1
|
Liu Y, Cheng C, Gao H, Zhu X, He X, Zhou M, Gao Y, Lu Y, Song X, Xiao X, Wang J, Xu C, Ma Z. Restoring energy metabolism by NAD + supplement prevents alcohol-induced liver injury and boosts liver regeneration. Food Sci Nutr 2024; 12:5100-5110. [PMID: 39055233 PMCID: PMC11266918 DOI: 10.1002/fsn3.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 07/27/2024] Open
Abstract
Our previous clinical metabolomics study illustrated that energy metabolism disorder is an underlying pathogenesis mechanism for the development of alcoholic liver disease (ALD). Supplementation of nicotinamide (NAM), the precursor of nicotinamide adenine dinucleotide (NAD+), may restore the energy metabolism homeostasis of ALD and thus serves as potential therapeutics to treat ALD. In this bedside-to-bench study, the protective effect of NAM against ALD was investigated by using the NIAAA mice model (chronic-plus-binge ethanol), and the liver regeneration boosting capability of NAM was evaluated by the partial hepatectomy mice model. Our results showed that NAM supplements not only protected the liver from alcohol-induced injury and improved alcohol-induced mitochondrial structure and function change, but also boosted liver regeneration in postpartial hepatectomy mice by increasing liver NAD+ content. These findings suggested that NAM, a water-soluble form of vitamin B3, can promote liver regeneration and improves liver function by alleviating alcohol-induced energy metabolism disorder.
Collapse
Affiliation(s)
- Yao Liu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Cheng Cheng
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Department of PharmacyJincheng General HospitalJinchengShanxiChina
| | - Han Gao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- College of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xue‐jin Zhu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- College of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xian He
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Ming‐xi Zhou
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Yuan Gao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Ya‐wen Lu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xin‐hua Song
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xiao‐he Xiao
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jia‐bo Wang
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Chun‐jun Xu
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Zhi‐tao Ma
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Ouyang J, Zhou L, Wang Q. Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1234824. [PMID: 37772084 PMCID: PMC10525335 DOI: 10.3389/fendo.2023.1234824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
4
|
Whytock KL, Corbin KD, Parsons SA, Pachori A, Bock CP, Jones KP, Smith JS, Yi F, Xie H, Petucci CJ, Gardell SJ, Smith SR. Metabolic adaptation characterizes short-term resistance to weight loss induced by a low-calorie diet in overweight/obese individuals. Am J Clin Nutr 2021; 114:267-280. [PMID: 33826697 DOI: 10.1093/ajcn/nqab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Low-calorie diet (LCD)-induced weight loss demonstrates response heterogeneity. Physiologically, a decrease in energy expenditure lower than what is predicted based on body composition (metabolic adaptation) and/or an impaired capacity to increase fat oxidation may hinder weight loss. Understanding the metabolic components that characterize weight loss success is important for optimizing weight loss strategies. OBJECTIVES We tested the hypothesis that overweight/obese individuals who had lower than expected weight loss in response to a 28-d LCD would be characterized by 1) impaired fat oxidation and 2) whole-body metabolic adaptation. We also characterized the molecular mechanisms associated with weight loss success/failure. METHODS This was a retrospective comparison of participants who met their predicted weight loss targets [overweight/obese diet sensitive (ODS), n = 23, females = 21, males = 2] and those that did not [overweight/obese diet resistant (ODR), n = 14, females = 12, males = 2] after a 28-d LCD (900-1000 kcal/d). We used whole-body (energy expenditure and fat oxidation) and tissue-specific measurements (metabolic proteins in skeletal muscle, gene expression in adipose tissue, and metabolites in serum) to detect metabolic properties and biomarkers associated with weight loss success. RESULTS The ODR group had greater mean ± SD metabolic adaptation (-175 ± 149 kcal/d; +119%) than the ODS group (-80 ± 108 kcal/d) after the LCD (P = 0.030). Mean ± SD fat oxidation increased similarly for both groups from baseline (0.0701 ± 0.0206 g/min) to day 28 (0.0869 ± 0.0269 g/min; P < 0.001). A principal component analysis factor comprised of serum 3-hydroxybutyric acid, citrate, leucine/isoleucine, acetyl-carnitine, and 3-hydroxylbutyrlcarnitine was associated with weight loss success at day 28 (std. β = 0.674, R2 = 0.479, P < 0.001). CONCLUSIONS Individuals who achieved predicted weight loss targets after a 28-d LCD were characterized by reduced metabolic adaptation. Accumulation of metabolites associated with acetyl-CoA excess and enhanced ketogenesis was identified in the ODS group.This trial was registered at clinicaltrials.gov as NCT01616082.
