1
|
West S, Monteyne AJ, van der Heijden I, Stephens FB, Wall BT. Nutritional Considerations for the Vegan Athlete. Adv Nutr 2023; 14:774-795. [PMID: 37127187 PMCID: PMC10334161 DOI: 10.1016/j.advnut.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
Accepting a continued rise in the prevalence of vegan-type diets in the general population is also likely to occur in athletic populations, it is of importance to assess the potential impact on athletic performance, adaptation, and recovery. Nutritional consideration for the athlete requires optimization of energy, macronutrient, and micronutrient intakes, and potentially the judicious selection of dietary supplements, all specified to meet the individual athlete's training and performance goals. The purpose of this review is to assess whether adopting a vegan diet is likely to impinge on such optimal nutrition and, where so, consider evidence based yet practical and pragmatic nutritional recommendations. Current evidence does not support that a vegan-type diet will enhance performance, adaptation, or recovery in athletes, but equally suggests that an athlete can follow a (more) vegan diet without detriment. A clear caveat, however, is that vegan diets consumed spontaneously may induce suboptimal intakes of key nutrients, most notably quantity and/or quality of dietary protein and specific micronutrients (eg, iron, calcium, vitamin B12, and vitamin D). As such, optimal vegan sports nutrition requires (more) careful consideration, evaluation, and planning. Individual/seasonal goals, training modalities, athlete type, and sensory/cultural/ethical preferences, among other factors, should all be considered when planning and adopting a vegan diet.
Collapse
Affiliation(s)
- Sam West
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ino van der Heijden
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
2
|
Mielgo-Ayuso J, Pietrantonio L, Viribay A, Calleja-González J, González-Bernal J, Fernández-Lázaro D. Effect of Acute and Chronic Oral l-Carnitine Supplementation on Exercise Performance Based on the Exercise Intensity: A Systematic Review. Nutrients 2021; 13:4359. [PMID: 34959912 PMCID: PMC8704793 DOI: 10.3390/nu13124359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
l-Carnitine (l-C) and any of its forms (glycine-propionyl l-Carnitine (GPL-C) or l-Carnitine l-tartrate (l-CLT)) has been frequently recommended as a supplement to improve sports performance due to, among others, its role in fat metabolism and in maintaining the mitochondrial acetyl-CoA/CoA ratio. The main aim of the present systematic review was to determine the effects of oral l-C supplementation on moderate- (50-79% V˙O2 max) and high-intensity (≥80% V˙O2 max) exercise performance and to show the effective doses and ideal timing of its intake. A structured search was performed according to the PRISMA® statement and the PICOS guidelines in the Web of Science (WOS) and Scopus databases, including selected data obtained up to 24 October 2021. The search included studies where l-C or glycine-propionyl l-Carnitine (GPL-C) supplementation was compared with a placebo in an identical situation and tested its effects on high and/or low-moderate performance. The trials that used the supplementation of l-C together with additional supplements were eliminated. There were no applied filters on physical fitness level, race, or age of the participants. The methodological quality of studies was evaluated by the McMaster Critical Review Form. Of the 220 articles obtained, 11 were finally included in this systematic review. Six studies used l-C, while three studies used l-CLT, and two others combined the molecule propionyl l-Carnitine (PL-C) with GPL-C. Five studies analyzed chronic supplementation (4-24 weeks) and six studies used an acute administration (<7 days). The administration doses in this chronic supplementation varied from 1 to 3 g/day; in acute supplementation, oral l-C supplementation doses ranged from 3 to 4 g. On the one hand, the effects of oral l-C supplementation on high-intensity exercise performance variables were analyzed in nine studies. Four of them measured the effects of chronic supplementation (lower rating of perceived exertion (RPE) after 30 min at 80% V˙O2 max on cycle ergometer and higher work capacity in "all-out" tests, peak power in a Wingate test, and the number of repetitions and volume lifted in leg press exercises), and five studies analyzed the effects of acute supplementation (lower RPE after graded exercise test on the treadmill until exhaustion and higher peak and average power in the Wingate cycle ergometer test). On the other hand, the effects of l-C supplementation on moderate exercise performance variables were observed in six studies. Out of those, three measured the effect of an acute supplementation, and three described the effect of a chronic supplementation, but no significant improvements on performance were found. In summary, l-C supplementation with 3 to 4 g ingested between 60 and 90 min before testing or 2 to 2.72 g/day for 9 to 24 weeks improved high-intensity exercise performance. However, chronic or acute l-C or GPL-C supplementation did not present improvements on moderate exercise performance.
Collapse
Affiliation(s)
- Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Laura Pietrantonio
- Faculty of Sport Science, Universidad Europea de Madrid, 28670 Madrid, Spain;
| | - Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004 Vitoria-Gasteiz, Spain;
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007 Vitoria, Spain;
| | - Jerónimo González-Bernal
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain;
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
3
|
Vecchio M, Chiaramonte R, Testa G, Pavone V. Clinical Effects of L-Carnitine Supplementation on Physical Performance in Healthy Subjects, the Key to Success in Rehabilitation: A Systematic Review and Meta-Analysis from the Rehabilitation Point of View. J Funct Morphol Kinesiol 2021; 6:jfmk6040093. [PMID: 34842765 PMCID: PMC8628984 DOI: 10.3390/jfmk6040093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
L-carnitine supplementation improves body strength, sports endurance and exercise capacity, as well as delaying the onset of fatigue. The aim of this study was to identify the correct dosage of supplementation to obtain improvements in physical performance and evaluate the changes related to L-carnitine supplementation in specific metabolic parameters, such as serum lactate, VO2, serum total and free carnitine at rest and after physical activities, in healthy subjects. The search was conducted on PubMed, EMBASE, Cochrane Library, Scopus and Web of Science and identified 6404 articles with the keywords: "carnitine" AND "exercises" OR "rehabilitation" OR "physical functional performance" OR "physical activity" OR "sports" OR "health" OR "healthy". A total of 30 publications met the inclusion criteria and were included in the systematic review. The meta-analysis did not show any significant differences in serum lactate values at rest and after exercise in healthy subjects who took L-carnitine supplementation (p > 0.05). On the contrary, L-carnitine administration significantly changed maximal oxygen consumption (VO2) at rest (p < 0.005), serum free and total carnitine at rest and after exercise (p < 0.001). The dosage of supplementation that obtained a significant change in serum total carnitine was 2 g/dL for 4 weeks at rest, 1 g/dL for 3 weeks after exercise, and in serum free carnitine was 2 g/dL for 3 weeks and 2 g/dL for 4 weeks at rest. Based on our study, serum total and free carnitine at rest and after exercise, and VO2 at rest could be used to clinically follow individuals during physical activity and rehabilitation programs. Moreover, the supplementation should have a correct dosage to have maximum effect. Other robust trials are needed to find the best dosage to obtain positive results in metabolic parameters and in physical performance.
Collapse
Affiliation(s)
- Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Rehabilitation Unit, “AOU Policlinico Vittorio Emanuele”, 95123 Catania, Italy
- Correspondence: (M.V.); (R.C.); Tel.: +39-095-378-27-03 (M.V.); Fax: +39-095-731-53-84 (R.C.)
| | - Rita Chiaramonte
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Correspondence: (M.V.); (R.C.); Tel.: +39-095-378-27-03 (M.V.); Fax: +39-095-731-53-84 (R.C.)
| | - Gianluca Testa
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico “Rodolico-San Marco”, University of Catania, 95123 Catania, Italy; (G.T.); (V.P.)
| | - Vito Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico “Rodolico-San Marco”, University of Catania, 95123 Catania, Italy; (G.T.); (V.P.)
| |
Collapse
|
4
|
Bajes HR, Hakooz NM, Dardeer KT, Al-Dujaili EAS. The effect of endurance, resistance training, and supplements on mitochondria and bioenergetics of muscle cells. J Basic Clin Physiol Pharmacol 2021; 33:673-681. [PMID: 34687594 DOI: 10.1515/jbcpp-2021-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Abstract
Bioenergetics is the study of energy flow between biological systems and the surroundings and is measured quantitatively. Energy flow can be affected by many variables, including lifestyle and exercise, where exercise comes in different types; endurance and resistance training play significant roles in enhancing bioenergetics and promoting health. In addition, a supplementary diet supports recovery and energy production. This review aims to study the effect of endurance training, resistance training, and supplement intake on the muscle cell's bioenergetics. As a conclusion of the information presented in this mini-review, it was found that resistance, endurance training, and supplements can increase mitochondrial biogenesis, fat oxidation, myofibril synthesis, and increase VO2 max.
