1
|
Ueno H, Takahashi Y, Murakami S, Wani K, Miyazaki T, Matsumoto Y, Okamoto M, Ishihara T. Comprehensive behavioral study of C57BL/6.KOR-ApoE shl mice. Transl Neurosci 2023; 14:20220284. [PMID: 37396111 PMCID: PMC10314129 DOI: 10.1515/tnsci-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Apolipoprotein E (ApoE) is associated with Alzheimer's disease (AD) and cognitive dysfunction in elderly individuals. There have been extensive studies on behavioral abnormalities in ApoE-deficient (Apoeshl) mice, which have been described as AD mouse models. Spontaneously hyperlipidemic mice were discovered in 1999 as ApoE-deficient mice due to ApoE gene mutations. However, behavioral abnormalities in commercially available Apoeshl mice remain unclear. Accordingly, we aimed to investigate the behavioral abnormalities of Apoeshl mice. Results Apoeshl mice showed decreased motor skill learning and increased anxiety-like behavior toward heights. Apoeshl mice did not show abnormal behavior in the Y-maze test, open-field test, light/dark transition test, and passive avoidance test. Conclusion Our findings suggest the utility of Apoeshl mice in investigating the function of ApoE in the central nervous system.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Tetsuji Miyazaki
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
2
|
Grigorova YN, Juhasz O, Long JM, Zernetkina VI, Hall ML, Wei W, Morrell CH, Petrashevskaya N, Morrow A, LaNasa KH, Bagrov AY, Rapp PR, Lakatta EG, Fedorova OV. Effect of Cardiotonic Steroid Marinobufagenin on Vascular Remodeling and Cognitive Impairment in Young Dahl-S Rats. Int J Mol Sci 2022; 23:4563. [PMID: 35562955 PMCID: PMC9101263 DOI: 10.3390/ijms23094563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.
Collapse
Affiliation(s)
- Yulia N. Grigorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Ondrej Juhasz
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Valentina I. Zernetkina
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Mikayla L. Hall
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Wen Wei
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Natalia Petrashevskaya
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Audrey Morrow
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Katherine H. LaNasa
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Alexei Y. Bagrov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Olga V. Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| |
Collapse
|
3
|
Shepilov D, Kovalenko T, Osadchenko I, Smozhanyk K, Marungruang N, Ushakova G, Muraviova D, Hållenius F, Prykhodko O, Skibo G. Varying Dietary Component Ratios and Lingonberry Supplementation May Affect the Hippocampal Structure of ApoE–/– Mice. Front Nutr 2022; 9:565051. [PMID: 35252286 PMCID: PMC8890029 DOI: 10.3389/fnut.2022.565051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective This study aimed to investigate and compare the morphological and biochemical characteristics of the hippocampus and the spatial memory of young adult ApoE–/– mice on a standard chow diet, a low-fat diet (LFD), a high-fat diet (HFD), and an HFD supplemented with lingonberries. Methods Eight-week-old ApoE–/– males were divided into five groups fed standard chow (Control), an LFD (LF), an HFD (HF), and an HFD supplemented with whole lingonberries (HF+WhLB) or the insoluble fraction of lingonberries (HF+InsLB) for 8 weeks. The hippocampal cellular structure was evaluated using light microscopy and immunohistochemistry; biochemical analysis and T-maze test were also performed. Structural synaptic plasticity was assessed using electron microscopy. Results ApoE–/– mice fed an LFD expressed a reduction in the number of intact CA1 pyramidal neurons compared with HF+InsLB animals and the 1.6–3.8-fold higher density of hyperchromic (damaged) hippocampal neurons relative to other groups. The LF group had also morphological and biochemical indications of astrogliosis. Meanwhile, both LFD- and HFD-fed mice demonstrated moderate microglial activation and a decline in synaptic density. The consumption of lingonberry supplements significantly reduced the microglia cell area, elevated the total number of synapses and multiple synapses, and increased postsynaptic density length in the hippocampus of ApoE–/– mice, as compared to an LFD and an HFD without lingonberries. Conclusion Our results suggest that, in contrast to the inclusion of fats in a diet, increased starch amount (an LFD) and reduction of dietary fiber (an LFD/HFD) might be unfavorable for the hippocampal structure of young adult (16-week-old) male ApoE–/– mice. Lingonberries and their insoluble fraction seem to provide a neuroprotective effect on altered synaptic plasticity in ApoE–/– animals. Observed morphological changes in the hippocampus did not result in notable spatial memory decline.
Collapse
Affiliation(s)
- Dmytro Shepilov
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- *Correspondence: Dmytro Shepilov
| | - Tatiana Kovalenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Iryna Osadchenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Kateryna Smozhanyk
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Nittaya Marungruang
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Ushakova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Diana Muraviova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
4
|
Age-Related Changes in the Behavior of Apolipoprotein E Knockout Mice. Behav Sci (Basel) 2018; 8:bs8030033. [PMID: 29510495 PMCID: PMC5867486 DOI: 10.3390/bs8030033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
The knockout mouse model, B6.129P2-Apoetm1Unc is homozygotic for the Apolipoprotein E (ApoE) deletion; thus, it is capable of developing hyperlipidemia and atherosclerosis but ApoE is also a lipid-transport protein abundantly expressed in most neurons in the central nervous system, so these animals could also be models of neurodegenerative diseases. The aim of this study was to determine age-related changes in spontaneous behavior and in learning and memory of Apolipoprotein E knockout mice. Spontaneous behavioral measurements included sleeping pattern, motor coordination and balance by rotarod and open field activity, whereas learning and memory tests included forced alternation in Y-maze, novel object recognition and passive avoidance conditioning. Significant behavioral differences between aged knockout mice and age-matched wild type strain, C57Bl/6 were found in all the behavioral tests, except for the rotarod test. Genetically’ modified mice exhibited less huddling contact during sleeping, decreased locomotor activity in novel environments and in learning and memory deficits. These results are consistent with the cognitive impairment and memory loss seen as the earliest clinical symptoms in neurodegenerative disorders such as Alzheimer’s disease. The ApoE knockout mice might therefore be an appropriate model for studying the underlying mechanisms involved in behavioral changes caused by neurodegenerative diseases as well as for evaluating new therapies for these pathologies.
