1
|
Kraina P, Česnek M, Tloušťová E, Mertlíková-Kaiserová H, Fulton CJ, Davidson EK, Smith BP, Watts VJ, Janeba Z. Discovery of a potent and selective human AC2 inhibitor based on 7-deazapurine analogues of adefovir. Bioorg Med Chem 2023; 95:117508. [PMID: 37931521 PMCID: PMC10842932 DOI: 10.1016/j.bmc.2023.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 μM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.
Collapse
Affiliation(s)
- Pavel Kraina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic; Department of Organic Chemistry, University of Chemistry and Technology Prague, 16628 Prague 6, Czech Republic
| | - Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Camryn J Fulton
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Emily K Davidson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Brenton P Smith
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Belhart K, Sisti F, Gestal MC, Fernández J. Bordetella bronchiseptica diguanylate cyclase BdcB inhibits the type three secretion system and impacts the immune response. Sci Rep 2023; 13:7157. [PMID: 37130958 PMCID: PMC10154355 DOI: 10.1038/s41598-023-34106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Bordetella bronchiseptica is a gram-negative bacterium that causes respiratory diseases in different animals, including mice, making B. bronchiseptica the gold-standard model to investigate host-pathogen interaction at the molecular level. B. bronchiseptica utilizes many different mechanisms to precisely regulate the expression of virulence factors. Cyclic di-GMP is a second messenger synthesized by diguanylate cyclases and degraded by phosphodiesterases that regulates the expression of multiple virulence factors including biofilm formation. As in other bacteria, we have previously shown that c-di-GMP regulates motility and biofilm formation in B. bronchiseptica. This work describes the diguanylate cyclase BdcB (Bordetella diguanylate cyclase B) as an active diguanylate cyclase that promotes biofilm formation and inhibits motility in B. bronchiseptica. The absence of BdcB increased macrophage cytotoxicity in vitro and induced a greater production of TNF-α, IL-6, and IL-10 by macrophages. Our study reveals that BdcB regulates the expression of components of T3SS, an important virulence factor of B. bronchiseptica. The Bb∆bdcB mutant presented increased expression of T3SS-mediated toxins such as bteA, responsible for cytotoxicity. Our in vivo results revealed that albeit the absence of bdcB did not affect the ability of B. bronchiseptica to infect and colonize the respiratory tract of mice, mice infected with Bb∆bdcB presented a significantly higher pro-inflammatory response than those infected with wild type B. bronchiseptica.
Collapse
Affiliation(s)
- Keila Belhart
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Federico Sisti
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mónica C Gestal
- Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center at Shreveport, Shreveport, LA, USA.
| | - Julieta Fernández
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
3
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Kang KR, Huh DH, Kim JA, Kang JH. Immunogenicity of a new enhanced tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine against Bordetella pertussis in a murine model. BMC Immunol 2021; 22:68. [PMID: 34641798 PMCID: PMC8506493 DOI: 10.1186/s12865-021-00457-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background The necessity of the tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine in adolescence and adults has been emphasized since the resurgence of small-scale pertussis in Korea and worldwide due to the waning effect of the vaccine and variant pathogenic stains in the late 1990s. GreenCross Pharma (GC Pharma), a Korean company, developed the Tdap vaccine GC3111 in 2010. Recently, they enhanced the vaccine, GC3111, produced previously in 2010 to reinforce the antibody response against filamentous hemagglutinin (FHA). In this study, immunogenicity and efficacy of the enhanced Tdap vaccine compared and evaluated with two Tdap vaccines, GC3111 vaccine produced in 2010 previously and commercially available Tdap vaccine in a murine model. Methods Two tests groups and positive control group of Balb/c mice were primed with two doses of the diphtheria-tetanus-acellular pertussis (DTaP) vaccine followed by a single booster Tdap vaccine at 9 week using the commercially available Tdap vaccine or 2 Tdap vaccines from GC Pharma (GC3111, enhanced GC3111). Humoral response was assessed 1 week before and 2 and 4 weeks after Tdap booster vaccination. The enhanced GC3111 generated similar humoral response compare to the commercial vaccine for filamentous hemagglutinin (FHA). The interferon gamma (IFN-γ) (Th1), interleukin 5 (IL-5) (Th2) and interleukin 17 (IL-17) (Th17) cytokines were assessed 4 weeks after booster vaccination by stimulation with three simulators: heat inactivated Bordetella pertussis (hBp), vaccine antigens, and hBp mixed with antigens (hBp + antigen). A bacterial challenge test was performed 4 weeks after booster vaccination. Results Regarding cell-mediated immunity, cytokine secretion differed among the three simulators. However, no difference was found between two test groups and positive control group. All the vaccinated groups indicated a Th1 or Th1/Th2 response. On Day 5 post-bacterial challenge, B. pertussis colonies were absent in the lungs in two test groups and positive control group. Conclusions Our results confirmed the immunogenicity of GC Pharma’s Tdap vaccine; enhanced GC3111 was equivalent to the presently used commercial vaccine in terms of humoral response as well as cell-mediated cytokine expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00457-1.
