1
|
Marchesi C, Dall'Asta V, Rotoli BM, Bianchi MG, Maggini C, Gazzola GC, Bussolati O. Chlorpromazine, clozapine and olanzapine inhibit anionic amino acid transport in cultured human fibroblasts. Amino Acids 2006; 31:93-9. [PMID: 16699818 DOI: 10.1007/s00726-006-0312-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 01/09/2006] [Indexed: 12/22/2022]
Abstract
We report here that chlorpromazine, a first generation antipsychotic drug, inhibits anionic amino acid transport mediated by system X(-) (AG) (EAAT transporters) in cultured human fibroblasts. With 30 microM chlorpromazine, transport inhibition is detectable after 3 h of treatment, maximal after 48 h (>60%), and referable to a decrease in V(max). Chlorpromazine effect is not dependent upon changes of membrane potential and is selective for system X(-) (AG) since transport systems A and y(+) are not affected. Among antipsychotic drugs, the inhibitory effect of chlorpromazine is shared by two dibenzodiazepines, clozapine and olanzapine, while other compounds, such as risperidon, zuclopentixol, sertindol and haloperidol, are not effective. Transport inhibition by clozapine and olanzapine, but not by chlorpromazine, is reversible, suggesting that the mechanisms involved are distinct. These results indicate that a subset of antipsychotic drugs inhibits EAAT transporters in non-nervous tissues and prompt further investigation on possible alterations of glutamate transport in peripheral tissues of schizophrenic patients.
Collapse
Affiliation(s)
- C Marchesi
- Unit of Psychiatry, Department of Neurosciences, University of Parma, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
2
|
Sansom SC, Ma R, Carmines PK, Hall DA. Regulation of Ca(2+)-activated K(+) channels by multifunctional Ca(2+)/calmodulin-dependent protein kinase. Am J Physiol Renal Physiol 2000; 279:F283-8. [PMID: 10919847 DOI: 10.1152/ajprenal.2000.279.2.f283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of mesangial cells by ANG II provokes release of intracellular Ca(2+) stores and subsequent Ca(2+) influx through voltage-gated channels, events that are reflected by a large transient increase in intracellular concentration [Ca(2+)](i) followed by a modest sustained elevation in [Ca(2+)](i). These ANG II-induced alterations in [Ca(2+)](i) elicit activation of large Ca(2+)-activated K(+) channels (BK(Ca)) in a negative-feedback manner. The mechanism of this BK(Ca) feedback response may involve the direct effect of intracellular Ca(2+) on the channel and/or channel activation by regulatory enzymes. The present study utilized patch-clamp and fura 2 fluorescence techniques to assess the involvement of multifunctional calcium calmodulin kinase II (CAMKII) in the BK(Ca) feedback response. In cell-attached patches, KN62 (specific inhibitor of CAMKII) either abolished or reduced to near zero the ANG II-induced BK(Ca) feedback response. This phenomenon did not reflect direct effects of KN62 on the BK(Ca) channel, because this agent alone did not significantly alter BK(Ca) channel activity in inside-out patches. KN62 also failed to alter either the transient peak or sustained plateau phases of the [Ca(2+)](i) response to ANG II. In inside-out patches (1 microM Ca(2+) in bath), calmodulin plus ATP activated BK(Ca) channels in the presence but not the absence of CAMKII. These observations are consistent with the postulate that CAMKII is involved in the BK(Ca) feedback response of mesangial cells, acting to potentiate the influence of increased [Ca(2+)](i) on the BK(Ca) channel or a closely associated regulator of the channel. An additional effect of CAMKII to activate a voltage-gated Ca(2+) channel cannot be ruled out by these experiments.
Collapse
Affiliation(s)
- S C Sansom
- Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha 68198-4575, USA.
| | | | | | | |
Collapse
|
3
|
Hoffmann EK, Dunham PB. Membrane mechanisms and intracellular signalling in cell volume regulation. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 161:173-262. [PMID: 7558691 DOI: 10.1016/s0074-7696(08)62498-5] [Citation(s) in RCA: 337] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent work on selected aspects of the cellular and molecular physiology of cell volume regulation is reviewed. First, the physiological significance of the regulation of cell volume is discussed. Membrane transporters involved in cell volume regulation are reviewed, including volume-sensitive K+ and Cl- channels, K+, Cl- and Na+, K+, 2Cl- cotransporters, and the Na+, H+, Cl-, HCO3-, and K+, H+ exchangers. The role of amino acids, particularly taurine, as cellular osmolytes is discussed. Possible mechanisms by which cells sense their volumes, along with the sensors of these signals, are discussed. The signals are mechanical changes in the membrane and changes in macromolecular crowding. Sensors of these signals include stretch-activated channels, the cytoskeleton, and specific membrane or cytoplasmic enzymes. Mechanisms for transduction of the signal from sensors to transporters are reviewed. These include the Ca(2+)-calmodulin system, phospholipases, polyphosphoinositide metabolism, eicosanoid metabolism, and protein kinases and phosphatases. A detailed model is presented for the swelling-initiated signal transduction pathway in Ehrlich ascites tumor cells. Finally, the coordinated control of volume-regulatory transport processes and changes in the expression of organic osmolyte transporters with long-term adaptation to osmotic stress are reviewed briefly.