Collapse
Affiliation(s)
- Hana R Bajes
- Department of Science, Atlantic Cape Community College, Mays Landing, NJ, USA.,Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Nancy M Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
5
|
Tadiparthi K, Anand P. A Journey toward the Syntheses of γ-Amino-β-hydroxybutyric Acid (GABOB) and Carnitine. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krishnaji Tadiparthi
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560026, India
| | - Pragya Anand
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560026, India
| |
Collapse
|
6
|
Varney JL, Fowler JW, McClaughry TC, Vignale K, Caldas J, Weil JT, Coon CN. L-Carnitine metabolism, protein turnover and energy expenditure in supplemented and exercised Labrador Retrievers. J Anim Physiol Anim Nutr (Berl) 2020; 104:1540-1550. [PMID: 32557872 PMCID: PMC7540169 DOI: 10.1111/jpn.13391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 03/24/2020] [Accepted: 04/30/2020] [Indexed: 11/28/2022]
Abstract
L-Carnitine is critical for protection against bioaccumulation, long-chain fatty acid transportation and energy production. Energy production becomes important as the body maintains lean mass, repairs muscles and recovers from oxidative stress. The aim was to investigate the effects of supplemented L-carnitine on protein turnover (PT), energy expenditure (EE) and carnitine metabolism in muscle/serum of Labrador Retrievers. In a series of experiments, all dogs were fed a low-carnitine diet and sorted into one of two groups: L-carnitine (LC) supplemented daily with 125 mg L-carnitine and 3.75 g sucrose or placebo (P) supplemented with 4 g sucrose daily. The experiments consisted of analyses of muscle/serum for L-carnitine content (EXP1), a protein turnover experiment (EXP2) and analysis of substrate utilization via indirect calorimetry (EXP3). EXP1: 20 Labradors (10 M/10 F) performed a 13 week running regimen. L-Carnitine content was analysed in the serum and biceps femoris muscle before/after a 24.1 km run. LC serum had higher total (p < .001; p = .001), free (p < .001; p = .001) and esterified (p = .001; p = .003) L-carnitine pre- and post-run respectively. LC muscle had significantly higher free L-carnitine post-run (p = .034). EXP2: 26 Labs (13 M/13 F) performed a 60-day running regimen. For the final run, half of the Labradors from each treatment rested and half ran 24.1 km. Twenty-four Labradors received isotope infusion, and then, a biopsy of the biceps femoris of all 26 Labradors was taken to determine PT. Resting/exercised LC had a lower fractional breakdown rate (FBR) versus P group (p = .042). LC females had a lower FBR v. P females (p = .046). EXP3: Respiration of 16 Labradors (8 M/8 F) was measured via indirect calorimetry over 15 week. All dogs ran on a treadmill for 30 min at 30% VO2 max (6.5 kph), resulting in higher maximum and mean EE in LC females v. P females (p = .021; p = .035). Implications for theory, practice and future research are discussed.
Collapse
|
7
|
A Dose-Dependent Effect of Carnipure ® Tartrate Supplementation on Endurance Capacity, Recovery, and Body Composition in an Exercise Rat Model. Nutrients 2020; 12:nu12051519. [PMID: 32456174 PMCID: PMC7284330 DOI: 10.3390/nu12051519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/10/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
The objective of this work is to investigate the effects of Carnipure® Tartrate (CT) supplementation with or without exercise on endurance capacity, recovery, and fatigue by assessing time to exhaustion as well as body weight and composition in rats. In addition, antioxidant capacity has been evaluated by measuring malondialdehyde (MDA) levels and antioxidant enzyme (superoxide dismutase, SOD; catalase, CAT; glutathioneperoxidase; GSHPx) activities. Fifty-six male Wistar rats were divided into eight groups including seven rats each. A control group did not receive CT nor exercise. Another control group received 200 mg/kg CT without exercise. The other six groups of rats went through an exercise regimen consisting of a 5-day training period with incremental exercise capacity, which was followed by 6 weeks of the run at 25 m/min for 45 min every day. CT was supplemented at 0, 25, 50, 100, 200, and 400 mg/kg per day during the 6 weeks. Rats submitted to exercise and supplemented with CT had a significant and dose-dependent increase in time to exhaustion and this effect seems to be independent of exercise (p < 0.05). Additionally, recovery and fatigue were improved, as shown by a significant and dose-dependent decrease in myoglobin and lactic acid plasma levels, which are two markers of muscle recovery. CT supplementation led to a dose-response decrease in body weight and visceral fat. These effects become significant at 200 and 400 mg/kg doses (p < 0.05). Additionally, the antioxidant capacity was improved, as shown by a significant and dose-dependent increase in SOD, CAT, and GSHPx. Serum MDA concentrations decreased in exercising rats with CT supplementation. CT supplementation led to a decrease in serum glucose, triglycerides, and total cholesterol concentrations with the lowest levels observed at 400 mg/kg dose (p < 0.05). These effects correlated with a significant dose-dependent increase in serum total L-carnitine, free L-carnitine, and acetyl-carnitine, which linked the observed efficacy to CT supplementation. These results demonstrate that CT supplementation during exercise provides benefits on exercise performance, recovery, and fatigue as well as improved the lipid profile and antioxidant capacity. The lowest dose leads to some of these effects seen in rats where 25 mg/kg corresponds to 250 mg/day as a human equivalent.
Collapse
|
8
|
Abdul Majid N, Abdul Hamid A, Salleh SZ, Saari N, Abas F, Pak Dek MS, Ramli NS, Jaafar AH. Metabolomics approach to investigate the ergogenic effect of Morinda citrifolia L. leaf extract on obese Sprague Dawley rats. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:191-203. [PMID: 31381209 DOI: 10.1002/pca.2880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Natural products are obtaining much acceptance as ergogenic aid, not only among athletes but also among the general population including people with excess body fat. Under normal circumstances, an obese person will have the desire and ability to exercise reduced; mainly because they are easily fatigued. Thus, they need to boost their energy production so that they can be more active and healthier. OBJECTIVE In this present work, Morinda citrifolia L. leaf extract (MLE) which is believed to possess ergogenic property, was evaluated on its effect on an obese animal model using 1 H-NMR based metabolomics. MATERIAL AND METHODS Rats were fed with high fat diet (HFD) for 12 weeks for obese development. Once this was achieved, all the rats underwent endurance exercise (forced swimming test) every 2 weeks for 8 weeks together with treatment. The time to exhaustion was recorded for each rat. Three different dosages of MLE: 50 mg/kg, 100 mg/kg and 200 mg/kg of body weight were used together with two positive controls: 5 mg/kg caffeine and 100 mg/kg green tea. Blood was collected before and after treatments for metabolomics study. RESULTS Findings showed that feeding the rats at a dose of 200 mg/kg body weight MLE significantly prolonged the exhaustive swimming time of the rats, and altered the metabolites present in their serum. Discriminating metabolites involved were the product of various metabolic pathways, including carbohydrate, lipids metabolism and energy metabolism. Treatment with 200 mg/kg body weight MLE resulted in significant improvement in the metabolic perturbations where the proximity of the obese exercised treated group to that of normal exercised group in the partial least squares discriminant analysis score plot was observed. CONCLUSION The present work demonstrated ergogenic property of MLE based on the improved metabolic perturbation in exercised obese rats.
Collapse
Affiliation(s)
- Nordiana Abdul Majid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azizah Abdul Hamid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Syafiq Zikri Salleh
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Sabri Pak Dek
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nurul Shazini Ramli
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ahmad Haniff Jaafar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Gnoni A, Longo S, Gnoni GV, Giudetti AM. Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules 2020; 25:E182. [PMID: 31906370 PMCID: PMC6982879 DOI: 10.3390/molecules25010182] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
l-Carnitine is an amino acid derivative widely known for its involvement in the transport of long-chain fatty acids into the mitochondrial matrix, where fatty acid oxidation occurs. Moreover, l-Carnitine protects the cell from acyl-CoA accretion through the generation of acylcarnitines. Circulating carnitine is mainly supplied by animal-based food products and to a lesser extent by endogenous biosynthesis in the liver and kidney. Human muscle contains high amounts of carnitine but it depends on the uptake of this compound from the bloodstream, due to muscle inability to synthesize carnitine. Mitochondrial fatty acid oxidation represents an important energy source for muscle metabolism particularly during physical exercise. However, especially during high-intensity exercise, this process seems to be limited by the mitochondrial availability of free l-carnitine. Hence, fatty acid oxidation rapidly declines, increasing exercise intensity from moderate to high. Considering the important role of fatty acids in muscle bioenergetics, and the limiting effect of free carnitine in fatty acid oxidation during endurance exercise, l-carnitine supplementation has been hypothesized to improve exercise performance. So far, the question of the role of l-carnitine supplementation on muscle performance has not definitively been clarified. Differences in exercise intensity, training or conditioning of the subjects, amount of l-carnitine administered, route and timing of administration relative to the exercise led to different experimental results. In this review, we will describe the role of l-carnitine in muscle energetics and the main causes that led to conflicting data on the use of l-carnitine as a supplement.
