1
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2025; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
de la Monte SM, Tong M, Ziplow J, Mark P, Van S, Nguyen VA. Impact of Prenatal Dietary Soy on Cerebellar Neurodevelopment and Function in Experimental Fetal Alcohol Spectrum Disorder. Nutrients 2025; 17:812. [PMID: 40077682 PMCID: PMC11901751 DOI: 10.3390/nu17050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/01/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Prenatal alcohol exposure (PAE) models can cause neurodevelopmental abnormalities like those observed in fetal alcohol spectrum disorder (FASD). Previous studies link experimental PAE effects in the brain to impaired signaling through insulin/IGF and Notch pathways that mediate neuronal survival, growth, migration, energy metabolism, and plasticity. Importantly, concurrent administration of peroxisome proliferator-activated receptor agonists or dietary soy prevented many aspects of FASD due to their insulin-sensitizing, anti-inflammatory, and antioxidant properties. Objective: To determine if dietary soy interventions during pregnancy would be sufficient to normalize central nervous system structure and function, we examined the effects of maternal gestation-limited dietary soy on cerebellar postnatal development, motor function, and critical signaling pathways. Methods: Pregnant Long Evans rats were fed isocaloric liquid diets containing 0% or 26% caloric ethanol with casein or soy isolate as the protein source. The ethanol and soy feedings were discontinued upon delivery. The offspring were subjected to rotarod motor function tests, and on postnatal day 35, they were sacrificed to harvest cerebella for histological and molecular studies. Results: Despite the postnatal cessation of alcohol exposure, chronic gestational exposure reduced brain weight, caused cerebellar hypoplasia, and impaired motor performance. Gestational dietary soy prevented the ethanol-associated reduction in brain weight and largely restored the histological integrity of the cerebellum but failed to normalize motor performance. Ethanol withdrawal abolished the impairments in insulin/IGF signaling that were previously associated with ongoing ethanol exposures, but ethanol's inhibitory effects on Notch and Wnt signaling persisted. Soy significantly increased cerebellar expression of the insulin and IGF-1 receptors and abrogated several ethanol-associated impairments in Notch and Wnt signaling. Conclusions: Although gestation-restricted dietary soy has significant positive effects on neurodevelopment, optimum prevention of FASD's long-term effects will likely require dietary soy intervention during the critical periods of postnatal development, even after alcohol exposures have ceased.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Neurosurgery, and Neurology, Rhode Island Hospital, Providence, RI 02903, USA
- Women & Infants Hospital, Brown University Health, Providence, RI 02905, USA
- Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, Brown University Health, Providence, RI 02903, USA
| | - Ming Tong
- Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, Brown University Health, Providence, RI 02903, USA
| | - Jason Ziplow
- Departments of Neuroscience and Biology, Brown University, Providence, RI 02903, USA; (J.Z.); (S.V.)
| | - Princess Mark
- Department of Medicine, Rhode Island Hospital, Brown University Health, Providence, RI 02903, USA
| | - Stephanie Van
- Departments of Neuroscience and Biology, Brown University, Providence, RI 02903, USA; (J.Z.); (S.V.)
| | - Van Ahn Nguyen
- Departments of Neuroscience and Biology, Brown University, Providence, RI 02903, USA; (J.Z.); (S.V.)
| |
Collapse
|
3
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
4
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
5
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
6
|
Gruber J, Hanssen R, Qubad M, Bouzouina A, Schack V, Sochor H, Schiweck C, Aichholzer M, Matura S, Slattery DA, Zopf Y, Borgland SL, Reif A, Thanarajah SE. Impact of insulin and insulin resistance on brain dopamine signalling and reward processing- an underexplored mechanism in the pathophysiology of depression? Neurosci Biobehav Rev 2023; 149:105179. [PMID: 37059404 DOI: 10.1016/j.neubiorev.2023.105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type 2 diabetes and major depressive disorder (MDD) are the leading causes of disability worldwide and have a high comorbidity rate with fatal outcomes. Despite the long-established association between these conditions, the underlying molecular mechanisms remain unknown. Since the discovery of insulin receptors in the brain and the brain's reward system, evidence has accumulated indicating that insulin modulates dopaminergic (DA) signalling and reward behaviour. Here, we review the evidence from rodent and human studies, that insulin resistance directly alters central DA pathways, which may result in motivational deficits and depressive symptoms. Specifically, we first elaborate on the differential effects of insulin on DA signalling in the ventral tegmental area (VTA) - the primary DA source region in the midbrain - and the striatum as well as its effects on behaviour. We then focus on the alterations induced by insulin deficiency and resistance. Finally, we review the impact of insulin resistance in DA pathways in promoting depressive symptoms and anhedonia on a molecular and epidemiological level and discuss its relevance for stratified treatment strategies.
Collapse
Affiliation(s)
- Judith Gruber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ruth Hanssen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Prevention Medicine, Germany
| | - Mishal Qubad
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Aicha Bouzouina
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Vivi Schack
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Hannah Sochor
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Carmen Schiweck
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mareike Aichholzer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Yurdaguel Zopf
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Canada
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sharmili Edwin Thanarajah
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
7
|
Contreras CM, Gutiérrez-García AG. Insulin and fluoxetine produce opposite actions on lateral septal nucleus-infralimbic region connection responsivity. Behav Brain Res 2023; 437:114146. [PMID: 36202146 DOI: 10.1016/j.bbr.2022.114146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
Some diabetes patients develop depression, the main treatment for which is antidepressants. Pharmacological interactions between insulin and antidepressants (e.g., fluoxetine) are controversial in the literature. Some authors reported hypoglycemic actions of fluoxetine, whereas others reported antidepressant-like actions. In healthy rats, insulin produces an antidespair-like action in rats through an increase in locomotor and exploratory activity, but differences in actions of insulin and fluoxetine on neuronal activity are unknown. The present study evaluated Wistar healthy rats that were treated with saline, insulin, fluoxetine, or fluoxetine + insulin for 3 days (short-term) or 21 days (long-term). The model consisted of electrical stimulation of the lateral septal nucleus (LSN) while we performed single-unit extracellular response recordings in the prelimbic cortex (PL) and infralimbic cortex (IL) subregions of the medial prefrontal cortex (mPFC). Stimulation of the LSN produced an initial brief excitatory paucisynaptic response and then a long-lasting inhibitory afterdischarge in the PL and IL. Treatment with saline and fluoxetine, but not insulin, minimally affected the paucisynaptic response. Differences were found in LSN-IL responsivity. The inhibitory afterdischarge was clearly enhanced in the long-term fluoxetine group but not by insulin alone or fluoxetine + insulin. These findings suggest that insulin produces some actions that are opposite to fluoxetine on LSN-mPFC connection responsivity, with no synergistic actions between the actions of insulin and fluoxetine.