Collapse
Affiliation(s)
- E K Hoffmann
- Biochemical Department, August Krogh Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
4
|
Fogg KE, Higgs NB, Warhurst G. Involvement of calmodulin in Ca(2+)-activated K+ efflux in human colonic cell line, HT29-19A. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1221:185-92. [PMID: 8148397 DOI: 10.1016/0167-4889(94)90012-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The receptor-mediated agonist, neurotensin (NT) stimulated Ba(2+)- and charybdotoxin-sensitive 86Rb (K+) efflux in the HT29-19A colonic cell line. Efflux was also stimulated by ionomycin and thapsigargin and could be abolished by incubation with the intracellular Ca2+ chelator, BAPTA. Together, these data suggest a rise in [Ca2+]i is prerequisite for activation of K+ efflux in these cells. Comparison of the temporal profiles for NT-induced increases in [Ca2+]i and 86Rb efflux, however, failed to show a direct relationship between these parameters. The NT-stimulated increase in [Ca2+]i was transient, returning to baseline within 4-5 min, while efflux was sustained over a much longer period (> 12 min). Ca(2+)-activated 86Rb efflux was inhibited by pretreatment with calmodulin (CaM) antagonist, W7. W7 had no effect on basal efflux, but reduced both NT- and IM-activated efflux up to 80%, with a Ki of 38 microM. Other CaM antagonist inhibited efflux with an order of potency (TFP approximately W8 > W7 >> W5) consistent with inhibition of a CaM-dependent process. Inhibition by W7 was not abolished by ouabain or bumetanide, indicating its effects are not mediated by action upon K+ uptake processes. W7 did not inhibit NT-stimulated 125I efflux but significantly reduced efflux stimulated by the Ca2+ ionophore, ionomycin. NT-stimulated 86Rb+ efflux was localized to the basolateral membrane of HT29-19A monolayers grown on permeable supports. These data are consistent with the involvement of CaM in mediating Ca(2+)-dependent activation of K+ conductance in HT29-19A colonocytes.
Collapse
Affiliation(s)
- K E Fogg
- Epithelial Membrane Research Centre, University of Manchester, Hope Hospital, Salford, UK
| | | | | |
Collapse
|
5
|
Kawano S, Hiraoka M. Protein kinase A-activated chloride channel is inhibited by the Ca(2+)-calmodulin complex in cardiac sarcoplasmic reticulum. Circ Res 1993; 73:751-7. [PMID: 8396507 DOI: 10.1161/01.res.73.4.751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiac sarcoplasmic reticulum (SR) has several chloride (Cl-) channels, which may neutralize the charge across the SR membrane generated by Ca2+ movement. We recently reported a novel 116-picosiemen Cl- channel that is activated by protein kinase A-dependent phosphorylation in cardiac SR. This Cl- channel may serve as a target protein in the receptor-dependent regulation of cardiac excitation-contraction coupling. To understand further regulatory mechanisms, the effects of Ca2+ on the Cl- channel were studied using the planar lipid bilayer-vesicle fusion technique. In the presence of calmodulin (CaM, 0.1 mumol/L per microgram SR vesicles), Ca2+ (3 mumol/L to 1 mmol/L) added to the cis solution reduced the channel openings in a concentration-dependent fashion, whereas Ca2+ (1 nmol/L to 1 mmol/L) alone or CaM (0.1 to 1 mumol/L per microgram SR vesicles) with 1 nmol/L Ca2+ did not affect the channel activity. This inhibitory effect of Ca2+ in the presence of CaM was prevented by CaM inhibitors N-(6 aminohexyl)-5-chloro-1-naphthalenesulfonamide and calmidazolium but not by CaM kinase II inhibitor KN62. These results suggest that the Ca(2+)-CaM complex itself, but not CaM kinase II, is involved in this channel inhibition. Thus, the cardiac SR 116-picosiemen Cl- channel is regulated not only by protein kinase A-dependent phosphorylation but also by the cytosolic Ca(2+)-CaM complex. This is a novel second messenger-mediated regulation of Cl- channels in cardiac SR membrane.