Collapse
Affiliation(s)
- Antonio Gnoni
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (S.L.); (G.V.G.)
| | - Gabriele V. Gnoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (S.L.); (G.V.G.)
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (S.L.); (G.V.G.)
| |
Collapse
|
10
|
Caru M, Petrykey K, Drouin S, Beaulieu P, St-Onge P, Lemay V, Bertout L, Laverdiere C, Andelfinger G, Krajinovic M, Sinnett D, Curnier D. Identification of genetic association between cardiorespiratory fitness and the trainability genes in childhood acute lymphoblastic leukemia survivors. BMC Cancer 2019; 19:443. [PMID: 31088516 PMCID: PMC6515640 DOI: 10.1186/s12885-019-5651-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/29/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The progress of treatments of childhood acute lymphoblastic leukemia (ALL) has made it possible to reach a survival rate superior to 80%. However, the treatments lead to several long-term adverse effects, including cardiac toxicity. Although studies have reported associations between genetic variants and cardiorespiratory fitness, none has been performed on childhood ALL survivors. METHODS We performed whole-exome sequencing in 239 childhood ALL survivors from the PETALE cohort. Germline variants (both common and rare) in selected set of genes (N = 238) were analyzed for an association with cardiorespiratory fitness. RESULTS Our results showed that the common variant in the TTN gene was significantly associated with a low cardiorespiratory fitness level (p = 0.0005) and that the LEPR, IGFBPI and ENO3 genes were significantly associated with a low cardiorespiratory fitness level in female survivors (p ≤ 0.002). Also, we detected an association between the low cardiorespiratory fitness level in participants that were stratified to the "high risk" prognostic group and functionally predicted rare variants in the SLC22A16 gene (p = 0.001). Positive associations between cardiorespiratory fitness level and trainability genes were mainly observed in females. CONCLUSIONS For the first time, we observed that low cardiorespiratory fitness in childhood ALL survivors can be associated with variants in genes related to subjects' trainability. These findings could allow better childhood ALL patient follow-up tailored to their genetic profile and cardiorespiratory fitness, which could help reduce at least some of the burden of long-term adverse effects of treatments.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratoire de Physiopathologie de l'EXercice (LPEX), École de Kinésiologie et des Sciences de l'Activité physique, Faculté de Médecine, Université de Montréal, CEPSUM, 2100, boulevard Édouard Montpetit, Montréal, QC, H3C 3J7, Canada. .,Department of psychology, Laboratoire EA 4430 - Clinique Psychanalyse Developpement (CliPsyD), University of Paris Nanterre, Nanterre, Ile-de-France, France. .,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.
| | - Kateryna Petrykey
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of pharmacology and physiology, University of Montreal, Montreal, Quebec, Canada
| | - Simon Drouin
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Valérie Lemay
- Laboratoire de Physiopathologie de l'EXercice (LPEX), École de Kinésiologie et des Sciences de l'Activité physique, Faculté de Médecine, Université de Montréal, CEPSUM, 2100, boulevard Édouard Montpetit, Montréal, QC, H3C 3J7, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Laurence Bertout
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Caroline Laverdiere
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Gregor Andelfinger
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of pharmacology and physiology, University of Montreal, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Daniel Curnier
- Laboratoire de Physiopathologie de l'EXercice (LPEX), École de Kinésiologie et des Sciences de l'Activité physique, Faculté de Médecine, Université de Montréal, CEPSUM, 2100, boulevard Édouard Montpetit, Montréal, QC, H3C 3J7, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Abstract
A strong foundation in physical conditioning and sport-specific experience, in addition to a bespoke and periodized training and nutrition program, are essential for athlete development. Once these underpinning factors are accounted for, and the athlete reaches a training maturity and competition level where marginal gains determine success, a role may exist for the use of evidence-based performance supplements. However, it is important that any decisions surrounding performance supplements are made in consideration of robust information that suggests the use of a product is safe, legal, and effective. The following review focuses on the current evidence-base for a number of common (and emerging) performance supplements used in sport. The supplements discussed here are separated into three categories based on the level of evidence supporting their use for enhancing sports performance: (1) established (caffeine, creatine, nitrate, beta-alanine, bicarbonate); (2) equivocal (citrate, phosphate, carnitine); and (3) developing. Within each section, the relevant performance type, the potential mechanisms of action, and the most common protocols used in the supplement dosing schedule are summarized.
Collapse
|
12
|
Kim J, Park J, Lim K. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity. J Nutr Sci Vitaminol (Tokyo) 2017; 62:141-61. [PMID: 27465721 DOI: 10.3177/jnsv.62.141] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Athletes make great efforts to increase their endurance capacity in many ways. Using nutrition supplements for stimulating lipolysis is one such strategy to improve endurance performance. These supplements contain certain ingredients that affect fat metabolism; furthermore, in combination with endurance training, they tend to have additive effects. A large body of scientific evidence shows that nutrition supplements increase fat metabolism; however, the usefulness of lipolytic supplements as ergogenic functional foods remains controversial. The present review will describe the effectiveness of lipolytic supplements in fat metabolism and as an ergogenic aid for increasing endurance exercise capacity. There are a number of lipolytic supplements available on the market, but this review focuses on natural ingredients such as caffeine, green tea extract, L-carnitine, Garcinia cambogia (hydroxycitric acid), capsaicin, ginseng, taurine, silk peptides and octacosanol, all of which have shown scientific evidence of enhancing fat metabolism associated with improving endurance performance. We excluded some other supplements owing to lack of data on fat metabolism or endurance capacity. Based on the data in this review, we suggest that a caffeine and green tea extract improves endurance performance and enhances fat oxidation. Regarding other supplements, the data on their practical implications needs to be gathered, especially for athletes.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Physical Education, Konkuk University
| | | | | |
Collapse
|
13
|
Effects of amino acid derivatives on physical, mental, and physiological activities. Crit Rev Food Sci Nutr 2016; 55:1793-807. [PMID: 24279396 DOI: 10.1080/10408398.2012.708368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nutritional ergogenic aids have been in use for a long time to enhance exercise and sports performance. Dietary components that exhibit ergogenic activity are numerous and their consumption is common and popular among athletes. They often come under scrutiny by legal authorities for their claimed benefits and safety concerns. Amino acid derivatives are propagated as being effective aids to enhance physical and mental performance in many ways, even though studies have pointed out that individuals who are deficient are more likely to benefit from dietary supplementation of amino acid derivatives than normal humans. In this review, some of the most common and widely used amino acids derivatives in sports and athletics namely creatine, tyrosine, carnitine, HMB, and taurine have been discussed for their effects on exercise performance, mental activity as well as body strength and composition. Creatine, carnitine, HMB, and taurine are reported to delay the onset of fatigue, improve exercise performance, and body strength. HMB helps in increasing fat-free mass and reduce exercise induced muscle injury. Taurine has been found to reduce oxidative stress during exercise and also act as an antihypertensive agent. Although, studies have not been able to find any favorable effect of tyrosine administration on exercise performance, it has been proved to be very effective in fighting stress, improving mood and cognitive performance particularly in sleep-deprived subjects. While available data from published studies and findings are equivocal about the efficacy of creatine, tyrosine, and HMB, more comprehensive researches on carnitine and taurine are necessary to provide evidence for the theoretical basis of their ergogenic role in nutritional modification and supplementation.