Collapse
Affiliation(s)
- Carlos M Contreras
- Unidad Periférica del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Xalapa, Veracruz 91190, Mexico.
| | - Ana G Gutiérrez-García
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico
| |
Collapse
|
8
|
Ferris HA. Insulin and neurodegenerative diseases. INSULIN 2023:315-338. [DOI: 10.1016/b978-0-323-91707-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
The Strategies for Treating "Alzheimer's Disease": Insulin Signaling May Be a Feasible Target. Curr Issues Mol Biol 2022; 44:6172-6188. [PMID: 36547082 PMCID: PMC9777526 DOI: 10.3390/cimb44120421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by senile plaques formed by amyloid-beta (Aβ) extracellularly and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein intracellularly. Apart from these two features, insulin deficiency and insulin resistance have also been observed in AD brains. Thus, AD has also been referred to as type 3 diabetes by some of the scientists in this field. Insulin plays a pivotal role in learning and memory and is involved in regulating tau phosphorylation though the PI3KAkt-GSK3b signaling pathway. Interestingly, recent studies revealed that in AD brains the microglia transformed into a disease-associated microglia (DAM) status in a TREM2-dependent manner to restrain the toxicity of Aβ and propagation of tau. This also correlated with PI3K-Akt signaling through the adaptor of TREM2. Whether insulin has any effect on microglia activation in AD pathology is unclear so far. However, many studies demonstrated that diabetes increased the risk of AD. In this review, we summarize the main strategies for curing AD, including lowering the level of Aβ, suppressing the phosphorylation of tau, the ablation and/or repopulation of microglia, and especially the supply of insulin. We also propose that attention should be given to the influences of insulin on microglia in AD.
Collapse
|
10
|
Chau DDL, Li W, Chan WWR, Sun JKL, Zhai Y, Chow HM, Lau KF. Insulin stimulates atypical protein kinase C-mediated phosphorylation of the neuronal adaptor FE65 to potentiate neurite outgrowth by activating ARF6-Rac1 signaling. FASEB J 2022; 36:e22594. [PMID: 36250347 DOI: 10.1096/fj.202200757r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Neurite outgrowth is a fundamental process in neurons that produces extensions and, consequently, neural connectivity. Neurite damage and atrophy are observed in various brain injuries and disorders. Understanding the intrinsic pathways of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration. Insulin is a pivotal hormone in the regulation of glucose homeostasis. There is increasing evidence for the neurotrophic functions of insulin, including the induction of neurite outgrowth. However, the associated mechanism remains elusive. Here, we demonstrate that insulin potentiates neurite outgrowth mediated by the small GTPases ADP-ribosylation factor 6 (ARF6) and Ras-related C3 botulinum toxin substrate 1 (Rac1) through the neuronal adaptor FE65. Moreover, insulin enhances atypical protein kinase Cι/λ (PKCι/λ) activation and FE65 phosphorylation at serine 459 (S459) in neurons and mouse brains. In vitro and cellular assays show that PKCι/λ phosphorylated FE65 at S459. Consistently, insulin potentiates FE65 S459 phosphorylation only in the presence of PKCι/λ. Phosphomimetic studies show that an FE65 S459E mutant potently activates ARF6, Rac1, and neurite outgrowth. Notably, this phosphomimetic mutation enhances the FE65-ARF6 interaction, a process that promotes ARF6-Rac1-mediated neurite outgrowth. Likewise, insulin treatment and PKCι/λ overexpression potentiate the FE65-ARF6 interaction. Conversely, PKCι/λ knockdown suppresses the stimulatory effect of FE65 on ARF6-Rac1-mediated neurite outgrowth. The effect of insulin on neurite outgrowth is also markedly attenuated in PKCι/λ knockdown neurons, in the presence and absence of FE65. Our findings reveal a novel mechanism linking insulin with ARF6-Rac1-dependent neurite extension through the PKCι/λ-mediated phosphorylation of FE65.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
De Meyts P. [The insulin receptor discovery is 50 years old - A review of achieved progress]. Biol Aujourdhui 2022; 216:7-28. [PMID: 35876517 DOI: 10.1051/jbio/2022007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The isolation of insulin from the pancreas and its purification to a degree permitting its safe administration to type 1 diabetic patients were accomplished 100 years ago at the University of Toronto by Banting, Best, Collip and McLeod and constitute undeniably one of the major medical therapeutic revolutions, recognized by the attribution of the 1923 Nobel Prize in Physiology or Medicine to Banting and McLeod. The clinical spin off was immediate as well as the internationalization of insulin's commercial production. The outcomes regarding basic research were much slower, in particular regarding the molecular mechanisms of insulin action on its target cells. It took almost a half-century before the determination of the tri-dimensional structure of insulin in 1969 and the characterization of its cell receptor in 1970-1971. The demonstration that the insulin receptor is in fact an enzyme named tyrosine kinase came in the years 1982-1985, and the crystal structure of the intracellular kinase domain 10 years later. The crystal structure of the first intracellular kinase substrate (IRS-1) in 1991 paved the way for the elucidation of the intracellular signalling pathways but it took 15 more years to obtain the complete crystal structure of the extracellular receptor domain (without insulin) in 2006. Since then, the determination of the structure of the whole insulin-receptor complex in both the inactive and activated states has made considerable progress, not least due to recent improvement in the resolution power of cryo-electron microscopy. I will here review the steps in the development of the concept of hormone receptor, and of our knowledge of the structure and molecular mechanism of activation of the insulin receptor.
Collapse
Affiliation(s)
- Pierre De Meyts
- de Duve Institute, Department of Cell Signalling, Avenue Hippocrate 74, B-1200 Bruxelles, Belgique - Novo Nordisk A/S, Department of Stem Cell Research, Novo Nordisk Park 1, DK-2760 Maaloev, Danemark
| |
Collapse
|
12
|
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T, Papaliagkas V. Alzheimer's Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms between Alzheimer's Disease and Type 2 Diabetes. Int J Mol Sci 2022; 23:2687. [PMID: 35269827 PMCID: PMC8910482 DOI: 10.3390/ijms23052687] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/27/2022] Open
Abstract
Globally, the incidence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) epidemics is increasing rapidly and has huge financial and emotional costs. The purpose of the current review article is to discuss the shared pathophysiological connections between AD and T2DM. Research findings are presented to underline the vital role that insulin plays in the brain's neurotransmitters, homeostasis of energy, as well as memory capacity. The findings of this review indicate the existence of a mechanistic interplay between AD pathogenesis with T2DM and, especially, disrupted insulin signaling. AD and T2DM are interlinked with insulin resistance, neuroinflammation, oxidative stress, advanced glycosylation end products (AGEs), mitochondrial dysfunction and metabolic syndrome. Beta-amyloid, tau protein and amylin can accumulate in T2DM and AD brains. Given that the T2DM patients are not routinely evaluated in terms of their cognitive status, they are rarely treated for cognitive impairment. Similarly, AD patients are not routinely evaluated for high levels of insulin or for T2DM. Studies suggesting AD as a metabolic disease caused by insulin resistance in the brain also offer strong support for the hypothesis that AD is a type 3 diabetes.
