1
|
Delsart A, Castel A, Dumas G, Otis C, Lachance M, Barbeau-Grégoire M, Lussier B, Péron F, Hébert M, Lapointe N, Moreau M, Martel-Pelletier J, Pelletier JP, Troncy E. Non-invasive electroencephalography in awake cats: Feasibility and application to sensory processing in chronic pain. J Neurosci Methods 2024; 411:110254. [PMID: 39173717 DOI: 10.1016/j.jneumeth.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Feline osteoarthritis (OA) leads to chronic pain and somatosensory sensitisation. In humans, sensory exposure can modulate chronic pain. Recently, electroencephalography (EEG) revealed a specific brain signature to human OA. However, EEG pain characterisation or its modulation does not exist in OA cats, and all EEG were conducted in sedated cats, using intradermal electrodes, which could alter sensory (pain) perception. NEW METHOD Cats (n=11) affected by OA were assessed using ten gold-plated surface electrodes. Sensory stimuli were presented in random orders: response to mechanical temporal summation, grapefruit scent and mono-chromatic wavelengths (500 nm-blue, 525 nm-green and 627 nm-red light). The recorded EEG was processed to identify event-related potentials (ERP) and to perform spectral analysis (z-score). RESULTS The procedure was well-tolerated. The ERPs were reported for both mechanical (F3, C3, Cz, P3, Pz) and olfactory stimuli (Cz, Pz). The main limitation was motion artifacts. Spectral analysis revealed a significant interaction between the power of EEG frequency bands and light wavelengths (p<0.001). All wavelengths considered, alpha band proportion was higher than that of delta and gamma bands (p<0.044), while the latter was lower than the beta band (p<0.016). Compared to green and red, exposure to blue light elicited distinct changes in EEG power over time (p<0.001). COMPARISON WITH EXISTING METHOD This is the first demonstration of EEG feasibility in conscious cats with surface electrodes recording brain activity while exposing them to sensory stimulations. CONCLUSION The identification of ERPs and spectral patterns opens new avenues for investigating feline chronic pain and its potential modulation through sensory interventions.
Collapse
Affiliation(s)
- Aliénor Delsart
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Aude Castel
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Department of clinical sciences, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada.
| | - Guillaume Dumas
- Department of psychiatry and addictology, Faculté de médecine, Université de Montréal, Québec, Canada; Research center of the Sainte-Justine mother and child university hospital center (CHU Sainte-Justine), Québec, Canada
| | - Colombe Otis
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Mathieu Lachance
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Maude Barbeau-Grégoire
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Bertrand Lussier
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Department of clinical sciences, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | | | - Marc Hébert
- Department of ophthalmology and otorhinolaryngology - Head and neck surgery, Faculté de médecine, Université Laval, Québec, Canada; CERVO Brain Research Center, Québec, Canada
| | | | - Maxim Moreau
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | - Johanne Martel-Pelletier
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | - Jean-Pierre Pelletier
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | - Eric Troncy
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| |
Collapse
|
2
|
Smyre SA, Bean NL, Stein BE, Rowland BA. The brain can develop conflicting multisensory principles to guide behavior. Cereb Cortex 2024; 34:bhae247. [PMID: 38879756 PMCID: PMC11179994 DOI: 10.1093/cercor/bhae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024] Open
Abstract
Midbrain multisensory neurons undergo a significant postnatal transition in how they process cross-modal (e.g. visual-auditory) signals. In early stages, signals derived from common events are processed competitively; however, at later stages they are processed cooperatively such that their salience is enhanced. This transition reflects adaptation to cross-modal configurations that are consistently experienced and become informative about which correspond to common events. Tested here was the assumption that overt behaviors follow a similar maturation. Cats were reared in omnidirectional sound thereby compromising the experience needed for this developmental process. Animals were then repeatedly exposed to different configurations of visual and auditory stimuli (e.g. spatiotemporally congruent or spatially disparate) that varied on each side of space and their behavior was assessed using a detection/localization task. Animals showed enhanced performance to stimuli consistent with the experience provided: congruent stimuli elicited enhanced behaviors where spatially congruent cross-modal experience was provided, and spatially disparate stimuli elicited enhanced behaviors where spatially disparate cross-modal experience was provided. Cross-modal configurations not consistent with experience did not enhance responses. The presumptive benefit of such flexibility in the multisensory developmental process is to sensitize neural circuits (and the behaviors they control) to the features of the environment in which they will function. These experiments reveal that these processes have a high degree of flexibility, such that two (conflicting) multisensory principles can be implemented by cross-modal experience on opposite sides of space even within the same animal.
Collapse
Affiliation(s)
- Scott A Smyre
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, United States
| | - Naomi L Bean
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, United States
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, United States
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, United States
| |
Collapse
|
3
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
5
|
Benarroch E. What Are the Functions of the Superior Colliculus and Its Involvement in Neurologic Disorders? Neurology 2023; 100:784-790. [PMID: 37068960 PMCID: PMC10115501 DOI: 10.1212/wnl.0000000000207254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
|
6
|
Smyre SA, Bean NL, Stein BE, Rowland BA. Predictability alters multisensory responses by modulating unisensory inputs. Front Neurosci 2023; 17:1150168. [PMID: 37065927 PMCID: PMC10090419 DOI: 10.3389/fnins.2023.1150168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The multisensory (deep) layers of the superior colliculus (SC) play an important role in detecting, localizing, and guiding orientation responses to salient events in the environment. Essential to this role is the ability of SC neurons to enhance their responses to events detected by more than one sensory modality and to become desensitized (‘attenuated’ or ‘habituated’) or sensitized (‘potentiated’) to events that are predictable via modulatory dynamics. To identify the nature of these modulatory dynamics, we examined how the repetition of different sensory stimuli affected the unisensory and multisensory responses of neurons in the cat SC. Neurons were presented with 2HZ stimulus trains of three identical visual, auditory, or combined visual–auditory stimuli, followed by a fourth stimulus that was either the same or different (‘switch’). Modulatory dynamics proved to be sensory-specific: they did not transfer when the stimulus switched to another modality. However, they did transfer when switching from the visual–auditory stimulus train to either of its modality-specific component stimuli and vice versa. These observations suggest that predictions, in the form of modulatory dynamics induced by stimulus repetition, are independently sourced from and applied to the modality-specific inputs to the multisensory neuron. This falsifies several plausible mechanisms for these modulatory dynamics: they neither produce general changes in the neuron’s transform, nor are they dependent on the neuron’s output.
Collapse
|
7
|
Kearney BE, Corrigan FM, Frewen PA, Nevill S, Harricharan S, Andrews K, Jetly R, McKinnon MC, Lanius RA. A randomized controlled trial of Deep Brain Reorienting: a neuroscientifically guided treatment for post-traumatic stress disorder. Eur J Psychotraumatol 2023; 14:2240691. [PMID: 37581275 PMCID: PMC10431732 DOI: 10.1080/20008066.2023.2240691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Advanced neuroscientific insights surrounding post-traumatic stress disorder (PTSD) and its associated symptomatology should beget psychotherapeutic treatments that integrate these insights into practice. Deep Brain Reorienting (DBR) is a neuroscientifically-guided psychotherapeutic intervention that targets the brainstem-level neurophysiological sequence that transpired during a traumatic event. Given that contemporary treatments have non-response rates of up to 50% and high drop-out rates of >18%, DBR is investigated as a putative candidate for effective treatment of some individuals with PTSD. OBJECTIVE To conduct an interim evaluation of the effectiveness of an eight-session clinical trial of videoconference-based DBR versus waitlist (WL) control for individuals with PTSD. METHOD Fifty-four individuals with PTSD were randomly assigned to DBR (N = 29) or WL (N = 25). At baseline, post-treatment, and three-month follow-up, participants' PTSD symptom severity was assessed using the Clinician Administered PTSD Scale (CAPS-5). This is an interim analysis of a clinical trial registered with the U. S. National Institute of Health (NCT04317820). RESULTS Significant between-group differences in CAPS-total and all subscale scores (re-experiencing, avoidance, negative alterations in cognitions/mood, alterations in arousal/reactivity) were found at post-treatment (CAPS-total: Cohen's d = 1.17) and 3-month-follow-up (3MFU) (CAPS-total: Cohen's d = 1.18). Significant decreases in CAPS-total and all subscale scores were observed within the DBR group pre - to post-treatment (36.6% CAPS-total reduction) and pre-treatment to 3MFU (48.6% CAPS-total reduction), whereas no significant decreases occurred in the WL group. After DBR, 48.3% at post-treatment and 52.0% at 3MFU no longer met PTSD criteria. Attrition was minimal with one participant not completing treatment; eight participants were lost to 3MFU. CONCLUSIONS These findings provide emerging evidence for the effectiveness of DBR as a well-tolerated treatment that is based on theoretical advances highlighting alterations to subcortical mechanisms in PTSD and associated symptomatology. Additional research utilizing larger sample sizes, neuroimaging data, and comparisons or adjacencies with other psychotherapeutic approaches is warranted.Trial registration: ClinicalTrials.gov identifier: NCT04317820..