Collapse
Affiliation(s)
- S Kawano
- Department of Cardiovascular Disease, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
6
|
Snyders DJ, Tamkun MM, Bennett PB. A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol 1993; 101:513-43. [PMID: 8505626 PMCID: PMC2216772 DOI: 10.1085/jgp.101.4.513] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The electrophysiological properties of HK2 (Kv1.5), a K+ channel cloned from human ventricle, were investigated after stable expression in a mouse Ltk- cell line. Cell lines that expressed HK2 mRNA displayed a current with delayed rectifier properties at 23 degrees C, while sham transfected cell lines showed neither specific HK2 mRNA hybridization nor voltage-activated currents under whole cell conditions. The expression of the HK2 current has been stable for over two years. The dependence of the reversal potential of this current on the external K+ concentration (55 mV/decade) confirmed K+ selectivity, and the tail envelope test was satisfied, indicating expression of a single population of K+ channels. The activation time course was fast and sigmoidal (time constants declined from 10 ms to < 2 ms between 0 and +60 mV). The midpoint and slope factor of the activation curve were Eh = -14 +/- 5 mV and k = 5.9 +/- 0.9 (n = 31), respectively. Slow partial inactivation was observed especially at large depolarizations (20 +/- 2% after 250 ms at +60 mV, n = 32), and was incomplete in 5 s (69 +/- 3%, n = 14). This slow inactivation appeared to be a genuine gating process and not due to K+ accumulation, because it was present regardless of the size of the current and was observed even with 140 mM external K+ concentration. Slow inactivation had a biexponential time course with largely voltage-independent time constants of approximately 240 and 2,700 ms between -10 and +60 mV. The voltage dependence of slow inactivation overlapped with that of activation: Eh = -25 +/- 4 mV and k = 3.7 +/- 0.7 (n = 14). The fully activated current-voltage relationship displayed outward rectification in 4 mM external K+ concentration, but was more linear at higher external K+ concentrations, changes that could be explained in part on the basis of constant field (Goldman-Hodgkin-Katz) rectification. Activation and inactivation kinetics displayed a marked temperature dependence, resulting in faster activation and enhanced inactivation at higher temperature. The current was sensitive to low concentrations of 4-aminopyridine, but relatively insensitive to external TEA and to high concentrations of dendrotoxin. The expressed current did not resemble either the rapid or the slow components of delayed rectification described in guinea pig myocytes. However, this channel has many similarities to the rapidly activating delayed rectifying currents described in adult rat atrial and neonatal canine epicardial myocytes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Snyders
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2171
| | | | | |
Collapse
|
7
|
|
8
|
Glavinović MI, Joshi A, Trifaró JM. Mastoparan blockade of currents through Ca(2+)-activated K+ channels in bovine chromaffin cells. Neuroscience 1992; 50:675-84. [PMID: 1436510 DOI: 10.1016/0306-4522(92)90456-c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The action of mastoparan (a wasp venom peptide) on "maxi" Ca(2+)-activated K+ channels was studied in excised inside-out patch recordings from cultured bovine chromaffin cells, under normal conditions (160 mM K+ inside, 154 mM Na+ outside). Mastoparan, when applied on the intracellular side of the membrane reduced the open channel probability in a concentration dependent manner. Changes in the channel kinetics were complex. The histograms of the open dwell times were all described by either one or two exponentials. Mastoparan shortened the mean duration of the major (long) component and to a lesser extent the minor (short) component. Closed dwell times, were described by three exponentials. While the short (major) component was prolonged by mastoparan, and the intermediate component was unaffected, the long component was shortened. Overall mean closed times were prolonged. The changes in channel kinetics could only partly be explained by a channel-blocking mechanism, even when assuming that mastoparan acts as both an intermediate and a slow channel blocker suggesting that it affects gating mechanism. The fact that mastoparan is a calmodulin inhibitor and a G-protein activator raises the possibility that in bovine chromaffin cells, either the membrane-bound calmodulin or a G-protein, plays a role in the modulation of Ca(2+)-activated K+ channels.
Collapse
Affiliation(s)
- M I Glavinović
- Department of Anesthesia Research, McGill University, Montreal, P.Q., Canada
| | | | | |
Collapse
|
9
|
Feres T, Vianna LM, Paiva AC, Paiva TB. Effect of treatment with vitamin D3 on the responses of the duodenum of spontaneously hypertensive rats to bradykinin and to potassium. Br J Pharmacol 1992; 105:881-4. [PMID: 1324053 PMCID: PMC1908699 DOI: 10.1111/j.1476-5381.1992.tb09072.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The diet of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) and Wistar (NWR) rats was supplemented with either 2% calcium lactate in the drinking water or 12.5 micrograms vitamin D3 100 g-1 body weight daily by gavage, for 14 days. 2. The blood pressure of the SHR treated with either calcium or vitamin D decreased to the same levels as that of WKY and NWR. 3. The response to bradykinin of the SHR isolated duodenum, which is predominantly contractile, upon treatment with vitamin D (but not with calcium), became predominantly relaxant, approaching the normal behavior of the WKY and NWR duodenum. 4. The relaxant responses of the SHR and WKY duodenum to potassium were smaller than those of NWR, but treatment with vitamin D increased the response in all three rat strains. 5. It is concluded that, besides sharing the hypotensive effect of calcium, vitamin D treatment of SHR has an effect on the duodenum smooth muscle which might be due to calmodulin-dependent activation of calcium-dependent potassium channels.