Collapse
Affiliation(s)
- Michalis Michailidis
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina A. Tata
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
13
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
14
|
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab 2021; 52:101234. [PMID: 33845179 PMCID: PMC8513144 DOI: 10.1016/j.molmet.2021.101234] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The brain was once thought of as an insulin-insensitive organ. We now know that the insulin receptor is present throughout the brain and serves important functions in whole-body metabolism and brain function. Brain insulin signaling is involved not only in brain homeostatic processes but also neuropathological processes such as cognitive decline and Alzheimer's disease. SCOPE OF REVIEW In this review, we provide an overview of insulin signaling within the brain and the metabolic impact of brain insulin resistance and discuss Alzheimer's disease, one of the neurologic diseases most closely associated with brain insulin resistance. MAJOR CONCLUSIONS While brain insulin signaling plays only a small role in central nervous system glucose regulation, it has a significant impact on the brain's metabolic health. Normal insulin signaling is important for mitochondrial functioning and normal food intake. Brain insulin resistance contributes to obesity and may also play an important role in neurodegeneration.
Collapse
Affiliation(s)
- Joshua L Milstein
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Heather A Ferris
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
16
|
An evidence update on the protective mechanism of tangeretin against neuroinflammation based on network pharmacology prediction and transcriptomic analysis. Eur J Pharmacol 2021; 906:174094. [PMID: 34087222 DOI: 10.1016/j.ejphar.2021.174094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
Although the protective effects of tangeretin on neuroinflammation have been proven in cell and animal experiments, few studies explore its underlying molecular mechanism. In this study, we used the network pharmacology method combined with the transcriptome approach to investigate its underlying anti-inflammatory mechanism in human microglial cells. Based on network pharmacology analysis, four putative target proteins and ten potential pathways were identified. Among them, vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR) and the related phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), the mitogen-activated protein kinase (MAPK), mechanistic target of rapamycin (mTOR) signaling pathway were well-supported by transcriptome data. Meanwhile, transcriptome analysis supplemented two crucial targets: the insulin receptor (InsR) and insulin-like growth factor-I (IGF-1) receptor. Subsequently, VEGFA, EGFR, IGF-1 receptor, and InsR were further verified on the protein level. Taken together, we assumed that tangeretin could exert protective effects on neuroinflammation by decreasing the expression of VEGFA, EGFR, InsR, and IGF-1 receptor in the PI3K-AKT, MAPK, mTOR signaling pathway. More importantly, it is for the first time to show that the anti-neuroinflammatory effects of tangeretin through VEGFA, EGFR, IGF-1 receptor, InsR, and mTOR signaling pathway. These works offer new insight into the anti-neuroinflammatory functions of tangeretin and propose novel information on further anti-inflammatory mechanism studies.
Collapse
|
17
|
Hu Y, Zhao H, Lu J, Xie D, Wang Q, Huang T, Xin H, Hisatome I, Yamamoto T, Wang W, Cheng J. High uric acid promotes dysfunction in pancreatic β cells by blocking IRS2/AKT signalling. Mol Cell Endocrinol 2021; 520:111070. [PMID: 33127482 DOI: 10.1016/j.mce.2020.111070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023]
Abstract
Hyperuricaemia is a disorder of purine metabolism. Elevated serum uric acid is strongly associated with many diseases, including gout, abdominal obesity, insulin resistance, and cardiovascular and kidney disease. Our previous studies showed that high uric acid (HUA) induced insulin resistance in several peripheral organs, including the liver, myocardium and adipose tissue. However, whether HUA directly induces insulin resistance of pancreatic β cells, the only source of insulin in the body and also a sensitive insulin target, is unknown. In this study, pancreatic β cells pretreated with HUA showed impaired insulin expression/secretion, glucose uptake and the glycolytic pathway. RNA-seq revealed that HUA affected the biological processes of INS-1 cells broadly, including oxidoreduction coenzyme metabolic process, pyruvate metabolic process, and glycolytic process. In addition, HUA reduced mitochondrial membrane potential and increased the production of reactive oxygen species(ROS) in INS-1 cells. INS-1 cells pretreated with probenecid, an organic anion transporter inhibitor, protected INS-1 cells against HUA-induced insulin secretion decrease, Pretreatment with N-acetyl-L-cysteine(NAC), a globally used antioxidant, recovered HUA-decreased insulin secretion and glucose uptake by pancreatic β cells. Insulin-like growth factor 1 (IGF-1), the phosphatidylinositol 3-kinase (PI3K) activator, rescues HUA-decreased insulin secretion by re-activating AKT phosphorylation. Thus, HUA induce insulin resistance, impaired insulin secretion and glycolytic pathway of pancreatic ꞵ cell through IRS2/AKT pathway.
Collapse
Affiliation(s)
- Yaqiu Hu
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiaming Lu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Tianliang Huang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hancheng Xin
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
18
|
Yang Y, Chen X, Ma C. Insulin receptor is implicated in triple-negative breast cancer by decreasing cell mobility. J Biomed Res 2021; 35:189-196. [PMID: 33911052 PMCID: PMC8193710 DOI: 10.7555/jbr.34.20200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis and typically earlier onset of metastasis in comparison with other breast cancer subtypes. It has been reported that insulin receptor (INSR) is downregulated in TNBC, however, its clinical significance and functions in TNBC remain to be elucidated. In this study, we found that INSR expression was significantly downregulated in TNBC, and overexpression of INSR suppressed cell migration and invasion in TNBC. In addition, the survival rate of breast cancer patients with low INSR expression was lower than that of patients with high INSR expression. INSR expression was significantly correlated with lymph node metastasis, clinical tumor stages, ER status, PR status, and the proliferation index Ki-67 expression. In summary, our study suggests that INSR may serve as a biomarker for breast cancer prognosis and it may be a potential target for TNBC treatment.