Collapse
Affiliation(s)
| | - Frank M. Corrigan
- Trauma Psychotherapy Scotland, Newton Terrace, Glasgow, UK
- Department of Psychiatry, Western University, London, Canada
| | - Paul A. Frewen
- Departments of Neuroscience and Psychology, Western University, London, Canada
| | | | - Sherain Harricharan
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Canada
| | - Krysta Andrews
- Offord Centre for Child Studies, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Rakesh Jetly
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Margaret C. McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Ruth A. Lanius
- Departments of Neuroscience and Psychology, Western University, London, Canada
| |
Collapse
|
8
|
Kearney BE, Lanius RA. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front Neurosci 2022; 16:1015749. [PMID: 36478879 PMCID: PMC9720153 DOI: 10.3389/fnins.2022.1015749] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023] Open
Abstract
Although the manifestation of trauma in the body is a phenomenon well-endorsed by clinicians and traumatized individuals, the neurobiological underpinnings of this manifestation remain unclear. The notion of somatic sensory processing, which encompasses vestibular and somatosensory processing and relates to the sensory systems concerned with how the physical body exists in and relates to physical space, is introduced as a major contributor to overall regulatory, social-emotional, and self-referential functioning. From a phylogenetically and ontogenetically informed perspective, trauma-related symptomology is conceptualized to be grounded in brainstem-level somatic sensory processing dysfunction and its cascading influences on physiological arousal modulation, affect regulation, and higher-order capacities. Lastly, we introduce a novel hierarchical model bridging somatic sensory processes with limbic and neocortical mechanisms regulating an individual's emotional experience and sense of a relational, agentive self. This model provides a working framework for the neurobiologically informed assessment and treatment of trauma-related conditions from a somatic sensory processing perspective.
Collapse
Affiliation(s)
- Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
9
|
Jure R. The “Primitive Brain Dysfunction” Theory of Autism: The Superior Colliculus Role. Front Integr Neurosci 2022; 16:797391. [PMID: 35712344 PMCID: PMC9194533 DOI: 10.3389/fnint.2022.797391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
A better understanding of the pathogenesis of autism will help clarify our conception of the complexity of normal brain development. The crucial deficit may lie in the postnatal changes that vision produces in the brainstem nuclei during early life. The superior colliculus is the primary brainstem visual center. Although difficult to examine in humans with present techniques, it is known to support behaviors essential for every vertebrate to survive, such as the ability to pay attention to relevant stimuli and to produce automatic motor responses based on sensory input. From birth to death, it acts as a brain sentinel that influences basic aspects of our behavior. It is the main brainstem hub that lies between the environment and the rest of the higher neural system, making continuous, implicit decisions about where to direct our attention. The conserved cortex-like organization of the superior colliculus in all vertebrates allows the early appearance of primitive emotionally-related behaviors essential for survival. It contains first-line specialized neurons enabling the detection and tracking of faces and movements from birth. During development, it also sends the appropriate impulses to help shape brain areas necessary for social-communicative abilities. These abilities require the analysis of numerous variables, such as the simultaneous evaluation of incoming information sustained by separate brain networks (visual, auditory and sensory-motor, social, emotional, etc.), and predictive capabilities which compare present events to previous experiences and possible responses. These critical aspects of decision-making allow us to evaluate the impact that our response or behavior may provoke in others. The purpose of this review is to show that several enigmas about the complexity of autism might be explained by disruptions of collicular and brainstem functions. The results of two separate lines of investigation: 1. the cognitive, etiologic, and pathogenic aspects of autism on one hand, and two. the functional anatomy of the colliculus on the other, are considered in order to bridge the gap between basic brain science and clinical studies and to promote future research in this unexplored area.
Collapse
|
10
|
Yuan Y, Lleo Y, Daniel R, White A, Oh Y. The Impact of Temporally Coherent Visual Cues on Speech Perception in Complex Auditory Environments. Front Neurosci 2021; 15:678029. [PMID: 34163326 PMCID: PMC8216555 DOI: 10.3389/fnins.2021.678029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
Speech perception often takes place in noisy environments, where multiple auditory signals compete with one another. The addition of visual cues such as talkers’ faces or lip movements to an auditory signal can help improve the intelligibility of speech in those suboptimal listening environments. This is referred to as audiovisual benefits. The current study aimed to delineate the signal-to-noise ratio (SNR) conditions under which visual presentations of the acoustic amplitude envelopes have their most significant impact on speech perception. Seventeen adults with normal hearing were recruited. Participants were presented with spoken sentences in babble noise either in auditory-only or auditory-visual conditions with various SNRs at −7, −5, −3, −1, and 1 dB. The visual stimulus applied in this study was a sphere that varied in size syncing with the amplitude envelope of the target speech signals. Participants were asked to transcribe the sentences they heard. Results showed that a significant improvement in accuracy in the auditory-visual condition versus the audio-only condition was obtained at the SNRs of −3 and −1 dB, but no improvement was observed in other SNRs. These results showed that dynamic temporal visual information can benefit speech perception in noise, and the optimal facilitative effects of visual amplitude envelope can be observed under an intermediate SNR range.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Yasneli Lleo
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Rebecca Daniel
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Alexandra White
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Yonghee Oh
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ, Tyler-Kabara EC, Boninger ML, Collinger JL, Gaunt RA. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021; 372:831-836. [PMID: 34016775 PMCID: PMC8715714 DOI: 10.1126/science.abd0380] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Prosthetic arms controlled by a brain-computer interface can enable people with tetraplegia to perform functional movements. However, vision provides limited feedback because information about grasping objects is best relayed through tactile feedback. We supplemented vision with tactile percepts evoked using a bidirectional brain-computer interface that records neural activity from the motor cortex and generates tactile sensations through intracortical microstimulation of the somatosensory cortex. This enabled a person with tetraplegia to substantially improve performance with a robotic limb; trial times on a clinical upper-limb assessment were reduced by half, from a median time of 20.9 to 10.2 seconds. Faster times were primarily due to less time spent attempting to grasp objects, revealing that mimicking known biological control principles results in task performance that is closer to able-bodied human abilities.
Collapse
Affiliation(s)
- Sharlene N Flesher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - John E Downey
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Organismal Biology, University of Chicago, Chicago, IL, USA
| | - Jeffrey M Weiss
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher L Hughes
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Angelica J Herrera
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- VA Center of Excellence, Department of Veterans Affairs, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- VA Center of Excellence, Department of Veterans Affairs, Pittsburgh, PA, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Zschorlich VR, Behrendt F, de Lussanet MHE. Multimodal Sensorimotor Integration of Visual and Kinaesthetic Afferents Modulates Motor Circuits in Humans. Brain Sci 2021; 11:brainsci11020187. [PMID: 33546384 PMCID: PMC7913510 DOI: 10.3390/brainsci11020187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Optimal motor control requires the effective integration of multi-modal information. Visual information of movement performed by others even enhances potentials in the upper motor neurons through the mirror-neuron system. On the other hand, it is known that motor control is intimately associated with afferent proprioceptive information. Kinaesthetic information is also generated by passive, external-driven movements. In the context of sensory integration, it is an important question how such passive kinaesthetic information and visually perceived movements are integrated. We studied the effects of visual and kinaesthetic information in combination, as well as isolated, on sensorimotor integration, compared to a control condition. For this, we measured the change in the excitability of the motor cortex (M1) using low-intensity Transcranial magnetic stimulation (TMS). We hypothesised that both visual motoneurons and kinaesthetic motoneurons enhance the excitability of motor responses. We found that passive wrist movements increase the motor excitability, suggesting that kinaesthetic motoneurons do exist. The kinaesthetic influence on the motor threshold was even stronger than the visual information. Moreover, the simultaneous visual and passive kinaesthetic information increased the cortical excitability more than each of them independently. Thus, for the first time, we found evidence for the integration of passive kinaesthetic- and visual-sensory stimuli.