Collapse
|
5
|
Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury. Exp Neurol 2017; 299:97-108. [PMID: 29056364 DOI: 10.1016/j.expneurol.2017.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apoE), a plasma lipoprotein well known for its important role in lipid and cholesterol metabolism, has also been implicated in many neurological diseases. In this study, we examined the effect of apoE on the pathophysiology of traumatic spinal cord injury (SCI). ApoE-deficient mutant (apoE-/-) and wild-type mice received a T9 moderate contusion SCI and were evaluated using histological and behavioral analyses after injury. At 3days after injury, the permeability of spinal cord-blood-barrier, measured by extravasation of Evans blue dye, was significantly increased in apoE-/- mice compared to wild type. The inflammation and spared white matter was also significantly increased and decreased, respectively, in apoE-/- mice compared to the wild type ones. The apoptosis of both neurons and oligodendrocytes was also significantly increased in apoE-/- mice. At 42days after injury, the inflammation was still robust in the injured spinal cord in apoE-/- but not wild type mice. CD45+ leukocytes from peripheral blood persisted in the injured spinal cord of apoE-/- mice. The spared white matter was significantly decreased in apoE-/- mice compared to wild type ones. Locomotor function was significantly decreased in apoE-/- mice compared to wild type ones from week 1 to week 8 after contusion. Treatment of exogenous apoE mimetic peptides partially restored the permeability of spinal cord-blood-barrier in apoE-/- mice after SCI. Importantly, the exogenous apoE peptides decreased inflammation, increased spared white matter and promoted locomotor recovery in apoE-/- mice after SCI. Our results indicate that endogenous apoE plays important roles in maintaining the spinal cord-blood-barrier and decreasing inflammation and spinal cord tissue loss after SCI, suggesting its important neuroprotective function after SCI. Our results further suggest that exogenous apoE mimetic peptides could be a novel and promising neuroprotective reagent for SCI.
Collapse
|
6
|
Genetic Restoration of Plasma ApoE Improves Cognition and Partially Restores Synaptic Defects in ApoE-Deficient Mice. J Neurosci 2016; 36:10141-50. [PMID: 27683909 DOI: 10.1523/jneurosci.1054-16.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is the most common form of dementia in individuals over the age of 65 years. The most prevalent genetic risk factor for AD is the ε4 allele of apolipoprotein E (ApoE4), and novel AD treatments that target ApoE are being considered. One unresolved question in ApoE biology is whether ApoE is necessary for healthy brain function. ApoE knock-out (KO) mice have synaptic loss and cognitive dysfunction; however, these findings are complicated by the fact that ApoE knock-out mice have highly elevated plasma lipid levels, which may independently affect brain function. To bypass the effect of ApoE loss on plasma lipids, we generated a novel mouse model that expresses ApoE normally in peripheral tissues, but has severely reduced ApoE in the brain, allowing us to study brain ApoE loss in the context of a normal plasma lipid profile. We found that these brain ApoE knock-out (bEKO) mice had synaptic loss and dysfunction similar to that of ApoE KO mice; however, the bEKO mice did not have the learning and memory impairment observed in ApoE KO mice. Moreover, we found that the memory deficit in the ApoE KO mice was specific to female mice and was fully rescued in female bEKO mice. Furthermore, while the AMPA/NMDA ratio was reduced in ApoE KO mice, it was unchanged in bEKO mice compared with controls. These findings suggest that plasma lipid levels can influence cognition and synaptic function independent of ApoE expression in the brain. SIGNIFICANCE STATEMENT One proposed treatment strategy for Alzheimer's disease (AD) is the reduction of ApoE, whose ε4 isoform is the most common genetic risk factor for the disease. A major concern of this strategy is that an animal model of ApoE deficiency, the ApoE knock-out (KO) mouse, has reduced synapses and cognitive impairment; however, these mice also develop dyslipidemia and severe atherosclerosis. Here, we have shown that genetic restoration of plasma ApoE to wild-type levels normalizes plasma lipids in ApoE KO mice. While this does not rescue synaptic loss, it does completely restore learning and memory in the mice, suggesting that both CNS and plasma ApoE are independent parameters that affect brain health.
Collapse
|
7
|
Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer's disease. Neurobiol Aging 2014; 35 Suppl 2:S3-10. [PMID: 24973118 DOI: 10.1016/j.neurobiolaging.2014.03.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 01/02/2023]
Abstract
The discovery that the apolipoprotein E (apoE) ε4 allele is genetically linked to both sporadic and familial late-onset Alzheimer's disease (AD) raises the possibility that a dysfunction of the lipid transport system could seriously affect lipid homeostasis in the brain of AD subjects. The presence of the ε4 allele has been associated with lower levels of apoE in both serum and brain tissues of normal and AD subjects. In an attempt to reverse the apoE deficit in AD, we identified and characterized several apoE inducer agents using a low-throughput in vitro screening assay. The most promising of these compounds is called probucol. Administration of probucol, an old cholesterol-lowering drug, in a pilot trial in mild-to-moderate sporadic AD led to a significant increase in cerebrospinal fluid (CSF) apoE levels and a decrease in CSF in both phosphorylated tau 181 and beta-amyloid 1-42 concentrations without significant modifications of lipid hydroperoxide levels.