Collapse
Affiliation(s)
- Ying Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiang Chen
- Department of General Surgery, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Changyan Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
19
|
Bálint F, Csillag V, Vastagh C, Liposits Z, Farkas I. Insulin-Like Growth Factor 1 Increases GABAergic Neurotransmission to GnRH Neurons via Suppressing the Retrograde Tonic Endocannabinoid Signaling Pathway in Mice. Neuroendocrinology 2021; 111:1219-1230. [PMID: 33361699 DOI: 10.1159/000514043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons. METHODS To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50 days) male mice. RESULTS Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of the GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of the IGF-1R antagonist, JB1 (1 µM), or the intracellularly applied PI3K blocker (LY294002, 50 µM), showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1, an element of the tonic retrograde endocannabinoid machinery, by AMG9810 (10 µM) or antagonizing the cannabinoid receptor type-1 by AM251 (1 µM) abolished the effect. DISCUSSION/CONCLUSION These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons, and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Flóra Bálint
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Veronika Csillag
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Zsolt Liposits
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary,
| |
Collapse
|
20
|
Zhang LY, Jin QQ, Hölscher C, Li L. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regen Res 2021; 16:1660-1670. [PMID: 33433498 PMCID: PMC8323666 DOI: 10.4103/1673-5374.303045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with Parkinson's disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular co-agonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine (6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1 (IRS-1)/alpha serine/threonine-protein kinase (Akt)/cAMP response element-binding protein (CREB) pathway. We also found that DA-CH5 (10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was up-regulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDA-unilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qian-Qian Jin
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Christian Hölscher
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province; Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Lin Li
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
21
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
22
|
Pennuto M, Pandey UB, Polanco MJ. Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Front Neuroendocrinol 2020; 57:100821. [PMID: 32006533 DOI: 10.1016/j.yfrne.2020.100821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The pleiotropic peptide insulin-like growth factor 1 (IGF-I) regulates human body homeostasis and cell growth. IGF-I activates two major signaling pathways, namely phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt) and Ras/extracellular signal-regulated kinase (ERK), which contribute to brain development, metabolism and function as well as to neuronal maintenance and survival. In this review, we discuss the general and tissue-specific effects of the IGF-I pathways. In addition, we present a comprehensive overview examining the role of IGF-I in neurodegenerative diseases, such as spinal and muscular atrophy, amyotrophic lateral sclerosis, and polyglutamine diseases. In each disease, we analyze the disturbances of the IGF-I pathway, the modification of the disease protein by IGF-I signaling, and the therapeutic strategies based on the use of IGF-I developed to date. Lastly, we highlight present and future considerations in the use of IGF-I for the treatment of these disorders.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy; Padova Neuroscience Center (PNC), 35131 Padova, Italy; Myology Center (CIR-Myo), 35131 Padova, Italy.
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - María José Polanco
- Department of Pharmaceutic and Health Science, University San Pablo CEU, Campus Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| |
Collapse
|
23
|
Hölscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs 2020; 29:333-348. [PMID: 32175781 DOI: 10.1080/13543784.2020.1738383] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: This review evaluates the novel strategy of treating Alzheimer's and Parkinson's disease (AD and PD) withdrugs that initially have been developed to treat type 2 diabetes. As insulin signalling has been found to be de-sensitized in the brains of patients, drugs that can re-sensitize insulin signalling have been tested to evaluate if this strategy can alter disease progression.Areas covered: The review will give an overview of preclinical and clinical tests in AD and PD of drugs activating insulin receptors, glucagon-like peptide -1 (GLP-1) receptors, and glucose-dependent insulinotropic polypeptide (GIP) receptors.Expert opinion: Insulin, GLP-1 and GIP receptor agonists have shown good effects in preclinical studies. First clinical trials in MCI/AD patients have shown that insulin can improve on key pathological symptoms of AD such as memory impairment, brain activity, neuronal energy utilization, and inflammation markers. A GLP-1 receptor agonist has shown disease-modifying effects in PD patients, and first pilot studies have shown encouraging effects of a GLP-1 receptor agonist in AD patients. Novel dual GLP-1/GIP receptor agonists that cross the blood brain barrier show superior neuroprotective effects compared to single GLP-1 or GIP receptor agonists, and show great promise as novel treatments of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| |
Collapse
|
24
|
Mao R, Chen Y, Chi Z, Wang Y. Insulin and its single-chain analogue. Appl Microbiol Biotechnol 2019; 103:8737-8751. [PMID: 31637493 DOI: 10.1007/s00253-019-10170-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022]
|
25
|
Martinez-Rachadell L, Aguilera A, Perez-Domper P, Pignatelli J, Fernandez AM, Torres-Aleman I. Cell-specific expression of insulin/insulin-like growth factor-I receptor hybrids in the mouse brain. Growth Horm IGF Res 2019; 45:25-30. [PMID: 30825797 DOI: 10.1016/j.ghir.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Insulin (IR) and insulin-like growth factor I (IGF-IR) receptors share structural homology and can form hybrid heterodimers. While different observations suggest that hybrid receptors are important in physiology and pathology, little is known about their function in the brain. To gain further insight into the role of IR/IGF-IR hybrids in this organ, we analyzed their cellular distribution in the mouse brain. We combined proximity ligation assays (PLA) for IR and IGF-IR, a technique that detects close protein-protein interactions, with immunocytochemistry for brain cell markers to identify IR/IGF-IR hybrids in the major types of brain cells. Intriguingly, while all the types of brain cells analyzed co-express both receptors, only neurons, astroglia, and microglia show readily detectable IR/IGF-IR hybrids. Hybrid PLA signal was negligible in brain endothelial cells and was absent in oligodendrocytes. Hybrids were comparatively more abundant in neurons and peaked after brain development was completed. Cell-specific expression and greater abundance in the adult brain suggests specialized actions of IR/IGF-IR hybrids in this organ, particularly in neurons.
Collapse
Affiliation(s)
| | - A Aguilera
- Cajal Institute and Ciberned, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv 2019; 16:271-285. [PMID: 30767695 DOI: 10.1080/17425247.2019.1583205] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a highly limiting barrier that prevents the brain from contacting with several circulating molecules, including harmful agents. However, certain systemic nutrients and macromolecules are able to cross the BBB and reach the brain parenchyma, involving the interaction with multiple receptors and/or transporters at the BBB surface. Nanotechnology allows the creation of drug vehicles, functionalized with targeting ligands for binding specific BBB receptors and/or transporters, hence triggering the transport through this biobarrier. AREAS COVERED This review focuses the BBB receptors/transporters to be exploited in regard to their overall structure and biologic function, as well as their role in the development of strategies envisaging drug delivery to the brain. Then, the interplay between the targeting of these BBB receptors/transporters and nanotechnology is explored, as they can increase by several-fold the effectiveness of brain-targeted therapies. EXPERT OPINION Nanomedicine may be particularly useful in brain drug delivery, mainly due to the possibility of functionalizing nanoparticles to target specific receptors/transporters. Since the BBB is endowed with numerous receptors and transporters responsible for regulating the proper metabolic activity of the brain, their targeting can be a promising bypass strategy to circumvent the hurdle that the BBB represents for brain drug delivery.