Collapse
Affiliation(s)
- Volker R. Zschorlich
- Department of Movement Science, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
- Correspondence:
| | - Frank Behrendt
- Reha Rheinfelden, Research Department, Salinenstrasse 98, CH-4310 Rheinfelden, Switzerland;
| | - Marc H. E. de Lussanet
- Department of Movement Science, and OCC Center for Cognitive and Behavioral Neuroscience, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany;
| |
Collapse
|
13
|
Oess T, Löhr MPR, Schmid D, Ernst MO, Neumann H. From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration. Front Neurorobot 2020; 14:29. [PMID: 32499692 PMCID: PMC7243343 DOI: 10.3389/fnbot.2020.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
While interacting with the world our senses and nervous system are constantly challenged to identify the origin and coherence of sensory input signals of various intensities. This problem becomes apparent when stimuli from different modalities need to be combined, e.g., to find out whether an auditory stimulus and a visual stimulus belong to the same object. To cope with this problem, humans and most other animal species are equipped with complex neural circuits to enable fast and reliable combination of signals from various sensory organs. This multisensory integration starts in the brain stem to facilitate unconscious reflexes and continues on ascending pathways to cortical areas for further processing. To investigate the underlying mechanisms in detail, we developed a canonical neural network model for multisensory integration that resembles neurophysiological findings. For example, the model comprises multisensory integration neurons that receive excitatory and inhibitory inputs from unimodal auditory and visual neurons, respectively, as well as feedback from cortex. Such feedback projections facilitate multisensory response enhancement and lead to the commonly observed inverse effectiveness of neural activity in multisensory neurons. Two versions of the model are implemented, a rate-based neural network model for qualitative analysis and a variant that employs spiking neurons for deployment on a neuromorphic processing. This dual approach allows to create an evaluation environment with the ability to test model performances with real world inputs. As a platform for deployment we chose IBM's neurosynaptic chip TrueNorth. Behavioral studies in humans indicate that temporal and spatial offsets as well as reliability of stimuli are critical parameters for integrating signals from different modalities. The model reproduces such behavior in experiments with different sets of stimuli. In particular, model performance for stimuli with varying spatial offset is tested. In addition, we demonstrate that due to the emergent properties of network dynamics model performance is close to optimal Bayesian inference for integration of multimodal sensory signals. Furthermore, the implementation of the model on a neuromorphic processing chip enables a complete neuromorphic processing cascade from sensory perception to multisensory integration and the evaluation of model performance for real world inputs.
Collapse
Affiliation(s)
- Timo Oess
- Applied Cognitive Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Maximilian P R Löhr
- Vision and Perception Science Lab, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Daniel Schmid
- Vision and Perception Science Lab, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Marc O Ernst
- Applied Cognitive Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Heiko Neumann
- Vision and Perception Science Lab, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Cacciamani L, Sheparovich L, Gibbons M, Crowley B, Carpenter KE, Wack C. Task-Irrelevant Sound Corrects Leftward Spatial Bias in Blindfolded Haptic Placement Task. Multisens Res 2020; 33:521-548. [PMID: 32083560 DOI: 10.1163/22134808-20191387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
We often rely on our sense of vision for understanding the spatial location of objects around us. If vision cannot be used, one must rely on other senses, such as hearing and touch, in order to build spatial representations. Previous work has found evidence of a leftward spatial bias in visual and tactile tasks. In this study, we sought evidence of this leftward bias in a non-visual haptic object location memory task and assessed the influence of a task-irrelevant sound. In Experiment 1, blindfolded right-handed sighted participants used their non-dominant hand to haptically locate an object on the table, then used their dominant hand to place the object back in its original location. During placement, participants either heard nothing (no-sound condition) or a task-irrelevant repeating tone to the left, right, or front of the room. The results showed that participants exhibited a leftward placement bias on no-sound trials. On sound trials, this leftward bias was corrected; placements were faster and more accurate (regardless of the direction of the sound). One explanation for the leftward bias could be that participants were overcompensating their reach with the right hand during placement. Experiment 2 tested this explanation by switching the hands used for exploration and placement, but found similar results as Experiment 1. A third Experiment found evidence supporting the explanation that sound corrects the leftward bias by heightening attention. Together, these findings show that sound, even if task-irrelevant and semantically unrelated, can correct one's tendency to place objects too far to the left.
Collapse
Affiliation(s)
- Laura Cacciamani
- California Polytechnic State University, San Luis Obispo, CA,USA
| | | | - Molly Gibbons
- California Polytechnic State University, San Luis Obispo, CA,USA
| | - Brooke Crowley
- California Polytechnic State University, San Luis Obispo, CA,USA
| | | | - Carson Wack
- California Polytechnic State University, San Luis Obispo, CA,USA
| |
Collapse
|
15
|
Salvi R, Auerbach BD, Lau C, Chen YC, Manohar S, Liu X, Ding D, Chen GD. Functional Neuroanatomy of Salicylate- and Noise-Induced Tinnitus and Hyperacusis. Curr Top Behav Neurosci 2020; 51:133-160. [PMID: 32653998 DOI: 10.1007/7854_2020_156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tinnitus and hyperacusis are debilitating conditions often associated with aging or exposure to intense noise or ototoxic drugs. One of the most reliable methods of inducing tinnitus is with high doses of sodium salicylate, the active ingredient in aspirin. High doses of salicylate have been widely used to investigate the functional neuroanatomy of tinnitus and hyperacusis. High doses of salicylate have been used to develop novel behavioral methods to detect the presence of tinnitus and hyperacusis in animal models. Salicylate typically induces a hearing loss of approximately 20 dB which greatly reduces the neural output of the cochlea. As this weak neural signal emerging from the cochlea is sequentially relayed to the cochlear nucleus, inferior colliculus, medial geniculate, and auditory cortex, the neural response to suprathreshold sounds is progressively amplified by a factor of 2-3 by the time the signal reaches the auditory cortex, a phenomenon referred to as enhanced central gain. Sound-evoked hyperactivity also occurred in the amygdala, a region that assigns emotional significance to sensory stimuli. Resting state functional magnetic imaging of the BOLD signal revealed salicylate-induced increases in spontaneous neural activity in the inferior colliculus, medial geniculate body, and auditory cortex as well as in non-auditory areas such as the amygdala, reticular formation, cerebellum, and other sensory areas. Functional connectivity of the BOLD signal revealed increased neural coupling between several auditory areas and non-auditory areas such as the amygdala, cerebellum, reticular formation, hippocampus, and caudate/putamen; these strengthened connections likely contribute to the multifaceted dimensions of tinnitus. Taken together, these results suggest that salicylate-induced tinnitus disrupts a complex neural network involving many auditory centers as well as brain regions involved with emotion, arousal, memory, and motor planning. These extra-auditory centers embellish the basic auditory percepts that results in tinnitus and which may also contribute to hyperacusis.
Collapse
Affiliation(s)
- Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA.
| | | | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
16
|
Corrigan FM, Christie-Sands J. An innate brainstem self-other system involving orienting, affective responding, and polyvalent relational seeking: Some clinical implications for a "Deep Brain Reorienting" trauma psychotherapy approach. Med Hypotheses 2019; 136:109502. [PMID: 31794877 DOI: 10.1016/j.mehy.2019.109502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Underlying any complex relational intersubjectivity there is an inherent urge to connect, to have proximity, to engage in an experience of interpersonal contact. The hypothesis set out here is that this most basic urge to connect is dependent on circuits based in three main components: the midbrain superior colliculi (SC), the midbrain periaqueductal gray (PAG), and the mesolimbic and mesocortical dopamine systems originating in the midbrain ventral tegmental area. Firstly, there is orienting towards or away from interpersonal contact, dependent on approach and/or defensive/withdrawal areas of the SC. Secondly, there is an affective response to the contact, mediated by the PAG. Thirdly, there is an associated, affectively-loaded, seeking drive based in the mesolimbic and mesocortical dopamine systems. The neurochemical milieu of these dopaminergic systems is responsive to environmental factors, creating the possibility of multiple states of functioning with different affective valences, a polyvalent range of subjectively positive and negative experiences. The recognition of subtle tension changes in skeletal muscles when orienting to an affectively significant experience or event has clinical implications for processing of traumatic memories, including those of a relational/interpersonal nature. Sequences established at the brainstem level can underlie patterns of attachment responding that repeat over many years in different contexts. The interaction of the innate system for connection with that for alarm, through circuits based in the locus coeruleus, and that for defence, based in circuits through the PAG, can lay down deep patterns of emotional and energetic responses to relational stimuli. There may be simultaneous sequences for attachment approach and defensive aggression underlying relational styles that are so deep as to be seen as personality characteristics, for example, of borderline type. A clinical approach derived from these hypotheses, Deep Brain Reorienting, is briefly outlined as it provides a way to address the somatic residues of adverse interpersonal interactions underlying relational patterns and also the residual shock and horror of traumatic experiences. We suggest that the innate alarm system involving the SC and the locus coeruleus can generate a pre-affective shock while an affective shock can arise from excessive stimulation of the PAG. Clinically significant residues can be accessed through careful, mindful, attention to orienting-tension-affect-seeking sequences when the therapist and the client collaborate on eliciting and describing them.
