1
|
Effects of the monoamine stabilizer, (-)-OSU6162, on cocaine-induced locomotion and conditioned place preference in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1143-1152. [PMID: 33471153 DOI: 10.1007/s00210-021-02053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Cocaine addiction is a severe mental disorder for which few treatment options are available. The underlying mechanisms include facilitation of monoamine-neurotransmission, particularly dopamine. Here, we tested the hypothesis that the monoamine stabilizers, (-)-OSU6162 ((3S)-3-(3-methylsulfonylphenyl)-1-propylpiperidine) and aripiprazole (7-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butoxy]-3,4-dihydro-1H-quinolin-2-one), prevent cocaine-induced behaviors. Male Swiss mice received injections of (-)-OSU6162 or aripiprazole and cocaine and were tested for cocaine-induced hyperlocomotion, locomotor sensitization, and acquisition and expression of conditioned place preference (CPP). The increase in the distance traveled induced by cocaine (20 mg/kg) was prevented by pretreatment with aripiprazole (1 and 10 mg/kg), whereas (-)-OSU6162 (3 mg/kg) exerted a minor effect. Aripiprazole, however, also impaired spontaneous locomotion. Neither (-)-OSU6162 nor aripiprazole interfered with the locomotor sensitization and expression of CPP induced by cocaine (15 mg/kg). (-)-OSU6162 (3 mg/kg), but not aripiprazole, prevented the acquisition of CPP induced by cocaine (15 mg/kg). (-)-OSU6162 exerts a minor effect in reducing cocaine-induced stimulatory activity and context-related memories, which are responsible for triggering drug seeking. Further studies are required to establish whether (-)-OSU6162 could be a candidate drug for the treatment of cocaine addiction.
Collapse
|
2
|
Delint-Ramirez I, Garcia-Oscos F, Segev A, Kourrich S. Cocaine engages a non-canonical, dopamine-independent, mechanism that controls neuronal excitability in the nucleus accumbens. Mol Psychiatry 2020; 25:680-691. [PMID: 29880884 PMCID: PMC7042730 DOI: 10.1038/s41380-018-0092-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
Drug-induced enhanced dopamine (DA) signaling in the brain is a canonical mechanism that initiates addiction processes. However, indirect evidence suggests that cocaine also triggers non-canonical, DA-independent, mechanisms that contribute to behavioral responses to cocaine, including psychomotor sensitization and cocaine self-administration. Identifying these mechanisms and determining how they are initiated is fundamental to further our understanding of addiction processes. Using physiologically relevant in vitro tractable models, we found that cocaine-induced hypoactivity of nucleus accumbens shell (NAcSh) medium spiny neurons (MSNs), one hallmark of cocaine addiction, is independent of DA signaling. Combining brain slice studies and site-directed mutagenesis in HEK293T cells, we found that cocaine binding to intracellular sigma-1 receptor (σ1) initiates this mechanism. Subsequently, σ1 binds to Kv1.2 potassium channels, followed by accumulation of Kv1.2 in the plasma membrane, thereby depressing NAcSh MSNs firing. This mechanism is specific to D1 receptor-expressing MSNs. Our study uncovers a mechanism for cocaine that bypasses DA signaling and leads to addiction-relevant neuroadaptations, thereby providing combinatorial strategies for treating stimulant abuse.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- 0000 0000 9482 7121grid.267313.2Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Francisco Garcia-Oscos
- 0000 0000 9482 7121grid.267313.2Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Amir Segev
- 0000 0000 9482 7121grid.267313.2Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Soriani O, Kourrich S. The Sigma-1 Receptor: When Adaptive Regulation of Cell Electrical Activity Contributes to Stimulant Addiction and Cancer. Front Neurosci 2019; 13:1186. [PMID: 31780884 PMCID: PMC6861184 DOI: 10.3389/fnins.2019.01186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells’ electrical activity and calcium homeostasis—a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R’s role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.
Collapse
Affiliation(s)
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
McDougall SA, Rudberg KN, Veliz A, Dhargalkar JM, Garcia AS, Romero LC, Gonzalez AE, Mohd-Yusof A, Crawford CA. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats. Behav Brain Res 2017; 326:226-236. [PMID: 28284952 DOI: 10.1016/j.bbr.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 12/29/2022]
Abstract
The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA, USA.
| | - Krista N Rudberg
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ana Veliz
- Department of Psychology, California State University, San Bernardino, CA, USA
| | | | - Aleesha S Garcia
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Loveth C Romero
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ashley E Gonzalez
- Department of Psychology, California State University, San Bernardino, CA, USA; Neuroscience Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Alena Mohd-Yusof
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA
| |
Collapse
|
5
|
Santos BG, Carey RJ, Carrera MP. The acquisition, extinction and spontaneous recovery of Pavlovian drug conditioning induced by post-trial dopaminergic stimulation/inhibition. Pharmacol Biochem Behav 2017; 156:24-29. [PMID: 28392213 DOI: 10.1016/j.pbb.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/11/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
In contextual drug conditioning, the onset of the drug treatment is contiguous with the contextual cues. Evidence suggests that drug conditioning also can occur if there is a discontinuity between the onset of the drug effect and offset of the contextual cues. Here we examine whether post-trial contextual drug conditioning conforms to several Pavlovian conditioning tenets namely: acquisition, extinction and spontaneous recovery. Six groups of rats received apomorphine (0.05 or 2.0mg/kg) and vehicle immediately or after a 15min delay following a 5min non-drug exposure to an open-field during three successive days (conditioning phase). The extinction phase occurred on days 4-8, in which all post-trial treatments were vehicle injections. After 2days of non-testing, the final test was performed. The results showed that on the first test day, the activity levels of the 6 groups were statistically equivalent. On test day 2, there were marked differences in activity levels selectively between the two immediate post-trial apomorphine treatment groups. The immediate low dose apomorphine group displayed a reduction in activity and the immediate high dose group an increase in activity relative to their day 1 levels. The activity levels of both vehicle groups and both apomorphine delay groups remained equivalent to their day 1 activity levels. On test day 3, the differences in activity levels between the two immediate post-trial apomorphine groups increased but the activity levels of the vehicle groups and the 15min delay post-trial apomorphine groups remained unchanged. In the extinction phase, the conditioned activity differences between the two immediate post-trial apomorphine groups were gradually eliminated. During the final test, the activity differences between the immediate post-trial apomorphine groups were partially restored, indicative of spontaneous recovery. These findings are consistent with several basic elements of Pavlovian conditioning and are supportive of drug induced trace conditioning.
Collapse
Affiliation(s)
- Breno Garone Santos
- Behavioral Pharmacology Group, Laboratory of Morphology and Pathology Animal Health, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-600, RJ, Brazil
| | - Robert J Carey
- Research and Development (151), VA Medical Center and SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Morphology and Pathology Animal Health, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-600, RJ, Brazil.
| |
Collapse
|
6
|
Gracia-Rubio I, Martinez-Laorden E, Moscoso-Castro M, Milanés MV, Laorden ML, Valverde O. Maternal Separation Impairs Cocaine-Induced Behavioural Sensitization in Adolescent Mice. PLoS One 2016; 11:e0167483. [PMID: 27936186 PMCID: PMC5147915 DOI: 10.1371/journal.pone.0167483] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/15/2016] [Indexed: 12/30/2022] Open
Abstract
Adverse early-life conditions induce persistent disturbances that give rise to negative emotional states. Therefore, early life stress confers increased vulnerability to substance use disorders, mainly during adolescence as the brain is still developing. In this study, we investigated the consequences of maternal separation, a model of maternal neglect, on the psychotropic effects of cocaine and the neuroplasticity of the dopaminergic system. Our results show that mice exposed to maternal separation displayed attenuated behavioural sensitization, while no changes were found in the rewarding effects of cocaine in the conditioned place preference paradigm and in the reinforcing effects of cocaine in the self-administration paradigm. The evaluation of neuroplasticity in the striatal dopaminergic pathways revealed that mice exposed to maternal separation exhibited decreased protein expression levels of D2 receptors and increased levels of the transcriptional factor Nurr1. Furthermore, animals exposed to maternal separation and treated with cocaine exhibited increased DA turnover and protein expression levels of DAT and D2R, while decreased Nurr1 and Pitx3 protein expression levels were observed when compared with saline-treated mice. Taken together, our data demonstrate that maternal separation caused an impairment of cocaine-induced behavioural sensitization possibly due to a dysfunction of the dopaminergic system, a dysfunction that has been proposed as a factor of vulnerability for developing substance use disorders.
Collapse
Affiliation(s)
- Irene Gracia-Rubio
- Neurobiology of Behavior Research Group (GReNeC). Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Martinez-Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Maria Moscoso-Castro
- Neurobiology of Behavior Research Group (GReNeC). Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - M. Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC). Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program. IMIM (Hospital del Mar Research Institute) Barcelona, Spain
- * E-mail:
| |
Collapse
|
7
|
Johnson KA, Lovinger DM. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? Front Cell Neurosci 2016; 10:264. [PMID: 27891077 PMCID: PMC5104741 DOI: 10.3389/fncel.2016.00264] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses and G protein-coupled receptors (GPCRs) that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, Dopamine (DA; D1- and D2-like receptors), Endocannabinoids (eCBs; CB1 receptors) and glutamate (group II metabotropic glutamate (mGlu) receptors). The focus is on recent evidence from laboratory animal models (and some evidence in humans) implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on development of mGlu2 positive allosteric modulators (PAMs).