Collapse
Affiliation(s)
- Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Karen D Corbin
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | - Alok Pachori
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | - Karen P Jones
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Joshua S Smith
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Fanchao Yi
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Hui Xie
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Christopher J Petucci
- Translational Research Institute, AdventHealth, Orlando, FL, USA.,Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
5
|
Wang Y, Gao H, Di W, Gu Z. Endocrinological and metabolic characteristics in patients who are non-obese and have polycystic ovary syndrome and different types of a family history of type 2 diabetes mellitus. J Int Med Res 2021; 49:3000605211016672. [PMID: 34024175 PMCID: PMC8142526 DOI: 10.1177/03000605211016672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective We aimed to investigate whether patients with polycystic ovary syndrome (PCOS) and a family history (FH) of type 2 diabetes mellitus (T2DM) are at increased risk of endocrinological and metabolic abnormalities, and whether this risk differs between first-degree and second-degree relatives, and between maternal and paternal transmission. Methods A total of 680 patients with PCOS were enrolled in this retrospective, single-center study. Endocrine and glycolipid metabolism parameters were compared. Results The free androgen index (FAI), and levels of fasting blood glucose (FBG), fasting insulin (FINS), homeostatic model assessment-insulin resistance (HOMA-IR), total cholesterol (TC), and low-density lipoprotein cholesterol were significantly higher, whereas sex hormone binding globulin (SHBG) levels were significantly lower in patients with PCOS and a FH of T2DM. In patients with PCOS with a FH of T2DM in first-degree relatives, age and levels of FBG, FINS, and HOMA-IR were significantly higher than those who had a FH of T2DM in second-degree relatives. A maternal history of T2DM was associated with a higher body mass index, FAI, and TG levels, and lower SHBG levels. Conclusions Patients with PCOS and a FH of T2DM have more severe hyperandrogenism and metabolic disorders, especially in those with maternal transmission.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hua Gao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhuowei Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
6
|
Manivannan A, Kim JH, Kim DS, Lee ES, Lee HE. Deciphering the Nutraceutical Potential of Raphanus sativus-A Comprehensive Overview. Nutrients 2019; 11:E402. [PMID: 30769862 PMCID: PMC6412475 DOI: 10.3390/nu11020402] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Raphanus sativus (Radish) belongs to the Brassicaceae family and is a widely consumed root vegetable all around the world. The nutritional and medicinal values of radishes have been proven by several researches. Extracts prepared from the aerial and underground parts of radishes have been used in the treatment of stomach disorders, urinary infections, hepatic inflammation, cardiac disorders and ulcers in folk medicine since the ancient times. The pharmaceutical potential of radishes is attributed to the presence of its beneficial secondary metabolites, such as glucosinolates, polyphenols and isothiocyanates. The present review has focused on the impact of radish extract administration under pathological complications, such as cancer, diabetes, hepatic inflammation and oxidative stress. In addition, a comprehensive view of molecular mechanism behind the regulation of molecular drug targets associated with different types of cancers and diabetes by the bioactive compounds present in the radish extracts have been discussed in detail.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Jin-Hee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Eun-Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| |
Collapse
|
7
|
Oostvogels AJJM, Landstra CP, Britsemmer L, Lodewijkx R, Stronks K, Roseboom TJ, Vrijkotte TGM. Maternal and paternal family history of diabetes in second-degree relatives and metabolic outcomes at age 5-6 years: The ABCD Study. DIABETES & METABOLISM 2017; 43:338-344. [PMID: 28190592 DOI: 10.1016/j.diabet.2017.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/23/2016] [Accepted: 01/01/2017] [Indexed: 12/17/2022]