Collapse
|
8
|
Cermenati G, Brioschi E, Abbiati F, Melcangi RC, Caruso D, Mitro N. Liver X receptors, nervous system, and lipid metabolism. J Endocrinol Invest 2013; 36:435-43. [PMID: 23609963 DOI: 10.3275/8941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipids in the nervous system are represented by cholesterol and phospholipids as constituents of cell membranes and, in particular, of myelin. Therefore, lipids are finely regulated to guarantee physiological functions. In the central nervous system, cholesterol is locally synthesized due to the presence of the blood brain barrier. In the peripheral nervous system cholesterol is either up-taken by lipoproteins and/or produced by de novo biosynthesis. Defects in lipid homeostasis in these tissues lead to structural and functional changes that often result in different pathological conditions depending on the affected pathways (i.e. cholesterol biosynthesis, cholesterol efflux, fatty acid biosynthesis etc.). Alterations in cholesterol metabolism in the central nervous system are linked to several disorders such as Alzheimer's disease, Huntington disease, Parkinson disease, Multiple sclerosis, Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and glioblastoma. In the peripheral nervous system changes in lipid metabolism are associated with the development of peripheral neuropathy that may be caused by metabolic disorders, injuries, therapeutics, and autoimmune diseases. Transcription factors, such as the Liver X receptors (LXR), regulate both cholesterol and fatty acid metabolism in several tissues including the nervous system. In the last few years several studies elucidated the biology of LXR in the nervous system due to the availability of knock-out mice and the development of synthetic ligands. Here, we review a survey of the literature focused on the central and peripheral nervous system and in physiological and pathological settings with particular attention to the roles played by LXR in both districts.
Collapse
Affiliation(s)
- G Cermenati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Fernandez-Vizarra P, Lopez-Franco O, Mallavia B, Higuera-Matas A, Lopez-Parra V, Ortiz-Muñoz G, Ambrosio E, Egido J, Almeida OFX, Gomez-Guerrero C. Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain 2012; 135:2826-37. [PMID: 22961553 DOI: 10.1093/brain/aws195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is a severely debilitating disease of high and growing proportions. Hypercholesterolaemia is a key risk factor in sporadic Alzheimer's disease that links metabolic disorders (diabetes, obesity and atherosclerosis) with this pathology. Hypercholesterolaemia is associated with increased levels of immunoglobulin G against oxidized lipoproteins. Patients with Alzheimer's disease produce autoantibodies against non-brain antigens and specific receptors for the constant Fc region of immunoglobulin G have been found in vulnerable neuronal subpopulations. Here, we focused on the potential role of Fc receptors as pathological players driving hypercholesterolaemia to Alzheimer's disease. In a well-established model of hypercholesterolaemia, the apolipoprotein E knockout mouse, we report increased brain levels of immunoglobulin G and upregulation of activating Fc receptors, predominantly of type IV, in neurons susceptible to amyloid β accumulation. In these mice, gene deletion of γ-chain, the common subunit of activating Fc receptors, prevents learning and memory impairments without influencing cholesterolaemia and brain and serum immunoglobulin G levels. These cognition-protective effects were associated with a reduction in synapse loss, tau hyperphosphorylation and intracellular amyloid β accumulation both in cortical and hippocampal pyramidal neurons. In vitro, activating Fc receptor engagement caused synapse loss, tau hyperphosphorylation and amyloid β deposition in primary neurons by a mechanism involving mitogen-activated protein kinases and β-site amyloid precursor protein cleaving enzyme 1. Our results represent the first demonstration that immunoglobulin G Fc receptors contribute to the development of hypercholesterolaemia-associated features of Alzheimer's disease and suggest a new potential target for slowing or preventing Alzheimer's disease in hypercholesterolaemic patients.
Collapse
Affiliation(s)
- Paula Fernandez-Vizarra
- Renal and Vascular Inflammation, Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Avda. Reyes Catolicos 2, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kang J, Rivest S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr Rev 2012; 33:715-46. [PMID: 22766509 DOI: 10.1210/er.2011-1049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver X receptors (LXR) are nuclear receptors that have emerged as key regulators of lipid metabolism. In addition to their functions as cholesterol sensors, LXR have also been found to regulate inflammatory responses in macrophages. Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive cognitive decline associated with inflammation. Evidence indicates that the initiation and progression of AD is linked to aberrant cholesterol metabolism and inflammation. Activation of LXR can regulate neuroinflammation and decrease amyloid-β peptide accumulation. Here, we highlight the role of LXR in orchestrating lipid homeostasis and neuroinflammation in the brain. In addition, diabetes mellitus is also briefly discussed as a significant risk factor for AD because of the appearing beneficial effects of LXR on glucose homeostasis. The ability of LXR to attenuate AD pathology makes them potential therapeutic targets for this neurodegenerative disease.