Collapse
Affiliation(s)
- T Feres
- Department of Biophysics, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
Sarkadi B, Parker JC. Activation of ion transport pathways by changes in cell volume. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:407-27. [PMID: 1721542 DOI: 10.1016/0304-4157(91)90005-h] [Citation(s) in RCA: 231] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Swelling-activated K+ and Cl- channels, which mediate RVD, are found in most cell types. Prominent exceptions to this rule include red cells, which together with some types of epithelia, utilize electroneutral [K(+)-Cl-] cotransport for down-regulation of volume. Shrinkage-activated Na+/H+ exchange and [Na(+)-K(+)-2 Cl-] cotransport mediate RVI in many cell types, although the activation of these systems may require special conditions, such as previous RVD. Swelling-activated K+/H+ exchange and Ca2+/Na+ exchange seem to be restricted to certain species of red cells. Swelling-activated calcium channels, although not carrying sufficient ion flux to contribute to volume changes may play an important role in the activation of transport pathways. In this review of volume-activated ion transport pathways we have concentrated on regulatory phenomena. We have listed known secondary messenger pathways that modulate volume-activated transporters, although the evidence that volume signals are transduced via these systems is preliminary. We have focused on several mechanisms that might function as volume sensors. In our view, the most important candidates for this role are the structures which detect deformation or stretching of the membrane and the skeletal filaments attached to it, and the extraordinary effects that small changes in concentration of cytoplasmic macromolecules may exert on the activities of cytoplasmic and membrane enzymes (macromolecular crowding). It is noteworthy that volume-activated ion transporters are intercalated into the cellular signaling network as receptors, messengers and effectors. Stretch-activated ion channels may serve as receptors for cell volume itself. Cell swelling or shrinkage may serve a messenger function in the communication between opposing surfaces of epithelia, or in the regulation of metabolic pathways in the liver. Finally, these transporters may act as effector systems when they perform regulatory volume increase or decrease. This review discusses several examples in which relatively simple methods of examining volume regulation led to the discovery of transporters ultimately found to play key roles in the transmission of information within the cell. So, why volume? Because it's functionally important, it's relatively cheap (if you happened to have everything else, you only need some distilled water or concentrated salt solution), and since it involves many disciplines of experimental biology, it's fun to do.
Collapse
Affiliation(s)
- B Sarkadi
- National Institute of Haematology and Blood Transfusion, Budapest, Hungary
| | | |
Collapse
|
11
|
Schultz SG, Hudson RL. Biology Of Sodium‐Absorbing Epithelial Cells: Dawning of a New Era. Compr Physiol 1991. [DOI: 10.1002/cphy.cp060402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Patton L, Ship J, Wellner R. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7) stimulation of K+ transport in a human salivary epithelial cell line. Biochem Pharmacol 1991; 42:1039-44. [PMID: 1714731 DOI: 10.1016/0006-2952(91)90286-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of a human salivary epithelial cell line, HSG-PA, with the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7; 20-70 microM) increased 86Rb (K+) influx and efflux in a manner similar to that resulting from muscarinic (carbachol; Cch) or calcium ionophore (A23187) stimulation. Unlike the Cch or A23187 responses, the W7 responses were not blocked by 0.1 mM atropine (muscarinic antagonist) or phorbol-12-myristate-13-acetate (0.1 microM). Like Cch- or A23187-stimulated 86Rb fluxes, W7-stimulated 86Rb fluxes were substantially blocked by the K+ channel inhibitors quinine (0.25 mM) and scorpion venom-containing charybdotoxin (33 micrograms/mL), while 5 mM tetraethylammonium chloride (K+ channel blocker), furosemide (0.1 mM; Na+,K+,2Cl- co-transport inhibitor) and ouabain (10 microM; Na+,K(+)-ATPase inhibitor) were ineffective. Purified charybdotoxin (10 nM) also blocked W7-stimulated 86Rb influx, as well as 86Rb influx stimulated by Cch or A23187. Although Quin 2 fluorescence measurements indicated that W7 increased free intracellular Ca2+ concentration ([Ca2+]i), the magnitude of the increase appeared to be insufficient to solely account for the W7-stimulated increases in 86Rb fluxes (i.e. K+ channel activity). Ca2+ was involved in the W7 response, however, as lack of Ca2+ in the incubation medium reduced the W7-stimulated increases in 86Rb influx and efflux. Taken together, our results suggest that W7 increased K+ fluxes in HSG-PA cells by interacting, directly or indirectly, with the K+ transport machinery (K+ channels) in a manner different from that observed during muscarinic stimulation, and also in a manner not accounted for solely by the formation of a typical muscarinic- or calcium ionophore-generated calcium signal.
Collapse
Affiliation(s)
- L Patton
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
13
|
Paulmichl M, Wöll E, Weiss H, Waldegger S, Lang F. Effect of trifluoperazine on renal epithelioid Madin-Darby canine kidney cells. J Cell Physiol 1991; 148:314-9. [PMID: 1880156 DOI: 10.1002/jcp.1041480218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Following exposure to a number of hormones, the cell membrane in Madin-Darby Canine Kidney (MDCK) cells is hyperpolarized by increase of intracellular calcium activity. The present study has been performed to elucidate the possible role of calmodulin in the regulation of intracellular calcium activity and cell membrane potential. To this end trifluoperazine has been added during continuous recording of cell membrane potential or intracellular calcium. Trifluoperazine leads to a transient increase of intracellular calcium as well as a sustained hyperpolarization of the cell membrane by activation of calcium sensitive K+ channels. Half-maximal effects are observed between 1 and 10 mumol/L trifluoperazine. A further calmodulin antagonist, chlorpromazine, (50 mumol/L), similarly hyperpolarizes the cell membrane. The effects of trifluoperazine are virtually abolished in the absence of extracellular calcium. Pretreatment of the cells with either pertussis toxin or phorbol-ester TPA does not interfere with the hyperpolarizing effect of trifluoperazine. In conclusion, calmodulin is apparently involved in the regulation of calcium transfer across the cell membrane but not in the stimulation of K+ channels by intracellular calcium.
