference in the slope at the mid-point of the normalized conductance curves (the mean slope factors were 5.1 mV for the TTXs INa and 4.9 mV for the TTXr current) but the h infinity curves for TTXr currents were significantly steeper than those for TTXs currents (mean slope factors of 3.8 and 11.5 mV respectively). Both the time to peak and the decay time constant of the peak current recorded from a holding potential of -67 mV were more than a factor of three slower for the TTXr INa than for the TTXs current. 5. However, in direct contrast to the difference in activation and decay kinetics, 'slow' TTXr INa recovered from inactivation at -67mV, or reprimed, more than a factor of ten faster than 'fast' TTXs INa. 6. The differences apparent in both the repriming kinetics of TTXs and TTXr INa at -67 mV and the kinetics of the decay phase of the peak INa are shown to be explicable largely in terms of the voltage dependence of their respective inactivation systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A A Elliott
- Department of Anatomy and Physiology, The University, Dundee
| | | |
Collapse
|
34
|
|
35
|
Sheridan RE. Electrophysiological characterization of sodium channel types in the HCN-1A human cortical cell line. Brain Res Bull 1993; 30:577-83. [PMID: 8384518 DOI: 10.1016/0361-9230(93)90085-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Electrically evoked sodium currents were recorded under whole-cell patch clamp from undifferentiated HCN-1A cells. Peak sodium currents had a half-maximal activation, Vm0.5, of -22.6 +/- 1.0 mV with a voltage dependence, km, of 7.28 +/- 0.39 mV-1. Steady-state inactivation indicated the presence of two types of sodium channel. One type inactivated with Vh0.5 = -93.8 +/- 1.2 mV and kh = -6.8 +/- 0.4 mV-1. The second type of sodium channel inactivated with Vh0.5 = -44.6 +/- 1.5 mV and kh = -7.3 +/- 0.4 mV-1. The occurrence of each channel type varied from cell to cell and ranged from 0 to 100% of the total sodium current. No variation in the rate of inactivation was seen when the holding potential was adjusted to eliminate the more negative of the two inactivation components. Application of tetrodotoxin (TTX) or saxitoxin (STX) revealed channel types with two different affinities for each toxin. TTX blocked peak sodium conductance with apparent IC50s of 22 nM and 5.3 microM. STX was more potent, with apparent IC50s of 1.6 nM and 1.2 microM. There was no statistical correlation between toxin sensitivity and steady-state inactivation voltage, suggesting that these properties varied independently among sodium channel types.
Collapse
Affiliation(s)
- R E Sheridan
- Neurotoxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5425
| |
Collapse
|
36
|
Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD. Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res 1992; 592:283-97. [PMID: 1280518 DOI: 10.1016/0006-8993(92)91687-a] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several types of Na+ currents have previously been demonstrated in dorsal root ganglion (DRG) neurons isolated from neonatal rats, but their expression in adult neurons has not been studied. Na+ current properties in adult dorsal root ganglion (DRG) neurons of defined size class were investigated in isolated neurons maintained in primary culture using a combination of microelectrode current clamp, patch voltage clamp and immunocytochemical techniques. Intracellular current clamp recordings identified differing relative contributions of TTX-sensitive and -resistant inward currents to action potential waveforms in DRG neuronal populations of defined size. Patch voltage clamp recordings identified three distinct kinetic types of Na+ current differentially distributed among these size classes of DRG neurons. 'Small' DRG neurons co-express two types of Na+ current: (i) a rapidly-inactivating, TTX-sensitive 'fast' current and (ii) a slowly-activating and -inactivating, TTX-resistant 'slow' current. The TTX-sensitive Na+ current in these cells was almost completely inactivated at typical resting potentials. 'Large' cells expressed a single TTX-sensitive Na+ current identified as 'intermediate' by its inactivation rate constants. 'Medium'-sized neurons either co-expressed 'fast' and 'slow' current or expressed only 'intermediate' current. Na+ channel expression in these size classes was also measured by immunocytochemical techniques. An antibody against brain-type Na+ channels (Ab7493)10 labeled small and large neurons with similar intensity. These results demonstrate that three types of Na+ currents can be detected which correlate with electrogenic properties of physiologically and anatomically distinct populations of adult rat DRG neurons.