Collapse
Affiliation(s)
- F M Corrigan
- Trauma Psychotherapy Scotland, 15 Newton Terrace, Glasgow G3 7PJ, United Kingdom.
| | - J Christie-Sands
- Trauma Psychotherapy Scotland, 15 Newton Terrace, Glasgow G3 7PJ, United Kingdom
| |
Collapse
|
17
|
Kloos M, Weigel S, Luksch H. Anatomy and Physiology of Neurons in Layer 9 of the Chicken Optic Tectum. Front Neural Circuits 2019; 13:63. [PMID: 31680877 PMCID: PMC6802604 DOI: 10.3389/fncir.2019.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/03/2022] Open
Abstract
Visual information in birds is to great extent processed in the optic tectum (TeO), a prominent laminated midbrain structure. Retinal input enters the TeO in its superficial layers, while output is limited to intermediate and deeper layers. In addition to visual information, the TeO receives multimodal input from the auditory and somatosensory pathway. The TeO gives rise to a major ascending tectofugal projection where neurons of tectal layer 13 project to the thalamic nucleus rotundus, which then projects to the entopallium. A second tectofugal projection system, called the accessory pathway, has however not been studied as thoroughly. Again, cells of tectal layer 13 form an ascending projection that targets a nucleus known as either the caudal part of the nucleus dorsolateralis posterior of the thalamus (DLPc) or nucleus uveaformis (Uva). This nucleus is known for multimodal integration and receives additional input from the lateral pontine nucleus (PL), which in turn receives projections from layer 8–15 of the TeO. Here, we studied a particular cell type afferent to the PL that consists of radially oriented neurons in layer 9. We characterized these neurons with respect to their anatomy, their retinal input, and the modulation of retinal input by local circuits. We found that comparable to other radial neurons in the tectum, cells of layer 9 have columnar dendritic fields and reach up to layer 2. Sholl analysis demonstrated that dendritic arborization concentrates on retinorecipient layers 2 and 4, with additional arborization in layers 9 and 10. All neurons recorded in layer 9 received retinal input via glutamatergic synapses. We analyzed the influence of modulatory circuits of the TeO by application of antagonists to γ-aminobutyric acid (GABA) and acetylcholine (ACh). Our data show that the neurons of layer 9 are integrated in a network under strong GABAergic inhibition, which is controlled by local cholinergic activation. Output to the PL and to the accessory tectofugal pathway thus appears to be under strict control of local tectal networks, the relevance of which for multimodal integration is discussed.
Collapse
Affiliation(s)
- Marinus Kloos
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany.,Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Stefan Weigel
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Harald Luksch
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
18
|
E Kızıltan M, Bekdik Şirinocak P, Akıncı T, Cerrahoğlu Şirin T, Arkalı BN, Candan F, Gündüz A. Prepulse modulation and recovery of trigemino-cervical reflex in normal subjects. Neurol Sci 2018; 40:305-310. [PMID: 30397817 DOI: 10.1007/s10072-018-3624-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/25/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE In this study, we analyzed the inhibitory control on the trigemino-cervical reflex (TCR), and whether or not prepulse modulation (PPM) has an effect on TCR. Thus, we studied the PPM of TCR. We hypothesized that TCR would presumably be under the modulatory effect after the prepulse stimulus similar to blink reflex (BR). We also studied the recovery of TCR which was previously shown. METHODS We included 13 healthy individuals. All subjects underwent recordings of TCR, TCR-PPM, and recovery of TCR. For TCR-PPM, a subthreshold stimulus to second finger 50 or 100 ms before the test stimulus was applied. For recovery of TCR, two stimuli at the infraorbital nerve were applied at 300, 500, and 800 ms interstimulus intervals (ISIs). RESULTS There was an inhibition of bilateral late responses of TCR at the ISIs of both 50 ms and 100 ms. There was no change of latencies. Full recovery of TCR did not develop even at the ISI 800 ms. DISCUSSION We have provided an evidence for the TCR-PPM in healthy subjects for the first time in this study. The prepulse inhibition is attributed to the functions of the pedunculopontine tegmental nucleus. Our study provides a strong indication that there are connections between pedunculopontine tegmental nucleus and trigemino-cervical circuit, which produces TCR.
Collapse
Affiliation(s)
- Meral E Kızıltan
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pınar Bekdik Şirinocak
- Department of Neurology, Kocaeli Derince Education and Research Hospital, Istanbul, Turkey
| | - Tuba Akıncı
- Department of Neurology, Beylikdüzü State Hospital, Istanbul, Turkey
| | - Tuba Cerrahoğlu Şirin
- Department of Neurology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Burcu Nuran Arkalı
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Fatma Candan
- Department of Neurology, Goztepe Education and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ayşegül Gündüz
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
19
|
Abstract
Purpose of Review The integration of information across sensory modalities into unified percepts is a fundamental sensory process upon which a multitude of cognitive processes are based. We review the body of literature exploring aging-related changes in audiovisual integration published over the last five years. Specifically, we review the impact of changes in temporal processing, the influence of the effectiveness of sensory inputs, the role of working memory, and the newer studies of intra-individual variability during these processes. Recent Findings Work in the last five years on bottom-up influences of sensory perception has garnered significant attention. Temporal processing, a driving factors of multisensory integration, has now been shown to decouple with multisensory integration in aging, despite their co-decline with aging. The impact of stimulus effectiveness also changes with age, where older adults show maximal benefit from multisensory gain at high signal-to-noise ratios. Following sensory decline, high working memory capacities have now been shown to be somewhat of a protective factor against age-related declines in audiovisual speech perception, particularly in noise. Finally, newer research is emerging focusing on the general intra-individual variability observed with aging. Summary Overall, the studies of the past five years have replicated and expanded on previous work that highlights the role of bottom-up sensory changes with aging and their influence on audiovisual integration, as well as the top-down influence of working memory.
Collapse
Affiliation(s)
- Sarah H Baum
- Department of Psychology, University of Washington
| | - Ryan Stevenson
- Department of Psychology, Western University.,Brain and Mind Institute, Western University.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University.,Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University.,Centre for Vision Research, York University
| |
Collapse
|
20
|
Stevenson RA, Segers M, Ncube BL, Black KR, Bebko JM, Ferber S, Barense MD. The cascading influence of multisensory processing on speech perception in autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2017; 22:609-624. [PMID: 28506185 DOI: 10.1177/1362361317704413] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been recently theorized that atypical sensory processing in autism relates to difficulties in social communication. Through a series of tasks concurrently assessing multisensory temporal processes, multisensory integration and speech perception in 76 children with and without autism, we provide the first behavioral evidence of such a link. Temporal processing abilities in children with autism contributed to impairments in speech perception. This relationship was significantly mediated by their abilities to integrate social information across auditory and visual modalities. These data describe the cascading impact of sensory abilities in autism, whereby temporal processing impacts multisensory information of social information, which, in turn, contributes to deficits in speech perception. These relationships were found to be specific to autism, specific to multisensory but not unisensory integration, and specific to the processing of social information.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanne Ferber
- 3 University of Toronto, Canada.,4 Rotman Research Institute at Baycrest, Canada
| | - Morgan D Barense
- 3 University of Toronto, Canada.,4 Rotman Research Institute at Baycrest, Canada
| |
Collapse
|
21
|
Savage MA, McQuade R, Thiele A. Segregated fronto-cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors. J Comp Neurol 2017; 525:1980-1999. [PMID: 28177526 PMCID: PMC5396297 DOI: 10.1002/cne.24186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022]
Abstract
The orchestration of orienting behaviors requires the interaction of many cortical and subcortical areas, for example the superior colliculus (SC), as well as prefrontal areas responsible for top–down control. Orienting involves different behaviors, such as approach and avoidance. In the rat, these behaviors are at least partially mapped onto different SC subdomains, the lateral (SCl) and medial (SCm), respectively. To delineate the circuitry involved in the two types of orienting behavior in mice, we injected retrograde tracer into the intermediate and deep layers of the SCm and SCl, and thereby determined the main input structures to these subdomains. Overall the SCm receives larger numbers of afferents compared to the SCl. The prefrontal cingulate area (Cg), visual, oculomotor, and auditory areas provide strong input to the SCm, while prefrontal motor area 2 (M2), and somatosensory areas provide strong input to the SCl. The prefrontal areas Cg and M2 in turn connect to different cortical and subcortical areas, as determined by anterograde tract tracing. Even though connectivity pattern often overlap, our labeling approaches identified segregated neural circuits involving SCm, Cg, secondary visual cortices, auditory areas, and the dysgranular retrospenial cortex likely to be involved in avoidance behaviors. Conversely, SCl, M2, somatosensory cortex, and the granular retrospenial cortex comprise a network likely involved in approach/appetitive behaviors.
Collapse
Affiliation(s)
- Michael Anthony Savage
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, United Kingdom
| | - Richard McQuade
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, United Kingdom
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, United Kingdom
| |
Collapse
|
22
|
Caruso VC, Pages DS, Sommer MA, Groh JM. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control. J Neurophysiol 2016; 115:3162-73. [PMID: 26936983 DOI: 10.1152/jn.00935.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway.