Collapse
|
14
|
Abstract
The intestinal barrier is one of the most dynamic surfaces of the body. It is here where a single layer of epithelial cells mediates the intricate encounters that occur between the host's immune system and a multitude of potential threats present in the intestinal lumen. Several key factors play an important role in the final outcome of this interaction, including the state of oxidative stress, the level of activation of the immune cells, and the integrity of the epithelial barrier. This chapter describes the main evidence demonstrating the impact that l-carnitine has on each of these factors. These findings, combined with the demonstrated safety profile of l-carnitine, underscore the potential therapeutic value of l-carnitine supplementation in humans suffering from intestinal inflammation and highlight the functional data supporting an association between Crohn's disease and mutations in the l-carnitine transporter genes.
Collapse
|
15
|
HARRIS RC, FOSTER CVLOUISE, SNOW DH. Plasma carnitine concentration and uptake into muscle following oral and intravenous administration. Equine Vet J 2010. [DOI: 10.1111/j.2042-3306.1995.tb04957.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Jacobs PL, Goldstein ER, Blackburn W, Orem I, Hughes JJ. Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males. J Int Soc Sports Nutr 2009; 6:9. [PMID: 19341458 PMCID: PMC2674410 DOI: 10.1186/1550-2783-6-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/02/2009] [Indexed: 01/04/2023] Open
Abstract
Background Recent research has indicated that short term administration of glycine propionyl-L-carnitine (GPLC) significantly elevates levels of nitric oxide metabolites at rest and in response to reactive hyperaemia. However, no scientific evidence exists that suggests such supplementation enhances exercise performance in healthy, trained individuals. The purpose of this study was to examine the effects of GPLC on the performance of repeated high intensity stationary cycle sprints with limited recovery periods in resistance trained male subjects. Methods In a double-blind, placebo-controlled, cross-over design, twenty-four male resistance trained subjects (25.2 ± 3.6 years) participated in two test sessions separated by one week. Testing was performed 90 minutes following oral ingestion of either 4.5 grams GPLC or 4.5 grams cellulose (PL), in randomized order. The exercise testing protocol consisted of five 10-second Wingate cycle sprints separated by 1-minute active recovery periods. Peak (PP) and mean values (MP) of sprint power output and percent decrement of power (DEC) were determined per bout and standardized relative to body masss. Heart rate (HR) and blood lactate (LAC) were measured prior to, during and following the five sprint bouts. Results Significant main effects (p < 0.001) were observed for sprint bout order in values of PP, MP, DEC, and HR. There were significant main effects detected for condition in PP and MP (p < 0.05), with values across the five sprint bouts 2.6 – 15% greater with GPLC. Significant statistical interactions were detected between bout order and condition for both PP and MP (p < 0.05). There was a significant main effect of condition for LAC, LAC values 15.7% lower 4 min post-exercise with GPLC (p = 0.09) and with GPLC resulting in 16.2% less LAC at 14 min post-exercise (p < 0.05). Conclusion These findings indicate that short-term oral supplementation of GPLC can enhance peak power production in resistance trained males with significantly less LAC accumulation.
Collapse
Affiliation(s)
- Patrick L Jacobs
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Davie, FL 33314, USA.
| | | | | | | | | |
Collapse
|
17
|
Spiering BA, Kraemer WJ, Hatfield DL, Vingren JL, Fragala MS, Ho JY, Thomas GA, Häkkinen K, Volek JS. Effects of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance exercise. J Strength Cond Res 2008; 22:1130-5. [PMID: 18545197 DOI: 10.1519/jsc.0b013e31817d48d9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research has shown that L-carnitine L-tartrate (LCLT) supplementation beneficially affects markers of hypoxic stress following resistance exercise. However, the mechanism of this response is unclear. Therefore, the primary purpose of this study was to determine the effects of LCLT supplementation on muscle tissue oxygenation during and after multiple sets of squat exercise. Nine healthy, previously resistance-trained men (25.2 +/- 6.years, 91.2 +/- 10.2 kg, 180.2 +/- 6.3 cm) ingested 2 g.d of LCLT or an identical placebo for 23 days in a randomized, balanced, crossover, double-blind, placebo-controlled, repeated-measures study design. On day 21, forearm muscle oxygenation was measured during and after an upper arm occlusion protocol using near infrared spectroscopy (NIRS), which measures the balance of oxygen delivery in relation to oxygen consumption. On day 22, subjects performed 5 sets of 15 to 20 repetitions of squat exercise with corresponding measures of thigh muscle oxygenation, via NIRS, and serial blood draws. Compared to the placebo trial, muscle oxygenation was reduced in the LCLT trial during upper arm occlusion and following each set of resistance exercise. Despite reduced oxygenation, plasma malondealdehyde, a marker of membrane damage, was attenuated during the LCLT trial. There were no differences between trials in the vasoactive substance prostacyclin. In conclusion, because oxygen delivery was occluded during the forearm protocol, it is proposed that enhanced oxygen consumption mediated the reduced muscle oxygenation during the LCLT trial. Enhanced oxygen consumption would explain why hypoxic stress was attenuated with LCLT supplementation.
Collapse
Affiliation(s)
- Barry A Spiering
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Kamal A, Khanna G, Krishnaji T. Lipase-Catalyzed Enantiomer Separation of 3-Hydroxy-4-(tosyloxy)butanenitrile: Synthesis of (R)-GABOB (=(3R)-4-Amino-3-hydroxybutanoic Acid) and (R)-Carnitine Hydrochloride (=(2R)-3-Carboxy-2-hydroxy-N,N,N-trimethylpropan-1-aminium Chloride). Helv Chim Acta 2007. [DOI: 10.1002/hlca.200790180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Kamal A, Krishnaji T, Khan MNA. Lipase-catalysed resolution of N-(3-cyano-2-hydroxy propan-1-yl)phthalimide. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcatb.2007.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Lee JK, Lee JS, Park H, Cha YS, Yoon CS, Kim CK. Effect of l-carnitine supplementation and aerobic training on FABPc content and β-HAD activity in human skeletal muscle. Eur J Appl Physiol 2006; 99:193-9. [PMID: 17089153 DOI: 10.1007/s00421-006-0333-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2006] [Indexed: 11/28/2022]
Abstract
Both regular physical exercise and carnitine supplementation exert a role in energy metabolism and may improve endurance capacity. We investigated whether a combination of long-term carnitine ingestion and exercise training reveals any interactive effects on cytosolic fatty acid-binding protein (FABPc) expression and beta-hydroxyacyl CoA dehydrogenase (beta-HAD) activity in human skeletal muscle. Twenty-eight untrained healthy males randomly divided into four experimental groups: a placebo (CON; n = 7), exercise training (ET; n = 7, 40 min session(-1), five times per week at 60% VO2max), carnitine supplementation (CS; n = 7, 4 g day(-1)), and exercise training and carnitine supplementation (CT; n = 7). Before and after 6-week treatment, muscle biopsy samples were taken from the vastus lateralis. Nonesterified carnitine and acid-soluble acylcarnitine concentrations were increased in CT (P < 0.05), and serum triacylglycerol concentration was elevated almost twofold in ET and CT (P < 0.05). No interactive effects in FABPc expression were shown from any of treatment groups. Although FABPc increased by 54% in ET compared to CON, it failed to reach statistical significance. In addition, there was no change in FABPc expression from any of experimental groups. Similar trends with FABPc contents were demonstrated in beta-HAD activity. It is concluded that the combination of exercise training and L-carnitine supplementation does not augment in FABPc expression and beta-HAD activity in human skeletal muscle indicating that combined treatment does not exert additive effect in fat metabolism. Thus L-carnitine supplementation would be unlikely to be associated with the enhanced exercise performance.
Collapse
Affiliation(s)
- Jang Kyu Lee
- Department of Human Physiology, Korea National Sport University, 88-15 Oryun-dong, Songpa-gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise.
Collapse
Affiliation(s)
- Wataru Aoi
- Research Center for Sports Medicine, Doshisha University, Kyoto 602-8580, Japan
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Medical Proteomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshikazu Yoshikawa
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Medical Proteomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
23
|
Borghi-Silva A, Baldissera V, Sampaio LMM, Pires-DiLorenzo VA, Jamami M, Demonte A, Marchini JS, Costa D. L-carnitine as an ergogenic aid for patients with chronic obstructive pulmonary disease submitted to whole-body and respiratory muscle training programs. Braz J Med Biol Res 2006; 39:465-74. [PMID: 16612469 DOI: 10.1590/s0100-879x2006000400006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 +/- 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 +/- 16 and 36 +/- 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 +/- 14 vs 14 +/- 5 cmH2O, and 87 +/- 30 vs 34 +/- 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 +/- 0.7 vs 2.3 +/- 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.