Collapse
Affiliation(s)
- Kari A. Johnson
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
8
|
Camarini R, Pautassi RM. Behavioral sensitization to ethanol: Neural basis and factors that influence its acquisition and expression. Brain Res Bull 2016; 125:53-78. [PMID: 27093941 DOI: 10.1016/j.brainresbull.2016.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/29/2022]
Abstract
Ethanol-induced behavioral sensitization (EBS) was first described in 1980, approximately 10 years after the phenomenon was described for psychostimulants. Ethanol acts on γ-aminobutyric acid (GABA) and glutamate receptors as an allosteric agonist and antagonist, respectively, but it also affects many other molecular targets. The multiplicity of factors involved in the behavioral and neurochemical effects of ethanol and the ensuing complexity may explain much of the apparent disparate results, found across different labs, regarding ethanol-induced behavioral sensitization. Although the mesocorticolimbic dopamine system plays an important role in EBS, we provide evidence of the involvement of other neurotransmitter systems, mainly the glutamatergic, GABAergic, and opioidergic systems. This review also analyses the neural underpinnings (e.g., induction of cellular transcription factors such as cyclic adenosine monophosphate response element binding protein and growth factors, such as the brain-derived neurotrophic factor) and other factors that influence the phenomenon, including age, sex, dose, and protocols of drug administration. One of the reasons that make EBS an attractive phenomenon is the assumption, firmly based on empirical evidence, that EBS and addiction-related processes have common molecular and neural basis. Therefore, EBS has been used as a model of addiction processes. We discuss the association between different measures of ethanol-induced reward and EBS. Parallels between the pharmacological basis of EBS and acute motor effects of ethanol are also discussed.
Collapse
Affiliation(s)
- Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigaciones Médicas M. y M. Ferreyra, Córdoba (IMMF-CONICET-Universidad Nacional de Córdoba), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
9
|
Mohd-Yusof A, Veliz A, Rudberg KN, Stone MJ, Gonzalez AE, McDougall SA. Effects of D2 or combined D1/D2 receptor antagonism on the methamphetamine-induced one-trial and multi-trial behavioral sensitization of preweanling rats. Psychopharmacology (Berl) 2016; 233:893-903. [PMID: 26650612 PMCID: PMC4752886 DOI: 10.1007/s00213-015-4170-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/22/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE There is suggestive evidence that the neural mechanisms mediating one-trial and multi-trial behavioral sensitization differ, especially when the effects of various classes of dopamine (DA) agonists are examined. OBJECTIVE The purpose of the present study was to determine the role of the D2 receptor for the induction of one-trial and multi-trial methamphetamine sensitization in preweanling rats. METHODS In a series of experiments, rats were injected with saline or raclopride (a selective D2 receptor antagonist), either alone or in combination with SCH23390 (a selective D1 receptor antagonist), 15 min prior to treatment with the indirect DA agonist methamphetamine. Acute control groups were given two injections of saline. This pretreatment regimen occurred on either postnatal days (PD) 13-16 (multi-trial) or PD 16 (one-trial). On PD 17, rats were challenged with methamphetamine and locomotor sensitization was determined. RESULTS Blockade of D2 or D1/D2 receptors reduced or prevented, respectively, the induction of multi-trial methamphetamine sensitization in young rats, while the same manipulations had minimal effects on one-trial behavioral sensitization. CONCLUSIONS DA antagonist treatment differentially affected the methamphetamine-induced sensitized responding of preweanling rats depending on whether a one-trial or multi-trial procedure was used. The basis for this effect is uncertain, but there was some evidence that repeated DA antagonist treatment caused nonspecific changes that produced a weakened sensitized response. Importantly, DA antagonist treatment did not prevent the one-trial behavioral sensitization of preweanling rats. The latter result brings into question whether DA receptor stimulation is necessary for the induction of psychostimulant-induced behavioral sensitization during early ontogeny.
Collapse
Affiliation(s)
- Alena Mohd-Yusof
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Ana Veliz
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Krista N Rudberg
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Michelle J Stone
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Ashley E Gonzalez
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
- Present address: A.E. Gonzalez, Neurosciences Program, Stanford University School of Medicine, 1215 Welch Road Modular B, #42, Stanford, CA, 94305-5400, USA
| | - Sanders A McDougall
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA.
| |
Collapse
|
10
|
Carey RJ, Damianopoulos EN. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning. Behav Brain Res 2015; 282:227-36. [PMID: 25446748 DOI: 10.1016/j.bbr.2014.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 11/27/2022]
Abstract
Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems.
Collapse
Affiliation(s)
- Robert J Carey
- Research Service and Development (151), VA Medical Center, 800 Irving Avenue, Syracuse, NY 13210, USA; Department of Psychiatry and Graduate School, SUNY Upstate Medical University at Syracuse, Syracuse, NY, USA.
| | - Ernest N Damianopoulos
- Research Service and Development (151), VA Medical Center, Room 326, 800 Irving Avenue, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Post-trial induction of conditioned apomorphine stimulant and inhibitory response effects: Evidence for potent trace conditioning of drug effects. Pharmacol Biochem Behav 2015; 129:79-86. [DOI: 10.1016/j.pbb.2014.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 11/24/2022]
|
12
|
A new proposal for drug conditioning with implications for drug addiction: The Pavlovian two-step from delay to trace conditioning. Behav Brain Res 2014; 275:150-6. [DOI: 10.1016/j.bbr.2014.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 11/22/2022]
|
13
|
Role of the D1 receptor for the dopamine agonist-induced one-trial behavioral sensitization of preweanling rats. Psychopharmacology (Berl) 2014; 231:4167-77. [PMID: 24740494 PMCID: PMC4194248 DOI: 10.1007/s00213-014-3561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE The neural mechanisms mediating the ontogeny of behavioral sensitization are poorly understood. OBJECTIVE The purpose of the present study was to determine the role of the D1 receptor for the induction of dopamine agonist-induced behavioral sensitization during the preweanling period. METHODS In the first experiment, the early ontogeny of R-propylnorapomorphine (NPA)-induced behavioral sensitization was examined by pretreating male and female rats with saline or NPA (0.5, 1, or 2 mg/kg, intraperitoneally (IP)) before placement in activity chambers on postnatal day (PD) 12, 16, 20, or 24. One day later, rats were tested with lower doses of NPA and the occurrence of locomotor sensitization was determined. In subsequent experiments, rats were injected with saline or the D1 receptor antagonist SCH23390 (0.1, 0.5, 1, or 5 mg/kg, IP) 0, 15, 30, or 60 min before cocaine, methamphetamine (METH), or NPA pretreatment. The next day, rats were tested with the same dopamine agonist again and sensitized responding was assessed. RESULTS NPA produced one-trial behavioral sensitization at all ages tested. In preweanling rats, SCH23390, regardless of dose, was ineffective at preventing the induction of cocaine-, METH-, or NPA-induced one-trial behavioral sensitization. CONCLUSIONS The present results are in partial contrast to adult rodent studies, in which SCH23390 blocks the induction of METH- and apomorphine-induced behavioral sensitization, but not cocaine sensitization. When these findings are considered together, it appears that D1 receptor stimulation is not necessary for the induction of behavioral sensitization during the preweanling period, although D1 receptors may play a more important role in adulthood.
Collapse
|
14
|
de Mello Bastos JM, Dias FRC, Alves VHN, Carey RJ, Carrera MP. Drug memory substitution during re-consolidation: A single inhibitory autoreceptor apomorphine treatment given during psychostimulant memory re-consolidation replaces psychostimulant conditioning with conditioned inhibition and reverses psychostimulant sensitization. Behav Brain Res 2014; 260:139-47. [DOI: 10.1016/j.bbr.2013.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
|
15
|
Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7:152. [PMID: 24130517 PMCID: PMC3795306 DOI: 10.3389/fncir.2013.00152] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.
Collapse
Affiliation(s)
- Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University Seoul, South Korea
| |
Collapse
|
16
|
Jung ES, Lee HJ, Sim HR, Baik JH. Cocaine-induced behavioral sensitization in mice: effects of microinjection of dopamine d2 receptor antagonist into the nucleus accumbens. Exp Neurobiol 2013; 22:224-31. [PMID: 24167417 PMCID: PMC3807009 DOI: 10.5607/en.2013.22.3.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/25/2022] Open
Abstract
To determine the role of dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) core in cocaine-induced behavioral sensitization, D2R antagonist, raclopride was bilaterally microinjected (2.5 or 5 nmol) into the NAc core of WT and D2R-/- mice and the initiation and expression phase of cocaine-mediated locomotor sensitization were analyzed. WT and D2R knockout (D2R-/-) mice received bilateral injections of either saline, or raclopride at the NAc core 30 min before each of five daily repeated injections of saline or cocaine (15 mg/kg i.p.). Following 2 weeks of withdrawal after repeated exposure to cocaine, the animals were pre-treated with an intra-accumbal injection of vehicle or raclopride before receiving a systemic cocaine challenge for the expression of sensitization. Animals which had been microinjected raclopride into NAc core displayed the enhancement of cocaine-induced behavioral response for the initiation but also for the expression of sensitization in WT as well as in D2R-/- mice, which was thus unaltered as compared to vehicle-injected control group. These results suggest that D2R in NAc core is not involved in cocaine-induced behavioral sensitization.
Collapse
Affiliation(s)
- Eun-Sol Jung
- Molecular Neurobiology Laboratory, College of Life Sciences and Biotechnology, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
17
|
McDougall SA, Nuqui CM, Quiroz AT, Martinez CM. Early ontogeny of D-amphetamine-induced one-trial behavioral sensitization. Pharmacol Biochem Behav 2013; 104:154-62. [PMID: 23360956 DOI: 10.1016/j.pbb.2013.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/30/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
The early ontogeny of D-amphetamine-induced one-trial behavioral sensitization was characterized using male and female preweanling and preadolescent rats. In Experiment 1, rats were injected with saline or D-amphetamine (1, 4, or 8mg/kg) in activity chambers or the home cage on postnatal day (PD) 12, PD 16, PD 20, or PD 24. One day later, rats were challenged with either 0.5 or 2mg/kg D-amphetamine and distance traveled was measured in activity chambers for 120min. In Experiment 2, saline or D-amphetamine was administered in activity chambers on PD 24, while a challenge injection of D-amphetamine (0.25-4mg/kg) was given on PD 25. At younger ages (PD 13 and PD 17), a strong sensitized response was evident on the test day regardless of whether rats were pretreated with D-amphetamine (4 or 8mg/kg) before being placed in the activity chamber or 30min after being returned to the home cage. Rats did not display D-amphetamine-induced behavioral sensitization on PD 21, nor was context-dependent sensitization apparent on PD 25 even when a broad dose range of D-amphetamine was used. When low doses of D-amphetamine were administered on the pretreatment and test days (1 and 0.5mg/kg, respectively), sensitized responding was not evident at any age. In summary, D-amphetamine-induced one-trial behavioral sensitization was only apparent within a narrow developmental window during early ontogeny. This ontogenetic pattern of sensitized responding is similar to the one produced by methamphetamine and distinct from the pattern produced by cocaine. The unique sensitization profiles resulting from repeated D-amphetamine and cocaine treatment may be a consequence of their different mechanisms of action.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA.