Collapse
Affiliation(s)
- Valeria C Caruso
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and
| | - Daniel S Pages
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and
| | - Marc A Sommer
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Jennifer M Groh
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and
| |
Collapse
|
23
|
Serrao M, Cortese F, Andersen OK, Conte C, Spaich EG, Fragiotta G, Ranavolo A, Coppola G, Perrotta A, Pierelli F. Modular organization of the head retraction responses elicited by electrical painful stimulation of the facial skin in humans. Clin Neurophysiol 2015; 126:2306-13. [PMID: 25769929 DOI: 10.1016/j.clinph.2015.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/07/2015] [Accepted: 01/28/2015] [Indexed: 11/25/2022]
|
24
|
Stevenson RA, Segers M, Ferber S, Barense MD, Camarata S, Wallace MT. Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Res 2015; 9:720-38. [PMID: 26402725 DOI: 10.1002/aur.1566] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/22/2015] [Accepted: 08/29/2015] [Indexed: 12/21/2022]
Abstract
A growing area of interest and relevance in the study of autism spectrum disorder (ASD) focuses on the relationship between multisensory temporal function and the behavioral, perceptual, and cognitive impairments observed in ASD. Atypical sensory processing is becoming increasingly recognized as a core component of autism, with evidence of atypical processing across a number of sensory modalities. These deviations from typical processing underscore the value of interpreting ASD within a multisensory framework. Furthermore, converging evidence illustrates that these differences in audiovisual processing may be specifically related to temporal processing. This review seeks to bridge the connection between temporal processing and audiovisual perception, and to elaborate on emerging data showing differences in audiovisual temporal function in autism. We also discuss the consequence of such changes, the specific impact on the processing of different classes of audiovisual stimuli (e.g. speech vs. nonspeech, etc.), and the presumptive brain processes and networks underlying audiovisual temporal integration. Finally, possible downstream behavioral implications, and possible remediation strategies are outlined. Autism Res 2016, 9: 720-738. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Magali Segers
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Susanne Ferber
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Toronto, Ontario, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Toronto, Ontario, Canada
| | - Stephen Camarata
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
25
|
Jiang H, Stein BE, McHaffie JG. Multisensory training reverses midbrain lesion-induced changes and ameliorates haemianopia. Nat Commun 2015; 6:7263. [PMID: 26021613 PMCID: PMC6193257 DOI: 10.1038/ncomms8263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/23/2015] [Indexed: 11/09/2022] Open
Abstract
Failure to attend to visual cues is a common consequence of visual cortex injury. Here, we report on a behavioural strategy whereby cross-modal (auditory-visual) training reinstates visuomotor competencies in animals rendered haemianopic by complete unilateral visual cortex ablation. The re-emergence of visual behaviours is correlated with the reinstatement of visual responsiveness in deep layer neurons of the ipsilesional superior colliculus (SC). This functional recovery is produced by training-induced alterations in descending influences from association cortex that allowed these midbrain neurons to once again transform visual cues into appropriate orientation behaviours. The findings underscore the inherent plasticity and functional breadth of phylogenetically older visuomotor circuits that can express visual capabilities thought to have been subsumed by more recently evolved brain regions. These observations suggest the need for reevaluating current concepts of functional segregation in the visual system and have important implications for strategies aimed at ameliorating trauma-induced visual deficits in humans.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010 USA
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010 USA
| | - John G McHaffie
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010 USA
| |
Collapse
|
26
|
Ahmadlou M, Heimel JA. Preference for concentric orientations in the mouse superior colliculus. Nat Commun 2015; 6:6773. [PMID: 25832803 PMCID: PMC4396361 DOI: 10.1038/ncomms7773] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 01/23/2023] Open
Abstract
The superior colliculus is a layered structure important for body- and gaze-orienting responses. Its superficial layer is, next to the lateral geniculate nucleus, the second major target of retinal ganglion axons and is retinotopically organized. Here we show that in the mouse there is also a precise organization of orientation preference. In columns perpendicular to the tectal surface, neurons respond to the same visual location and prefer gratings of the same orientation. Calcium imaging and extracellular recording revealed that the preferred grating varies with retinotopic location, and is oriented parallel to the concentric circle around the centre of vision through the receptive field. This implies that not all orientations are equally represented across the visual field. This makes the superior colliculus different from visual cortex and unsuitable for translation-invariant object recognition and suggests that visual stimuli might have different behavioural consequences depending on their retinotopic location. The mammalian superior colliculus (SC) processes visual stimuli but little is known about the spatial organization of the response preferences for specific visual features. Here the authors show that the mouse SC contains a map for orientation preference such that preferred grating orientation is aligned to concentric circles around the centre of the visual field.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Cortical Structure &Function group, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - J Alexander Heimel
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Cortical Structure &Function group, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
27
|
Ten Brink AF, Nijboer TCW, Bergsma DP, Barton JJS, Van der Stigchel S. Lack of multisensory integration in hemianopia: no influence of visual stimuli on aurally guided saccades to the blind hemifield. PLoS One 2015; 10:e0122054. [PMID: 25835952 PMCID: PMC4383622 DOI: 10.1371/journal.pone.0122054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/06/2015] [Indexed: 11/28/2022] Open
Abstract
In patients with visual hemifield defects residual visual functions may be present, a phenomenon called blindsight. The superior colliculus (SC) is part of the spared pathway that is considered to be responsible for this phenomenon. Given that the SC processes input from different modalities and is involved in the programming of saccadic eye movements, the aim of the present study was to examine whether multimodal integration can modulate oculomotor competition in the damaged hemifield. We conducted two experiments with eight patients who had visual field defects due to lesions that affected the retinogeniculate pathway but spared the retinotectal direct SC pathway. They had to make saccades to an auditory target that was presented alone or in combination with a visual stimulus. The visual stimulus could either be spatially coincident with the auditory target (possibly enhancing the auditory target signal), or spatially disparate to the auditory target (possibly competing with the auditory tar-get signal). For each patient we compared the saccade endpoint deviation in these two bi-modal conditions with the endpoint deviation in the unimodal condition (auditory target alone). In all seven hemianopic patients, saccade accuracy was affected only by visual stimuli in the intact, but not in the blind visual field. In one patient with a more limited quadrantano-pia, a facilitation effect of the spatially coincident visual stimulus was observed. We conclude that our results show that multisensory integration is infrequent in the blind field of patients with hemianopia.
Collapse
Affiliation(s)
- Antonia F. Ten Brink
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Brain Center Rudolf Magnus Institute of Neuroscience and Centre of Excellence for Rehabilitation Medicine, University Medical Centre Utrecht and Rehabilitation Centre De Hoogstraat, Utrecht, The Netherlands
- * E-mail:
| | - Tanja C. W. Nijboer
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Brain Center Rudolf Magnus Institute of Neuroscience and Centre of Excellence for Rehabilitation Medicine, University Medical Centre Utrecht and Rehabilitation Centre De Hoogstraat, Utrecht, The Netherlands
| | - Douwe P. Bergsma
- University Medical Centre St. Radboud, department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Jason J. S. Barton
- Departments of Medicine (Neurology), and Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
28
|
Wallace MT, Stevenson RA. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 2014; 64:105-23. [PMID: 25128432 PMCID: PMC4326640 DOI: 10.1016/j.neuropsychologia.2014.08.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
Abstract
Behavior, perception and cognition are strongly shaped by the synthesis of information across the different sensory modalities. Such multisensory integration often results in performance and perceptual benefits that reflect the additional information conferred by having cues from multiple senses providing redundant or complementary information. The spatial and temporal relationships of these cues provide powerful statistical information about how these cues should be integrated or "bound" in order to create a unified perceptual representation. Much recent work has examined the temporal factors that are integral in multisensory processing, with many focused on the construct of the multisensory temporal binding window - the epoch of time within which stimuli from different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests that this temporal window is altered in a series of neurodevelopmental disorders, including autism, dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in multisensory temporal function may play an important role in the perceptual and cognitive weaknesses that characterize these clinical disorders. Within this context, focus on improving the acuity of multisensory temporal function may have important implications for the amelioration of the "higher-order" deficits that serve as the defining features of these disorders.
Collapse
Affiliation(s)
- Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA; Department of Hearing & Speech Sciences, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | - Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Stein BE, Stanford TR, Rowland BA. Development of multisensory integration from the perspective of the individual neuron. Nat Rev Neurosci 2014; 15:520-35. [PMID: 25158358 DOI: 10.1038/nrn3742] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability to use cues from multiple senses in concert is a fundamental aspect of brain function. It maximizes the brain’s use of the information available to it at any given moment and enhances the physiological salience of external events. Because each sense conveys a unique perspective of the external world, synthesizing information across senses affords computational benefits that cannot otherwise be achieved. Multisensory integration not only has substantial survival value but can also create unique experiences that emerge when signals from different sensory channels are bound together. However, neurons in a newborn’s brain are not capable of multisensory integration, and studies in the midbrain have shown that the development of this process is not predetermined. Rather, its emergence and maturation critically depend on cross-modal experiences that alter the underlying neural circuit in such a way that optimizes multisensory integrative capabilities for the environment in which the animal will function.