Collapse
Affiliation(s)
- A Borghi-Silva
- Laboratório de Fisioterapia Cardiovascular, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Studies in athletes have shown that carnitine supplementation may foster exercise performance. As reported in the majority of studies, an increase in maximal oxygen consumption and a lowering of the respiratory quotient indicate that dietary carnitine has the potential to stimulate lipid metabolism. Treatment with L-carnitine also has been shown to induce a significant postexercise decrease in plasma lactate, which is formed and used continuously under fully aerobic conditions. Data from preliminary studies have indicated that L-carnitine supplementation can attenuate the deleterious effects of hypoxic training and speed up recovery from exercise stress. Recent data have indicated that L-carnitine plays a decisive role in the prevention of cellular damage and favorably affects recovery from exercise stress. Uptake of L-carnitine by blood cells may induce at least three mechanisms: 1) stimulation of hematopoiesis, 2) a dose-dependent inhibition of collagen-induced platelet aggregation, and 3) the prevention of programmed cell death in immune cells. As recently shown, carnitine has direct effects in regulation of gene expression (i.e., carnitine-acyltransferases) and may also exert effects via modulating intracellular fatty acid concentration. Thus there is evidence for a beneficial effect of L-carnitine supplementation in training, competition, and recovery from strenuous exercise and in regenerative athletics.
Collapse
Affiliation(s)
- Heidrun Karlic
- Ludwig Boltzmann Institute for Leukemia Research and Hematology, Vienna, Austria.
| | | |
Collapse
|
25
|
Ferrari R, Merli E, Cicchitelli G, Mele D, Fucili A, Ceconi C. Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. Ann N Y Acad Sci 2005; 1033:79-91. [PMID: 15591005 DOI: 10.1196/annals.1320.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several experimental studies have shown that levocarnitine reduces myocardial injury after ischemia and reperfusion by counteracting the toxic effect of high levels of free fatty acids, which occur in ischemia, and by improving carbohydrate metabolism. In addition to increasing the rate of fatty acid transport into mitochondria, levocarnitine reduces the intramitochondrial ratio of acetyl-CoA to free CoA, thus stimulating the activity of pyruvate dehydrogenase and increasing the oxidation of pyruvate. Supplementation of the myocardium with levocarnitine results in an increased tissue carnitine content, a prevention of the loss of high-energy phosphate stores, ischemic injury, and improved heart recovery on reperfusion. Clinically, levocarnitine has been shown to have anti-ischemic properties. In small short-term studies, levocarnitine acts as an antianginal agent that reduces ST segment depression and left ventricular end-diastolic pressure. These short-term studies also show that levocarnitine releases the lactate of coronary artery disease patients subjected to either exercise testing or atrial pacing. These cardioprotective effects have been confirmed during aortocoronary bypass grafting and acute myocardial infarction. In a randomized multicenter trial performed on 472 patients, levocarnitine treatment (9 g/day by intravenous infusion for 5 initial days and 6 g/day orally for the next 12 months), when initiated early after acute myocardial infarction, attenuated left ventricular dilatation and prevented ventricular remodeling. In treated patients, there was a trend towards a reduction in the combined incidence of death and CHF after discharge. Levocarnitine could improve ischemia and reperfusion by (1) preventing the accumulation of long-chain acyl-CoA, which facilitates the production of free radicals by damaged mitochondria; (2) improving repair mechanisms for oxidative-induced damage to membrane phospholipids; (3) inhibiting malignancy arrhythmias because of accumulation within the myocardium of long-chain acyl-CoA; and (4) reducing the ischemia-induced apoptosis and the consequent remodeling of the left ventricle. Propionyl-L-carnitine is a carnitine derivative that has a high affinity for muscular carnitine transferase, and it increases cellular carnitine content, thereby allowing free fatty acid transport into the mitochondria. Moreover, propionyl-L-carnitine stimulates a better efficiency of the Krebs cycle during hypoxia by providing it with a very easily usable substrate, propionate, which is rapidly transformed into succinate without energy consumption (anaplerotic pathway). Alone, propionate cannot be administered to patients in view of its toxicity. The results of phase-2 studies in chronic heart failure patients showed that long-term oral treatment with propionyl-L-carnitine improves maximum exercise duration and maximum oxygen consumption over placebo and indicated a specific propionyl-L-carnitine effect on peripheral muscle metabolism. A multicenter trial on 537 patients showed that propionyl-L-carnitine improves exercise capacity in patients with heart failure, but preserved cardiac function.
Collapse
Affiliation(s)
- Roberto Ferrari
- Chair of Cardiology, University Hospital of Ferrara, Gussago (Brescia), Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Lopes G, Bazotte RB, Curi R, Alves-Do-Prado W. L- and DL-carnitine induce tetanic fade in rat neuromuscular preparation. Braz J Med Biol Res 2003; 36:1255-62. [PMID: 12937794 DOI: 10.1590/s0100-879x2003000900017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnitine, a structurally choline-like metabolite, has been used to increase athletic performance, although its effects on neuromuscular transmission have not been investigated. It is present in skeletal muscle and its plasma levels are about 30 to 90 micro M. Using rat phrenic nerve diaphragm preparations indirectly and directly stimulated with high rate pulses, D-carnitine (30 and 60 micro M), L-carnitine (60 micro M) and DL-carnitine (60 micro M) were shown to induce tetanic fade (D-carnitine = 19.7 +/- 3.1%, N = 6; L-carnitine = 16.6 +/- 2.4%, N = 6; DL-carnitine = 14.9 +/- 2.1%, N = 6) without any reduction of maximal tetanic tension. D-carnitine induced tetanic fade in neuromuscular preparations previously paralyzed with d-tubocurarine and directly stimulated. The effect was greater than that obtained by indirect muscle stimulation. Furthermore, previous addition of atropine (20 to 80 micro M) to the bath did not reduce carnitine isomer-induced tetanic fade. In contrast to D-carnitine, the tetanic fade induced by L- and DL-carnitine was antagonized by choline (60 micro M). The combined effect of carnitine isomers and hemicholinium-3 (0.01 nM) was similar to the effect of hemicholinium-3 alone. The data suggest that L- and DL-carnitine-induced tetanic fade seems to depend on their transport into the motor nerve terminal.
Collapse
Affiliation(s)
- G Lopes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
27
|
|
28
|
Wächter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krähenbühl S. Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clin Chim Acta 2002; 318:51-61. [PMID: 11880112 DOI: 10.1016/s0009-8981(01)00804-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Long-term administration of high oral doses of L-carnitine on the skeletal muscle composition and the physical performance has not been studied in humans. METHODS Eight healthy male adults were treated with 2 x 2 g of L-carnitine per day for 3 months. Muscle biopsies and exercise tests were performed before, immediately after, and 2 months after the treatment. Exercise tests were performed using a bicycle ergometer for 10 min at 20%, 40%, and 60% of the individual maximal workload (P(max)), respectively, until exhaustion. RESULTS There were no significant differences between V(O(2)max), RER(max), and P(max) between the three time points investigated. At submaximal intensities, the only difference to the pretreatment values was a 5% increase in V(O(2)) at 20% and 40% of P(max) 2 months after the cessation of the treatment. The total carnitine content in the skeletal muscle was 4.10 +/- 0.82 micromol/g before, 4.79 +/- 1.19 micromol/g immediately after, and 4.19 +/- 0.61 micromol/g wet weight 2 months after the treatment (no significant difference). Activities of the two mitochondrial enzymes citrate synthase and cytochrome oxidase, as well as the skeletal muscle fiber composition also remained unaffected by the administration of L-carnitine. CONCLUSIONS Long-term oral treatment of healthy adults with L-carnitine is not associated with a significant increase in the muscle carnitine content, mitochondrial proliferation, or physical performance. Beneficial effects of the long-term treatment with L-carnitine on the physical performance of healthy adults cannot be explained by an increase in the carnitine muscle stores.