Collapse
Affiliation(s)
- Jihong Kang
- Department of Physiology and Pathophysiology and Key Laboratory of Molecular Cardiovascular Sciences, State Education Ministry, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
11
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|
12
|
Hayashi H. [Lipid metabolism in the central nervous system and neurodegenerative diseases]. Nihon Yakurigaku Zasshi 2011; 137:227-31. [PMID: 21666340 DOI: 10.1254/fpj.137.227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Dietary cholesterol and its effect on tau protein: a study in apolipoprotein E-deficient and P301L human tau mice. J Neuropathol Exp Neurol 2011; 70:292-301. [PMID: 21412171 DOI: 10.1097/nen.0b013e318212f185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Apolipoprotein E (ApoE) is the major cholesterol transporter in the brain. There is epidemiological and experimental evidence for involvement of cholesterol metabolism in the development and progression of Alzheimer disease. A dietary effect on tau phosphorylation or aggregation, or a role of apoE in tau metabolism, has been studied experimentally, but the data are ambiguous. To elucidate the relationship between cholesterol and tau, we studied mice expressing P301L mutant human tau but not apoE (htau-ApoE) and P301L mice with wild-type ApoE (htau- ApoE); both genotypes develop neuron cytoskeletal changes similar to those found in Alzheimer disease. Mice were kept on a cholesterol-enriched diet or control diet for 15 weeks. The numbers of neurons with hyperphosphorylated and conformationally changed tau in the cerebral cortex were assessed by immunohistochemistry, and sterol levels were determined. Highly elevated dietary serum cholesterol levels enhanced ongoing tau pathology in htau-ApoE mice; this effect correlated with elevated brain cholesterol metabolite 27-hydroxycholesterol levels. Apolipoprotein E deficiency promoted significant increases of tau phosphorylation and conformational changes in mice on a control diet. In htau-ApoE mice on the high cholesterol regimen, brain oxysterol levels were less than in htau-ApoE mice, and the numbers of neurons with pathologically altered tau were similar to those in htau-ApoE mice on the high-cholesterol diet.
Collapse
|
14
|
Pardon MC, Rattray I. What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev 2008; 32:1103-20. [DOI: 10.1016/j.neubiorev.2008.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 02/18/2008] [Accepted: 02/20/2008] [Indexed: 12/21/2022]
|
15
|
Hooijmans CR, Kiliaan AJ. Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 2008; 585:176-96. [PMID: 18378224 DOI: 10.1016/j.ejphar.2007.11.081] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/11/2007] [Accepted: 11/15/2007] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is the most common form of dementia in the elderly. The cause of Alzheimer's disease is still unknown and there is no cure for the disease yet despite 100 years of extensive research. Cardiovascular risk factors such as high serum cholesterol, presence of the Apolipoprotein epsilon4 (APOE epsilon4) allele and hypertension, play important roles in the development of Alzheimer's disease. We postulate that a combination of diet, lifestyle, vascular, genetic, and amyloid related factors, which enhance each other's contribution in the onset and course of Alzheimer's disease, will be more likely the cause of the disease instead of one sole mechanism. The possibility that the risk for Alzheimer's disease can be reduced by diet or lifestyle is of great importance and suggests a preventative treatment in Alzheimer's disease. Because of the great importance of lipid diets and metabolism in preventative treatment against both Alzheimer's disease and cardiovascular disease, long-chain polyunsaturated fatty acids from fish oil, ApoE genotype and cholesterol metabolism in correlation with Alzheimer's disease will be reviewed.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anatomy and Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Room M245/0.24 PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
16
|
Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li HF, Feng L, Lecanu L, Walker BR, Planel E, Arancio O, Gozes I, Aisen PS. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer's disease. J Pharmacol Exp Ther 2008; 325:146-53. [PMID: 18199809 DOI: 10.1124/jpet.107.130526] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurofibrillary tangles composed of aggregated, hyperphosphorylated tau in an abnormal conformation represent one of the major pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. However, recent data suggest that the pathogenic processes leading to cognitive impairment occur before the formation of classic tangles. In the earliest stages of tauopathy, tau detaches from microtubules and accumulates in the cytosol of the somatodendritic compartment of cells. Either as a cause or an effect, tau becomes hyperphosphorylated and aggregates into paired helical filaments that comprise the tangles. To assess whether an agent that modulates microtubule function can inhibit the pathogenic process and prevent cognitive deficits in a transgenic mouse model with AD-relevant tau pathology, we administered the neuronal tubulin-preferring agent, NAPVSIPQ (NAP). Three months of treatment with NAP at an early-to-moderate stage of tauopathy reduced the levels of hyperphosphorylated soluble and insoluble tau. A 6-month course of treatment improved cognitive function. Although nonspecific tubulin-interacting agents commonly used for cancer therapy are associated with adverse effects due to their anti-mitotic activity, no adverse effects were found after 6 months of exposure to NAP. Our results suggest that neuronal microtubule interacting agents such as NAP may be useful therapeutic agents for the treatment or prevention of tauopathies.