Abstract
AIM To investigate whether children with a family history of diabetes (FHD) in second-degree relatives (grandparents, aunts/uncles) are at increased risk of developing obesity and diabetes, and whether the risk differs between maternal or paternal transmission. METHODS In the multiethnic population-based cohort Amsterdam-Born Children and Their Development (ABCD) Study, body mass index (BMI), waist-to-height ratio (WHR), fat percentage (fat%), fasting glucose and C-peptide in 5- or 6-year-old children with no second-degree FHD (n=2226) were compared with children with maternal-only (n=353), paternal-only (n=281) or both maternal and paternal (n=164) second-degree FHD. Children of diabetic mothers or fathers were excluded. RESULTS None of the children in any of our FHD categories differed in body composition after adjusting for maternal, paternal and childhood lifestyle covariates. However, children with both maternal and paternal second-degree FHD had increased C-peptide levels (0.03nmol, 95% CI: 0.01-0.05) compared with those in the other three study groups. Results were similar when analyses were restricted to only the Dutch children. CONCLUSION Children with FHD in second-degree relatives on both maternal and paternal sides already have higher C-peptide levels at an early age. This might be the result of a double burden of a shared obesogenic lifestyle, or of more diverse diabetogenic genes compared to children without FHD or with only FHD in one side of the family. In any case, second-degree FHD could be used as a public-health screening tool to identify children at risk of adverse metabolic outcomes and of possible future disease.
Collapse
Affiliation(s)
- A J J M Oostvogels
- Department of Public Health, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands.
| | - C P Landstra
- Department of Public Health, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands
| | - L Britsemmer
- Department of Public Health, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands
| | - R Lodewijkx
- Department of Public Health, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands
| | - K Stronks
- Department of Public Health, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands
| | - T J Roseboom
- Department of Gynaecology and Obstetrics, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands; Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands
| | - T G M Vrijkotte
- Department of Public Health, Academic Medical Center, University of Amsterdam, Post box 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
8
|
Dai ZJ, Wu CM, Qian YY, Jin J, Wang L, Ruan LY. Severe atrophy of the cerebellum on magnetic resonance imaging in a Chinese patient with maternally inherited diabetes and deafness with the A3243G mitochondrial DNA mutation. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Chitra L, Boopathy R. Altered mitochondrial biogenesis and its fusion gene expression is involved in the high-altitude adaptation of rat lung. Respir Physiol Neurobiol 2013; 192:74-84. [PMID: 24361501 DOI: 10.1016/j.resp.2013.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/25/2022]
Abstract
Intermittent hypobaric hypoxia-induced preconditioning (IHH-PC) of rat favored the adaption of lungs to severe HH conditions, possibly through stabilization of mitochondrial function. This is based on the data generated on regulatory coordination of nuclear DNA-encoded mitochondrial biogenesis; dynamics, and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (mtOXPHOS) genes expression. At 16th day after start of IHH-PC (equivalent to 5000m, 6h/d, 2w of treatment), rats were exposed to severe HH stimulation at 9142m for 6h. The IHH-PC significantly counteracted the HH-induced effect of increased lung: water content; tissue damage; and oxidant injury. Further, IHH-PC significantly increased the mitochondrial number, mtDNA content and mtOXPHOS complex activity in the lung tissues. This observation is due to an increased expression of genes involved in mitochondrial biogenesis (PGC-1α, ERRα, NRF1, NRF2 and TFAM), fusion (Mfn1 and Mfn2) and mtOXPHOS. Thus, the regulatory pathway formed by PGC-1α/ERRα/Mfn2 axes is required for the mitochondrial adaptation provoked by IHH-PC regimen to counteract subsequent HH stress.