Collapse
Affiliation(s)
- Rui Pedro Moura
- a CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra , Portugal
| | - Cláudia Martins
- b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| | - Soraia Pinto
- b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal
| | - Flávia Sousa
- a CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra , Portugal.,b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| | - Bruno Sarmento
- a CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra , Portugal.,b I3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal
| |
Collapse
|
27
|
Parahippocampal gyrus expression of endothelial and insulin receptor signaling pathway genes is modulated by Alzheimer's disease and normalized by treatment with anti-diabetic agents. PLoS One 2018; 13:e0206547. [PMID: 30383799 PMCID: PMC6211704 DOI: 10.1371/journal.pone.0206547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
A large body of literature links risk of cognitive decline, mild cognitive impairment (MCI) and dementia with Type 2 Diabetes (T2D) or pre-diabetes. Accumulating evidence implicates a close relationship between the brain insulin receptor signaling pathway (IRSP) and the accumulation of amyloid beta and hyperphosphorylated and conformationally abnormal tau. We showed previously that the neuropathological features of Alzheimer's disease (AD were reduced in patients with diabetes who were treated with insulin and oral antidiabetic medications. To understand better the neurobiological substrates of T2D and T2D medications in AD, we examined IRSP and endothelial cell markers in the parahippocampal gyrus of controls (N = 30), of persons with AD (N = 19), and of persons with AD and T2D, who, in turn, had been treated with anti-diabetic drugs (insulin and or oral agents; N = 34). We studied the gene expression of selected members of the IRSP and selective endothelial cell markers in bulk postmortem tissue from the parahippocampal gyrus and in endothelial cell enriched isolates from the same brain region. The results indicated that there are considerable abnormalities and reductions in gene expression (bulk tissue homogenates and endothelial cell isolates) in the parahippocampal gyri of persons with AD that map directly to genes associated with the microvasculature and the IRSP. Our results also showed that the numbers of abnormally expressed microvasculature and IRSP associated genes in diabetic AD donors who had been treated with anti-diabetic agents were reduced significantly. These findings suggest that anti-diabetic treatments may reduce or normalize compromised microvascular and IRSP functions in AD.
Collapse
|
28
|
Carlson SW, Saatman KE. Central Infusion of Insulin-Like Growth Factor-1 Increases Hippocampal Neurogenesis and Improves Neurobehavioral Function after Traumatic Brain Injury. J Neurotrauma 2018; 35:1467-1480. [PMID: 29455576 PMCID: PMC5998830 DOI: 10.1089/neu.2017.5374] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) produces neuronal dysfunction and cellular loss that can culminate in lasting impairments in cognitive and motor abilities. Therapeutic agents that promote repair and replenish neurons post-TBI hold promise in improving recovery of function. Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor capable of mediating neuroprotective and neuroplasticity mechanisms. Targeted overexpression of IGF-1 enhances the generation of hippocampal newborn neurons in brain-injured mice; however, the translational neurogenic potential of exogenously administered IGF-1 post-TBI remains unknown. In a mouse model of controlled cortical impact, continuous intracerebroventricular infusion of recombinant human IGF-1 (hIGF) for 7 days, beginning 15 min post-injury, resulted in a dose-dependent increase in the number of immature neurons in the hippocampus. Infusion of 10 μg/day of IGF-1 produced detectable levels of hIGF-1 in the cortex and hippocampus and a concomitant increase in protein kinase B activation in the hippocampus. Both motor function and cognition were improved over 7 days post-injury in IGF-1-treated cohorts. Vehicle-treated brain-injured mice showed reduced hippocampal immature neuron density relative to sham controls at 7 days post-injury. In contrast, the density of hippocampal immature neurons in brain-injured mice receiving acute onset IGF-1 infusion was significantly higher than in injured mice receiving vehicle and equivalent to that in sham-injured control mice. Importantly, the neurogenic effect of IGF-1 was maintained with as much as a 6-h delay in the initiation of infusion. These data suggest that central infusion of IGF-1 enhances the generation of immature neurons in the hippocampus, with a therapeutic window of at least 6 h post-injury, and promotes neurobehavioral recovery post-TBI.
Collapse
Affiliation(s)
- Shaun W. Carlson
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
29
|
Abstract
While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all of the studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.
Collapse
Affiliation(s)
- Sarah M Gray
- Department of Pharmacology, Department of Medicine, University of Virginia, School of Medicine , Charlottesville, Virginia
| | - Eugene J Barrett
- Department of Pharmacology, Department of Medicine, University of Virginia, School of Medicine , Charlottesville, Virginia.,Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine , Charlottesville, Virginia
| |
Collapse
|
30
|
Sorrentino P, Nieboer D, Twisk JWR, Stam CJ, Douw L, Hillebrand A. The Hierarchy of Brain Networks Is Related to Insulin Growth Factor-1 in a Large, Middle-Aged, Healthy Cohort: An Exploratory Magnetoencephalography Study. Brain Connect 2018; 7:321-330. [PMID: 28520468 DOI: 10.1089/brain.2016.0469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a large study demonstrated that lower serum levels of insulin growth factor-1 (IGF-1) relate to brain atrophy and to a greater risk for developing Alzheimer's disease in a healthy elderly population. We set out to test if functional brain networks relate to IGF-1 levels in the middle aged. Hence, we studied the association between IGF-1 and magnetoencephalography-based functional network characteristics in a middle-aged population. The functional connections between brain areas were estimated for six frequency bands (delta, theta, alpha1, alpha2, beta, gamma) using the phase lag index. Subsequently, the topology of the frequency-specific functional networks was characterized using the minimum spanning tree. Our results showed that lower levels of serum IGF-1 relate to a globally less integrated functional network in the beta and theta band. The associations remained significant when correcting for gender and systemic effects of IGF-1 that might indirectly affect the brain. The value of this exploratory study is the demonstration that lower levels of IGF-1 are associated with brain network topology in the middle aged.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- 1 Department of Clinical Neurophysiology and MEG Center, VU University Medical Center , Amsterdam, The Netherlands .,2 Istituto di Diagnosi e Cura Hermitage Capodimonte , Naples, Italy
| | - Dagmar Nieboer
- 3 Department of Methodology and Applied Biostatistics, Faculty of Earth and Life Sciences, VU University Amsterdam , Amsterdam, The Netherlands
| | - Jos W R Twisk
- 4 Department of Epidemiology and Biostatistics, VU University Medical Center , Amsterdam, The Netherlands
| | - Cornelis J Stam
- 1 Department of Clinical Neurophysiology and MEG Center, VU University Medical Center , Amsterdam, The Netherlands