Collapse
Affiliation(s)
- Yasuji Matsuoka
- Department of Neurology, Georgetown University Medical Center, 4000 Reservoir Road N.W., Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Analysis of apolipoprotein E nuclear localization using green fluorescent protein and biotinylation approaches. Biochem J 2008; 409:701-9. [DOI: 10.1042/bj20071261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous results indicate that apoE (apolipoprotein E) may be associated with the nucleus in specific cell types, particularly under stress conditions such as serum starvation. In addition, nuclear apoE localization in ovarian cancer was recently shown to be correlated with patient survival. In order to better understand the factors associated with apoE nuclear localization, we examined intracellular apoE trafficking using live-cell imaging of CHO (Chinese-hamster ovary) cells that constitutively expressed apoE–GFP (green fluorescent protein). In addition, we used biotinylated apoE (in a lipid-free state and as a lipidated discoidal complex) to track the uptake and potential nuclear targeting of exogenous apoE. Our results indicate that a small proportion of apoE–GFP is detected in the nucleus of living apoE–GFP-expressing CHO cells and that the level of apoE–GFP in the nucleus is increased with serum starvation. Exposure of control CHO cells to exogenous apoE–GFP did not result in nuclear apoE–GFP localization in the recipient cells. Similarly, biotinylated apoE did not reach the nucleus of control CHO cells or SK-N-SH neurons. In contrast, when biotinylated apoE was delivered to recipient cells as a lipidated apoE disc, apoE was detected in the nucleus, suggesting that the lipoprotein complex alters the intracellular degradation or trafficking of apoE. Biotinylated apoE discs containing each of the three common human apoE isoforms (E2, E3 and E4) were also tested for nuclear trafficking. All three apoE isoforms were equally detected in the nucleus. These studies provide new evidence that apoE may be targeted to the nucleus and shed light on factors that regulate this process.
Collapse
|
18
|
Pardon MC. Stress and ageing interactions: A paradox in the context of shared etiological and physiopathological processes. ACTA ACUST UNITED AC 2007; 54:251-73. [PMID: 17408561 DOI: 10.1016/j.brainresrev.2007.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/15/2007] [Accepted: 02/22/2007] [Indexed: 12/18/2022]
Abstract
Gerontology has made considerable progress in the understanding of the mechanisms underlying the ageing process and age-related neurodegenerative disorders. However, ways to improve quality of life in the elderly remain to be elucidated. It is now clear that stress and the ageing process share a number of underlying mechanisms bound in a very close, if not indissociable, relationship. The ageing process is regulated by the factors underlying the ability to adjust to stress, whilst stress has an influence on the life span and the quality of ageing. In addition, the ability to cope with stress in adulthood predicts life expectancy and quality of life at senescence. The ageing process and stress also share several common mechanisms, particularly in relation to the energy factor. Stress consumes energy and ageing may be considered as a cost of the energy expended to deal with the stressors to which the body is exposed throughout its lifetime. This suggests that the ageing process is associated with and/or a consequence of a long-lasting activation of the major stress responsive systems. However, despite common features, the interaction between stress and the ageing process gives rise to some paradoxes. Stress can either diminish or exacerbate the ageing process just as the ageing process can worsen or counter the effects of stress. There has been little attempt to understand how ageing and stress might interact to promote "successful" or pathological ageing. A key factor in this respect is the individual's ability to adapt to stress. Viewed from this angle, the quality of life of aged subjects may be improved through therapy designed to improve the tolerance to stress.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
19
|
Martins IJ, Hone E, Foster JK, Sünram-Lea SI, Gnjec A, Fuller SJ, Nolan D, Gandy SE, Martins RN. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry 2006; 11:721-36. [PMID: 16786033 DOI: 10.1038/sj.mp.4001854] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High fat diets and sedentary lifestyles are becoming major concerns for Western countries. They have led to a growing incidence of obesity, dyslipidemia, high blood pressure, and a condition known as the insulin-resistance syndrome or metabolic syndrome. These health conditions are well known to develop along with, or be precursors to atherosclerosis, cardiovascular disease, and diabetes. Recent studies have found that most of these disorders can also be linked to an increased risk of Alzheimer's disease (AD). To complicate matters, possession of one or more apolipoprotein E epsilon4 (APOE epsilon4) alleles further increases the risk or severity of many of these conditions, including AD. ApoE has roles in cholesterol metabolism and Abeta clearance, both of which are thought to be significant in AD pathogenesis. The apparent inadequacies of ApoE epsilon4 in these roles may explain the increased risk of AD in subjects carrying one or more APOE epsilon4 alleles. This review describes some of the physiological and biochemical changes that the above conditions cause, and how they are related to the risk of AD. A diversity of topics is covered, including cholesterol metabolism, glucose regulation, diabetes, insulin, ApoE function, amyloid precursor protein metabolism, and in particular their relevance to AD. It can be seen that abnormal lipid, cholesterol and glucose metabolism are consistently indicated as central in the pathophysiology, and possibly the pathogenesis of AD. As diagnosis of mild cognitive impairment and early AD are becoming more reliable, and as evidence is accumulating that health conditions such as diabetes, obesity, and coronary artery disease are risk factors for AD, appropriate changes to diets and lifestyles will likely reduce AD risk, and also improve the prognosis for people already suffering from such conditions.
Collapse
Affiliation(s)
- I J Martins
- Alzheimer's and Ageing, School of Biomedical and Sports Science, Edith Cowan University, Perth, WA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McDonald SR, Forster MJ. Lifelong vitamin E intake retards age-associated decline of spatial learning ability in apoE-deficient mice. AGE (DORDRECHT, NETHERLANDS) 2005; 27:5-16. [PMID: 23598599 PMCID: PMC3456095 DOI: 10.1007/s11357-005-4003-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 03/11/2005] [Indexed: 05/08/2023]
Abstract
The potential for lifelong vitamin E supplementation to delay age-associated cognitive decline was tested in apoE-deficient and wild-type C57BL/6 mice. Beginning at eight weeks of age, the mice were maintained on a control diet or diets supplemented with dl-α-tocopheryl acetate yielding approximate daily intakes of either 20 or 200 mg/kg body weight. When 6 or 18 months of age, cognitive functioning of the mice was assessed using swim maze and discriminated avoidance testing procedures. For the mice maintained on control diets, the age-related declines in swim maze performance were relatively larger in apoE-deficient mice when compared with wild-type. On the other hand, age-associated declines in learning and working memory for discriminated avoidance were similar in the two genotypes. The 200-mg/kg dose of vitamin E prevented the accelerated decline in spatial learning apparent in 18-month-old apoE-deficient mice, but had no equivalent effect on performance declines attributable to normal aging in the wild-type mice. Vitamin E supplementation failed to prevent age-related impairments in learning and memory for discriminated avoidance observed in both the wild-type and apoE-deficient mice. The current findings are consistent with the hypothesis that apoE deficiency confers an accelerated, though probably selective, loss of brain function with age. This loss of function would appear to involve pathogenic oxidative mechanisms that can be prevented or offset by antioxidant supplementation.