Collapse
Affiliation(s)
- Loganathan Chitra
- Molecular Biology and Biotechnology Division, DRDO - BU Center for Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Rathanam Boopathy
- Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
10
|
Brehm MA, Powers AC, Shultz LD, Greiner DL. Advancing animal models of human type 1 diabetes by engraftment of functional human tissues in immunodeficient mice. Cold Spring Harb Perspect Med 2013; 2:a007757. [PMID: 22553498 DOI: 10.1101/cshperspect.a007757] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of studying rodent models of type 1 diabetes (T1D), no therapy capable of preventing or curing T1D has successfully been translated from rodents to humans. This inability to translate otherwise promising therapies to clinical settings likely resides, to a major degree, from significant species-specific differences between rodent and human immune systems as well as species-related variances in islets in terms of their cellular composition, function, and gene expression. Indeed, taken collectively, these differences underscore the need to define interactions between the human immune system with human β cells. Immunodeficient mice engrafted with human immune systems and human β cells represent an interesting and promising opportunity to study these components in vivo. To meet this need, years of effort have been extended to develop mice depleted of undesirable components while at the same time, allowing the introduction of constituents necessary to recapitulate physiological settings as near as possible to human T1D. With this, these so-called "humanized mice" are currently being used as a preclinical bridge to facilitate identification and translation of novel discoveries to clinical settings.
Collapse
Affiliation(s)
- Michael A Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
11
|
Quarato G, Piccoli C, Scrima R, Capitanio N. Functional imaging of membrane potential at the single mitochondrion level: Possible application for diagnosis of human diseases. Mitochondrion 2011; 11:764-73. [DOI: 10.1016/j.mito.2011.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/12/2011] [Accepted: 06/29/2011] [Indexed: 12/23/2022]
|
12
|
Scheckhuber CQ, Houthoofd K, Weil AC, Werner A, De Vreese A, Vanfleteren JR, Osiewacz HD. Alternative oxidase dependent respiration leads to an increased mitochondrial content in two long-lived mutants of the aging model Podospora anserina. PLoS One 2011; 6:e16620. [PMID: 21305036 PMCID: PMC3029406 DOI: 10.1371/journal.pone.0016620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/07/2011] [Indexed: 01/29/2023] Open
Abstract
The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Faculty for Biosciences, Molecular Developmental Biology, Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Frederiksen AL, Jeppesen TD, Vissing J, Schwartz M, Kyvik KO, Schmitz O, Poulsen PL, Andersen PH. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects. J Clin Endocrinol Metab 2009; 94:2872-9. [PMID: 19470628 DOI: 10.1210/jc.2009-0235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The point mutation of 3243A>G mtDNA is the most frequent cause of mitochondrial diabetes, often presenting as the syndrome maternally inherited diabetes and deafness (MIDD). The mutation may also cause myopathy, ataxia, strokes, ophthalmoplegia, epilepsy, and cardiomyopathy in various combinations. Consequently, it is difficult to predict the "phenotypic risk profile" of 3243A>G mutation-positive subjects. The 3243A>G mutation coexists in cells with wild-type mtDNA, a phenomenon called heteroplasmy. The marked variability in mutation loads in different tissues is the main explanation for the different phenotypes associated with this mutation. AIM The aim of the study was to screen asymptomatic and oligosymptomatic 3243A>G mtDNA carriers for diabetes and myopathy. METHODS The study is a case-control study. Nineteen adult 3243A>G carriers presumed to be normoglycemic and matched healthy controls were subjected to an oral glucose tolerance test. Twenty-six adult 3243A>G carriers with unknown myopathy status and 17 healthy controls had a maximal cycle test and a muscle biopsy performed. The mutation loads were quantified in blood and muscle biopsies and correlated to the clinical manifestations of the mutation. RESULTS In the presumed normoglycemic 3243A>G-positive subjects, one subject had overt diabetes, and 10 subjects had impaired glucose tolerance. Sixteen of the 26 subjects with unknown oxidative capacity fulfilled criteria for myopathy. The mutation load in blood and muscle correlated with the age for diagnosis of impaired glucose homeostasis and hearing impairment (rho = -0.71 to -0.78; P < 0.0001). CONCLUSION The findings suggest that 3243A>G mutation carriers should be screened for diabetes and myopathy.