| | - Linda Douw
- 5 Department of Anatomy and Neurosciences, VU University Medical Center , Amsterdam, The Netherlands .,6 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging/Massachusetts General Hospital , Boston, Massachusetts
| | - Arjan Hillebrand
- 1 Department of Clinical Neurophysiology and MEG Center, VU University Medical Center , Amsterdam, The Netherlands
| |
Collapse
|
31
|
Scapin G, Dandey VP, Zhang Z, Prosise W, Hruza A, Kelly T, Mayhood T, Strickland C, Potter CS, Carragher B. Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis. Nature 2018; 556:122-125. [PMID: 29512653 PMCID: PMC5886813 DOI: 10.1038/nature26153] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023]
Abstract
The insulin receptor (IR) is a dimeric protein that plays a crucial role in controlling glucose homeostasis, regulating lipid, protein and carbohydrate metabolism, and modulating brain neurotransmitter levels1,2. IR dysfunctions have been associated with many diseases, including diabetes, cancer, and Alzheimer’s1,3,4. The primary sequence has been known since the 1980s5, and is composed of an extracellular portion (ectodomain, ECD), a single transmembrane helix and an intracellular tyrosine kinase domain. Insulin binding to the dimeric ECD triggers kinase domain auto-phosphorylation and subsequent activation of downstream signaling molecules. Biochemical and mutagenesis data have identified two putative insulin binding sites (S1 and S2)6. While insulin bound to an ECD fragment containing S1 and the apo ectodomain have been characterized structurally7,8, details of insulin binding to the full receptor and the signal propagation mechanism are still not understood. Here we report single particle cryoEM reconstructions for the 1:2 (4.3 Å) and 1:1 (7.4 Å) IR ECD dimer:Insulin complexes. The symmetric 4.3 Å structure shows two insulin molecules per dimer, each bound between the Leucine-rich sub domain L1 of one monomer and the first fibronectin-like domain (FnIII-1) of the other monomer, and making extensive interactions with the α subunit C-terminal helix (α-CT helix). The 7.4 Å structure has only one similarly bound insulin per receptor dimer. The structures confirm the S1 binding interactions and define the full S2 binding site. These insulin receptor states suggest that recruitment of the α-CT helix upon binding of the first insulin changes the relative sub domain orientations and triggers downstream signal propagation.
Collapse
Affiliation(s)
- Giovanna Scapin
- Merck & Co., Department of Biochemical Engineering & Structure, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Venkata P Dandey
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| | - Zhening Zhang
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| | - Winifred Prosise
- Merck & Co., Department of Biochemical Engineering & Structure, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Alan Hruza
- Merck & Co., Department of Biochemical Engineering & Structure, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Theresa Kelly
- Merck & Co., Department of Biophysics, NMR & Protein Products Characterization, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Todd Mayhood
- Merck & Co., Department of Biophysics, NMR & Protein Products Characterization, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Corey Strickland
- Merck & Co., Department of Biochemical Engineering & Structure, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| |
Collapse
|
32
|
Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14:168-181. [PMID: 29377010 DOI: 10.1038/nrneurol.2017.185] [Citation(s) in RCA: 962] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.
Collapse
|
33
|
Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 2017; 29. [PMID: 28758251 DOI: 10.1111/jne.12513] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
A growing body of evidence from research in rodents and humans has identified insulin as an important neuoregulatory peptide in the brain, where it coordinates diverse aspects of energy balance and peripheral glucose homeostasis. This review discusses where and how insulin interacts within the brain and evaluates the physiological and pathophysiological consequences of central insulin signalling in metabolism, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- G T Dodd
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - T Tiganis
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
34
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
35
|
Reynolds CM, Perry JK, Vickers MH. Manipulation of the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) Axis: A Treatment Strategy to Reverse the Effects of Early Life Developmental Programming. Int J Mol Sci 2017; 18:ijms18081729. [PMID: 28786951 PMCID: PMC5578119 DOI: 10.3390/ijms18081729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Evidence from human clinical, epidemiological, and experimental animal models has clearly highlighted a link between the early life environment and an increased risk for a range of cardiometabolic disorders in later life. In particular, altered maternal nutrition, including both undernutrition and overnutrition, spanning exposure windows that cover the period from preconception through to early infancy, clearly highlight an increased risk for a range of disorders in offspring in later life. This process, preferentially termed “developmental programming” as part of the developmental origins of health and disease (DOHaD) framework, leads to phenotypic outcomes in offspring that closely resemble those of individuals with untreated growth hormone (GH) deficiency, including increased adiposity and cardiovascular disorders. As such, the use of GH as a potential intervention strategy to mitigate the effects of developmental malprogramming has received some attention in the DOHaD field. In particular, experimental animal models have shown that early GH treatment in the setting of poor maternal nutrition can partially rescue the programmed phenotype, albeit in a sex-specific manner. Although the mechanisms remain poorly defined, they include changes to endothelial function, an altered inflammasome, changes in adipogenesis and cardiovascular function, neuroendocrine effects, and changes in the epigenetic regulation of gene expression. Similarly, GH treatment to adult offspring, where an adverse metabolic phenotype is already manifest, has shown efficacy in reversing some of the metabolic disorders arising from a poor early life environment. Components of the GH-insulin-like growth factor (IGF)-IGF binding protein (GH-IGF-IGFBP) system, including insulin-like growth factor 1 (IGF-1), have also shown promise in ameliorating programmed metabolic disorders, potentially acting via epigenetic processes including changes in miRNA profiles and altered DNA methylation. However, as with the use of GH in the clinical setting of short stature and GH-deficiency, the benefits of treatment are also, in some cases, associated with potential unwanted side effects that need to be taken into account before effective translation as an intervention modality in the DOHaD context can be undertaken.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
36
|
Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, Polticelli F, Di Pierro D, Milardi D, Van Endert P, Marini S, Coletta M. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol 2017. [PMID: 28635330 DOI: 10.1080/10409238.2017.1337707] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as β-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.