| | | | | | | |
Collapse
|
18
|
Post-trial apomorphine at an autoreceptor dose level can eliminate apomorphine conditioning and sensitization: Support for the critical role of dopamine in re-consolidation. Behav Brain Res 2013; 236:244-250. [DOI: 10.1016/j.bbr.2012.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 11/23/2022]
|
19
|
Hayes DM, Fee JR, McCown TJ, Knapp DJ, Breese GR, Cubero I, Carvajal F, Lerma-Cabrera JM, Navarro M, Thiele TE. Neuropeptide Y signaling modulates the expression of ethanol-induced behavioral sensitization in mice. Addict Biol 2012; 17:338-50. [PMID: 21762289 PMCID: PMC3197888 DOI: 10.1111/j.1369-1600.2011.00336.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) and protein kinase A (PKA) have been implicated in neurobiological responses to ethanol. We have previously reported that mutant mice lacking normal production of the RIIβ subunit of PKA (RIIβ-/- mice) show enhanced sensitivity to the locomotor stimulant effects of ethanol and increased behavioral sensitization relative to littermate wild-type RIIβ+/+ mice. We now report that RIIβ-/- mice also show increased NPY immunoreactivity in the nucleus accumbens (NAc) core and the ventral striatum relative to RIIβ+/+ mice. These observations suggest that elevated NPY signaling in the NAc and/or striatum may contribute to the increased sensitivity to ethanol-induced behavioral sensitization that is a characteristic of RIIβ-/- mice. Consistently, NPY-/- mice failed to display ethanol-induced behavioral sensitization that was evident in littermate NPY+/+ mice. To examine more directly the role of NPY in the locomotor stimulant effects of ethanol, we infused a recombinant adeno-associated virus (rAAV) into the region of the NAc core of DBA/2J mice. The rAAV-fibronectin (FIB)-NPY(13-36) vector expresses and constitutively secretes the NPY fragment NPY(13-36) (a selective Y(2) receptor agonist) from infected cells in vivo. Mice treated with the rAAV-FIB-NPY(13-36) vector exhibited reduced expression of ethanol-induced behavioral sensitization compared with mice treated with a control vector. Taken together, the current data provide the first evidence that NPY signaling in the NAc core and the Y(2) receptor modulate ethanol-induced behavioral sensitization.
Collapse
Affiliation(s)
- Dayna M. Hayes
- Department of Psychology, University of North Carolina at Chapel Hill, USA
| | - Jon R. Fee
- Department of Psychology, University of North Carolina at Chapel Hill, USA
| | - Thomas J. McCown
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
- Gene Therapy Center, University of North Carolina at Chapel Hill, USA
| | - Darin J. Knapp
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - George R. Breese
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Inmaculada Cubero
- Department of Neurociencia y Ciencias de la Salud, University of Almeria, Almeria, Spain
| | - Francisca Carvajal
- Department of Neurociencia y Ciencias de la Salud, University of Almeria, Almeria, Spain
| | | | - Montserrat Navarro
- Department of Psychology, University of North Carolina at Chapel Hill, USA
| | - Todd E. Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
20
|
Carrera MP, Carey RJ, Dias FRC, de Mattos LW. Memory re-consolidation and drug conditioning: an apomorphine conditioned locomotor stimulant response can be enhanced or reversed by a single high versus low apomorphine post-trial treatment. Psychopharmacology (Berl) 2012; 220:281-91. [PMID: 21922172 DOI: 10.1007/s00213-011-2474-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
Abstract
RATIONALE Psychostimulant sensitization can have transformative effects upon contextual stimuli such as acquired conditioned stimuli and conditioned incentive motivational properties. OBJECTIVE The aim of this study is to induce apomorphine sensitization and conduct non-drug exposures to the contextual cues followed by post-trial treatments designed to associate increases/decreases in dopamine activity with re-consolidation of the contextual cue conditioned stimulus. METHODS Separate groups received five daily apomorphine (2.0 mg/kg) treatments, paired or unpaired to the test environment. Two days later, a 30-min non-drug conditioning test was performed. Subsequently, there were three brief (5 min) conditioning tests on successive days. After removal from the test environment on the three test days, all groups received post-trial treatment with vehicle, 0.05, and 2.0 mg/kg apomorphine. One day later, a second 30-min conditioning test was conducted. RESULTS There was a sensitized and a conditioned locomotor stimulant response in the paired groups. After the first and second post-trial treatments with 0.05 mg/kg apomorphine, the conditioned stimulant response in the paired group was transformed into a conditioned inhibitory response. In contrast, the conditioned stimulant response of the paired group administered with apomorphine 2.0 mg/kg post-trial was amplified. The apomorphine post-trial treatments administered to the unpaired groups or 2 h post-trial to paired groups were without effect. CONCLUSIONS These findings suggest that sensitization substantially enhances the associative sensitivity of contextual stimuli and imply that brief exposure to cues linked to drugs of addiction followed by treatments that inhibit neurotransmitter systems may provide a new direction in drug abuse treatment.
Collapse
Affiliation(s)
- Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Morphology and Pathology Animal Health, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil.
| | | | | | | |
Collapse
|
21
|
McDougall SA, Kozanian OO, Greenfield VY, Horn LR, Gutierrez A, Mohd-Yusof A, Castellanos KA. One-trial behavioral sensitization in preweanling rats: differential effects of cocaine, methamphetamine, methylphenidate, and D-amphetamine. Psychopharmacology (Berl) 2011; 217:559-71. [PMID: 21537939 PMCID: PMC3183299 DOI: 10.1007/s00213-011-2316-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/14/2011] [Indexed: 12/29/2022]
Abstract
RATIONALE Preweanling rats exhibit robust one-trial cocaine-induced behavioral sensitization; however, it is uncertain whether other psychostimulants can also induce sensitization in young rats using the one-trial procedure. OBJECTIVE The purpose of this study was to determine whether methamphetamine, methylphenidate, and D: -amphetamine are capable of inducing one-trial locomotor sensitization in preweanling rats. METHODS In a series of four experiments, rats were pretreated with cocaine (30 mg/kg), methamphetamine (2-12 mg/kg), methylphenidate (5-20 mg/kg), or amphetamine (5 mg/kg) before being placed in a novel activity chamber or the home cage on PD 19. Rats were then challenged with the same psychostimulant (20 mg/kg cocaine, 1-8 mg/kg methamphetamine, 2.5-7.5 mg/kg methylphenidate, or 1-2 mg/kg amphetamine) on PD 21, with distance traveled being measured for 180 min. In a separate experiment, rats were pretreated with methamphetamine on PD 16-19 and challenged with methamphetamine on PD 21. RESULTS Only cocaine, but not various dose combinations of other psychostimulants, was able to produce one-trial behavioral sensitization in preweanling rats. Context-dependent locomotor sensitization was also evident if rats were pretreated with methamphetamine on PD 16-19 and tested on PD 21. CONCLUSIONS It is uncertain why only cocaine was able to induce one-trial locomotor sensitization in preweanling rats, but it is possible that: (a) the neural circuitry mediating sensitization differs according to psychostimulant, (b) cocaine is more readily associated with environmental contexts than other psychostimulants, or (c) affinity and pharmacokinetic factors may underlie cocaine's ability to induce one-trial behavioral sensitization in preweanling rats.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Carrera MP, Carey RJ, Dias FRC, de Matos LW. Reversal of apomorphine locomotor sensitization by a single post-conditioning trial treatment with a low autoreceptor dose of apomorphine: a memory re-consolidation approach. Pharmacol Biochem Behav 2011; 99:29-34. [PMID: 21447355 DOI: 10.1016/j.pbb.2011.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/09/2011] [Accepted: 03/22/2011] [Indexed: 11/17/2022]
Abstract
Sensitization is a common feature of psychostimulants and sensitization effects are generally considered to be linked to the addictive properties of these drugs. We used a conventional paired/unpaired Pavlovian protocol to induce a context specific sensitization to the locomotor stimulant effect of a high dose of apomorphine (2.0mg/kg). Two days following a 5 session sensitization induction phase, a brief 5min non-drug test for conditioning was conducted. Only the paired groups exhibited locomotor stimulant conditioned response effects. Immediately following this brief test for conditioning, the paired and the unpaired groups received injections of 0.05mg/kg apomorphine, 2.0mg/kg apomorphine or vehicle designed to differentially impact memory re-consolidation of the conditioning. Two days later, all groups received a sensitization challenge test with 2.0mg/kg apomorphine. The 2.0mg/kg apomorphine post-trial treatment potentiated sensitization while the 0.05mg/kg eliminated sensitization. These effects were only observed in the paired groups. The activation of dopaminergic systems by the high dose of apomorphine strengthened the drug/environment association whereas the inhibition of dopamine activity by the low auto-receptor dose eliminated this association. The results point to the importance of conditioning to context specific sensitization and targeting memory re-consolidation of conditioning as a paradigm to modify sensitization.