Collapse
Affiliation(s)
- Shelley R. McDonald
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| |
Collapse
|
21
|
Nathan BP, Yost J, Litherland MT, Struble RG, Switzer PV. Olfactory function in apoE knockout mice. Behav Brain Res 2004; 150:1-7. [PMID: 15033273 DOI: 10.1016/s0166-4328(03)00219-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 04/30/2003] [Accepted: 06/24/2003] [Indexed: 10/27/2022]
Abstract
Apolipoprotein E (apoE), a lipid transporting protein, has been shown to play a vital role in nerve repair and remodeling. Since the olfactory system is in a continuous state of remodeling, the present study tested the hypothesis that apoE is required for normal functioning of the olfactory system. Olfactory behavior of wild-type (WT) and apoE-deficient (apoE KO) mice was assessed by using three standard olfactory tests: (1) the buried food pellet (BFP) test; (2) the odor choice (OC) test; and (3) the odor cued taste avoidance (OCTA) test. ApoE KO mice performed poorly in all the three tests as compared to WT mice, although they learned the tasks at a rate comparable to WT mice. ApoE KO mice had a significantly longer latency to find the buried pellet than WT mice. In the OC experiment, apoE KO mice did not differentiate water from an odorant solution. Furthermore, in the OCTA test the apoE KO mice were significantly less successful than WT mice at avoiding water containing an odorant and a bad tastant. These data demonstrate that apoE deficiency in apoE KO mice leads to a deficit in olfactory function, suggesting an important role for apoE in the olfactory system.
Collapse
Affiliation(s)
- Britto P Nathan
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920, USA.
| | | | | | | | | |
Collapse
|
22
|
Everett AW, Ernst EJ. Increased quantal size in transmission at slow but not fast neuromuscular synapses of apolipoprotein E deficient mice. Exp Neurol 2004; 185:290-6. [PMID: 14736510 DOI: 10.1016/j.expneurol.2003.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Uncertainties from the literature concerning the role of apolipoprotein E (apoE) in central cholinergic function prompted us to investigate what effect apoE may have on transmission at the neuromuscular junction. Both spontaneous and evoked release were measured in isolated extensor digitorum longus (edl) and soleus muscles from both wild-type and apoE-deficient mice. Miniature endplate and nerve-evoked endplate potentials (MEPPs and EPPs, respectively) were indistinguishable in edl muscles in both groups of mice; however, MEPP amplitudes in soleus muscles were significantly larger (by an average of 23%) in apoE-deficient mice compared with 5- to 7-week-old age-matched wild-type mice. The EPP amplitudes were also larger in soleus muscles in the mutant mice, but this was a reflection of the larger quantal size in this muscle because quantal content, determined from the ratio of the average EPP amplitude to average MEPP amplitude, was unchanged from normal in the mutant mice. The MEPP frequency and the percent of nerve stimulations failing to produce an EPP were unchanged from normal in both muscle types in the mutant mice. The difference in quantal size in soleus muscle transmission between mutant and wild-type mice was abolished in the presence of neostigmine, an acetylcholinesterase inhibitor. The results suggest that apoE normally associates with acetylcholinesterase in the synaptic cleft of slow muscles, modulating the activity of the enzyme and therefore quantal size.
Collapse
Affiliation(s)
- A W Everett
- Physiology, M311, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley 6009, Australia.
| | | |
Collapse
|
23
|
Lee Y, Aono M, Laskowitz D, Warner DS, Pearlstein RD. Apolipoprotein E protects against oxidative stress in mixed neuronal-glial cell cultures by reducing glutamate toxicity. Neurochem Int 2004; 44:107-18. [PMID: 12971913 DOI: 10.1016/s0197-0186(03)00112-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein E (ApoE) deficiency has been shown to adversely affect outcome after transient cerebral ischemia and head trauma. Since oxidative stress contributes to these injuries, the ability of ApoE to reduce irreversible oxidative damage was studied in primary mixed neuronal-glial cell cultures. Cells (13-16 days in vitro) were exposed to 50 microM hydrogen peroxide (H2O2) for 30 min, and toxicity was determined by the release of lactate dehydrogenase (LDH) 24 h after exposure. The presence of recombinant human ApoE2 (100, 300, or 1000 nM) in the culture media partially protected against oxidative injury. This protection was not reversed by pre-treatment with receptor associated protein. The NMDA receptor antagonist, MK-801, also provided partial protection against H2O2 toxicity. The degree of protection was similar to that conferred by ApoE treatment. The protective effects of ApoE and MK-801 were not additive; no ApoE protection was observed in cultures treated with MK-801 prior to H2O2 exposure. ApoE treatment had no effect on H2O2 stimulated glutamate release, but did increase the rate of glutamate uptake via the high affinity glutamate transporter in H2O2 treated cultures. Pre-treatment with ApoE also conferred partial protection against glutamate-induced LDH release. Taken together, these findings suggest that ApoE protects mixed neuronal-glial cell cultures against irreversible oxidative injury from H2O2 by reducing secondary glutamate excitotoxicity.