Collapse
Affiliation(s)
- M Paulmichl
- Institute for Physiology, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
14
|
Caulfield MP, Robbins J, Sim JA, Brown DA, Mac Neil S, Blackburn GM. The naphthalenesulphonamide calmodulin antagonist W7 and its 5-iodo-1-C8 analogue inhibit potassium and calcium currents in NG108-15 neuroblastoma x glioma cells in a manner possibly unrelated to their antagonism of calmodulin. Neurosci Lett 1991; 125:57-61. [PMID: 1649984 DOI: 10.1016/0304-3940(91)90130-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patch clamp techniques were used to record voltage-sensitive calcium and potassium currents from NG108-15 cells. N-(6-aminohexyl)-5-chloro-1-naphthalene- sulphonamide (W7), a calmodulin (CaM) antagonist and its more potent (10 times) 5-iodo-1-C8 analogue (J8) inhibited these currents in a dose-dependent manner. The inhibition was not dependent on internal or external Ca2+. W7 was about four times more potent as an inhibitor of the transient potassium current (IC50 = 8 microM) than of the M-current or of the calcium current. J8 was also selective for the potassium currents (IC50 values: transient current 4 microM, M-current 11 microM) compared to the calcium current (IC50 36 microM). It is suggested that the inhibition does not result from an anti-CaM action of the compounds.
Collapse
Affiliation(s)
- M P Caulfield
- Department of Pharmacology, University College London, U.K
| | | | | | | | | | | |
Collapse
|
15
|
Worrell RT, Frizzell RA. CaMKII mediates stimulation of chloride conductance by calcium in T84 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C877-82. [PMID: 1708204 DOI: 10.1152/ajpcell.1991.260.4.c877] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We used the secretory colonic cell line T84 to study the regulatory pathways controlling the Ca-stimulated Cl conductance [GCl(Ca)]. Under whole cell patch clamp, basal (unstimulated) current levels averaged 73 +/- 9 pA/20 pF (n = 93) and increased to 600 +/- 100 pA/20 pF (n = 53; at +100 mV) on exposure to 1-2 microM ionomycin. Bath application of the calmodulin (CaM) antagonists trifluoperazine, calmidazolium, or sphingosine (50 microM) reversibly inhibited GCl(Ca), whereas the protein kinase C antagonists H7 and phloretin (50 microM) were without effect. This suggests that increases in intracellular Ca stimulate GCl(Ca) via a CaM-dependent process rather than activating Cl channels directly. To assess the involvement of protein kinases in the Ca-dependent stimulation of Cl conductance, we employed pseudosubstrate peptide inhibitors of protein kinase C (PKC) and the Ca/CaM-dependent protein kinase II (CaMKII). Cellular concentrations of inhibitors during whole cell recording were estimated to be 4-20 times the inhibitory constant values for kinase inhibition observed in vitro. Pipette solutions containing the PKC peptide inhibitor PKC-(19-36) (7.5 microM) had no effect on GCl(Ca). In contrast, stimulation of GCl(Ca) by ionomycin was abolished when pipette solutions contained 10 microM CaMKII peptide inhibitor CaMKII-(273-302). The truncated peptide CaMKII-(284-302) (20 microM) lacks the CaMKII inhibitory domain and did not affect GCl(Ca). These data suggest that CaM, acting through the multifunctional CaMKII, mediates the Ca-dependent stimulation of Cl conductance in colonic secretory cells.
Collapse
Affiliation(s)
- R T Worrell
- Department of Physiology and Biophysics, University of Alabama, Birmingham 35294
| | | |
Collapse
|
16
|
Ichikawa M, Urayama M, Matsumoto G. Anticalmodulin drugs block the sodium gating current of squid giant axons. J Membr Biol 1991; 120:211-22. [PMID: 1675687 DOI: 10.1007/bf01868532] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of calmodulin (CaM) antagonists (W-7, W-5, trifluoperazine, chlorpromazine, quinacrine, diazepam, propericyazine and carmidazolium) on the sodium and potassium channels were studied on the intracellularly perfused and voltage-clamped giant axon of the squid. It was found that the drugs are more potent blockers of the sodium current than of the potassium current. The drugs also reduce the sodium gating current. The blockage of the sodium and gating current can be explained by assuming that the drugs interact with the sodium gating subunit in one of its closed states. The site of action is probably the intracellular surface of the axolemma where presumably a Ca(2+)-calmodulin complex can be formed.