Collapse
Affiliation(s)
- Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil.
| | | | | | | |
Collapse
|
23
|
Veeneman MMJ, Boleij H, Broekhoven MH, Snoeren EMS, Guitart Masip M, Cousijn J, Spooren W, Vanderschuren LJMJ. Dissociable roles of mGlu5 and dopamine receptors in the rewarding and sensitizing properties of morphine and cocaine. Psychopharmacology (Berl) 2011; 214:863-76. [PMID: 21120457 PMCID: PMC3063544 DOI: 10.1007/s00213-010-2095-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/03/2010] [Indexed: 02/07/2023]
Abstract
RATIONALE Drugs of abuse are initially used because of their rewarding properties. As a result of repeated drug exposure, sensitization to certain behavioral effects of drugs occurs, which may facilitate the development of addiction. Recent studies have implicated the metabotropic glutamate receptor 5 (mGlu5 receptor) in drug reward, but its role in sensitization is unclear. Stimulation of dopamine receptors plays an important role in drug reward, but not in the sensitizing properties of cocaine and morphine. OBJECTIVE This study aims to evaluate the role of mGlu5 and dopamine receptors in the development of cocaine- and morphine-induced conditioned place preference (CPP) and psychomotor sensitization. MATERIALS AND METHODS Rats were treated with the mGlu5 receptor antagonist MTEP (0, 1, 3, and 10 mg/kg, i.p.) or the dopamine receptor antagonist α-flupenthixol (0, 0.125, 0.25, and 0.5 mg/kg, i.p.) during place conditioning with either morphine (3 mg/kg, s.c.) or cocaine (15 mg/kg, i.p.). Furthermore, MTEP (1 mg/kg, i.p.) or α-flupenthixol (0.5 mg/kg, i.p.) was co-administered during cocaine (30 mg/kg, i.p.) or morphine (3.0 mg/kg, s.c.) pretreatment and psychomotor sensitization was tested 3 weeks post-treatment. RESULTS MTEP attenuated the development of morphine- but not cocaine-induced CPP. In contrast, MTEP suppressed the development of cocaine- but not morphine-induced psychomotor sensitization. α-Flupenthixol blocked the development of both cocaine- and morphine-induced CPP but did not affect the development of sensitization to either drug. CONCLUSION Dopamine receptor stimulation mediates cocaine and morphine reward but not sensitization. In contrast, the role of mGlu5 receptors in reward and sensitization is drug-specific.
Collapse
Affiliation(s)
- M. M. J. Veeneman
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - H. Boleij
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - M. H. Broekhoven
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - E. M. S. Snoeren
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - M. Guitart Masip
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - J. Cousijn
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - W. Spooren
- F. Hoffmann-La Roche, CNS-DTA, Translational Medicine, Basel, Switzerland
| | - L. J. M. J. Vanderschuren
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands ,Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Camarini R, Marcourakis T, Teodorov E, Yonamine M, Calil HM. Ethanol-induced sensitization depends preferentially on D1 rather than D2 dopamine receptors. Pharmacol Biochem Behav 2010; 98:173-80. [PMID: 21184775 DOI: 10.1016/j.pbb.2010.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023]
Abstract
Behavioral sensitization, defined as a progressive increase in the locomotor stimulant effects elicited by repeated exposure to drugs of abuse, has been used as an animal model for drug craving in humans. The mesoaccumbens dopaminergic system has been proposed to be critically involved in this phenomenon; however, few studies have been designed to systematically investigate the effects of dopaminergic antagonists on development and expression of behavioral sensitization to ethanol in Swiss mice. We first tested the effects of D(1) antagonist SCH-23390 (0-0.03 mg/kg) or D(2) antagonist Sulpiride (0-30 mg/kg) on the locomotor responses to an acute injection of ethanol (2.0 g/kg). Results showed that all tested doses of the antagonists were effective in blocking ethanol's stimulant effects. In another set of experiments, mice were pretreated intraperitoneally with SCH-23390 (0.01 mg/kg) or Sulpiride (10 mg/kg) 30 min before saline or ethanol injection, for 21 days. Locomotor activity was measured weekly for 20 min. Four days following this pretreatment, all mice were challenged with ethanol. Both antagonists attenuated the development of ethanol sensitization, but only SCH-23390 blocked the expression of ethanol sensitization according to this protocol. When we tested a single dose (30 min before tests) of either antagonist in mice treated chronically with ethanol, both antagonists attenuated ethanol-induced effects. The present findings demonstrate that the concomitant administration of ethanol with D(1) but not D(2) antagonist prevented the expression of ethanol sensitization, suggesting that the neuroadaptations underlying ethanol behavioral sensitization depend preferentially on D(1) receptor actions.
Collapse
Affiliation(s)
- Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Abstract
The phenomenology of drug craving has become the focus of much research within addictive disorders because of the belief that desire plays a role in maintaining the addiction. Many of the studies have focused on the activation of neural pathways, particularly within the dopamine system in response to specific events or stimuli. While many of these studies have focused on a particular drug of choice, little has been done across addictive disorders. This article will present and review phenomena that induce drug craving, as well as delineate precise neural pathways which are activated during craving and specific neurobiological markers which are associated with an increased risk for drug craving and other forms of addictive behavior.
Collapse
Affiliation(s)
- Jeffrey L Fortuna
- Department of Health Science, California State University, Fullerton, CA 92634, USA
| | | |
Collapse
|
26
|
Tomie A, Grimes KL, Pohorecky LA. Behavioral characteristics and neurobiological substrates shared by Pavlovian sign-tracking and drug abuse. BRAIN RESEARCH REVIEWS 2008; 58:121-35. [PMID: 18234349 PMCID: PMC2582385 DOI: 10.1016/j.brainresrev.2007.12.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 11/07/2007] [Accepted: 12/08/2007] [Indexed: 11/18/2022]
Abstract
Drug abuse researchers have noted striking similarities between behaviors elicited by Pavlovian sign-tracking procedures and prominent symptoms of drug abuse. In Pavlovian sign-tracking procedures, repeated paired presentations of a small object (conditioned stimulus, CS) with a reward (unconditioned stimulus, US) elicits a conditioned response (CR) that typically consists of approaching the CS, contacting the CS, and expressing consummatory responses at the CS. Sign-tracking CR performance is poorly controlled and exhibits spontaneous recovery and long-term retention, effects that resemble relapse. Sign-tracking resembles psychomotor activation, a syndrome of behavioral responses evoked by addictive drugs, and the effects of sign-tracking on corticosterone levels and activation of dopamine pathways resemble the neurobiological effects of abused drugs. Finally, the neurobiological profile of individuals susceptible to sign-tracking resembles the pathophysiological profile of vulnerability to drug abuse, and vulnerability to sign-tracking predicts vulnerability to impulsive responding and alcohol self-administration. Implications of sign-tracking for models of drug addiction are considered.
Collapse
Affiliation(s)
- Arthur Tomie
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA.
| | | | | |
Collapse
|
27
|
Corvol JC, Valjent E, Pascoli V, Robin A, Stipanovich A, Luedtke RR, Belluscio L, Girault JA, Hervé D. Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants. Neuropsychopharmacology 2007; 32:1109-21. [PMID: 17063155 DOI: 10.1038/sj.npp.1301230] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Striatal dopamine D1 receptors (D1R) are coupled to adenylyl cyclase through Galphaolf. Although this pathway is involved in important brain functions, the consequences of quantitative alterations of its components are not known. We explored the biochemical and behavioral responses to cocaine and D-amphetamine (D-amph) in mice with heterozygous mutations of genes encoding D1R and Galphaolf (Drd1a+/- and Gnal+/-), which express decreased levels of the corresponding proteins in the striatum. Dopamine-stimulated cAMP production in vitro and phosphorylation of AMPA receptor GluR1 subunit in response to D-amph in vivo were decreased in Gnal+/-, but not Drd1a+/- mice. Acute locomotor responses to D1 agonist SKF81259, D-amph and cocaine were altered in Gnal+/- mice, and not in Drd1a+/- mice. This haploinsufficiency showed that Galphaolf but not D1R protein levels are limiting for D1R-mediated biochemical and behavioral responses. Gnal+/- mice developed pronounced locomotor sensitization and conditioned locomotor responses after repeated injections of D-amph (2 mg/kg) or cocaine (20 mg/kg). They also developed normal D-amph-conditioned place preference. The D1R/cAMP pathway remained blunted in repeatedly treated Gnal+/- mice. In contrast, D-amph-induced ERK activation was normal in the striatum of these mice, possibly accounting for the normal development of long-lasting behavioral responses to psychostimulants. Our results clearly dissociate biochemical mechanisms involved in acute and delayed behavioral effects of psychostimulants. They identify striatal levels of Galphaolf as a key factor for acute responses to psychostimulants and suggest that quantitative alterations of its expression may alter specific responses to drugs of abuse, or possibly other behavioral responses linked to dopamine function.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Central Nervous System Stimulants/pharmacology
- Cocaine/pharmacology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/physiopathology
- Cyclic AMP/metabolism
- Dextroamphetamine/pharmacology
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Phosphorylation/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
|
28
|
Jiménez-Rivera CA, Feliu-Mojer M, Vázquez-Torres R. Alpha-noradrenergic receptors modulate the development and expression of cocaine sensitization. Ann N Y Acad Sci 2007; 1074:390-402. [PMID: 17105937 DOI: 10.1196/annals.1369.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The increased activity and stereotyped behaviors that result from repeated administration of cocaine is called cocaine sensitization. This sensitized response has been postulated as one of the basic pathophysiological mechanisms in drug addiction. Recent evidence indicates that noradrenergic neurotransmission might be implicated in some of the behavioral effects of cocaine. The present article examined the role of alpha-adrenergic receptor agonists and antagonists in the development and expression of cocaine sensitization. Rats were injected once per day, for 7 consecutive days, with the alpha-1 receptor antagonist prazosin (0.5 mg/kg, i.p.) 15 min before cocaine administration (15 mg/kg, i.p.). After 8 days, animals received a cocaine challenge (15 mg/kg, i.p.) and were tested for locomotion. Following a 7-day withdrawal period rats received a second cocaine challenge. One day after the last challenge, rats were reinstated to the initial protocol for 1 day. In another set of experiments, rats were injected twice per day with the alpha-2 receptor antagonists yohimbine (5 mg/kg, i.p.), idazoxan (0.25 mg/kg, i.p.), or with the alpha-2 agonist clonidine (0.025 mg/kg, i.p.), followed by cocaine injections (15 mg/kg, i.p.), for 7 consecutive days. Thereafter, the protocol was similar to that following prazosin administration. The results demonstrated that the alpha-1 receptor antagonist prazosin blocked the development and expression of cocaine sensitization. On the other hand, both alpha-2 antagonists failed to inhibit the development or the expression of cocaine sensitization. Instead, they produced an increase in locomotor activity during the first day of experimentation. The alpha-2 agonist clonidine attenuated the acute response to cocaine on day 1 and retarded the increased locomotor activity on the following 2 days. There was a dramatic increase in the level of sensitization after the first cocaine challenge. However, it inhibited the expression of cocaine sensitization during the reinstatement protocol. These results suggest that alpha adrenoreceptors play an important role in modulating different stages of cocaine sensitization and probably cocaine addiction.