Collapse
Affiliation(s)
- Grazia R Tundo
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Diego Sbardella
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Chiara Ciaccio
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Giuseppe Grasso
- d Department of Chemistry , University of Catania , Catania , Italy.,e CNR IBB , Catania , Italy
| | - Magda Gioia
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Andrea Coletta
- f Department of Chemistry , University of Aarhus , Aarhus , Denmark
| | | | - Donato Di Pierro
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | | | - Peter Van Endert
- h Université Paris Descartes, INSERM, U1151, CNRS , Paris , France
| | - Stefano Marini
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Massimo Coletta
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| |
Collapse
|
37
|
Berent-Spillson A, Marsh C, Persad C, Randolph J, Zubieta JK, Smith Y. Metabolic and hormone influences on emotion processing during menopause. Psychoneuroendocrinology 2017; 76:218-225. [PMID: 27622993 PMCID: PMC5272799 DOI: 10.1016/j.psyneuen.2016.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Disturbances of emotion regulation and depressive symptoms are common during the menopause transition. Reproductive hormone levels are not directly correlated with depressive symptoms, and other factors may influence mood symptoms during menopause. In this study, we sought to determine the role of metabolic function in mood symptoms during menopause, hypothesizing an association with menopause status and long-term glucose load. We studied 54 women across three menopause transition stages (15 premenopause, 11 perimenopause, and 28 postmenopause), examining effects of age, hormones, and metabolism on mood and neural activation during emotional discrimination. We assessed participants using behavioral and functional MRI measures of negative emotion and emotion discrimination, and glycated hemoglobin A1c, to assess long-term glucose load. We found that emotionally unpleasant images activated emotion regulation (amygdala) and cognitive association brain regions (prefrontal cortex, posterior cingulate, temporal-parietal-occipital (TPO) junction, hippocampus). Cognitive association region activity increased with menopause stage. Perimenopausal women had left TPO junction activation, and postmenopausal women had prefrontal cortex, posterior cingulate, and TPO junction activation. Negative affect was associated with decreased amygdala activation, while depression symptoms and negative mood were associated with increased TPO junction activation. Hemoglobin A1c was associated with negative interpretation bias of neutral images and cognitive region recruitment during emotion discrimination. FSH levels, indicating menopause stage, were associated with negative mood. Age was not associated with any behavioral measures or activation patterns during the emotion task. Our results suggest that an interaction between metabolic and hormonal factors may influence emotion regulation, leading to increased risk for depression during menopause.
Collapse
Affiliation(s)
| | - Courtney Marsh
- Department of Obstetrics & Gynecology, University of Kansas, Kansas City, Kansas, USA, 66160
| | - Carol Persad
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA, 48109
| | - John Randolph
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, Michigan, USA, 48109
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA, 84108
| | - Yolanda Smith
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, Michigan, USA, 48109
| |
Collapse
|
38
|
IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS One 2017; 12:e0170083. [PMID: 28076448 PMCID: PMC5226784 DOI: 10.1371/journal.pone.0170083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022] Open
Abstract
Nutrition during the perinatal period programs body growth. Growth hormone (GH) secretion from the pituitary regulates body growth and is controlled by Growth Hormone Releasing Hormone (GHRH) neurons located in the arcuate nucleus of the hypothalamus. We observed that dietary restriction during the early postnatal period (i.e. lactation) in mice influences postnatal growth by permanently altering the development of the somatotropic axis in the pituitary gland. This alteration may be due to a lack of GHRH signaling during this critical developmental period. Indeed, underfed pups showed decreased insulin-like growth factor I (IGF-I) plasma levels, which are associated with lower innervation of the median eminence by GHRH axons at 10 days of age relative to normally fed pups. IGF-I preferentially stimulated axon elongation of GHRH neurons in in vitro arcuate explant cultures from 7 day-old normally fed pups. This IGF-I stimulating effect was selective since other arcuate neurons visualized concomitantly by neurofilament labeling, or AgRP immunochemistry, did not significantly respond to IGF-I stimulation. Moreover, GHRH neurons in explants from age-matched underfed pups lost the capacity to respond to IGF-I stimulation. Molecular analyses indicated that nutritional restriction was associated with impaired activation of AKT. These results highlight a role for IGF-I in axon elongation that appears to be cell selective and participates in the complex cellular mechanisms that link underfeeding during the early postnatal period with programming of the growth trajectory.
Collapse
|
39
|
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol 2016; 28:10.1111/jne.12433. [PMID: 27631195 PMCID: PMC5129466 DOI: 10.1111/jne.12433] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably different effects on brain size and physiology, thus highlighting the unique effects of the corresponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative diseases such as Alzheimer's disease. The intricacy of brain insulin and IGF1 signalling represents a challenge for the identification of specific IR and IGF1R signalling differences in pathophysiological conditions. The present perspective sheds light on signalling differences and methodologies for specifically deciphering brain IR and IGF1R signalling.
Collapse
Affiliation(s)
- A. Kleinridders
- German Institute of Human Nutrition Potsdam‐RehbrueckeCentral Regulation of MetabolismNuthetalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
40
|
Croll TI, Smith BJ, Margetts MB, Whittaker J, Weiss MA, Ward CW, Lawrence MC. Higher-Resolution Structure of the Human Insulin Receptor Ectodomain: Multi-Modal Inclusion of the Insert Domain. Structure 2016; 24:469-76. [PMID: 26853939 DOI: 10.1016/j.str.2015.12.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/25/2015] [Accepted: 12/08/2015] [Indexed: 11/16/2022]
Abstract
Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding.
Collapse
Affiliation(s)
- Tristan I Croll
- Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD 4059, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mai B Margetts
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Jonathan Whittaker
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA; Departments of Physiology, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Colin W Ward
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Michael C Lawrence
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
41
|
Wilson JL, Enriori PJ. A talk between fat tissue, gut, pancreas and brain to control body weight. Mol Cell Endocrinol 2015; 418 Pt 2:108-19. [PMID: 26316427 DOI: 10.1016/j.mce.2015.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
The incidence of obesity and its related disorders are increasing at a rate of pandemic proportions. Understanding the mechanisms behind the maintenance of energy balance is fundamental in developing treatments for clinical syndromes including obesity and diabetes. A neural network located in the nucleus of the solitary tract-area postrema complex in the hindbrain and the hypothalamus in the forebrain has long been implicated in the control of energy balance. In the hypothalamus this central neuronal network consists of small populations of nuclei with distinct functions such as the arcuate nucleus (ARH), the paraventricular nuclei of the hypothalamus (PVH), the dorsomedial (DMH), the ventromedial (VMH) and the lateral hypothalamus (LH). These hypothalamic areas form interconnected neuronal circuits that respond to fluctuations in energy status by altering the expression of neuropeptides, leading to changes in energy intake and expenditure. Regulation of these hypothalamic nuclei involves the actions of orexigenic peptides (ie ghrelin), which act to stimulate energy intake and decrease energy expenditure, and anorexigenic peptides (ie. leptin and insulin), which act to reduce energy intake and stimulate energy expenditure. Here we review the role of the ARH, DMH and PVH in the control of energy homeostasis and how recent advances in research technologies (Cre-loxP technology, optogenetics and pharmacogenetics) have shed light on the role of these hypothalamic nuclei in the control of energy balance. Such novel findings include the implication of ARH POMC and AgRP neurons in the browning of white adipose tissue to regulate energy expenditure as well as the likely existence of divergent hypothalamic pathways in the DMH and PVH in the control of food intake and energy expenditure.
Collapse
Affiliation(s)
- Jenny L Wilson
- Department of Physiology, Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pablo J Enriori
- Department of Physiology, Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
42
|
Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res 2015; 6:264-75. [PMID: 26040423 DOI: 10.1007/s12975-015-0409-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/16/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood-brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS.