Collapse
Affiliation(s)
- Yoonki Lee
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
24
|
Wright RO, Hu H, Silverman EK, Tsaih SW, Schwartz J, Bellinger D, Palazuelos E, Weiss ST, Hernandez-Avila M. Apolipoprotein E genotype predicts 24-month bayley scales infant development score. Pediatr Res 2003; 54:819-25. [PMID: 12930912 DOI: 10.1203/01.pdr.0000090927.53818.de] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apolipoprotein E (APOE) regulates cholesterol and fatty acid metabolism, and may mediate synaptogenesis during neurodevelopment. To our knowledge, the effects of APOE4 isoforms on infant development have not been studied. This study was nested within a cohort of mother-infant pairs living in and around Mexico City. A multiple linear regression model was constructed using the 24-mo Mental Development Index (MDI) of the Bayley Scale as the primary outcome and infant APOE genotype as the primary risk factor of interest. Regression models stratified on APOE genotype were constructed to explore effect modification. Of 311 subjects, 53 (17%) carried at least one copy of the APOE4 allele. Mean (SD) MDI scores among carriers with at least one copy of APOE4 were 94.1 (14.3) and among E3/E2 carriers were 91.2 (14.0). After adjustment for covariates, APOE4 carrier status was associated with a 4.4 point (95% confidence interval: 0.1-8.7; p = 0.04) higher 24-mo MDI. In the stratified regression models, the negative effects for umbilical cord blood lead level on 24-mo MDI score was approximately 4-fold greater among APOE3/APOE2 carriers than among APOE4 carriers. These results suggest that subjects with the E4 isoform of APOE may have advantages over those with the E2 or E3 isoforms with respect to early life neuronal/brain development.
Collapse
Affiliation(s)
- Robert O Wright
- Department of Pediatrics, Children's Hospital, Boston, Massachusett 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Moghadasian MH, McManus BM, Nguyen LB, Shefer S, Nadji M, Godin DV, Green TJ, Hill J, Yang Y, Scudamore CH, Frohlich JJ. Pathophysiology of apolipoprotein E deficiency in mice: relevance to apo E-related disorders in humans. FASEB J 2001; 15:2623-30. [PMID: 11726538 DOI: 10.1096/fj.01-0463com] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apolipoprotein E (apo E) deficiency (or its abnormalities in humans) is associated with a series of pathological conditions including dyslipidemia, atherosclerosis, Alzheimer's disease, and shorter life span. The purpose of this study was to characterize these conditions in apo E-deficient C57BL/6J mice and relate them to human disorders. Deletion of apo E gene in mice is associated with changes in lipoprotein metabolism [plasma total cholesterol (TC) (>+400%), HDL cholesterol (-80%), HDL/TC, and HDL/LDL ratios (-93% and -96%, respectively), esterification rate in apo B-depleted plasma (+100%), plasma triglyceride (+200%), hepatic HMG-CoA reductase activity (-50%), hepatic cholesterol content (+30%)], decreased plasma homocyst(e)ine and glucose levels, and severe atherosclerosis and cutaneous xanthomatosis. Hepatic and lipoprotein lipase activities, hepatic LDL receptor function, and organ antioxidant capacity remain unchanged. Several histological/immunohistological stainings failed to detect potential markers for neurodegenerative disease in the brain of 37-wk-old male apo E-KO mice. Apo E-KO mice may have normal growth and development, but advanced atherosclerosis and xanthomatosis may indirectly reduce their life span. Apo E plays a crucial role in regulation of lipid metabolism and atherogenesis without affecting lipase activities, endogenous antioxidant capacity, or appearance of neurodegenerative markers in 37-wk-old male mice.
Collapse
Affiliation(s)
- M H Moghadasian
- Department of Pathology, (Healthy Heart Program and the iCAPTUR4E Centre), University of British Columbia, Vancouver, B.C, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:60-90. [PMID: 11516773 DOI: 10.1016/s0165-0173(01)00067-4] [Citation(s) in RCA: 1405] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Morris water maze (MWM) was described 20 years ago as a device to investigate spatial learning and memory in laboratory rats. In the meanwhile, it has become one of the most frequently used laboratory tools in behavioral neuroscience. Many methodological variations of the MWM task have been and are being used by research groups in many different applications. However, researchers have become increasingly aware that MWM performance is influenced by factors such as apparatus or training procedure as well as by the characteristics of the experimental animals (sex, species/strain, age, nutritional state, exposure to stress or infection). Lesions in distinct brain regions like hippocampus, striatum, basal forebrain, cerebellum and cerebral cortex were shown to impair MWM performance, but disconnecting rather than destroying brain regions relevant for spatial learning may impair MWM performance as well. Spatial learning in general and MWM performance in particular appear to depend upon the coordinated action of different brain regions and neurotransmitter systems constituting a functionally integrated neural network. Finally, the MWM task has often been used in the validation of rodent models for neurocognitive disorders and the evaluation of possible neurocognitive treatments. Through its many applications, MWM testing gained a position at the very core of contemporary neuroscience research.