Collapse
Affiliation(s)
- Carlos A Jiménez-Rivera
- Department of Physiology, University of Puerto Rico, School of Medicine, Main Building, Room A-688, Medical Sciences Campus, San Juan, Puerto Rico, 00936-5067.
| | | | | |
Collapse
|
29
|
Huang CC, Lin HJ, Hsu KS. Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex. Cereb Cortex 2006; 17:1877-88. [PMID: 17050645 DOI: 10.1093/cercor/bhl096] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although drug-induced adaptations in the prefrontal cortex (PFC) may contribute to several core aspects of addictive behaviors, it is not clear yet whether drugs of abuse elicit changes in synaptic plasticity at the PFC excitatory synapses. Here we report that, following repeated cocaine administration (15 mg/kg/day intraperitoneal injection for 5 consecutive days) with a 3-day withdrawal, excitatory synapses to layer V pyramidal neurons in rat medial prefrontal cortex (mPFC) become highly sensitive to the induction of long-term potentiation (LTP) by repeated correlated presynaptic and postsynaptic activity. This promoted LTP induction is caused by cocaine-induced reduction of gamma-aminobutyric acid (GABA)(A) receptor-mediated inhibition of mPFC pyramidal neurons. In contrast, in slices from rats treated with saline or a single dose of cocaine, the same LTP induction protocol did not induce significant LTP unless the blockade of GABA(A) receptors. Blockade of the D1-like receptors specifically prevented the cocaine-induced enhancement of LTP. Repeated cocaine exposure reduced the GABA(A) receptor-mediated synaptic currents in mPFC pyramidal neurons. Biotinylation experiments revealed a significant reduction of surface GABA(A) receptor alpha1 subunit expression in mPFC slices from repeated cocaine-treated rats. These findings support an important role for cocaine-induced enhancement of synaptic plasticity in the PFC in the development of drug-associated behavioral plasticity.
Collapse
Affiliation(s)
- Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
30
|
Shuto T, Kuroiwa M, Hamamura M, Yabuuchi K, Shimazoe T, Watanabe S, Nishi A, Yamamoto T. Reversal of methamphetamine-induced behavioral sensitization by repeated administration of a dopamine D1 receptor agonist. Neuropharmacology 2006; 50:991-7. [PMID: 16563442 DOI: 10.1016/j.neuropharm.2006.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 12/26/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Repeated intermittent administration of methamphetamine (MAP) produces an enduring hypersensitivity to the motor stimulant effect of MAP, termed behavioral sensitization. Dopamine plays a critical role in the development and expression of behavioral sensitization. Here, we investigated whether a dopamine D1 receptor agonist could reverse behavioral sensitization to MAP. Administration of MAP (1.0 mg/kg, i.p.) to rats once every 3 days for a total of 5 times (days 1-13) induced the enhancement of locomotor activity after MAP challenge (0.5 mg/kg, i.p.) on day 20, verifying the development of behavioral sensitization. The MAP-sensitized rats then received a dopamine D1 agonist, R-(+)-SKF38393 (3.0 mg/kg, i.p.), once a day for 7 consecutive days (days 21-27). Behavioral analysis on days 30 and 41 revealed that the enhanced locomotor activity was reversed by repeated R-(+)-SKF38393 administration. Moreover, repeated R-(+)-SKF38393 administration reversed the increased dopamine release in the striatum after MAP challenge on day 41. Thus, repeated administration of the dopamine D1 receptor agonist induces the reversal of established behavioral sensitization to MAP and of increased dopamine release in the striatum, lasting for at least 2 weeks. Dopamine D1 receptor agonists may be useful therapeutic agents for the treatment of psychostimulant addiction.
Collapse
Affiliation(s)
- Takahide Shuto
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Carey RJ, Damianopoulos EN. Cocaine conditioning and sensitization: The habituation factor. Pharmacol Biochem Behav 2006; 84:128-33. [PMID: 16764915 DOI: 10.1016/j.pbb.2006.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/12/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The behavioral and neurobiological impact of cocaine can be strongly influenced by the environmental context in which the cocaine effects are experienced. In this report, we present the results of an experimental study in which the effects of environmental context in terms of novelty/familiarity upon locomotor stimulant effects of cocaine were examined. In the first phase of the study, two groups of naïve rats (N=10/group) received either cocaine (10 mg/kg) or saline immediately prior to a 20-min test in a novel open-field environment. After three daily cocaine/saline test sessions, both groups received a saline test to evaluate cocaine conditioned drug effects. In the second phase, two groups (N=10/group) were administered a 20-min saline test 1 day prior to receiving the same cocaine and saline testing regimen as in the first phase. Cocaine sensitization effects were not observed when the cocaine treatments were initiated in a novel environment but were observed when the same cocaine treatments were preceded 1 day by a single 20-min test environment exposure. The maximal locomotion sensitization effects observed, however, did not exceed the locomotor stimulant effects induced by cocaine administered in a novel environment. Thus, the cocaine sensitization manifested following a brief 20-min exposure to the test environment 1 day prior to cocaine administration represented a reversal of an inhibitory habituation effect. Cocaine-conditioned effects were also observed in both phases. These cocaine conditioned effects approximated, but did not exceed, the activation effects generated by a novel environment.
Collapse
Affiliation(s)
- Robert J Carey
- Research and Development Service (151), VA Medical Center, 800 Irving Avenue, Syracuse, NY 13210, USA.
| | | |
Collapse
|
32
|
Fee JR, Knapp DJ, Sparta DR, Breese GR, Picker MJ, Thiele TE. Involvement of protein kinase A in ethanol-induced locomotor activity and sensitization. Neuroscience 2006; 140:21-31. [PMID: 16529875 PMCID: PMC1861809 DOI: 10.1016/j.neuroscience.2006.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Mutant mice lacking the RIIbeta subunit of protein kinase A (regulatory subunit II beta(-/-)) show increased ethanol preference. Recent evidence suggests a relationship between heightened ethanol preference and susceptibility to ethanol-induced locomotor sensitization. It is currently unknown if protein kinase A signaling modulates the stimulant effects and/or behavioral sensitization caused by ethanol administration. To address this question, we examined the effects of repeated ethanol administration on locomotor activity RIIbeta(-/-) and littermate wild-type (RIIbeta(+/+)) mice on multiple genetic backgrounds. METHODS Over three consecutive days, mice were given single i.p. saline injections and immediately placed in a locomotor activity apparatus to establish a composite baseline for locomotor activity. Next, mice maintained on a hybrid 129/SvEvxC57BL/6J or pure C57BL/6J genetic background were given 10 i.p. ethanol injections before being placed in the activity apparatus. Each ethanol injection was separated by 3-4 days. To determine if changes in behavior were specific to ethanol injection, naïve mice were tested following repeated daily saline injections. The effects of ethanol injection on locomotor behavior were also assessed using an alternate paradigm in which mice were given repeated ethanol injections in their home cage environment. RESULTS Relative to RIIbeta(+/+) mice, RIIbeta(-/-) mice, regardless of genetic background, consistently showed significantly greater ethanol-induced locomotor activation. RIIbeta(-/-) mice also showed increased sensitivity to ethanol-induced locomotor sensitization resulting from repeated administration, an effect that was dependent on genetic background and testing paradigm. Increased locomotor activity by RIIbeta(-/-) mice was specific to ethanol injections, and was not related to altered blood ethanol levels. CONCLUSIONS These data provide novel evidence implicating an influence of protein kinase A signaling on ethanol-induced locomotor activity and behavioral sensitization. The observation that RIIbeta(-/-) mice are more sensitive to the effects of repeated ethanol administration suggests that normal protein kinase A signaling limits, or is protective against, the stimulant effects of ethanol and the plastic alterations that underlie behavioral sensitization.
Collapse
Affiliation(s)
- J R Fee
- Department of Psychology, University of North Carolina, Davie Hall, Chapel Hill, NC 27599-3270, USA
| | | | | | | | | | | |
Collapse
|
33
|
Filip M, Frankowska M, Zaniewska M, Przegaliński E, Muller CE, Agnati L, Franco R, Roberts DCS, Fuxe K. Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 2006; 1077:67-80. [PMID: 16516871 DOI: 10.1016/j.brainres.2006.01.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Recent data indicate that cocaine locomotor responses may be influenced by dopamine (DA) neurotransmission and adenosine neuromodulation involving the A2A receptor (A2AR). Male Wistar rats were injected with MSX-3 (1-25 mg/kg; an antagonist of A2AR), CGS 21680 (0.05-0.2 mg/kg; an agonist of A2AR), SCH 23390 (0.125-0.25 mg/kg; an antagonist of DA D1/5R), raclopride (0.1-0.8 mg/kg; an antagonist of DA D2/3R), nafadotride (0.2-0.4 mg/kg; an antagonist of DA D3R) or 7-OH-PIPAT (0.01-1 mg/kg; an agonist of DA D3R) to verify the hypothesis that adenosine A2AR and DA receptors and their antagonistic interactions may control locomotor and sensitizing effects of cocaine. In well-habituated animals, MSX-3 (5 mg/kg) increased, while raclopride (0.4-0.8 mg/kg) decreased basal locomotor activation; the other drugs were inactive. The locomotor hyperactivation induced by acute cocaine (10 mg/kg) was enhanced by MSX-3 (5-25 mg/kg) or nafadotride (0.4 mg/kg), while CGS 21680 (0.2 mg/kg), SCH 23390 (0.25 mg/kg), raclopride (0.2-0.8 mg/kg) or 7-OH-PIPAT (0.1 mg/kg) decreased this effect of cocaine. Given during the development of sensitization (in combination with 5-daily cocaine, 10 mg/kg, injections), MSX-3 (5-25 mg/kg) increased, but CGS 21680 (0.2 mg/kg) and raclopride (0.8 mg/kg) reduced the locomotor response to a cocaine challenge dose (10 mg/kg) on day 10. When injected acutely with a cocaine challenge dose (on day 10), CGS 21680 (0.2 mg/kg), raclopride (0.2-0.8 mg/kg) or 7-OH-PIPAT (1 mg/kg) reduced, while MSX-3 (5 mg/kg) or nafadotride (0.4 mg/kg) enhanced the expression of cocaine sensitization. The present results show that adenosine A2ARs and DA D3Rs exert inhibitory actions on acute locomotor responses to cocaine and on the expression of cocaine sensitization, while DA D2Rs had an opposing role in such effects. Pharmacological stimulation of adenosine A2ARs protected against both the development and expression of cocaine sensitization, which may offer a therapeutic potential of A2AR agonists in the treatment of cocaine dependence. The results suggest an antagonistic role of A2ARs in D2R-mediated cocaine actions based at least in part on the existence of A2A/D2 heteromeric receptor complexes.