Collapse
|
30
|
Takeshima Y, Gyoba J. Hemispheric asymmetry in the auditory facilitation effect in dual-stream rapid serial visual presentation tasks. PLoS One 2014; 9:e104131. [PMID: 25119997 PMCID: PMC4131986 DOI: 10.1371/journal.pone.0104131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/11/2014] [Indexed: 11/29/2022] Open
Abstract
Even though auditory stimuli do not directly convey information related to visual stimuli, they often improve visual detection and identification performance. Auditory stimuli often alter visual perception depending on the reliability of the sensory input, with visual and auditory information reciprocally compensating for ambiguity in the other sensory domain. Perceptual processing is characterized by hemispheric asymmetry. While the left hemisphere is more involved in linguistic processing, the right hemisphere dominates spatial processing. In this context, we hypothesized that an auditory facilitation effect in the right visual field for the target identification task, and a similar effect would be observed in the left visual field for the target localization task. In the present study, we conducted target identification and localization tasks using a dual-stream rapid serial visual presentation. When two targets are embedded in a rapid serial visual presentation stream, the target detection or discrimination performance for the second target is generally lower than for the first target; this deficit is well known as attentional blink. Our results indicate that auditory stimuli improved target identification performance for the second target within the stream when visual stimuli were presented in the right, but not the left visual field. In contrast, auditory stimuli improved second target localization performance when visual stimuli were presented in the left visual field. An auditory facilitation effect was observed in perceptual processing, depending on the hemispheric specialization. Our results demonstrate a dissociation between the lateral visual hemifield in which a stimulus is projected and the kind of visual judgment that may benefit from the presentation of an auditory cue.
Collapse
Affiliation(s)
- Yasuhiro Takeshima
- Department of Psychology, Graduate School of Arts and Letters, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Jiro Gyoba
- Department of Psychology, Graduate School of Arts and Letters, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
31
|
Takeshima Y, Gyoba J. Pattern dot quantity affects auditory facilitation effects on visual object representations. Perception 2014; 43:107-16. [PMID: 24919347 DOI: 10.1068/p7540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Auditory stimuli often facilitate visual perception. Audiovisual integration requires spatial and/or temporal proximity between visual and auditory stimuli; additionally, sensory processing speed affects the audiovisual integration process. In the present study we examined the relationship between processing speed and the auditory facilitation effect on visual representations by manipulating dot quantity patterns. We hypothesized that the auditory facilitation effect would be observed in longer interstimulus interval conditions with more dot quantities. This is because more processing time would be required to integrate visual and auditory stimuli. During a backward masking paradigm used in experiment 1, the auditory facilitation effect depended on dot quantity among patterns and the interval between visual stimuli and masks. Moreover, differences in processing time required to integrate visual and auditory stimuli between dot quantities was confirmed from a same-different discrimination task in experiment 2. Therefore, dot quantity affects sensory processing time, and a longer processing time is required for integrating visual and auditory stimuli when visual dot quantity is high.
Collapse
|
32
|
Merker B. The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control. Front Psychol 2013; 4:501. [PMID: 23950750 PMCID: PMC3738861 DOI: 10.3389/fpsyg.2013.00501] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/16/2013] [Indexed: 11/13/2022] Open
Abstract
The 20 billion neurons of the neocortex have a mere hundred thousand motor neurons by which to express cortical contents in overt behavior. Implemented through a staggered cortical "efference cascade" originating in the descending axons of layer five pyramidal cells throughout the neocortical expanse, this steep convergence accomplishes final integration for action of cortical information through a system of interconnected subcortical way stations. Coherent and effective action control requires the inclusion of a continually updated joint "global best estimate" of current sensory, motivational, and motor circumstances in this process. I have previously proposed that this running best estimate is extracted from cortical probabilistic preliminaries by a subcortical neural "reality model" implementing our conscious sensory phenomenology. As such it must exhibit first person perspectival organization, suggested to derive from formating requirements of the brain's subsystem for gaze control, with the superior colliculus at its base. Gaze movements provide the leading edge of behavior by capturing targets of engagement prior to contact. The rotation-based geometry of directional gaze movements places their implicit origin inside the head, a location recoverable by cortical probabilistic source reconstruction from the rampant primary sensory variance generated by the incessant play of collicularly triggered gaze movements. At the interface between cortex and colliculus lies the dorsal pulvinar. Its unique long-range inhibitory circuitry may precipitate the brain's global best estimate of its momentary circumstances through multiple constraint satisfaction across its afferents from numerous cortical areas and colliculus. As phenomenal content of our sensory awareness, such a global best estimate would exhibit perspectival organization centered on a purely implicit first person origin, inherently incapable of appearing as a phenomenal content of the sensory space it serves.
Collapse
|
33
|
Stevenson RA, Wallace MT. Multisensory temporal integration: task and stimulus dependencies. Exp Brain Res 2013; 227:249-61. [PMID: 23604624 PMCID: PMC3711231 DOI: 10.1007/s00221-013-3507-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 03/28/2013] [Indexed: 12/19/2022]
Abstract
The ability of human sensory systems to integrate information across the different modalities provides a wide range of behavioral and perceptual benefits. This integration process is dependent upon the temporal relationship of the different sensory signals, with stimuli occurring close together in time typically resulting in the largest behavior changes. The range of temporal intervals over which such benefits are seen is typically referred to as the temporal binding window (TBW). Given the importance of temporal factors in multisensory integration under both normal and atypical circumstances such as autism and dyslexia, the TBW has been measured with a variety of experimental protocols that differ according to criterion, task, and stimulus type, making comparisons across experiments difficult. In the current study, we attempt to elucidate the role that these various factors play in the measurement of this important construct. The results show a strong effect of stimulus type, with the TBW assessed with speech stimuli being both larger and more symmetrical than that seen using simple and complex non-speech stimuli. These effects are robust across task and statistical criteria and are highly consistent within individuals, suggesting substantial overlap in the neural and cognitive operations that govern multisensory temporal processes.
Collapse
Affiliation(s)
- Ryan A Stevenson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 7110 MRB III BioSci Bldg 465, 21st Ave South, Nashville, TN 37232, USA.
| | | |
Collapse
|
34
|
Effects of trunk-to-head rotation on the labyrinthine responses of rat reticular neurons. Neuroscience 2012; 224:48-62. [DOI: 10.1016/j.neuroscience.2012.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/24/2022]
|
35
|
Schiller PH, Kwak MC, Slocum WM. Visual and auditory cue integration for the generation of saccadic eye movements in monkeys and lever pressing in humans. Eur J Neurosci 2012; 36:2500-4. [PMID: 22621264 DOI: 10.1111/j.1460-9568.2012.08133.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examined how effectively visual and auditory cues can be integrated in the brain for the generation of motor responses. The latencies with which saccadic eye movements are produced in humans and monkeys form, under certain conditions, a bimodal distribution, the first mode of which has been termed express saccades. In humans, a much higher percentage of express saccades is generated when both visual and auditory cues are provided compared with the single presentation of these cues [H. C. Hughes et al. (1994) J. Exp. Psychol. Hum. Percept. Perform., 20, 131-153]. In this study, we addressed two questions: first, do monkeys also integrate visual and auditory cues for express saccade generation as do humans and second, does such integration take place in humans when, instead of eye movements, the task is to press levers with fingers? Our results show that (i) in monkeys, as in humans, the combined visual and auditory cues generate a much higher percentage of express saccades than do singly presented cues and (ii) the latencies with which levers are pressed by humans are shorter when both visual and auditory cues are provided compared with the presentation of single cues, but the distribution in all cases is unimodal; response latencies in the express range seen in the execution of saccadic eye movements are not obtained with lever pressing.
Collapse
Affiliation(s)
- Peter H Schiller
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | | | | |
Collapse
|
36
|
Stevenson RA, Fister JK, Barnett ZP, Nidiffer AR, Wallace MT. Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Exp Brain Res 2012; 219:121-37. [PMID: 22447249 DOI: 10.1007/s00221-012-3072-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/06/2012] [Indexed: 12/19/2022]
Abstract
In natural environments, human sensory systems work in a coordinated and integrated manner to perceive and respond to external events. Previous research has shown that the spatial and temporal relationships of sensory signals are paramount in determining how information is integrated across sensory modalities, but in ecologically plausible settings, these factors are not independent. In the current study, we provide a novel exploration of the impact on behavioral performance for systematic manipulations of the spatial location and temporal synchrony of a visual-auditory stimulus pair. Simple auditory and visual stimuli were presented across a range of spatial locations and stimulus onset asynchronies (SOAs), and participants performed both a spatial localization and simultaneity judgment task. Response times in localizing paired visual-auditory stimuli were slower in the periphery and at larger SOAs, but most importantly, an interaction was found between the two factors, in which the effect of SOA was greater in peripheral as opposed to central locations. Simultaneity judgments also revealed a novel interaction between space and time: individuals were more likely to judge stimuli as synchronous when occurring in the periphery at large SOAs. The results of this study provide novel insights into (a) how the speed of spatial localization of an audiovisual stimulus is affected by location and temporal coincidence and the interaction between these two factors and (b) how the location of a multisensory stimulus impacts judgments concerning the temporal relationship of the paired stimuli. These findings provide strong evidence for a complex interdependency between spatial location and temporal structure in determining the ultimate behavioral and perceptual outcome associated with a paired multisensory (i.e., visual-auditory) stimulus.