Collapse
|
14
|
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med 2008; 25:383-99. [PMID: 18294221 DOI: 10.1111/j.1464-5491.2008.02359.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maternally inherited diabetes and deafness (MIDD) affects up to 1% of patients with diabetes but is often unrecognized by physicians. It is important to make an accurate genetic diagnosis, as there are implications for clinical investigation, diagnosis, management and genetic counselling. This review summarizes the range of clinical phenotypes associated with MIDD; outlines the advances in genetic diagnosis and pathogenesis of MIDD; summarizes the published prevalence data and provides guidance on the clinical management of these patients and their families.
Collapse
Affiliation(s)
- R Murphy
- Institute of Biomedical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | |
Collapse
|
15
|
Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007; 4:e76. [PMID: 17341128 PMCID: PMC1808482 DOI: 10.1371/journal.pmed.0040076] [Citation(s) in RCA: 560] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 01/04/2007] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood. METHODS AND FINDINGS The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y), overweight (body mass index, 27.8 +/- 0.7 kg/m(2)) individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX), 12.5% CR + 12.5% increased energy expenditure (EE). In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008). Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05). In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005) and 21% +/- 4% in the CREX group (p < 0.004), with no change in the control group (2% +/- 2%). However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid) cycle (citrate synthase), beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase), and electron transport chain (cytochrome C oxidase II) was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003) and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011), but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling) induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR. CONCLUSIONS The observed increase in muscle mitochondrial DNA in association with a decrease in whole body oxygen consumption and DNA damage suggests that caloric restriction improves mitochondrial function in young non-obese adults.
Collapse
Affiliation(s)
- Anthony E Civitarese
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, Ravussin E, Smith SR. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab 2006; 4:75-87. [PMID: 16814734 PMCID: PMC2671025 DOI: 10.1016/j.cmet.2006.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/10/2006] [Accepted: 05/05/2006] [Indexed: 12/26/2022]
Abstract
Insulin resistance is associated with impaired skeletal muscle oxidation capacity and reduced mitochondrial number and function. Here, we report that adiponectin signaling regulates mitochondrial bioenergetics in skeletal muscle. Individuals with a family history of type 2 diabetes display skeletal muscle insulin resistance and mitochondrial dysfunction; adiponectin levels strongly correlate with mtDNA content. Knockout of the adiponectin gene in mice is associated with insulin resistance and low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle. Adiponectin treatment of human myotubes in primary culture induces mitochondrial biogenesis, palmitate oxidation, and citrate synthase activity, and reduces the production of reactive oxygen species. The inhibition of adiponectin receptor expression by siRNA, or of AMPK by a pharmacological agent, blunts adiponectin induction of mitochondrial function. Our findings define a skeletal muscle pathway by which adiponectin increases mitochondrial number and function and exerts antidiabetic effects.