Collapse
Affiliation(s)
- J M Caffrey
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | | | |
Collapse
|
37
|
Aguayo LG, White G. Effects of nerve growth factor on TTX- and capsaicin-sensitivity in adult rat sensory neurons. Brain Res 1992; 570:61-7. [PMID: 1617430 DOI: 10.1016/0006-8993(92)90564-p] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the effects of nerve growth factor (NGF, 2.5 ng/ml for 1-2 weeks) on enriched adult rat dorsal root ganglion (DRG) neurons maintained in cell culture in defined media. Whole-cell recordings in cells cultured in the absence and presence of NGF revealed no significant difference in resting membrane potential and input resistance. However, the threshold for spike generation was significantly lower in untreated cells than in treated cells; -25 +/- 1.1 mV vs -19 +/- 2.2 mV, respectively. The sensitivity of the Na+ spike to tetrodotoxin (TTX, 1 microM) was different in cells cultured in the absence or presence of NGF. For example, spikes were abolished by TTX in 100% of untreated cells, while in NGF-treated cells the spike was abolished in only 41% of the neurons. Chemosensitivity of DRG neurons was also different in the absence and presence of NGF. For example, the percent of neurons in which a current activated by 8-methyl-N-vanillyl-6-nonenamide (capsaicin, 500 nM) was detected, increased from 18% in untreated cells to 55% in NGF-treated cells. NGF did not influence the number of cells surviving. The results indicate that NGF can regulate TTX and capsaicin sensitivity in these adult rat sensory neurons. Our experimental protocol indicates that this effect is not mediated by a factor in the serum or released from non-neuronal cells.
Collapse
Affiliation(s)
- L G Aguayo
- Section of Electrophysiology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852
| | | |
Collapse
|
38
|
Yarowsky PJ, Krueger BK, Olson CE, Clevinger EC, Koos RD. Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex. Proc Natl Acad Sci U S A 1991; 88:9453-7. [PMID: 1658783 PMCID: PMC52736 DOI: 10.1073/pnas.88.21.9453] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The expression of mRNAs coding for the alpha subunit of rat brain and rat heart sodium channels has been studied in adult and neonatal rat cerebral cortex using the reverse transcription-polymerase chain reaction (RT-PCR). Rat brain sodium channel subtype I, II, IIA, and III sequences were simultaneously amplified in the same PCR using a single oligonucleotide primer pair matched to all four subtype sequences. Identification of each subtype-specific product was inferred from the appearance of unique fragments when the product was digested with specific restriction enzymes. By using this RT-PCR method, products arising from mRNAs for all four brain sodium channel subtypes were identified in RNA extracted from adult rat cerebral cortex. The predominant component was type IIA with lesser levels of types I, II, and III. In contrast, the type II and IIA sequences were the predominant RT-PCR products in neonatal rat cortex, with slightly lower levels of type III and undetectable levels of type I. Thus, from neonate to adult, type II mRNA levels decrease relative to type IIA levels. Using a similar approach, we detected mRNA coding for the rat heart sodium channel in neonatal and adult rat cerebral cortex and in adult rat heart. These results reveal that mRNAs coding for the heart sodium channel and all four previously sequenced rat brain sodium channel subtypes are expressed in cerebral cortex and that type II and IIA channels may be differentially regulated during development.
Collapse
Affiliation(s)
- P J Yarowsky
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | | | | | | | |
Collapse
|
39
|
Caviedes P, Koistinaho J, Ault B, Rapoport SI. Effects of nerve growth factor on electrical membrane properties of cultured dorsal root ganglia neurons from normal and trisomy 21 human fetuses. Brain Res 1991; 556:285-91. [PMID: 1834314 DOI: 10.1016/0006-8993(91)90317-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trisomy 21 (Down syndrome) results in abnormalities of electrical membrane properties of cultured human fetal dorsal root ganglion (DRG) neurons; namely, faster rates of depolarization and repolarization of the action potential, and a shortened spike duration. A possible role of nerve growth factor (NGF) in the expression of abnormal electrical membrane properties fetal human DRG neurons from trisomy 21 subjects was examined. DRG neurons obtained from normal and trisomy 21 abortuses of 16-20 weeks gestation were cultured in the presence or absence of 40 nM 7S NGF. After 1 week in culture, action potentials were recorded using the whole cell patch-clamp technique, in current clamp mode. At the resting membrane potential, normal (diploid) neurons grown without NGF showed reduced maximal rates of depolarization (-41.3%) and of repolarization (-31.4%), a decreased spike amplitude (-14.2%) and a prolonged action potential (+49.2%), when compared to normal cells cultured with NGF. Trisomy 21 neurons showed similar changes, but had a greater relative decrease in the rates of action potential depolarization and repolarization. These changes were evident at different membrane potentials. Normal and trisomic DRG neurons cultured without NGF showed differences in action potential parameters similar to those previously described using NGF-supplemented culture medium. These data indicate that NGF can regulate electrical membrane properties in cultured human fetal DRG neurons, but apparently is not responsible for the abnormalities observed in trisomy 21 neurons.