Collapse
Affiliation(s)
- Sandra Wächter
- Institute of Clinical Pharmacology, University of Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Carnitine is an endogenous compound with well-established roles in intermediary metabolism. An obligate for optimal mitochondrial fatty acid oxidation, it is a critical source of energy and also protects the cell from acyl-CoA accretion through the generation of acylcarnitines. Carnitine homeostasis is affected by exercise in a well-defined manner because of the interaction of the carnitine-acylcarnitine pool with key metabolic pathways. Carnitine supplementation has been hypothesized to improve exercise performance in healthy humans through various mechanisms, including enhanced muscle fatty acid oxidation, altered glucose homeostasis, enhanced acylcarnitine production, modification of training responses, and altered muscle fatigue resistance. Available experimental clinical studies designed to assess the effect of carnitine on exercise metabolism or performance in healthy humans do not permit definitive conclusions to be drawn. In the aggregate, however, these studies suggest that carnitine supplementation does not improve maximal oxygen uptake or metabolic status during exercise in healthy humans. Carnitine administration for </=1 mo in humans increases plasma carnitine concentrations but does not increase muscle carnitine content. Additional clinical trials integrating physiologic, biochemical, and pharmacologic assessments are needed to definitively clarify any effects of carnitine on exercise performance in healthy persons.
Collapse
Affiliation(s)
- E P Brass
- Harbor-UCLA Medical Center, Torrance, CA 90274, USA
| |
Collapse
|
30
|
Hongu N, Sachan DS. Caffeine, carnitine and choline supplementation of rats decreases body fat and serum leptin concentration as does exercise. J Nutr 2000; 130:152-7. [PMID: 10720162 DOI: 10.1093/jn/130.2.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of a combination of caffeine, carnitine and choline with or without exercise on changes in body weight, fat pad mass, serum leptin concentration and metabolic indices was determined in 20 male, 7-wk-old Sprague-Dawley rats. They were given free access to a nonpurified diet without or with caffeine, carnitine and choline at concentrations of 0.1, 5 and 11.5 g/kg diet, respectively. In a 2x2 factorial design, one-half of each dietary group was exercised, and the other half was sedentary. Body weight and food intake of all rats were measured every day for 28 d. Rats were killed and blood and tissue samples were collected and analyzed for biochemical markers. Food intake of the groups was not different, but the body weight was significantly reduced by exercise in both dietary groups. Fat pad weights and total lipids of epididymal, inguinal and perirenal regions were significantly reduced by the supplements as well as by exercise. Regardless of exercise, supplements significantly lowered triglycerides in serum but increased levels in skeletal muscle. Serum leptin concentrations were equally lowered by supplements and exercise. Serum leptin was correlated with body weight (r = 0.55, P< or =0.01), fat pad weight (r = 0.82, P< or =0.001) and serum glucose (r = 0.51, P< or =0.05). We conclude that the indices of body fat loss due to dietary supplements were similar to those due to mild exercise, and there were no interactive effects of the two variables.
Collapse
Affiliation(s)
- N Hongu
- Department of Nutrition and Agricultural Experiment Station, The University of Tennessee, Knoxville 37996-1900, USA
| | | |
Collapse
|
31
|
Brass EP, Hiatt WR. The role of carnitine and carnitine supplementation during exercise in man and in individuals with special needs. J Am Coll Nutr 1998; 17:207-15. [PMID: 9627906 DOI: 10.1080/07315724.1998.10718750] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carnitine is critical for normal skeletal muscle bioenergetics. Carnitine has a dual role as it is required for long-chain fatty acid oxidation, and also shuttles accumulated acyl groups out of the mitochondria. Muscle requires optimization of both of these metabolic processes during peak exercise performance. Theoretically, carnitine availability may become limiting for either fatty acid oxidation or the removal of acyl-CoAs during exercise. Despite the theoretical basis for carnitine supplementation in otherwise healthy persons to improve exercise performance, clinical data have not demonstrated consistent benefits of carnitine administration. Additionally, most of the anticipated metabolic effects of carnitine supplementation have not been observed in healthy persons. The failure to demonstrate clinical efficacy of carnitine may reflect the complex pharmacokinetics and pharmacodynamics of carnitine supplementation, the challenges of clinical trial design for performance endpoints, or the adequacy of endogenous carnitine content to meet even extreme metabolic demands in the healthy state. In patients with end stage renal disease there is evidence of impaired cellular metabolism, the accumulation of metabolic intermediates and increased carnitine demands to support acylcarnitine production. Years of nutritional changes and dialysis therapy may also lower skeletal muscle carnitine content in these patients. Preliminary data have demonstrated beneficial effects of carnitine supplementation to improve muscle function and exercise capacity in these patients. Peripheral arterial disease (PAD) is also associated with altered muscle metabolic function and endogenous acylcarnitine accumulation. Therapy with either carnitine or propionylcarnitine has been shown to increase claudication-limited exercise capacity in patients with PAD. Further clinical research is needed to define the optimal use of carnitine and acylcarnitines as therapeutic modalities to improve exercise performance in disease states, and any potential benefit in healthy individuals.
Collapse
Affiliation(s)
- E P Brass
- Department of Medicine, Harbor-UCLA Medical Center, UCLA School of Medicine, Torrance 90509, USA
| | | |
Collapse
|
32
|
Abstract
Amid the surrounding chaos of the supplement blitz, athlete, coach, and physician alike must step back and place the issue of supplements into perspective. There is no legal supplement that can substantially alter performance to date in the same way as illegal drugs. Effectiveness, safety, legality, and purity of compounds are all issues that should be addressed when approaching the use of any supplement. Education about the validity of the claims of supplements is important. Research is lending useful and helpful information despite the many new products continually appearing on the market. Because there is no mechanism for investigations to adequately research every supplement, many of the supplements should be approached with caution and skepticism. In addition, supplements in and of themselves should not be viewed as the sole answer to performance improvement. There is some promise to an extremely small number of supplements that appear to enhance performance, yet they do so in the realm of complete athletic training, including hard work, sports-specific training and strength training, psychological preparedness, and good nutritional intake.
Collapse
Affiliation(s)
- P R Stricker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Abstract
Carnitine and its derivative propionyl-L-carnitine are endogenous cofactors which enhance carbohydrate metabolism and reduce the intracellular buildup of toxic metabolites in ischemic conditions. The carnitines have been, and are being used in a spectrum of diseases including multiple cardiovascular conditions. These include angina, acute myocardial infarction, postmyocardial infarction, congestive heart failure, peripheral vascular disease, dyslipidemia, and diabetes. Most published data on carnitine, propionyl-L-carnitine, and other carnitine congeners are favorable but the clinical trials have been relatively small. In currently used doses, these substances are virtually devoid of significant side effects.
Collapse
Affiliation(s)
- M A Arsenian
- Cape Ann Medical Center, Gloucester, MA 01930, USA
| |
Collapse
|
34
|
The effect of L-carnitine supplementation on plasma carnitine levels and various performance parameters of male marathon athletes. Nutr Res 1997. [DOI: 10.1016/s0271-5317(97)00005-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Abrahamsson K, Eriksson BO, Holme E, Jodal U, Jönsson A, Lindstedt S. Pivalic acid-induced carnitine deficiency and physical exercise in humans. Metabolism 1996; 45:1501-7. [PMID: 8969283 DOI: 10.1016/s0026-0495(96)90179-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To study the effect of carnitine depletion on physical working capacity, healthy subjects were administered pivaloyl-conjugated antibiotics for 54 days. The mean carnitine concentration in serum decreased from 35.0 to 3.5 mmicromol/L, and in muscle from 10 to 4.3 micromol/g noncollagen protein (NCP). Exercise tests were performed before and after 54 days' administration of the drug. At submaximal exercise, there was a slight increase in the concentration of 3-hydroxybutyrate in serum, presumably caused by decreased fatty acid oxidation in the liver. There was also a decreased consumption of muscle glycogen, indicating decreased glycolysis in the skeletal muscle. The muscle presumably had enough energy available, since there was no significant decrease in the concentration of adenosine triphosphate (ATP) and creatine phosphate during exercise. The work at maximal oxygen uptake (VO2max) and the maximal heart rate were reduced. Since VO2max is considered dependent on heart function, carnitine depletion seemed to affect cardiac function.