Collapse
Affiliation(s)
- Kyu Ri Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Dong Ho Huh
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Ji Ahn Kim
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Jin Han Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea. .,Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea.
| |
Collapse
|
5
|
Sanchez-Alvarez K, Rosales-Mendoza S, Reyes-Barrera KL, Moreno-Fierros L, Soria-Guerra RE, Castillo-Collazo R, Monreal-Escalente E, Alpuche-Solis AG. Antibodies induced by oral immunization of mice with a recombinant protein produced in tobacco plants harboring Bordetella pertussis epitopes. PLANT CELL, TISSUE AND ORGAN CULTURE 2021; 147:85-96. [PMID: 34276113 PMCID: PMC8272453 DOI: 10.1007/s11240-021-02107-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Bordetella pertusis causes whooping cough or pertussis, disease that has not been eradicated and is reemerging despite the availability and massive application for decades of vaccines, such as Boostrix® which is an acellular vaccine harboring two regions of S1 subunit of the pertussis toxin, one region of filamentous hemagglutinin and one region of pertactin. In 2008, the World Health Organization estimated 16 million new cases and 95% occurred in developing countries with 195,000 children's deaths. We attempt to improve the vaccine against whooping cough and reduce its production costs by obtaining plants and bacteria expressing a heterologous protein harboring pertactin, pertussis toxin, and filamentous hemagglutinin epitopes from B. pertussis and assessing its immunogenicity after oral administration to mice. First, we designed a synthetic gene that encodes a multiepitope, then it was cloned into a vector for transient transformation by infiltration of tobacco plants with low amounts of nicotine; the codon bias-optimized construct was also cloned into an Escherichia coli expression vector. Recombinant proteins from E. coli cells (PTF) and tobacco leaves (PTF-M3') were purified by nickel affinity with a yield of 0.740 mg of recombinant protein per g dry weight. Purified recombinant proteins were administered orally to groups of Balb/c mice using the Boostrix® vaccine and vehicle (PBS) as positive and negative controls, respectively. A higher mucosal and systemic antibody responses were obtained in mice receiving the PTF and PTF-M3' proteins than Boostrix® or PBS. These findings prove the concept that oral administration of multiepitope recombinant proteins expressed in plants may be a potential edible vaccine. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11240-021-02107-1.
Collapse
Affiliation(s)
- Karla Sanchez-Alvarez
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Karen L. Reyes-Barrera
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Leticia Moreno-Fierros
- Inmunidad en Mucosas, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, 54090 Tlalnepantla, México
| | - Ruth E. Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Rosalba Castillo-Collazo
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Elizabeth Monreal-Escalente
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Angel G. Alpuche-Solis
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| |
Collapse
|
6
|
Rivera-Millot A, Slupek S, Chatagnon J, Roy G, Saliou JM, Billon G, Alaimo V, Hot D, Salomé-Desnoulez S, Locht C, Antoine R, Jacob-Dubuisson F. Streamlined copper defenses make Bordetella pertussis reliant on custom-made operon. Commun Biol 2021; 4:46. [PMID: 33420409 PMCID: PMC7794356 DOI: 10.1038/s42003-020-01580-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Copper is both essential and toxic to living beings, which tightly controls its intracellular concentration. At the host-pathogen interface, copper is used by phagocytic cells to kill invading microorganisms. We investigated copper homeostasis in Bordetella pertussis, which lives in the human respiratory mucosa and has no environmental reservoir. B. pertussis has considerably streamlined copper homeostasis mechanisms relative to other Gram-negative bacteria. Its single remaining defense line consists of a metallochaperone diverted for copper passivation, CopZ, and two peroxide detoxification enzymes, PrxGrx and GorB, which together fight stresses encountered in phagocytic cells. Those proteins are encoded by an original, composite operon assembled in an environmental ancestor, which is under sensitive control by copper. This system appears to contribute to persistent infection in the nasal cavity of B. pertussis-infected mice. Combining responses to co-occurring stresses in a tailored operon reveals a strategy adopted by a host-restricted pathogen to optimize survival at minimal energy expenditure.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Stéphanie Slupek