Collapse
Affiliation(s)
- M Ichikawa
- Electrotechnical Laboratory, Molecular and Cellular Neuroscience Section, Ibaraki, Japan
| | | | | |
Collapse
|
17
|
Abstract
During the past several years, there has been a renewed interest in the mechanisms by which lead poisoning disrupts brain function. In part, this is related to clinical observations that imply an absence of threshold for toxicity in the immature brain. Many of the neurotoxic effects of lead appear related to the ability of lead to mimic or in some cases inhibit the action of calcium as a regulator of cell function. At a neuronal level, exposure to lead alters the release of neurotransmitter from presynaptic nerve endings. Spontaneous release is enhanced and evoked release is inhibited. The former may be due to activation of protein kinases in the nerve endings and the latter to blockade of voltage-dependent calcium channels. This disruption of neuronal activity may, in turn, alter the developmental processes of synapse formation and result in a less efficient brain with cognitive deficits. Brain homeostatic mechanisms are disrupted by exposure to higher levels of lead. The final pathway appears to be a breakdown in the blood-brain barrier. Again, the ability of lead to mimic or mobilize calcium and activate protein kinases may alter the behavior of endothelial cells in immature brain and disrupt the barrier. In addition to a direct toxic effect upon the endothelial cells, lead may alter indirectly the microvasculature by damaging the astrocytes that provide signals for the maintenance of blood-brain barrier integrity.
Collapse
|
18
|
|
19
|
Saimi Y, Ling KY. Calmodulin activation of calcium-dependent sodium channels in excised membrane patches of Paramecium. Science 1990; 249:1441-4. [PMID: 2169650 DOI: 10.1126/science.2169650] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Calmodulin is a calcium-binding protein that participates in the transduction of calcium signals. The electric phenotypes of calmodulin mutants of Paramecium have suggested that the protein may regulate some calcium-dependent ion channels. Calcium-dependent sodium single channels in excised patches of the plasma membrane from Paramecium were identified, and their activity was shown to decrease after brief exposure to submicromolar concentrations of calcium. Channel activity was restored to these inactivated patches by adding calmodulin that was isolated from Paramecium to the cytoplasmic surface. This restoration of channel activity did not require adenosine triphosphate and therefore, probably resulted from direct binding of calmodulin, either to the sodium channel itself or to a channel regulator that was associated with the patch membrane.
Collapse
Affiliation(s)
- Y Saimi
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706
| | | |
Collapse
|
20
|
Kihira M, Matsuzawa K, Tokuno H, Tomita T. Effects of calmodulin antagonists on calcium-activated potassium channels in pregnant rat myometrium. Br J Pharmacol 1990; 100:353-9. [PMID: 2116204 PMCID: PMC1917429 DOI: 10.1111/j.1476-5381.1990.tb15808.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. The effects of W-7, trifluoperazine, and W-5 on Ca2(+)-activated K(+)-channels were investigated with the inside-out patch-clamp method in smooth muscle cells freshly dispersed from pregnant rat myometrium. These drugs are known to have different potencies as calmodulin antagonists. 2. In the presence of 1 microM Ca2+ on the cytoplasmic side ([Ca2+]i), the fraction of time the channel was open (open probability, Po) was about 0.9 and the calmodulin antagonists (1-30 microM) applied to the cytoplasmic face reduced Po to 0.65-0.55 dose-dependently. In the presence of 0.1-0.16 microM Ca2+, when Po was very low (0.02), calmodulin antagonists increased Po. All antagonists used produced almost identical effects at the same concentration. 3. The probability density function of the open time distribution could be described by the sum of two exponentials. W-7 decreased the time constant of slow component of distribution and at 30 microM the slow component disappeared both at 1 and 0.25 microM [Ca2+]i, reflecting the appearance of flickering channel activity. The probability density function of the closed time distribution could be fitted with three exponentials. The time constants of these components were not significantly altered by W-7. 4. Internally applied calmodulin (1-5 microM) did not produce any significant effect on channel activity. 5. The effects of calmodulin antagonists are considered to be due to a direct action of these compounds on the channel, and suggest that channel activation by Ca2+ is not mediated by calmodulin.
Collapse
Affiliation(s)
- M Kihira
- Department of Obstetrics and Gynaecology, School of Medicine, Nagoya University, Japan
| | | | | | | |
Collapse
|
21
|
Wahl MA, Spenny KA, Safayhi H, Ammon HP. Effect of W-7 on ionic fluxes and electrical activity of mouse pancreatic islets. Mol Cell Endocrinol 1990; 71:63-9. [PMID: 2114329 DOI: 10.1016/0303-7207(90)90076-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
W-7 (N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide) (0.1 mM), a calmodulin inhibiting compound, suppressed the reincrease of 86Rb+ efflux from pancreatic islets normally seen in response to lowering the glucose concentration from stimulated to basal value. Ionophore (A23187)-induced increase was completely abolished. W-7 inhibited 45Ca2+ uptake and stimulation of 45Ca2+ efflux in response to glucose (11.1 mM) but did not affect K+ (20 mM)-induced 45Ca2+ uptake. Electrical activity of B-cells at 11.1 mM glucose showed a prolongation in burst length in the presence of 0.1 mM W-7. The data suggest that W-7 affects the opening properties of K+ channels resulting in a delayed repolarisation of the cells possibly through its inhibitory action on Ca2(+)-activated calmodulin.