Collapse
Affiliation(s)
- Ryan A Stevenson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
37
|
The α₂-adrenergic antagonist idazoxan counteracts prepulse inhibition deficits caused by amphetamine or dizocilpine in rats. Psychopharmacology (Berl) 2012; 219:99-108. [PMID: 21710169 DOI: 10.1007/s00213-011-2377-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Prepulse inhibition (PPI) is the reduction in startle response magnitude when intense stimuli are closely preceded by other weak stimuli. Animal models used to investigate sensorimotor gating deficits include both the stimulation of dopamine receptors (e.g., amphetamine or apomorphine) and the blockade of NMDA-glutamate receptors (e.g., dizocilpine or phencyclidine). OBJECTIVES We assessed the effects of idazoxan (an α(2)-adrenergic antagonist) on amphetamine- and dizocilpine-induced PPI disruptions in adult female Sprague-Dawley rats. METHODS In experiment 1, rats were tested for PPI in a bimodal paradigm with an acoustic prepulse and a tactile startle stimulus. Interactions of amphetamine (1 mg/kg) and idazoxan (0.5, 1, and 2 mg/kg) were assessed, with all rats receiving all drug doses in a counterbalanced order. In experiment 2, dizocilpine (0.05 mg/kg) and idazoxan (0.5, 1, and 2 mg/kg) interactions were analyzed. RESULTS Amphetamine (1 mg/kg) caused a significant reduction in PPI. Both the 1- and 2-mg/kg doses of idazoxan significantly counteracted this effect. Dizocilpine (.05 mg/kg) effectively inhibited PPI, and the 2-mg/kg idazoxan dose significantly counteracted this impairment. CONCLUSIONS These results suggest that the effectiveness of atypical antipsychotics such as clozapine in counteracting sensorimotor gating deficits reported in previous studies (e.g., Swerdlow and Geyer, Pharmacol Biochem Behav 44:741-744, 1993; Bakshi et al., J Pharmacol Exp Ther 271:787-794, 1994) may be related to their α(2)-antagonist effects, which may be a critical mechanism of the therapeutic effects of atypical antipsychotics in schizophrenia.
Collapse
|
38
|
Bishop CW, Miller LM. Speech cues contribute to audiovisual spatial integration. PLoS One 2011; 6:e24016. [PMID: 21909378 PMCID: PMC3166076 DOI: 10.1371/journal.pone.0024016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/02/2011] [Indexed: 11/21/2022] Open
Abstract
Speech is the most important form of human communication but ambient sounds and competing talkers often degrade its acoustics. Fortunately the brain can use visual information, especially its highly precise spatial information, to improve speech comprehension in noisy environments. Previous studies have demonstrated that audiovisual integration depends strongly on spatiotemporal factors. However, some integrative phenomena such as McGurk interference persist even with gross spatial disparities, suggesting that spatial alignment is not necessary for robust integration of audiovisual place-of-articulation cues. It is therefore unclear how speech-cues interact with audiovisual spatial integration mechanisms. Here, we combine two well established psychophysical phenomena, the McGurk effect and the ventriloquist's illusion, to explore this dependency. Our results demonstrate that conflicting spatial cues may not interfere with audiovisual integration of speech, but conflicting speech-cues can impede integration in space. This suggests a direct but asymmetrical influence between ventral ‘what’ and dorsal ‘where’ pathways.
Collapse
Affiliation(s)
- Christopher W Bishop
- Center for Mind and Brain, University of California Davis, Davis, California, United States of America.
| | | |
Collapse
|
39
|
Perrault T, Rowland B, Stein B. The Organization and Plasticity of Multisensory Integration in the Midbrain. Front Neurosci 2011. [DOI: 10.1201/b11092-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Perrault T, Rowland B, Stein B. The Organization and Plasticity of Multisensory Integration in the Midbrain. Front Neurosci 2011. [DOI: 10.1201/9781439812174-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Perrault TJ, Stein BE, Rowland BA. Non-stationarity in multisensory neurons in the superior colliculus. Front Psychol 2011; 2:144. [PMID: 21772824 PMCID: PMC3131158 DOI: 10.3389/fpsyg.2011.00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/16/2011] [Indexed: 11/13/2022] Open
Abstract
The superior colliculus (SC) integrates information from multiple sensory modalities to facilitate the detection and localization of salient events. The efficacy of "multisensory integration" is traditionally measured by comparing the magnitude of the response elicited by a cross-modal stimulus to the responses elicited by its modality-specific component stimuli, and because there is an element of randomness in the system, these calculations are made using response values averaged over multiple stimulus presentations in an experiment. Recent evidence suggests that multisensory integration in the SC is highly plastic and these neurons adapt to specific anomalous stimulus configurations. This raises the question whether such adaptation occurs during an experiment with traditional stimulus configurations; that is, whether the state of the neuron and its integrative principles are the same at the beginning and end of the experiment, or whether they are altered as a consequence of exposure to the testing stimuli even when they are pseudo-randomly interleaved. We find that unisensory and multisensory responses do change during an experiment, and that these changes are predictable. Responses that are initially weak tend to potentiate, responses that are initially strong tend to habituate, and the efficacy of multisensory integration waxes or wanes accordingly during the experiment as predicted by the "principle of inverse effectiveness." These changes are presumed to reflect two competing mechanisms in the SC: potentiation reflects increases in the expectation that a stimulus will occur at a given location relative to others, and habituation reflects decreases in stimulus novelty. These findings indicate plasticity in multisensory integration that allows animals to adapt to rapidly changing environmental events while suggesting important caveats in the interpretation of experimental data: the neuron studied at the beginning of an experiment is not the same at the end of it.
Collapse
Affiliation(s)
- Thomas J Perrault
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston Salem, NC, USA
| | | | | |
Collapse
|
42
|
Rial RV, Akaârir M, Gamundí A, Nicolau C, Garau C, Aparicio S, Tejada S, Gené L, González J, De Vera LM, Coenen AM, Barceló P, Esteban S. Evolution of wakefulness, sleep and hibernation: From reptiles to mammals. Neurosci Biobehav Rev 2010; 34:1144-60. [DOI: 10.1016/j.neubiorev.2010.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/08/2010] [Accepted: 01/19/2010] [Indexed: 11/17/2022]
|
43
|
Stein BE, Stanford TR, Rowland BA. The neural basis of multisensory integration in the midbrain: its organization and maturation. Hear Res 2009; 258:4-15. [PMID: 19345256 PMCID: PMC2787841 DOI: 10.1016/j.heares.2009.03.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/20/2022]
Abstract
Multisensory integration describes a process by which information from different sensory systems is combined to influence perception, decisions, and overt behavior. Despite a widespread appreciation of its utility in the adult, its developmental antecedents have received relatively little attention. Here we review what is known about the development of multisensory integration, with a focus on the circuitry and experiential antecedents of its development in the model system of the multisensory (i.e., deep) layers of the superior colliculus. Of particular interest here are two sets of experimental observations: (1) cortical influences appear essential for multisensory integration in the SC, and (2) postnatal experience guides its maturation. The current belief is that the experience normally gained during early life is instantiated in the cortico-SC projection, and that this is the primary route by which ecological pressures adapt SC multisensory integration to the particular environment in which it will be used.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1010, USA.