Collapse
Affiliation(s)
- Małgorzata Filip
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramos M, Goñi-Allo B, Aguirre N. Administration of SCH 23390 into the medial prefrontal cortex blocks the expression of MDMA-induced behavioral sensitization in rats: an effect mediated by 5-HT2C receptor stimulation and not by D1 receptor blockade. Neuropsychopharmacology 2005; 30:2180-91. [PMID: 15841107 DOI: 10.1038/sj.npp.1300735] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Akin to what has been reported for cocaine, systemic administration of the dopamine D1 receptor antagonist, SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride), blocks the expression but not the induction of 3,4-methylenedioxymethamphetamine (MDMA)-induced behavioral sensitization. Since the medial prefrontal cortex (mPFC) appears to regulate the expression of sensitization to cocaine, this study examined whether microinjection of SCH 23390 into the mPFC would alter the expression of MDMA sensitization. Saline or MDMA was administered for 5 consecutive days. After 12 days of withdrawal, rats received a bilateral intra-mPFC microinjection of SCH 23390 or saline followed by an intraperitoneal (i.p.) challenge dose of MDMA. While SCH 23390 enhanced locomotion in MDMA-naïve rats, it completely suppressed the expression of sensitization in MDMA-pretreated animals. Since, SCH 23390 has a fairly good affinity for 5-HT(2C) receptors, we went further to study the role of mPFC D1 and 5-HT(2C) receptors in this, apparently, paradoxical effect shown by SCH 23390. Thus, the microinjection of both SKF 81297 (R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide) and MK 212 (6-chloro-2-(1-piperazinyl)pyrazine hydrochloride), a D1 and 5-HT(2C) receptor agonist, respectively, blocked MDMA sensitization. By contrast, the 5-HT(2C) receptor antagonist, RS 102221 (8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulfonamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4,5]decane-2,4-dione hydrochloride), had no effect in MDMA-naïve or MDMA-sensitized animals, but reversed the effects of SCH 23390 in MDMA-pretreated rats. These results demonstrate that suppression of MDMA-induced sensitization by SCH 23390 is mediated by 5-HT(2C) receptor stimulation in the mPFC and not by the blockade of mPFC D1 receptors. Furthermore, these data indicate that stimulation of 5-HT(2C) receptors by SCH 23390 is not a minor issue and should be considered when interpreting future data.
Collapse
Affiliation(s)
- María Ramos
- Departamento de Farmacología, Facultad de Medicina, Universidad de Navarra, C/Irunlarrea 1, Pamplona 31008, Spain
| | | | | |
Collapse
|
35
|
McDougall SA, Reichel CM, Cyr MC, Karper PE, Nazarian A, Crawford CA. Importance of D(1) receptors for associative components of amphetamine-induced behavioral sensitization and conditioned activity: a study using D(1) receptor knockout mice. Psychopharmacology (Berl) 2005; 183:20-30. [PMID: 16136298 DOI: 10.1007/s00213-005-0146-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Repeated exposure to psychostimulant drugs results in conditioned activity and behavioral sensitization. Nonassociative cellular changes are necessary for behavioral sensitization, while associative processes appear to modify the sensitized response. OBJECTIVE The purpose of the present study was to determine whether the absence of the D(1) receptor would disrupt associative processes modulating sensitization and conditioned activity. METHODS Wild-type and D(1) receptor knockout mice (i.e., D(1)-deficient mice) were injected with amphetamine (AMPH; 8 mg/kg, IP) before being placed in a previously novel test chamber (AMPH-Test group) or before being returned to the home cage (AMPH-Home group). Separate groups of mice were injected with saline (SAL) at the same time points. Distance traveled was measured 60 min each day, with the preexposure phase lasting 1 or 7 days. Sensitization was subsequently assessed after an injection of AMPH (1 mg/kg, IP), while conditioned activity was assessed after an injection of SAL. RESULTS After a 1-day preexposure phase, wild-type and D(1)-deficient mice exhibited similar patterns of sensitization and conditioned activity. After a 7-day preexposure phase, (1) D(1)-deficient mice exhibited more robust context-specific sensitization than wild-type mice, (2) only D(1)-deficient mice showed context-independent sensitization, and (3) only D(1)-deficient mice showed conditioned activity. CONCLUSIONS Repeatedly treating D(1)-deficient mice with AMPH appears to cause a general increase in responsivity. The reason for this hyper-responsivity is uncertain, but it is possible that cues from the testing environment were unable to inhibit responding (i.e., associative processes were disrupted). Alternatively, compensatory mechanisms (e.g., increases in D(2)-like receptors) may affect processes underlying sensitization and conditioned activity.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA 92407, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Anderson SM, Pierce RC. Cocaine-induced alterations in dopamine receptor signaling: Implications for reinforcement and reinstatement. Pharmacol Ther 2005; 106:389-403. [PMID: 15922019 DOI: 10.1016/j.pharmthera.2004.12.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2004] [Indexed: 11/24/2022]
Abstract
The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine.
Collapse
Affiliation(s)
- S M Anderson
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
37
|
Tanabe LM, Suto N, Creekmore E, Steinmiller CL, Vezina P. Blockade of D2 dopamine receptors in the VTA induces a long-lasting enhancement of the locomotor activating effects of amphetamine. Behav Pharmacol 2004; 15:387-95. [PMID: 15343065 DOI: 10.1097/00008877-200409000-00013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study examined the effects of pre-exposure to eticlopride, a D2 dopamine receptor antagonist, in the ventral tegmental area (VTA) on the subsequent locomotor activating effects of amphetamine (AMPH). Rats were pre-exposed to one of three doses of eticlopride (0.75, 3.0 or 12.0 microg/0.5 microl per side) or saline (0.5 microl/side) in the VTA, once every third day, for a total of three infusions. Locomotor activity was recorded for 2 h following each pre-exposure injection. The low and intermediate doses of eticlopride produced no effects, while the high dose decreased locomotor activity compared to saline controls. 10-14 days following the last pre-exposure injection, all rats were challenged with AMPH (1.0 mg/kg, ip) and locomotor activity was recorded. Rats pre-exposed to the low dose of eticlopride exhibited enhanced locomotor activity whereas those pre-exposed to the intermediate or high doses did not differ from saline pre-exposed controls, suggesting that blockade of D2 dopamine receptors in the VTA can lead to sensitized locomotor responding to AMPH. To investigate the possible mechanism by which the low dose of eticlopride induced sensitization, extracellular levels of dopamine were measured as increasing concentrations of eticlopride (0.1, 1.0, 10.0 and 100.0 micromol/l) were perfused through a microdialysis probe implanted in the VTA. Only the lowest eticlopride concentration elevated extracellular dopamine levels. Therefore, as in the case of AMPH-induced sensitization, the induction by eticlopride of sensitization to AMPH may be initiated by the ability of eticlopride to increase extracellular levels of dopamine in the VTA.
Collapse
Affiliation(s)
- L M Tanabe
- Department of Psychiatry, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
38
|
Ramos M, Goñi-Allo B, Aguirre N. Studies on the role of dopamine D1 receptors in the development and expression of MDMA-induced behavioral sensitization in rats. Psychopharmacology (Berl) 2004; 177:100-10. [PMID: 15338099 DOI: 10.1007/s00213-004-1937-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 05/14/2004] [Indexed: 01/18/2023]
Abstract
RATIONALE There is a large body of evidence indicating that the mesoaccumbens dopamine pathway is critically involved in the expression of behavioral sensitization to amphetamine and cocaine, but its role in the development of sensitization to psychostimulants is not that sound. Very few studies, however, have examined the role of dopamine transmission in 3,4-methylenedioxymethamphetamine (MDMA)-induced sensitization. OBJECTIVES The effects of the D1 receptor antagonist SCH 23390 on the development and expression of MDMA-induced behavioral sensitization were investigated in rats. METHODS During the development phase of sensitization, SCH 23390 was administered 15 min before every administration of MDMA. After 12 days of withdrawal, a MDMA challenge dose was given and locomotor activity was measured. In separate experiments, 15 min before the challenge injection of MDMA, SCH 23390 was administered either systemically or directly into the core of the nucleus accumbens (NAc) of MDMA-pretreated rats. RESULTS SCH 23390 did not prevent the development of MDMA-induced behavioral sensitization but completely blocked the expression when given before the challenge dose of MDMA. The same results were obtained when SCH 23390 was locally applied into the core of the NAc. CONCLUSIONS The present data suggest that D1 receptor stimulation is not critical for the development of long-term MDMA sensitization, in agreement with what has been reported for cocaine. By contrast, expression of sensitization depends on the activation of D1 receptors located in the NAc core.