Collapse
Affiliation(s)
- Vasileios-Arsenios Lioutas
- Department of Neurology, Division of Cerebrovascular Diseases, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Palmer 127, Boston, MA, 02215, USA,
| | | | | | | | | | | |
Collapse
|
43
|
Smith GC, McEwen H, Steinberg JD, Shepherd PR. The activation of the Akt/PKB signalling pathway in the brains of clozapine-exposed rats is linked to hyperinsulinemia and not a direct drug effect. Psychopharmacology (Berl) 2014; 231:4553-60. [PMID: 24800899 DOI: 10.1007/s00213-014-3608-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
The second generation antipsychotic drug clozapine is a much more effective therapy for schizophrenia than first generation compounds, but the reasons for this are poorly understood. We have previously shown that one distinguishing feature of clozapine is its ability to raise glucagon levels in animal models and thus causes prolonged hyperinsulinemia without inducing hypoglycaemia. Previous studies have provided evidence that defects in Akt/PKB and GSK3 signalling can contribute to development of psychiatric diseases. Clozapine is known to activate Akt/PKB in the brain, and some studies have indicated that this is due to a direct effect of the drug on the neurons. However, we provide strong evidence that elevated insulin levels induced by clozapine are in fact the real cause of the drug's effects on Akt/PKB and GSK3 in the brain. This suggests that the elevated levels of insulin induced by clozapine may contribute to this drug's therapeutic efficacy.
Collapse
Affiliation(s)
- G C Smith
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | | | | | | |
Collapse
|
44
|
Filippi BM, Bassiri A, Abraham MA, Duca FA, Yue JTY, Lam TKT. Insulin signals through the dorsal vagal complex to regulate energy balance. Diabetes 2014; 63:892-9. [PMID: 24270985 DOI: 10.2337/db13-1044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin signaling in the hypothalamus regulates food intake and hepatic glucose production in rodents. Although it is known that insulin also activates insulin receptor in the dorsal vagal complex (DVC) to lower glucose production through an extracellular signal-related kinase 1/2 (Erk1/2)-dependent and phosphatidylinositol 3-kinase (PI3K)-independent pathway, it is unknown whether DVC insulin action regulates food intake. We report here that a single acute infusion of insulin into the DVC decreased food intake in healthy male rats. Chemical and molecular inhibition of Erk1/2 signaling in the DVC negated the acute anorectic effect of insulin in healthy rats, while DVC insulin acute infusion failed to lower food intake in high fat-fed rats. Finally, molecular disruption of Erk1/2 signaling in the DVC of healthy rats per se increased food intake and induced obesity over a period of 2 weeks, whereas a daily repeated acute DVC insulin infusion for 12 days conversely decreased food intake and body weight in healthy rats. In summary, insulin activates Erk1/2 signaling in the DVC to regulate energy balance.
Collapse
Affiliation(s)
- Beatrice M Filippi
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Jensen VFH, Bøgh IB, Lykkesfeldt J. Effect of insulin-induced hypoglycaemia on the central nervous system: evidence from experimental studies. J Neuroendocrinol 2014; 26:123-50. [PMID: 24428753 DOI: 10.1111/jne.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Insulin-induced hypoglycaemia (IIH) is a major acute complication in type 1 as well as in type 2 diabetes, particularly during intensive insulin therapy. The brain plays a central role in the counter-regulatory response by eliciting parasympathetic and sympathetic hormone responses to restore normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from experimental studies on nondiabetic IIH, this review outlines the central mechanisms behind the counter-regulatory response to IIH, as well as cerebral adaption to avoid sequelae of cerebral neuroglycopaenia, including seizures and coma.
Collapse
Affiliation(s)
- V F H Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Diabetes Toxicology and Safety Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | | | | |
Collapse
|
46
|
Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 2014; 118:1-18. [PMID: 24582776 DOI: 10.1016/j.pneurobio.2014.02.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/09/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Insulin and Insulin Growth Factor-1 (IGF-1) play a major role in body homeostasis and glucose regulation. They also have paracrine/autocrine functions in the brain. The Insulin/IGF-1 signaling pathway contributes to the control of neuronal excitability, nerve cell metabolism and cell survival. Glucagon like peptide-1 (GLP-1), known as an insulinotropic hormone has similar functions and growth like properties as insulin/IGF-1. Growing evidence suggests that dysfunction of these pathways contribute to the progressive loss of neurons in Alzheimer's disease (AD) and Parkinson's disease (PD), the two most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting insulin/IGF-1 and GLP-1 signaling with currently available anti-diabetics. These studies have shown that administration of insulin, IGF-1 and GLP-1 agonists reverses signaling abnormalities and has positive effects on surrogate markers of neurodegeneration and behavioral outcomes. Several proof-of-concept studies are underway that attempt to translate the encouraging preclinical results to patients suffering from AD and PD. In the first part of this review, we discuss physiological functions of insulin/IGF-1 and GLP-1 signaling pathways including downstream targets and receptors distribution within the brain. In the second part, we undertake a comprehensive overview of preclinical studies targeting insulin/IGF-1 or GLP-1 signaling for treating AD and PD. We then detail the design of clinical trials that have used anti-diabetics for treating AD and PD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into treatments for patients with AD and PD.
Collapse
|
47
|
Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem Toxicol 2014; 64:27-33. [DOI: 10.1016/j.fct.2013.11.020] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
|
48
|
Ola MS. Effect of hyperglycemia on insulin receptor signaling in the cultured retinal Müller glial cells. Biochem Biophys Res Commun 2014; 444:264-9. [DOI: 10.1016/j.bbrc.2014.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/15/2014] [Indexed: 12/16/2022]
|
49
|
Yang Y, Song W. Molecular links between Alzheimer's disease and diabetes mellitus. Neuroscience 2013; 250:140-50. [PMID: 23867771 DOI: 10.1016/j.neuroscience.2013.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Substantial epidemiological evidence shows an increased risk for developing Alzheimer's disease (AD) in people with diabetes. Yet the underlying molecular mechanisms still remain to be elucidated. This article reviews the current studies on common pathological processes of Alzheimer's disease and diabetes with particular focus on potential mechanisms through which diabetes affects the initiation and progression of Alzheimer's disease. Impairment of insulin signaling, inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, APOEε4 and cholesterol appear to be important mediators and are likely to act synergistically in promoting AD pathology.
Collapse
Affiliation(s)
- Y Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
50
|
Uchiyama K, Muramatsu N, Yano M, Usui T, Miyata H, Sakaguchi S. Prions disturb post-Golgi trafficking of membrane proteins. Nat Commun 2013; 4:1846. [DOI: 10.1038/ncomms2873] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/16/2013] [Indexed: 01/26/2023] Open
|