| | | | | |
Collapse
|
44
|
Stein BE, Perrault TJ, Stanford TR, Rowland BA. Postnatal experiences influence how the brain integrates information from different senses. Front Integr Neurosci 2009; 3:21. [PMID: 19838323 PMCID: PMC2762369 DOI: 10.3389/neuro.07.021.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/11/2009] [Indexed: 11/20/2022] Open
Abstract
Sensory processing disorder (SPD) is characterized by anomalous reactions to, and integration of, sensory cues. Although the underlying etiology of SPD is unknown, one brain region likely to reflect these sensory and behavioral anomalies is the superior colliculus (SC), a structure involved in the synthesis of information from multiple sensory modalities and the control of overt orientation responses. In the present review we describe normal functional properties of this structure, the manner in which its individual neurons integrate cues from different senses, and the overt SC-mediated behaviors that are believed to manifest this “multisensory integration.” Of particular interest here is how SC neurons develop their capacity to engage in multisensory integration during early postnatal life as a consequence of early sensory experience, and the intimate communication between cortex and the midbrain that makes this developmental process possible.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
45
|
Krueger J, Royal DW, Fister MC, Wallace MT. Spatial receptive field organization of multisensory neurons and its impact on multisensory interactions. Hear Res 2009; 258:47-54. [PMID: 19698773 DOI: 10.1016/j.heares.2009.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/05/2009] [Accepted: 08/12/2009] [Indexed: 11/18/2022]
Abstract
Previous work has established that the spatial receptive fields (SRFs) of multisensory neurons in the cerebral cortex are strikingly heterogeneous, and that SRF architecture plays an important deterministic role in sensory responsiveness and multisensory integrative capacities. The initial part of this contribution serves to review these findings detailing the key features of SRF organization in cortical multisensory populations by highlighting work from the cat anterior ectosylvian sulcus (AES). In addition, we have recently conducted parallel studies designed to examine SRF architecture in the classic model for multisensory studies, the cat superior colliculus (SC), and we present some of the preliminary observations from the SC here. An examination of individual SC neurons revealed marked similarities between their unisensory (i.e., visual and auditory) SRFs, as well as between these unisensory SRFs and the multisensory SRF. Despite these similarities within individual neurons, different SC neurons had SRFs that ranged from a single area of greatest activation (hot spot) to multiple and spatially discrete hot spots. Similar to cortical multisensory neurons, the interactive profile of SC neurons was correlated strongly to SRF architecture, closely following the principle of inverse effectiveness. Thus, large and often superadditive multisensory response enhancements were typically seen at SRF locations where visual and auditory stimuli were weakly effective. Conversely, subadditive interactions were seen at SRF locations where stimuli were highly effective. Despite the unique functions characteristic of cortical and subcortical multisensory circuits, our results suggest a strong mechanistic interrelationship between SRF microarchitecture and integrative capacity.
Collapse
Affiliation(s)
- Juliane Krueger
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
46
|
Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs. J Neurosci 2009; 29:6580-92. [PMID: 19458228 DOI: 10.1523/jneurosci.0525-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Influences from the visual (AEV), auditory (FAES), and somatosensory (SIV) divisions of the cat anterior ectosylvian sulcus (AES) play a critical role in rendering superior colliculus (SC) neurons capable of multisensory integration. However, it is not known whether this is accomplished via their independent sensory-specific action or via some cross-modal cooperative action that emerges as a consequence of their convergence on SC neurons. Using visual-auditory SC neurons as a model, we examined how selective and combined deactivation of FAES and AEV affected SC multisensory (visual-auditory) and unisensory (visual-visual) integration capabilities. As noted earlier, multisensory integration yielded SC responses that were significantly greater than those evoked by the most effective individual component stimulus. This multisensory "response enhancement" was more evident when the component stimuli were weakly effective. Conversely, unisensory integration was dominated by the lack of response enhancement. During cryogenic deactivation of FAES and/or AEV, the unisensory responses of SC neurons were only modestly affected; however, their multisensory response enhancement showed a significant downward shift and was eliminated. The shift was similar in magnitude for deactivation of either AES subregion and, in general, only marginally greater when both were deactivated simultaneously. These data reveal that SC multisensory integration is dependent on the cooperative action of distinct subsets of unisensory corticofugal afferents, afferents whose sensory combination matches the multisensory profile of their midbrain target neurons, and whose functional synergy is specific to rendering SC neurons capable of synthesizing information from those particular senses.
Collapse
|
47
|
Abstract
Primary and recurrent infections of human cytomegalovirus (HCMV) can occur during pregnancy. Both can result congenital infection, the leading infectious cause of mental retardation, sensorineural deafness and visual impairment. Intrauterine transmission of HCMV and adverse outcome are mainly related to primary maternal infection. However, there is an increasing evidence that incidence of symptomatic infections in infants born to immune mothers is higher than previously thought. Therefore the option of prenatal diagnosis has a crucial role in the management of pregnancy complicated by active HCMV infection. In spite of the potentially devastating consequence of congenital HCMV infection, little information is available concerning antiviral therapy as prophylactic treatment for women at high risk of the transmission of HCMV during pregnancy. Passive immunization for prevention of vertical transmission of the virus seems to be promising. Until a HCMV vaccine is available, education regarding the risk and strategies for prevention of HCMV infection during pregnancy is needed.
Collapse
Affiliation(s)
- Rozália Pusztai
- Szegedi Tudományegyetem, Altalános Orvostudományi Kar, Orvosi Mikrobiológiai és Immunbiológiai Intézet, Szeged.
| |
Collapse
|
48
|
Fuentes-Santamaria V, Alvarado JC, McHaffie JG, Stein BE. Axon morphologies and convergence patterns of projections from different sensory-specific cortices of the anterior ectosylvian sulcus onto multisensory neurons in the cat superior colliculus. Cereb Cortex 2009; 19:2902-15. [PMID: 19359347 DOI: 10.1093/cercor/bhp060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Corticofugal projections to the thalamus reveal 2 axonal morphologies, each associated with specific physiological attributes. These determine the functional characteristics of thalamic neurons. It is not clear, however, whether such features characterize the corticofugal projections that mediate multisensory integration in superior colliculus (SC) neurons. The cortico-collicular projections from cat anterior ectosylvian sulcus (AES) are derived from its visual, auditory, and somatosensory representations and are critical for multisensory integration. Following tracer injections into each subdivision, 2 types of cortico-collicular axons were observed. Most were categorized as type I and consisted of small-caliber axons traversing long distances without branching, bearing mainly small boutons. The less frequent type II had thicker axons, more complex branching patterns, larger boutons, and more complex terminal boutons. Following combinatorial injections of 2 different fluorescent tracers into defined AES subdivisions, fibers from each were seen converging onto individual SC neurons and indicate that such convergence, like that in the corticothalamic system, is mediated by 2 distinct morphological types of axon terminals. Nevertheless, and despite the conservation of axonal morphologies across different subcortical systems, it is not yet clear if the concomitant physiological attributes described in the thalamus are directly applicable to multisensory integration.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
49
|
Stevenson RA, Kim S, James TW. An additive-factors design to disambiguate neuronal and areal convergence: measuring multisensory interactions between audio, visual, and haptic sensory streams using fMRI. Exp Brain Res 2009; 198:183-94. [PMID: 19352638 DOI: 10.1007/s00221-009-1783-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 03/20/2009] [Indexed: 11/27/2022]
Abstract
It can be shown empirically and theoretically that inferences based on established metrics used to assess multisensory integration with BOLD fMRI data, such as superadditivity, are dependent on the particular experimental situation. For example, the law of inverse effectiveness shows that the likelihood of finding superadditivity in a known multisensory region increases with decreasing stimulus discriminability. In this paper, we suggest that Sternberg's additive-factors design allows for an unbiased assessment of multisensory integration. Through the manipulation of signal-to-noise ratio as an additive factor, we have identified networks of cortical regions that show properties of audio-visual or visuo-haptic neuronal convergence. These networks contained previously identified multisensory regions and also many new regions, for example, the caudate nucleus for audio-visual integration, and the fusiform gyrus for visuo-haptic integration. A comparison of integrative networks across audio-visual and visuo-haptic conditions showed very little overlap, suggesting that neural mechanisms of integration are unique to particular sensory pairings. Our results provide evidence for the utility of the additive-factors approach by demonstrating its effectiveness across modality (vision, audition, and haptics), stimulus type (speech and non-speech), experimental design (blocked and event-related), method of analysis (SPM and ROI), and experimenter-chosen baseline. The additive-factors approach provides a method for investigating multisensory interactions that goes beyond what can be achieved with more established metric-based, subtraction-type methods.
Collapse
Affiliation(s)
- Ryan A Stevenson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
50
|
Fuentes-Santamaria V, McHaffie JG, Stein BE. Maturation of multisensory integration in the superior colliculus: expression of nitric oxide synthase and neurofilament SMI-32. Brain Res 2008; 1242:45-53. [PMID: 18486108 DOI: 10.1016/j.brainres.2008.03.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/19/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Nitric oxide (NO) containing (nitrergic) interneurons are well-positioned to convey the cortical influences that are crucial for multisensory integration in superior colliculus (SC) output neurons. However, it is not known whether nitrergic interneurons are in this position early in life, and might, therefore, also play a role in the functional maturation of this circuit. In the present study, we investigated the postnatal developmental relationship between these two populations of neurons using Beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH) histochemistry and SMI-32 immunocytochemistry to label presumptive interneurons and output neurons, respectively. SMI-32 immunostained neurons were proved to mature and retained immature anatomical features until approximately 8 postnatal weeks. In contrast, nitrergic interneurons developed more rapidly. They had achieved their adult-like anatomy by 4 postnatal weeks and were in a position to influence the dendritic elaboration of output neurons. It is this dendritic substrate through which much of the cortico-collicular influence is expressed. Double-labeling experiments showed that the dendritic and axonal processes of nitrergic interneurons already apposed the somata and dendrites of SMI-32 labeled neurons even at the earliest age examined. The results suggest that nitrergic interneurons play a role in refining the cortico-collicular projection patterns that are believed to be essential for SC output neurons to engage in multisensory integration and to support normal orientation responses to cross-modal stimuli.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|