Collapse
Affiliation(s)
- R D'Hooge
- Laboratory of Neurochemistry and Behavior, Born-Bunge Foundation, and Department of Neurology/Memory Clinic, Middelheim Hospital, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | | |
Collapse
|
27
|
Mayeux R, Small SA, Tang M, Tycko B, Stern Y. Memory performance in healthy elderly without Alzheimer's disease: effects of time and apolipoprotein-E. Neurobiol Aging 2001; 22:683-9. [PMID: 11445269 DOI: 10.1016/s0197-4580(01)00223-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transgenic mice expressing human APOE-epsilon4 develop an age-dependent decline in memory without pathological features of Alzheimer's disease (AD). This implicates APOE in the maintenance of memory during normal senescence, but parallel human studies are limited because longitudinal investigations of memory usually do not exclude patients with AD or "questionable" AD (QD). The current study examined the effect of APOE on cognitive function over time in elderly without dementia. We hypothesized that, compared to other APOE alleles memory decline even in healthy elderly would be greater among those with an APOE-epsilon4. The results of neuropsychological tests, grouped into domains of memory, language and visuospatial/cognitive function by factor analysis, were examined at three intervals over a seven-year period in 563 healthy elderly without AD or QD using generalized estimating equations. Memory performance declined over time, while scores on the visuospatial/cognitive and language factors did not change. Increased age was associated with lower scores, and higher education with higher scores on all factors at each interval. No APOE allele was associated with performance on a specific cognitive factor at any interval, but the presence of an APOE-epsilon4 allele was associated with a more rapid decline in the memory factor over the follow-up period. The effect was most pronounced among individuals with less than 10 years of formal education. There was no similar time-dependent relationship between APOE-epsilon4 and the language or visuospatial/cognitive factors. Transgenic mice and elderly humans without AD or QD expressing APOE-epsilon4 show a decline in memory performance over time. These observations provide evidence for an APOE-specific effect on memory during senescence.
Collapse
Affiliation(s)
- R Mayeux
- Gertrude H. Sergievsky Center, School of Public Health, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | |
Collapse
|
28
|
Teter B, Harris-White ME, Frautschy SA, Cole GM. Role of apolipoprotein E and estrogen in mossy fiber sprouting in hippocampal slice cultures. Neuroscience 1999; 91:1009-16. [PMID: 10391478 DOI: 10.1016/s0306-4522(98)00630-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A role for apolipoprotein E is implicated in regeneration of synaptic circuitry after neural injury. The in vitro mouse organotypic hippocampal slice culture system shows Timm's stained mossy fiber sprouting into the dentate gyrus molecular layer in response to deafferentation of the entorhinal cortex. We show that cultures derived from apolipoprotein E knockout mice are defective in this sprouting response; specifically, they show no sprouting in the dorsal region of the dentate gyrus, yet retain sprouting in the ventral region. Dorsal but not ventral sprouting in cultures from C57B1/6J mice is increased 75% by treatment with 100 pM 17beta-estradiol; this response is blocked by both progesterone and tamoxifen. These results show that neuronal sprouting is increased by estrogen in the same region where sprouting is dependent on apolipoprotein E. Sprouting may be stimulated by estrogen through its up-regulation of apolipoprotein E expression leading to increased recycling of membrane lipids for use by sprouting neurons. Estrogen and apolipoprotein E may therefore interact in their modulation of both Alzheimer's disease risk and recovery from CNS injury.
Collapse
Affiliation(s)
- B Teter
- Greater Los Angeles Veteran's Healthcare System, Sepulveda, and Department of Medicine, University of California, Los Angeles, 91343, USA
| | | | | | | |
Collapse
|
29
|
Montine TJ, Montine KS, Olson SJ, Graham DG, Roberts LJ, Morrow JD, Linton MF, Fazio S, Swift LL. Increased cerebral cortical lipid peroxidation and abnormal phospholipids in aged homozygous apoE-deficient C57BL/6J mice. Exp Neurol 1999; 158:234-41. [PMID: 10448437 DOI: 10.1006/exnr.1999.7067] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aged homozygous apolipoprotein E gene-deficient (apoE -/-) mice have been proposed as an experimental model for the role of human apoE isoforms in Alzheimer's disease (AD). However, results from different laboratories have been in conflict regarding the presence or absence of neurodegeneration in these mice. Moreover, despite apoE being the major lipid trafficking molecule in the central nervous system, there has been no investigation of brain lipid levels in apoE -/- mice. Here we have examined male and female apoE -/- and control mice aged 10 to 12 months, testing the hypothesis that lack of apoE leads to some of the neuropathological changes seen in AD. Our results failed to demonstrate significant neurodegeneration, histopathological changes, or reduction in cerebral cortical synaptophysin in apoE -/- mice. However, we did observe a significant reduction in cerebral cortical phospholipids and their constituent fatty acids, as well as elevated lipid peroxidation products, in apoE -/- mice compared to apoE +/+ mice with the same genetic background. Our results suggest that the brains of aged apoE -/- mice display some of the lipid abnormalities associated with AD; however, these changes alone, at the magnitudes achieved in the apoE -/- mice, do not directly lead to the major neurodegenerative changes of AD.
Collapse
Affiliation(s)
- T J Montine
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kwon YJ, Tsai J, Relkin NR. NIA/AIzA Conference on apolipoprotein E genotyping in Alzheimer's disease. Bibliography. Ann N Y Acad Sci 1996; 802:177-224. [PMID: 9012315 DOI: 10.1111/j.1749-6632.1996.tb32609.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|