Collapse
Affiliation(s)
- M A Wahl
- Department of Pharmacology, Eberhard-Karls Universität Tübingen, F.R.G
| | | | | | | |
Collapse
|
22
|
Preston RR, Wallen-Friedman MA, Saimi Y, Kung C. Calmodulin defects cause the loss of Ca2(+)-dependent K+ currents in two pantophobiac mutants of Paramecium tetraurelia. J Membr Biol 1990; 115:51-60. [PMID: 2159520 DOI: 10.1007/bf01869105] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two behavioral mutants of Paramecium tetraurelia, pantophobiacs A1 and A2, have single amino acid defects in the structure of calmodulin. The mutants exhibit several major ion current defects under voltage clamp: (i) the Ca2(+)-dependent K+ current activated upon depolarization of Paramecium is greatly reduced or missing in both mutants, (ii) both mutants lack a Ca2(+)-dependent K+ current activated upon hyperpolarization, and (iii) the Ca2(+)-dependent Na+ current is significantly smaller in pantophobiac A1 compared with the wild type, whereas this current is slightly increased in pantophobiac A2. Other, minor defects include a reduction in peak amplitude of the depolarization-activated Ca2+ current in pantophobiac A2, increased rates of voltage-dependent inactivation of this Ca2+ current in both pantophobiac A1 and pantophobiac A2, and an increase in the time required for the hyperpolarization-activated Ca2+ current to recover from inactivation in the pantophobiacs. The diversity of the pantophobiac mutations' effects on ion current function may indicate specific associations of calmodulin with a variety of Ca2(+)-related ion channel species in Paramecium.
Collapse
Affiliation(s)
- R R Preston
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
23
|
Preston RR, Saimi Y, Amberger E, Kung C. Interactions between mutants with defects in two Ca2(+)-dependent K+ currents of Paramecium tetraurelia. J Membr Biol 1990; 115:61-9. [PMID: 2335809 DOI: 10.1007/bf01869106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Paramecium tetraurelia possesses two Ca2(+)-dependent K+ currents, activated upon depolarization IK(Ca,d), or upon hyperpolarization IK(Ca,h). The two currents are mediated by pharmacologically distinct ion channel populations. Three mutations of P. tetraurelia affect these currents. Pantophobiac A mutations (pntA) cause calmodulin sequence defects, resulting in the loss of both Ca2(+)-dependent K+ currents. A second mutation, TEA-insensitive A (teaA), greatly enhances IK(Ca,d) but has no affect on IK(Ca,h). A third mutation, restless (rst), also increases IK(Ca,d) slightly, but its principle effect is in causing an early activation of IK(Ca,h). Interactions between the products of these three genes were investigated by constructing three double mutants. Both teaA and rst restore IK(Ca,d) and IK(Ca,h) in pantophobiac A1, but the phenotypes of teaA and rst are not corrected by a second mutation. These observations may indicate a role for the gene products of teaA and rst in regulating the activity of IK(Ca,d) and IK(Ca,h), respectively.
Collapse
Affiliation(s)
- R R Preston
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
24
|
Turnheim K, Costantin J, Chan S, Schultz SG. Reconstitution of a calcium-activated potassium channel in basolateral membranes of rabbit colonocytes into planar lipid bilayers. J Membr Biol 1989; 112:247-54. [PMID: 2614812 DOI: 10.1007/bf01870955] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A highly enriched preparation of basolateral membrane vesicles was isolated from rabbit distal colon surface epithelial cells employing the method described by Wiener, Turnheim and van Os (Weiner, H., Turnheim, K., van Os, C.H. (1989) J. Membrane Biol. 110:147-162) and incorporated into planar lipid bilayers. With very few exceptions, the channel activity observed was that of a high conductance. Ca2+-activated K+ channel. This channel is highly selective for K+ over Na+ and Cl-, displays voltage-gating similar to "maxi" K(Ca) channels found in other cell membranes, and kinetic analyses are consistent with the notion that K+ diffusion through the channel involves either the binding of a single K+ ion to a site within the channel or "single-filing" ("multi-ion occupancy"). Channel activity is inhibited by the venom from the scorpion Leiurus quinquestriatus, Ba2+, quinine, and trifluoperazine. The possible role of this channel in the function of these cells is discussed.