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jonathan Chatagnon
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Gauthier Roy
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Michel Saliou
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Gabriel Billon
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8516 – LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - Véronique Alaimo
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8516 – LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - David Hot
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Sophie Salomé-Desnoulez
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France ,grid.503422.20000 0001 2242 6780Bio Imaging Center Lille platform (BICeL), Univ. Lille, Lille, France
| | - Camille Locht
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
7
|
Raeven RHM, van Vlies N, Salverda MLM, van der Maas L, Uittenbogaard JP, Bindels THE, Rigters J, Verhagen LM, Kruijer S, van Riet E, Metz B, van der Ark AAJ. The Role of Virulence Proteins in Protection Conferred by Bordetella pertussis Outer Membrane Vesicle Vaccines. Vaccines (Basel) 2020; 8:E429. [PMID: 32751680 PMCID: PMC7563335 DOI: 10.3390/vaccines8030429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
The limited protective immunity induced by acellular pertussis vaccines demands development of novel vaccines that induce broader and longer-lived immunity. In this study, we investigated the protective capacity of outer membrane vesicle pertussis vaccines (omvPV) with different antigenic composition in mice to gain insight into which antigens contribute to protection. We showed that total depletion of virulence factors (bvg(-) mode) in omvPV led to diminished protection despite the presence of high antibody levels. Antibody profiling revealed overlap in humoral responses induced by vaccines in bvg(-) and bvg(+) mode, but the potentially protective responses in the bvg(+) vaccine were mainly directed against virulence-associated outer membrane proteins (virOMPs) such as BrkA and Vag8. However, deletion of either BrkA or Vag8 in our outer membrane vesicle vaccines did not affect the level of protection. In addition, the vaccine-induced immunity profile, which encompasses broad antibody and mixed T-helper 1, 2 and 17 responses, was not changed. We conclude that the presence of multiple virOMPs in omvPV is crucial for protection against Bordetella pertussis. This protective immunity does not depend on individual proteins, as their absence or low abundance can be compensated for by other virOMPs.
Collapse
Affiliation(s)
- René H. M. Raeven
- Intravacc (Institute for Translational Vaccinology), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.v.V.); (M.L.M.S.); (L.v.d.M.); (J.P.U.); (T.H.E.B.); (J.R.); (L.M.V.); (S.K.); (E.v.R.); (B.M.); (A.A.J.v.d.A.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
9
|
Ebersole JL, Al-Sabbagh M, Dawson DR. Heterogeneity of human serum antibody responses to P. gingivalis in periodontitis: Effects of age, race/ethnicity, and sex. Immunol Lett 2020; 218:11-21. [PMID: 31863783 PMCID: PMC6956649 DOI: 10.1016/j.imlet.2019.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Aging humans display an increased prevalence and severity of periodontitis, although the mechanisms underlying these findings remain poorly understood. This report examined antigenic diversity of P. gingivalis related to disease presence and patient demographics. Serum IgG antibody to P. gingivalis strains ATCC33277, FDC381, W50 (ATCC53978), W83, A7A1-28 (ATCC53977) and A7436 was measured in 426 participants [periodontally healthy (n = 61), gingivitis (N = 66) or various levels of periodontitis (N = 299)]. We hypothesized that antigenic diversity in P. gingivalis could contribute to a lack of "immunity" in the chronic infections of periodontal disease. Across the strains, the antibody levels in the oldest age group were lower than in the youngest groups, and severe periodontitis patients did not show higher antibody with aging. While 80 % of the periodontitis patients in any age group showed an elevated response to at least one of the P. gingivalis strains, the patterns of individual responses in the older group were also substantially different than the other age groups. Significantly greater numbers of older patients showed strain-specific antibody profiles to only 1 strain. The findings support that P. gingivalis may demonstrate antigenic diversity/drift within patients and could be one factor to help explain the inefficiency/ineffectiveness of the adaptive immune response in managing the infection.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas and Department of Periodontology, College of Dentistry, University of Kentucky, United States.