Collapse
Affiliation(s)
- María Ramos
- Department of Pharmacology, School of Medicine, University of Navarra, C/Irunlarrea, 1, 31008 Pamplona, Spain
| | | | | |
Collapse
|
39
|
Szumlinski KK, Frys KA, Kalivas PW. Dissociable roles for the dorsal and median raphé in the facilitatory effect of 5-HT1A receptor stimulation upon cocaine-induced locomotion and sensitization. Neuropsychopharmacology 2004; 29:1675-87. [PMID: 15127081 DOI: 10.1038/sj.npp.1300473] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A distinct role for serotonin transmission from the dorsal and median raphé nuclei (DRN and MRN, respectively) was identified in regulating the behavioral and neurochemical effects of acute and repeated cocaine administration. Serotonin 1A (5-hydroxytryptophan (5-HT)1A) receptors were stimulated by intraraphé microinjection of 8-hydroxy-2-(di-n-propylamino)tetralin (DPAT; 5 or 10 microg) and behavior, as well as extracellular neurotransmitter content in the nucleus accumbens was measured. Pretreatment of the DRN with DPAT caused a sensitization-like potentiation of acute cocaine-induced motor activity and an elevation in extracellular dopamine and glutamate. In contrast, DPAT microinjection into the MRN did not alter acute cocaine-induced motor activity or extracellular levels of dopamine or glutamate. Acutely, DPAT microinjection into either raphé nucleus reduced the basal and acute cocaine-stimulated levels of extracellular serotonin. Pretreatment with DPAT before systemic cocaine administration was continued for 5 days, and 3 weeks after the last injection, all rats were administered a cocaine challenge injection. The sensitized behavioral and neurochemical response produced by repeated cocaine in control subjects was unaffected by the intra-DRN administration of DPAT. However, in animals administered DPAT into the MRN, both the sensitized motor response and the increase in glutamate were augmented, while the sensitized serotonin response was blocked, without altering dopamine sensitization. These data show a differential role for 5-HT1A receptors in the DRN and MRN in the acute and sensitized effects of cocaine. While the DRN is involved in the acute effects of cocaine, neuroadaptations in the MRN may regulate the long-term consequences of repeated cocaine exposure.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
40
|
Schroeder JA, Hummel M, Unterwald EM. Repeated intracerebroventricular forskolin administration enhances behavioral sensitization to cocaine. Behav Brain Res 2004; 153:255-60. [PMID: 15219727 DOI: 10.1016/j.bbr.2003.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 12/04/2003] [Accepted: 12/05/2003] [Indexed: 11/28/2022]
Abstract
Repeated cocaine exposure produces behavioral sensitization expressed as an increased locomotor response to subsequent drug administration. Chronic cocaine administration also results in increased activity of adenylyl cyclase and cyclic-AMP (cAMP) dependent protein kinase (PKA) in the nucleus accumbens. To investigate the relationship between cocaine-induced behavioral sensitization and cAMP signaling, the present study examined the effect of forskolin, a direct adenylyl cyclase activator, on cocaine-induced hyperlocomotion and behavioral sensitization to cocaine. Rats were given intracerebroventricular (i.c.v.) injections of a water soluble form of forskolin (7DMB-forskolin) or vehicle 10 min prior to intraperitoneal (i.p.) cocaine or saline administration on 7 consecutive days. Acute or chronic forskolin alone had no effect on locomotor activity at the doses tested. On days 1 and 2, the activity of rats that received i.c.v. forskolin paired with cocaine was not significantly different from rats that received i.c.v. injections of vehicle co-administered with cocaine. By the third day of forskolin/cocaine co-administration, rats displayed enhanced cocaine-induced hyperlocomotor activity compared to rats that received cocaine alone, an effect that persisted through day 7. When challenged with cocaine on day 14, animals that had previously received forskolin paired with cocaine on days 1-7 displayed similar locomotor activity to animals that received cocaine only. These results suggest that alterations in adenylyl cyclase activity and/or cAMP levels may underlie the hyperlocomotor response to cocaine and may play a role in behavioral sensitization.
Collapse
Affiliation(s)
- Joseph A Schroeder
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad St. MRB321, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
41
|
Reeves R, Thiruchelvam M, Cory-Slechta DA. Expression of behavioral sensitization to the cocaine-like fungicide triadimefon is blocked by pretreatment with AMPA, NMDA and DA D1 receptor antagonists. Brain Res 2004; 1008:155-67. [PMID: 15145752 DOI: 10.1016/j.brainres.2004.01.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2004] [Indexed: 10/26/2022]
Abstract
Triadimefon (TDF) is a triazole fungicide that blocks the reuptake of dopamine (DA), much like cocaine. A recent study in our laboratory found that intermittent injections of TDF led to robust locomotor sensitization in response to challenge TDF after a 2-week withdrawal period. The current study sought to determine whether the expression of TDF behavioral sensitization could be prevented by the DA D1-like receptor antagonist SCH 23390 (SCH), the DA D2-like receptor antagonist remoxipride (Rem), the competitive NMDA antagonist CPP, or the AMPA antagonist NBQX. Adult male C57/BL6 mice were injected with vehicle or 75 mg/kg TDF twice a week for 7 weeks, with locomotor activity measured periodically across the 14 doses. After a 2-week withdrawal period, mice were pretreated with SCH (0.015 mg/kg), Rem (0.3 mg/kg), CPP (2.5 mg/kg) or NBQX (10.0 mg/kg) followed 30 min later by vehicle or 75 mg/kg TDF and tested for the expression of TDF sensitization. Intermittent administration of TDF led to the development and robust expression of behavioral sensitization in terms of vertical activity. Pretreatment with SCH, NBQX and CPP successfully blocked the expression of vertical sensitization to TDF, while Rem pretreatment did not. All four antagonists, however, attenuated the neurochemical changes normally associated with TDF sensitization as measured 8 h after the 2-week TDF challenge. This paper reveals that NMDA, AMPA and DA D1-like receptors are necessary for the behavioral expression of sensitization to the fungicide triadimefon.
Collapse
Affiliation(s)
- R Reeves
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
42
|
Haile CN, During MJ, Jatlow PI, Kosten TR, Kosten TA. Disulfiram facilitates the development and expression of locomotor sensitization to cocaine in rats. Biol Psychiatry 2003; 54:915-21. [PMID: 14573319 DOI: 10.1016/s0006-3223(03)00241-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Disulfiram (DS; Antabuse) inhibits dopamine-beta-hydroxylase leading to increased brain dopamine levels and shows treatment efficacy for cocaine addiction. Yet few preclinical studies have been performed. This study establishes the effects of DS on locomotor sensitization to cocaine in rats. METHODS Rats were administered vehicle, cocaine (10 mg/kg; intraperitoneally [IP]), or DS (50 or 100 mg/kg; IP) alone or in combination for 5 days (development phase). Locomotor activity was measured for 60-min each day. After a 10-day drug washout, rats were administered cocaine, and locomotor activity was measured (expression phase). Plasma cocaine levels were assessed in separate groups of rats administered one of two cocaine doses (0 or 10 mg/kg) and one of two DS doses (0 or 100 mg/kg) for 5 days. Ten days later, blood was collected 60-min postcocaine injection. RESULTS The development of cocaine locomotor sensitization was facilitated by DS even though DS alone had minimal effect on activity levels. Furthermore, expression of sensitization was greatest in rats previously administered DS, an effect that cannot be attributed to altered plasma cocaine levels. CONCLUSIONS Because DS shows treatment efficacy for cocaine addiction, results from this study suggest potential treatment agents should enhance, not attenuate, locomotor sensitization in rats.
Collapse
Affiliation(s)
- Colin N Haile
- Department of Neurosurgery, Thomas Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
43
|
Carey RJ, DePalma G, Damianopoulos E. Cocaine-conditioned behavioral effects: a role for habituation processes. Pharmacol Biochem Behav 2003; 74:701-12. [PMID: 12543237 DOI: 10.1016/s0091-3057(02)01072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocaine has potent locomotor stimulant effects in rodents, which seemingly can become conditioned to test environment cues. In two experimental protocols, we measured the effects of cocaine on locomotor activity and grooming behavior, and subsequently tested whether these cocaine effects became conditioned to contextual cues. In the first experiment, three groups of rats received 14 injections of either saline or cocaine (10 mg/kg) paired or unpaired to the test environment. Cocaine increased locomotion and decreased grooming during treatment and on the conditioning test. Over the course of the treatment phase, however, the saline- and cocaine-unpaired groups but not the cocaine paired group developed progressively lower locomotion and higher grooming scores indicative of substantial habituation effects. To examine whether the cocaine may have impaired the acquisition of habituation effects rather than induce a Pavlovian cocaine conditioned response, an additional experiment was conducted in which two additional non-habituation saline and cocaine control groups were added to the experimental design. On a conditioning test, the two non-habituation control groups were equivalent in activity and grooming behavior to the cocaine-paired group. The findings were consistent with a failure by cocaine-paired animals to acquire habituation effects, which could transfer to the non-cocaine state. The connection between cocaine and novelty/habituation may have substantial importance for understanding cocaine effects.
Collapse
Affiliation(s)
- Robert J Carey
- VA Medical Center and SUNY Upstate Medical University, Syracuse, NY, USA.
| | | | | |
Collapse
|
44
|
Quadros IMH, Nobrega JN, Hipólide DC, de Lucca EM, Souza-Formigoni MLO. Differential propensity to ethanol sensitization is not associated with altered binding to D1 receptors or dopamine transporters in mouse brain. Addict Biol 2002; 7:291-9. [PMID: 12126488 DOI: 10.1080/13556210220139505] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral sensitization to ethanol's stimulant effect has been proposed as a marker for individual abuse liability. In previous work we have demonstrated that mice showing an increased propensity to EtOH sensitization had higher levels of dopamine (DA) D2 receptor binding in localized brain areas compared to mice showing less sensitization. In the present study we examined whether altered binding to D1 or the DA transporter (DAT) might also be associated with differential propensity to develop EtOH sensitization. Male Swiss mice received 2.4 g/kg EtOH or saline intraperitoneally (i.p.) daily for 21 days, were tested weekly for locomotor activity, and then sacrificed. D1 and DAT binding were assessed by quantitative autoradiography using [(3)H]SCH-23390 and [(3)H]WIN 35,428, respectively. EtOH-treated mice were subdivided into sensitized and non-sensitized subgroups according to their locomotor activity during treatment. Analyses of brain D1 (19 regions) and DAT (12 regions) binding densities revealed no significant differences among EtOH-sensitized, -non-sensitized or saline groups in any of the regions measured (all p values > 0.32 for D1 and > 0.16 for DAT). These results suggest that brain D1 and DAT binding, unlike the recently reported changes in D2 binding, do not differentiate mice that develop behavioral sensitization to ethanol from those that do not.