Collapse
Affiliation(s)
- K Abrahamsson
- Department of Pediatrics, Gothenburg University, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Several nutritional modifications have been used by athletes to improve performance. Recent attention has focused on high fat diets, branched-chain amino acids, creatine, carnitine, bicarbonate and phosphate loading, and caffeine. Of these, only caffeine, which is present in food but has no known nutritional value, appears on the list of substances banned by the International Olympic Committee (IOC). While there is a theoretical basis for each of these diet manipulations to enhance performance, there are insufficient data to state unequivocally that high fat diets, branched-chain amino acids, carnitine or phosphate loading are effective. Caffeine has been found to enhance endurance performance, while creatine and bicarbonate loading were generally found to benefit short term strenuous exercise. Acute ingestion of these diet manipulations appears safe, although some, like caffeine and bicarbonate, can cause gastrointestinal disturbances or other problems in certain individuals. Long term use of high fat diets may have negative consequences on health. The safety of long term use of these diet manipulations has not been established.
Collapse
Affiliation(s)
- P M Clarkson
- Department of Exercise Science, University of Massachusetts, Amherst, USA
| |
Collapse
|
37
|
Colombani P, Wenk C, Kunz I, Krähenbühl S, Kuhnt M, Arnold M, Frey-Rindova P, Frey W, Langhans W. Effects of L-carnitine supplementation on physical performance and energy metabolism of endurance-trained athletes: a double-blind crossover field study. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1996; 73:434-9. [PMID: 8803503 DOI: 10.1007/bf00334420] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A double-blind crossover field study was performed to investigate the effects of acute L-carnitine supplementation on metabolism and performance of endurance-trained athletes during and after a marathon run. Seven male subjects were given supplements of 2 g L-carnitine 2 h before the start of a marathon run and again after 20 km of the run. The plasma concentration of metabolites and hormones was analysed 1 h before, immediately after and 1 h after the run, as well as the next morning after the run. In addition, the respiratory exchange ratio (R) was determined before and at the end of the run, and a submaximal performance test was completed on a treadmill the morning after the run. The administration of L-carnitine was associated with a significant increase in the plasma concentration of all analysed carnitine fractions (i.e. free carnitine, short-chain acylcarnitine, long-chain acylcarnitine, total acid soluble carnitine, total carnitine) but caused no significant change in marathon running time, in R, in the plasma concentrations of carbohydrate metabolites (glucose, lactate, pyruvate), of fat metabolites (free fatty acids, glycerol, beta-hydroxybutyrate), of hormones (insulin, glucagon, cortisol), and of enzyme activities (creatine kinase, lactate dehydrogenase). Moreover, there was no difference in the result of the submaximal performance test the morning after the run. In conclusion, acute administration of L-carnitine did not affect the metabolism or improve the physical performance of the endurance-trained athletes during the run and did not alter their recovery.
Collapse
Affiliation(s)
- P Colombani
- INW Gruppe Ernährungsbiologie, ETH Zentrum, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Nutritional ergogenic aids may be theorized to improve performance in athletics in a variety of ways, primarily by enhancing energy efficiency, energy control or energy production. Athletes have utilized almost every nutrient possible, ranging from amino acids to zinc, as well as numerous purported nutritional substances, such as ginseng, in attempts to enhance physical performance. This review focuses primarily on nutritional ergogenic aids thought to enhance performance by favourably affecting energy metabolism. Although most purported nutritional ergogenic aids have not been shown to enhance physical performance in well-trained, well-nourished athletes, some reliable scientific data support an ergogenic efficacy of several substances, including caffeine, creatine and sodium bicarbonate, but additional research is needed to evaluate their potential for enhancing performance in specific athletics events.
Collapse
Affiliation(s)
- M H Williams
- Human Performance Laboratory, Old Dominion University, Norfolk, VA 23529-0196, USA
| |
Collapse
|
39
|
|
40
|
Barnett C, Costill DL, Vukovich MD, Cole KJ, Goodpaster BH, Trappe SW, Fink WJ. Effect of L-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. INTERNATIONAL JOURNAL OF SPORT NUTRITION 1994; 4:280-8. [PMID: 7987362 DOI: 10.1123/ijsn.4.3.280] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study examined the effects of 14 days of L-carnitine supplementation on muscle and blood carnitine fractions, and muscle and blood lactate concentrations, during high-intensity sprint cycling exercise. Eight subjects performed three experimental trials: control I (CON I, Day 0), control II (CON II, Day 14), and L-carnitine (L-CN, Day 28). Each trial consisted of a 4-min ride at 90% VO2max, followed by a rest period of 20 min, and then five repeated 1-min rides at 115% VO2max (2 min rest between each). Following CON II, all subjects began dietary supplementation of L-carnitine for a period of 14 days (4 g/day). Plasma total acid soluble and free carnitine concentrations were significantly higher (p < .05) at all time points following supplementation. L-carnitine supplementation had no significant effect on muscle carnitine content and thus could not alter lactate accumulation during exercise.
Collapse
Affiliation(s)
- C Barnett
- Human Performance Laboratory, Ball State University, Muncie, IN 47306
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Carnitine is an important cofactor for normal cellular metabolism. Optimal utilization of fuel substrates for ATP generation by skeletal muscle during exercise is dependent on adequate carnitine stores. During short periods of exercise the skeletal muscle carnitine pool is largely segregated from extracellular carnitine. In normal human subjects, only minimal changes in the muscle carnitine pool are observed during exercise at work loads below the lactate threshold. In contrast, at work-loads above the lactate threshold the muscle total carnitine is redistributed from carnitine to acetylcarnitine, with the acetylcarnitine content correlated with the muscle acetyl-CoA and lactate contents. In contrast, in patients with peripheral arterial disease, an accumulation of acylcarnitines is observed at all work loads. Patients with chronic renal failure who are on hemodialysis demonstrate a poor exercise capability which is correlated with a decrease in muscle carnitine content. Carnitine supplementation has been shown to improve exercise tolerance in both peripheral arterial disease and hemodialysis patients. Further work is needed to define the mechanism by which exogenous carnitine improves exercise performance in order to better define potential patient populations for therapy and to facilitate optimal dosing regimens.
Collapse
Affiliation(s)
- E P Brass
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4981
| | | |
Collapse
|
42
|
Bayon JE, Alvarez AI, Barrio JP, Diez C, Prieto JG. Effects of stanozolol and L-carnitine on erythrocyte osmotic fragility during aerobic exercise in rats. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf02341966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Natali A, Santoro D, Brandi LS, Faraggiana D, Ciociaro D, Pecori N, Buzzigoli G, Ferrannini E. Effects of acute hypercarnitinemia during increased fatty substrate oxidation in man. Metabolism 1993; 42:594-600. [PMID: 8492714 DOI: 10.1016/0026-0495(93)90218-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To test whether carnitine availability is rate-limiting for fat oxidation under conditions of augmented oxidative use of fatty substrates, two series of studies were performed. In study no. 1, L-carnitine (1 g + 0.5 g/h intravenously [i.v.]) or saline was given to eight volunteers during a 4-hour infusion of a 10% triglyceride emulsion, thereby increasing plasma free-carnitine levels from 38 +/- 4 to 415 +/- 55 mumol/L. Fat infusion increased plasma triglyceride levels (80%) and lipid oxidation (30%), and decreased (28%) carbohydrate oxidation (as measured by indirect calorimetry); hypercarnitinemia had no influence on these responses. In study no. 2 in 12 healthy subjects a bolus of L-carnitine (3 g) or saline was administered 40 minutes before aerobic exercise (bicycling for 40 minutes at 60 W), followed by 2 minutes of anaerobic exercise (250 W) and 50 minutes of recovery. Oxygen consumption (VO2), increased to 18.3 +/- 0.7 mL.min-1 x kg-1 during aerobic exercise, reached a maximum of 46.0 +/- 0.8 mL.min-1 x kg-1 during the anaerobic bout, and returned to baseline within a few minutes, with no difference between control and carnitine. At virtually identical mean energy expenditure rates (196 +/- 7 v 197 +/- 7 J.min-1 x kg-1, saline v carnitine), after carnitine administration the entire exercise protocol was sustained by a lower mean carbohydrate oxidation rate (42.1 +/- 3.6 v 36.5 +/- 2.3 mumol.min-1 x kg-1, P < .03) and a higher mean lipid oxidation rate (6.7 +/- 1.0 v 8.3 +/- 0.7 mumol.min-1 x kg-1, P < .05).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Natali
- Metabolism Unit, C.N.R. (Consiglio Nazionale delle Ricerche) Institute of Clinical Physiology, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Benamou AE, Harris RC. Effect of carnitine supplement to the dam on plasma carnitine concentration in the sucking foal. Equine Vet J 1993; 25:49-52. [PMID: 8422885 DOI: 10.1111/j.2042-3306.1993.tb02901.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The changes in carnitine in plasma and milk during the first 3 months of lactation were studied in 14 broodmares and their foals. Six of the mares (Group S) were given a supplement of 10 g carnitine split between the morning and evening feeds, starting 2 weeks before birth. At birth the plasma carnitine concentration in Group S mares was about twice that in Group NS mares (no supplement). In both groups the concentration initially declined in the days after birth. Whilst this trend was reversed in Group S mares, the concentration in Group NS mares remained at a reduced level for the remainder of the study. Milk concentrations declined continuously over the monitoring period in both groups. There was no apparent relationship between milk and plasma concentrations. Despite this the milk concentration tended to be higher in Group S than in Group NS mares although differences were not significant. There was an immediate drop in the plasma concentration in foals after birth which was reversed in foals of Group S mares but not in those of Group NS mares. There were no apparent side effects of carnitine supplementation.