Collapse
Affiliation(s)
- K Turnheim
- Department of Physiology and Cell Biology, University of Texas Medical School, Houston 77225
| | | | | | | |
Collapse
|
25
|
Hagiwara N, Irisawa H. Modulation by intracellular Ca2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells. J Physiol 1989; 409:121-41. [PMID: 2479735 PMCID: PMC1190435 DOI: 10.1113/jphysiol.1989.sp017488] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. The sensitivity to internal Ca2+ of the hyperpolarization-activated inward current (Ih or If) in rabbit single sino-atrial node cells was investigated by the whole-cell voltage-clamp method. 2. When the patch pipette contained an internal solution of pCa 10, the amplitude of If decreased by 74.8 +/- 3.3% in 10 min (n = 7) after rupture of the patch membrane. When the pipette contained an internal solution of pCa 7, If increased by 43.7 +/- 8.7% within 10 min (n = 5). 3. Increase of If by the higher Ca2+ internal solution was confirmed in the same cell using the cell dialysis method. Both If and its tail current were increased at every membrane potential. The amplitude of If increased most markedly between pCa 8 and 7. 4. The reversal potential and kinetics of If were unaffected by the internal Ca2+ concentration. Increase of If by the high internal Ca2+ concentration was sensitively blocked by Cs+. These findings confirm that the increased current is indeed If and not a newly activated If-like current due to elevation of internal Ca2+. 5. The activation curve of If shifted approximately 13 mV in a positive direction by elevating Ca2+ from pCa 10 to 7 (n = 21), indicating that the voltage dependence of If was modulated by internal Ca2+. 6. beta-Agonists also modulated If, but the underlying mechanisms of their effects on If differed from those of the internal Ca2+. The former affected the If kinetics rather than its amplitude, whereas the latter acted on the If conductance rather than on its kinetics. 7. The increase in If by the internal Ca2+ was unaffected by protein kinase inhibitor or calmodulin inhibitor, suggesting that the internal Ca2+ directly modulates If. 8. When the patch pipette contained pCa 7 internal solution, the maximum diastolic potential shifted towards a positive potential but the heart rate remained almost constant.
Collapse
Affiliation(s)
- N Hagiwara
- National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
26
|
Martynyuk AA. Research into pharmacological and metabolic dependence of delayed inactivated outward potassium current at the snail neuronal somatic membrane. NEUROPHYSIOLOGY+ 1989. [DOI: 10.1007/bf01059101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Sauve R, Parent L, Simoneau C, Roy G. External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endothelial cells. Pflugers Arch 1988; 412:469-81. [PMID: 3194169 DOI: 10.1007/bf00582535] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have used the patch-clamp method in order to investigate the single-channel events underlying the effect of external ATP on the potassium permeability of bovine aortic endothelial cells (BAE). The results obtained from cell-attached and inside-out experiments led first to conclude that BAE cells possess an inward rectifying potassium channel activated by internal calcium at micromolar concentrations. The channel conductance for inward currents was estimated at 40 pS in symmetrical 200 mM KCl and the open-channel probability was found to be voltage insensitive within the membrane voltage range -50 to -100 mV. Based on results obtained in the cell-attached configuration, it could next be established that external ATP and ADP at micromolar concentrations could trigger, via the stimulation of P2 purinergic receptors, a time variable activation process of the observed calcium-dependent potassium channel. This activation process was found to occur in a biphasic manner with an initial phase independent of the presence of calcium in the cell bathing medium. The second phase which could be blocked by calcium channel blockers such as Co2+ or La3+ required, however, the presence of external calcium and could be abolished by depolarizing the cells using high K+ external solutions. Another important aspect related to this phenomenon was the observation that removing ATP from the external medium during the second phase led to a complete abolition of the associated calcium-dependent potassium channel activation process. It is suggested from these results that the action of ATP on the potassium permeability of BAE cells is related to a second messenger mediated release of calcium from internal calcium stores coupled to an ATP-dependent calcium influx abolished at depolarizing voltages.
Collapse
Affiliation(s)
- R Sauve
- Departement de Physiologie, Université de Montreal, Canada
| | | | | | | |
Collapse
|
28
|
Tester M. Pharmacology of K+ channels in the plasmalemma of the green algaChara corallina. J Membr Biol 1988. [DOI: 10.1007/bf01870946] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Sato K, Mitsumoto Y, Mohri T. Possible participation of calmodulin in stimulation of leucine transport by concanavalin A in human lymphocytes. Biochem Biophys Res Commun 1988; 153:570-5. [PMID: 2454620 DOI: 10.1016/s0006-291x(88)81133-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stimulation of leucine uptake by addition of concanavalin A, mediated by increase of intracellular free Ca2+ concentration [( Ca2+]), in lymphocytes (Mitsumoto, Y., Sato, K. and Mohri, T. (1988) Biochim. Biophys. Acta 968, 353-358) was abolished by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and chlorpromazine, which inhibited membrane hyperpolarization induced by the mitogen. Quinine (0.5-1 mM) completely inhibited the concanavalin A-induced hyperpolarization and extensively inhibited the induced stimulation of leucine uptake. Based on these results, we suggest that the stimulation of leucine uptake by concanavalin A is largely due to activation of the Ca2+-dependent K+ channel which reinforces negative potential of the plasma membrane and is regulated by calmodulin.
Collapse
Affiliation(s)
- K Sato
- 2nd Division, Hokuriku University School of Pharmacy, Ishikawa, Japan
| | | | | |
Collapse
|