Collapse
Affiliation(s)
- Isabel M H Quadros
- Department of Psychobiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
45
|
Abstract
With the hypothesis that 3-phenyltropane analogs of cocaine might be useful as cocaine medications, 17 analogs (RTI-51, RTI-55, RTI-108, RTI-112, RTI-113, RTI-116, RTI-120, RTI-121, RTI-126, RTI-139, RTI-141, RTI-150, RTI-171, RTI-177, RTI-199, RTI-204, and RTI-219) were characterized for their potency and selectivity at the monoamine transporters in a previous study. Based on their affinities to the transporters in this earlier study, the analogs were classified as nonselective (cocaine, RTI-51, RTI-55, RTI-108, RTI-112, RTI-116, RTI-126, and RTI-139) or dopamine transporter (DAT) selective (RTI-113, RTI-120, RTI-121, RTI-141, RTI-150, RTI-171, RTI-177, RTI-199, RTI-204, and RTI-219). In the present study, the locomotor stimulating effects of these analogs were compared to those of cocaine to obtain a measure of in vivo activity. Each analog was more potent than cocaine in the in vivo assay, as observed in the earlier in vitro studies. Most of these compounds were as efficacious as cocaine, but RTI-51, RTI-108, RTI-113, RTI-121, RTI-139, RTI-141, RTI-177, RTI-204, and RTI-219 were longer acting. Although no correlation between chemical structure and transporter selectivity was found, the short-acting DAT-selective analogs, RTI-120, RTI-150, RTI-171, and RTI-199, all contained a methyl group in the X position of the WIN 35,065-2 molecule. The positive correlation of the IC(50)s for the DAT to potencies for increasing locomotor activity suggested that binding to DAT was responsible for some, if not most, of the locomotor effects of these compounds. Several compounds, including RTI-113 and RTI-177, exhibited properties ideal for medications for cocaine abusers, such as an equivalent efficacy, a higher potency, and a longer duration of action as compared to cocaine.
Collapse
Affiliation(s)
- H L Kimmel
- Yerkes Regional Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
46
|
Richtand NM, Woods SC, Berger SP, Strakowski SM. D3 dopamine receptor, behavioral sensitization, and psychosis. Neurosci Biobehav Rev 2001; 25:427-43. [PMID: 11566480 DOI: 10.1016/s0149-7634(01)00023-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Behavioral sensitization is a progressive, enduring enhancement of behaviors that develops following repeated stimulant administration. It is mediated in part by dopaminergic pathways that also modulate a number of psychiatric conditions including the development of psychosis. We propose that down-regulation of D3 dopamine receptor function in critical brain regions contributes to sensitization. Rodent locomotion, a sensitizable behavior, is regulated by the opposing influence of dopamine receptor subtypes, with D3 stimulation opposing concurrent D1 and D2 receptor activation. The D3 dopamine receptor has a 70-fold greater affinity for dopamine than D1 or D2 dopamine receptors. This imbalance in ligand affinity dictates greater occupancy for D3 than D1 or D2 receptors at typical dopamine concentrations following stimulant drug administration, resulting in differences in the relative tolerance at D3 vs D1 and D2 receptors. Sensitization may therefore result in part from accommodation of the inhibitory D3 receptor 'brake' on D1/D2 mediated behaviors, leading to a progressive locomotion increase following repeated stimulant exposure. The requirement for differential tolerance at D3 vs D1 and D2 receptors may explain the observed development of sensitization following application of cocaine, but not amphetamine, directly into nucleus accumbens. If correct, the 'D3 Dopamine Receptor Hypothesis' suggests D3 antagonists could prevent sensitization, and may interrupt the development of psychosis when administered during the prodromal phase of psychotic illness. Additional study is needed to clarify the role of the D3 dopamine receptor in sensitization and psychosis.
Collapse
Affiliation(s)
- N M Richtand
- Department of Psychiatry, V-116A, Cincinnati Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA.
| | | | | | | |
Collapse
|
47
|
Smelson DA, Roy A, Roy M, Tershakovec D, Engelhart C, Losonczy MF. Electroretinogram and cue-elicited craving in withdrawn cocaine-dependent patients: a replication. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2001; 27:391-7. [PMID: 11417946 DOI: 10.1081/ada-100103716] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND We previously reported that cocaine-dependent patients with a reduced blue cone b wave electroretinogram (ERG) responses had significantly more cue-elicited craving. METHODS A new series of 21 recently withdrawn cocaine-dependent patients completed a craving questionnaire at baseline and following cue exposure; an ERG was also performed. RESULTS Cocaine-dependent patients with a blunted ERG blue cone response (<0.5 microV) showed greater increases in craving following cue exposure. When subjects were included from our preliminary study (N = 14), these differences became highly significant. CONCLUSIONS Patients with a reduced ERG response may represent a subgroup more vulnerable to cocaine craving and future relapse.
Collapse
Affiliation(s)
- D A Smelson
- Department of Veterans Affairs, New Jersey Health Care System, Lyons 07939-5000, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kimmel HL, Holtzman SG. Repeated cocaine administration does not alter morphine-induced rotational behavior in nigrally denervated rats. Behav Pharmacol 2001; 12:101-8. [PMID: 11396514 DOI: 10.1097/00008877-200104000-00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Repeated administration of morphine to rats increases their sensitivity to behavioral effects of morphine as well as to those of psychomotor stimulants, such as cocaine and amphetamine. Conversely, stimulant-induced sensitization to behavioral effects of stimulants often results also in sensitization to behavioral effects of morphine. However, in nigrally lesioned rats, repeated injections of morphine produce sensitization to morphine-induced turning but not to turning induced by cocaine or amphetamine. The present study was performed to determine whether giving repeated cocaine injections to nigrally lesioned rats would produce cross-sensitization to morphine-induced turning. Daily injections of 10 mg/kg cocaine (i.p.) enhanced the turning response to cocaine by day 8, but not the turning response to 3.0 mg/kg morphine (s.c.). The response to morphine increased equally in both cocaine- and saline-treated animals after they had received morphine once. Dose-response curves for morphine (1.0-10 mg/kg) and for cocaine (3.0-30 mg/kg), determined during weeks 3 and 4, were the same in rats receiving daily injections of cocaine or daily injections of saline. Thus, although repeated exposure to cocaine or morphine resulted in sensitization to turning induced by each drug, respectively, there was no cross-sensitization between the two drugs. In contrast to other behaviors, rotational behavior does not seem to exhibit cross-sensitization between morphine and psychomotor stimulants.
Collapse
Affiliation(s)
- H L Kimmel
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA.
| | | |
Collapse
|
49
|
Schenk S, Partridge B. Effect of the kappa-opioid receptor agonist, U69593, on reinstatement of extinguished amphetamine self-administration behavior. Pharmacol Biochem Behav 2001; 68:629-34. [PMID: 11526958 DOI: 10.1016/s0091-3057(00)00478-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous research has indicated that pretreatment with the kappa-opioid receptor agonist, U69593, decreased the ability of experimenter-administered cocaine to reinstate extinguished cocaine self-administration behavior. This effect was specific to cocaine-produced drug seeking since U69593 failed to attenuate the ability of experimenter-administered amphetamine to reinstate extinguished cocaine self-administration behavior. One possibility is that U69593 selectively attenuates the behavioral effects of the drug that was originally self-administered. In order to test this hypothesis, the present study examined the effect of U69593 (0.0 or 0.32 mg/kg) on the reinstatement of extinguished amphetamine self-administration behavior produced by experimenter-administered injections of cocaine and amphetamine. Following extinction of amphetamine self-administration (0.04 mg/kg/infusion) the ability of cocaine (0.0, 5.0, 10.0 or 20.0 mg/kg) or amphetamine (0.0, 0.3, 1.0 or 3.0 mg/kg) to reinstate extinguished self-administration behavior was measured. Both drugs reinstated extinguished responding and the reinstatement was attenuated by pretreatment with U69593. The data indicate that the ability of U69593 to decrease drug seeking is not restricted to subjects experienced with cocaine self-administration. Self-administration history does, however, determine the effect of U69593 on amphetamine-produced drug seeking.
Collapse
Affiliation(s)
- S Schenk
- Texas A&M University Department of Psychology, College Station 77843, USA.
| | | |
Collapse
|
50
|
Przegalinski E, Filip M, Papla I, Siwanowicz J. Effect of serotonin (5-HT)1B receptor ligands on cocaine sensitization in rats. Behav Pharmacol 2001; 12:109-16. [PMID: 11396515 DOI: 10.1097/00008877-200104000-00004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that antagonists of serotonin (5-HT)1B receptors attenuate cocaine-induced locomotor hyperactivity, whereas agonists enhance reinforcing and discriminative stimulus effects of the psychostimulant. The present study was designed to determine how 5-HT1B receptor ligands affected the development or the expression phase of sensitization to the cocaine-induced locomotor response in rats. In Experiment 1, rats were treated repeatedly (for 5 days) with cocaine (10 mg/kg) in combination with either saline, GR 127935 (5-HT1B antagonist), CP 94,253 (5-HT1B agonist) or GR 127935 + CP 94,253. On day 10, they received a challenge dose of cocaine (10 mg/kg). In Experiment 2, animals received either saline or cocaine (10 mg/kg) for 5 days, and were then challenged with cocaine (10 mg/kg) in combination with saline, GR 127935, CP 94,253 or GR 127935 + CP 94,253, on day 10. In Experiment 3, rats received either saline, cocaine or CP 94,253 for 5 days; on day 10 they received challenge doses of CP 94,253 or cocaine. In rats treated repeatedly with cocaine, the locomotor hyperactivity induced by a challenge dose of the psychostimulant was about twice as high as that observed after its first administration. The effect evoked by cocaine challenge was further increased in animals treated repeatedly with CP 94,253 + cocaine, but not with GR 127935 + CP 94,253 + cocaine. No difference was observed in the response to cocaine challenge in rats treated repeatedly with cocaine or GR 127935 + cocaine (Experiment 1). In animals treated repeatedly with the psychostimulant, the behavioral response to a challenge dose of cocaine was dose-dependently increased when that drug was combined with CP 94,253, but not with GR 127935 + CP 94,253. No difference was observed in the locomotor response of rats challenged with cocaine or GR 127935 + cocaine (Experiment 2). When rats were treated repeatedly with cocaine, a challenge dose of CP 94,253 produced an about threefold increase in the locomotor effect compared to the animals treated likewise with saline (Experiment 3). Our results indicate that 5-HT1B receptors are involved in neither the development nor the expression of sensitization to cocaine-induced locomotor hyperactivity. On the other hand, they also show that pharmacological activation of 5-HT1B receptors enhances both phases of this phenomenon, and that repeated administration of cocaine leads to an increased functional reactivity of these receptors.
Collapse
Affiliation(s)
- E Przegalinski
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow.
| | | | | | | |
Collapse
|