Collapse
Affiliation(s)
- A E Benamou
- Department of Physiology, Animal Health Trust, Newmarket, Suffolk, UK
| | | |
Collapse
|
45
|
Hart LL, Hobdy-Henderson KC. Drug Information Analysis Service. Ann Pharmacother 1992. [DOI: 10.1177/106002809202600717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Clarkson PM. Nutritional ergogenic aids: carnitine. INTERNATIONAL JOURNAL OF SPORT NUTRITION 1992; 2:185-90. [PMID: 1299493 DOI: 10.1123/ijsn.2.2.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P M Clarkson
- Dept. of Exercise Science, University of Massachusetts, Amherst 01003
| |
Collapse
|
47
|
Heinonen OJ, Takala J, Kvist MH. Effect of carnitine loading on long-chain fatty acid oxidation, maximal exercise capacity, and nitrogen balance. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1992; 65:13-7. [PMID: 1505535 DOI: 10.1007/bf01466268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carnitine has a potential effect on exercise capacity due to its role in the transport of long-chain fatty acids into the mitochondria for beta-oxidation, the export of acyl-coenzyme A compounds from mitochondria and the activation of branched-chain amino acid oxidation in the muscle. We studied the effect of carnitine supplementation on palmitate oxidation, maximal exercise capacity and nitrogen balance in rats. Daily carnitine supplementation (500 mg.kg-1 body mass for 6 weeks) was given to 30 rats, 15 of which were on an otherwise carnitine-free diet (group I) and 15 pair-fed with a conventional pellet diet (group II). A control group (group III, n = 6) was fed ad libitum the pellet diet. Palmitate oxidation was measured by collecting 14CO2 after an intraperitoneal injection of [1-14C]palmitate and exercise capacity by swimming to exhaustion. After carnitine supplementation carnitine concentrations in serum were supranormal [group I, total 150.8 (SD 48.5), free 78.9 (SD 18.4); group II, total 170.9 (SD 27.9), free 115.8 (SD 24.6) mumol.l-1] and liver carnitine concentrations were normal in both groups [group I, total 1.6 (SD 0.3), free 1.2 (SD 0.2); group II, total 1.3 (SD 0.3), free 0.9 (SD 0.2) mumol.g-1 dry mass]. In muscle carnitine concentrations were normal in group I [total 3.8 (SD 1.2), free 3.2 (SD 1.0) mumol.g-1 dry mass] and increased in group II [total 6.6 (SD 0.5), free 4.9 (SD 0.9) mumol.g-1 dry mass].(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- O J Heinonen
- Paavo Nurmi Center, University of Turku, Finland
| | | | | |
Collapse
|
48
|
Arenas J, Ricoy JR, Encinas AR, Pola P, D'Iddio S, Zeviani M, Didonato S, Corsi M. Carnitine in muscle, serum, and urine of nonprofessional athletes: effects of physical exercise, training, and L-carnitine administration. Muscle Nerve 1991; 14:598-604. [PMID: 1922166 DOI: 10.1002/mus.880140703] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Efficient utilization of fatty acids to sustain prolonged physical efforts is thought to be dependent on the carnitine shuttle of muscle. A study has been carried out in 24 athletes (13 long-distance runners and 11 sprinters). These subjects received placebo or L-carnitine (1 g/orally b.i.d.) during a 6-month period of training. In endurance athletes, training induced lowering of total and free muscle carnitine. Increase of esterified muscle carnitine was also observed. Post-exertional overflow of acetylcarnitine and long-chain acylcarnitine, as well as reduction of the free fraction was also noticed in the blood. Fasting plasma carnitine levels, however, were not affected in carnitine-treated athletes at rest. These changes were likely related with the significantly increased urinary excretion of esterified and total carnitine which occurred after physical exercise. In the sprinters only, a decrease in free and total carnitine of muscle was detected after training. Both these potentially unfavorable effects were prevented by oral administration of L-carnitine. Our data suggest that training in endurance athletes, and to a lesser extent, in sprinters, is associated with a decrease in free and total carnitine of muscle, due to an increased overflow of short-chain carnitine esters in urine.
Collapse
Affiliation(s)
- J Arenas
- Neuromuscular Research Unit, 12 de Octubre Hospital, Compulutense University School of Medicine, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Vecchiet L, Di Lisa F, Pieralisi G, Ripari P, Menabò R, Giamberardino MA, Siliprandi N. Influence of L-carnitine administration on maximal physical exercise. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1990; 61:486-90. [PMID: 2127744 DOI: 10.1007/bf00236072] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of L-carnitine administration on maximal exercise capacity were studied in a double-blind, cross-over trial on ten moderately trained young men. A quantity of 2 g of L-carnitine or a placebo were administered orally in random order to these subjects 1 h before they began exercise on a cycle ergometer. Exercise intensity was increased by 50-W increments every 3 min until they became exhausted. After 72-h recovery, the same exercise regime was repeated but this time the subjects, who had previously received L-carnitine, were now given the placebo and vice versa. The results showed that at the maximal exercise intensity, treatment with L-carnitine significantly increased both maximal oxygen uptake, and power output. Moreover, at similar exercise intensities in the L-carnitine trial oxygen uptake, carbon dioxide production, pulmonary ventilation and plasma lactate were reduced. It is concluded that under these experimental conditions pretreatment with L-carnitine favoured aerobic processes resulting in a more efficient performance. Possible mechanisms producing this effect are discussed.
Collapse
Affiliation(s)
- L Vecchiet
- Istituto di Fisiopatologia Medica, Università di Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Ahmad S, Robertson HT, Golper TA, Wolfson M, Kurtin P, Katz LA, Hirschberg R, Nicora R, Ashbrook DW, Kopple JD. Multicenter trial of L-carnitine in maintenance hemodialysis patients. II. Clinical and biochemical effects. Kidney Int 1990; 38:912-8. [PMID: 2266675 DOI: 10.1038/ki.1990.290] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since carnitine deficiency has been reported in some patients undergoing maintenance hemodialysis, we studied the effects of intravenous infusion of L-carnitine or placebo at the end of each dialysis treatment. The trial, which lasted seven months (one month baseline, 6 months treatment) was multicenter, double blind, placebo controlled, and randomized. Eighty-two long-term hemodialysis patients, who were given either carnitine (N = 38) or placebo (N = 44), completed this study. In each group, clinical and biochemical parameters during treatment were compared with baseline values. Intra-dialytic hypotension and muscle cramps were reduced only in the carnitine treated group, while improvement in post-dialysis asthenia was noticed in both carnitine and placebo groups. Maximal oxygen consumption, measured during a progressive work exercise test, improved significantly in the carnitine group (111 +/- 50 ml/min. P less than 0.03) and was unchanged in the placebo group. L-carnitine treatment was associated with a significant drop in pre-dialysis concentrations of serum urea nitrogen, creatinine and phosphorus (means +/- SEM, 101 +/- 4.5 to 84 +/- 3.9, 16.7 +/- 0.67 to 14.7 +/- 0.64, and 6.4 +/- 0.3 to 5.5 +/- 0.4 mg/dl, respectively, P less than 0.004). No significant changes in any of these variables were noticed in the placebo group. Mid-arm circumference and triceps skinfold thickness were measured in 11 carnitine and 13 placebo treated patients. Calculated mid-arm muscle area increased in the carnitine patients (41.37 +/- 2.68 to 45.6 +/- 2.82 cm2, P = 0.05) and remained unchanged in the placebo patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Ahmad
- Department of Medicine, University of Washington, Seattle
| | | | | | | | | | | | | | | | | | | |
Collapse
|