Collapse
Affiliation(s)
| | | | - Stacy Carling
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Matthew Hulver
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Lawrence Mandarino
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
- Center for Metabolic Biology, School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
- Correspondence:
| | - Steve R. Smith
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| |
Collapse
|
17
|
Abstract
The quest for therapies based on molecular genetics (pharmacogenomics, DNA microarrays, etc.) drives pharmaceutical research into individual diseases of old age, but has failed to deliver an unequivocal clinical breakthrough. Attempts to treat most age-related diseases using antioxidant supplements have been equally disappointing, despite the clear benefits of a healthy diet. The double-agent theory is a new, unifying synthesis that draws on flaws in three leading theories of ageing. It argues that there is a tradeoff between oxidative stress as a critical redox signal that marshals genetic defences against physiological stress (such as infection) and oxidative stress as a cause of ageing and age-related disease. The stress response and ageing are linked by redox-sensitive transcription factors, such as NFkappaB. Ageing is a function of rising intracellular oxidative stress, rather than chronological time, but this relationship is obscured because free-radical leakage from mitochondria also tends to rise with age. Mitochondrial leakage produces a genetic response which mirrors that following infection, but because mitochondrial leakage is continuous the shift in gene expression is persistent, leading to the chronic inflammation characteristic of old age. Age-related diseases are thus the price we pay for redox control of stress-gene expression. Because the selective pressure favouring the stress response in youth is stronger than that penalising degenerative diseases after reproductive decline, we may be homeostatically refractory to antioxidant supplements that 'swamp' the redox switch. Furthermore, because genetic selection takes place predominantly in the reductive homeostatic environment of youth, alleles associated with age-related diseases are not inherently damaging (they do not inevitably express a negative effect over time), but are simply less effective in the oxidising conditions of old age. Gene therapies for age-related diseases are unlikely to succeed unless oxidative stress can be controlled physiologically, thereby altering the activity and function of potentially hundreds of genes.
Collapse
Affiliation(s)
- Nick Lane
- Department of Surgery, Royal Free and University College Medical School, Pond Street, NW3 2QG London, UK.
| |
Collapse
|
18
|
Jové M, Salla J, Planavila A, Cabrero A, Michalik L, Wahli W, Laguna JC, Vázquez-Carrera M. Impaired expression of NADH dehydrogenase subunit 1 and PPARγ coactivator-1 in skeletal muscle of ZDF rats. J Lipid Res 2004; 45:113-23. [PMID: 14563825 DOI: 10.1194/jlr.m300208-jlr200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilization (GLUT4 and phosphofructokinase) were decreased, whereas the expression of pyruvate dehydrogenase kinase 4 (PDK-4), which suppresses glucose oxidation, was increased. The shift from glucose to fatty acids as the source of energy in skeletal muscle of ZDF rats was accompanied by a reduction of subunit 1 of complex I (NADH dehydrogenase subunit 1, ND1) and subunit II of complex IV (cytochrome c oxidase II, COII), two genes of the electronic transport chain encoded by mtDNA. The transcript levels of PPARgamma Coactivator 1 (PGC-1) showed a significant reduction. Treatment with troglitazone (30 mg/kg/day) for 15 days reduced insulin values and reversed the increase in PDK-4 mRNA levels, suggesting improved insulin sensitivity. In addition, troglitazone treatment restored ND1 and PGC-1 expression in skeletal muscle. These results suggest that troglitazone may avoid mitochondrial metabolic derangement during the development of diabetes mellitus 2 in skeletal muscle.
Collapse
Affiliation(s)
- Mireia Jové
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Smit JWA, Diamant M. Genetically defined pancreatic beta cell failure. Pharmacogenomics 2002; 3:669-78. [PMID: 12223051 DOI: 10.1517/14622416.3.5.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The major subtypes of diabetes mellitus (DM) are complex diseases in which the interactions between genetic susceptibility and metabolic, immunologic and environmental factors ultimately lead to the clinical phenotype. The unraveling of these factors and the study of their contribution to the pathogenesis of DM is a process of unimaginable complexity. As a result, despite the individual differences in DM phenotype, most patients with DM receive treatment according to generalized treatment protocols, only discriminating between Type 1 and Type 2 DM and not related to the individual genetic background of the patients. Nevertheless, in recent years, much progress has been made in the search for genetic factors in DM. As an example, the recognition of monogenetic defects in beta cell function has lead to the definition of novel DM subtypes, which have important implications for the individual therapeutic approach for these patients and the understanding of the etiology of DM.
Collapse
Affiliation(s)
- Jan W A Smit
- Department of Endocrinology & Metabolism, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|