Collapse
Affiliation(s)
- P Caviedes
- Laboratory of Neurosciences, National Institutes on Aging, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
40
|
Elliott AA, Elliott JR. The influence of charge on the effects of n-octyl derivatives on sodium current inactivation in rat sensory neurones. J Physiol 1991; 440:35-53. [PMID: 1666651 PMCID: PMC1180138 DOI: 10.1113/jphysiol.1991.sp018694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The whole-cell patch-clamp technique was used to determine the actions of n-octyl sulphate (OS-) anions and n-octyl trimethylammonium (OTMA+) cations on sodium current steady-state inactivation and peak amplitude in cells isolated from dorsal root ganglia of neonatal rats and maintained in short-term tissue culture. This paper concentrates on the effects of external addition but the actions of internal OS- and OTMA+ are briefly considered. 2. The main action of external OS- was to cause a hyperpolarizing shift in the voltage dependence of the steady-state inactivation parameter, h infinity. At 1-6 mM OS- caused a shift in the mid-point of the h infinity curve of around -30 mV. The shape of the h infinity curve was altered in a concentration-dependent manner. Internal OS- had no discernible effect on the shape or position of the h infinity curve. 3. External OS- produced a relatively small (less than 25%) reduction in the maximum current achieved following pre-pulses sufficiently negative to remove resting steady-state inactivation. 4. By contrast, external OTMA+ had little effect on the voltage dependence of h infinity and produced a small, but significant, increase in the maximum sodium current. 2 mM-external OTMA+ moved the mid-point of the h infinity curve (Vh) 5 mV in the depolarizing direction (relative to the mean of control and reversal curves) and increased the maximum current by 13%. One millimolar internal OTMA+ induced a frequency-dependent current block. 5. Raising the external calcium concentration from 2 to 20 mM (in the presence of 2 mM-magnesium and 5 mM-cobalt) caused an 18 mV depolarizing shift in Vh, consistent with a reduction in the negativity of an external surface charge. The maximum current was reduced by 22%. 6. One millimolar OS- reduced the surface potential of egg phosphatidylcholine (EPC) monolayers (at an air-0.5 M-NaCl interface) by 35 mV but 1 or 2 mM-OTMA+ produced only a 2-3 mV increase. The quantitative agreement between the effects of OS-, on Vh in the rat and on monolayer surface potential, decreased with increasing concentration.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A A Elliott
- Department of Anatomy and Physiology, The University, Dundee
| | | |
Collapse
|
41
|
Schwartz A, Palti Y, Meiri H. Structural and developmental differences between three types of Na channels in dorsal root ganglion cells of newborn rats. J Membr Biol 1990; 116:117-28. [PMID: 2166163 DOI: 10.1007/bf01868670] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The changes in Na current during development were studied in the dorsal root ganglion (DRG) cells using the whole-cell patch-clamp technique. Cells obtained from rats 1-3 and 5-8 days after birth were cultured and their Na currents were compared. On top of the two types of Na currents reported in these cells (fast-FA current and slow-S current) a new fast current was found (FN). The main characteristics of the three currents are: (i) The voltages of activation are -37, -36 and -23 mV for the FN, FA and S currents, respectively. (ii) The activation and inactivation kinetics of FN and FA currents are about five times faster than those of the S current. (iii) The voltages at which inactivation reaches 50% are -139, -75 and -23 mV for the FN, FA and S currents, respectively. The kinetics and voltage-dependent parameters of the three currents and their density do not change during the first eight days after birth. However, their relative frequency in the cells changes. In the 1-3 day-old rats the percent of cells with S, FA, and mixed S + FN currents is 22, 18, and 60% of the cells, respectively. In the 5-8 day-old, the percent of cells with S, FA, and FN + S is 10, 66 and 22%. The relative increase in the frequency of cells with FA current during development can contribute to the ease of action potential generation compared with cells with FN currents, which are almost completely inactivated under physiological conditions. The predominance of FA cells also results in a significant decrease in the relative frequency of cells with the high-threshold, slow current. Antibodies directed against a part of the S4 region of internal repeat I of the sodium channel (C1+, amino acids 210-223, eel channel numbering) were found to shift the voltage dependence of FA current inactivation (but not of FN or S currents) to more negative potentials. The effect was found only when the antibodies were applied externally. The results suggest that FN, FA and S types of Na currents are generated by channels, which are different in the topography of the C1+ region in the membrane.
Collapse
Affiliation(s)
- A Schwartz
- Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | | | |
Collapse
|