| | - M Al-Sabbagh
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas and Department of Periodontology, College of Dentistry, University of Kentucky, United States
| | - D R Dawson
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas and Department of Periodontology, College of Dentistry, University of Kentucky, United States
| |
Collapse
|
10
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
11
|
Hirai K, Homma T, Yamaguchi F, Yamaguchi M, Suzuki S, Tanaka A, Ohnishi T, Sagara H. Acute exacerbation of idiopathic pulmonary fibrosis induced by pertussis: the first case report. BMC Pulm Med 2019; 19:15. [PMID: 30642317 PMCID: PMC6332631 DOI: 10.1186/s12890-019-0779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is a severe condition with limited treatment strategies. Although respiratory infection is a major cause of AE-IPF, no reports have indicated pertussis infection as a cause. Here we report two cases of pertussis infection-induced AE-IPF. CASE PRESENTATION Both patients presented with a chief complaint of acute respiratory distress and were previously diagnosed with idiopathic pulmonary fibrosis (IPF). Neither patient had received any pertussis vaccination since adolescence. Both patients were diagnosed with AE-IPF accompanying acute pertussis infection based on chest computed tomography and serum pertussis toxin antibody > 100 EU/mL. Both patients were treated with macrolide antibiotics and systemic corticosteroids. Both patients were able to be discharged and return home. CONCLUSIONS The presence of pertussis infection in AE-IPF can present a diagnostic challenge, as coughing accompanying pertussis may be difficult to distinguish from IPF-associated coughing. Pertussis infection should be assayed in AE-IPF patients. Since pertussis can be prevented with vaccination and is expected to be affected by antibiotics, consideration of pertussis infection as a causative virulent factor of AE-IPF may be important for management of subjects with IPF.
Collapse
Affiliation(s)
- Kuniaki Hirai
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan.
| | - Tetsuya Homma
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Fumihiro Yamaguchi
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Munehiro Yamaguchi
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Shintaro Suzuki
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Akihiko Tanaka
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Tsukasa Ohnishi
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Hironori Sagara
- Department of Internal Medicine, Division of Allergology and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
12
|
Functional Programming of Innate Immune Cells in Response to Bordetella pertussis Infection and Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:53-80. [PMID: 31432398 DOI: 10.1007/5584_2019_404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite widespread vaccination, B. pertussis remains one of the least controlled vaccine-preventable diseases. Although it is well known that acellular and whole cell pertussis vaccines induce distinct immune functionalities in memory cells, much less is known about the role of innate immunity in this process. In this review, we provide an overview of the known differences and similarities in innate receptors, innate immune cells and inflammatory signalling pathways induced by the pertussis vaccines either licensed or in development and compare this to primary infection with B. pertussis. Despite the crucial role of innate immunity in driving memory responses to B. pertussis, it is clear that a significant knowledge gap remains in our understanding of the early innate immune response to vaccination and infection. Such knowledge is essential to develop the next generation of pertussis vaccines with improved host defense against B. pertussis.
Collapse
|
13
|
Cauchi S, Locht C. Non-specific Effects of Live Attenuated Pertussis Vaccine Against Heterologous Infectious and Inflammatory Diseases. Front Immunol 2018; 9:2872. [PMID: 30581436 PMCID: PMC6292865 DOI: 10.3389/fimmu.2018.02872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a disease that remains an important public health issue. Vaccine-induced immunity to pertussis wanes over time. In industrialized countries, high vaccine coverage has not prevented infection and transmission of B. pertussis, leading to periodic outbreaks in people of all ages. The consequence is the formation of a large source for transmission to children, who show the highest susceptibility of developing severe whooping cough and mortality. With the aim of providing protection against both disease and infection, a live attenuated pertussis vaccine, in which three toxins have been genetically inactivated or removed, is now in clinical development. This vaccine, named BPZE1, offers strong protection in mice and non-human primates. It has completed a phase I clinical trial in which safety, transient colonization of the human airway and immunogenicity could be demonstrated. In mice, BPZE1 was also found to protect against inflammation resulting from heterologous airway infections, including those caused by other Bordetella species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous protection conferred by BPZE1 was also observed for non-infectious inflammatory diseases, such as allergic asthma, as well as for inflammatory disorders outside of the respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms underlying the anti-inflammatory effects associated with nasal BPZE1 administration. Given the increasing importance of inflammatory disorders, novel preventive and therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1, may offer attractive solutions. It is now essential to understand the cellular and molecular mechanisms of action before translating these biological findings into new healthcare solutions.
Collapse
Affiliation(s)
- Stéphane Cauchi
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
14
|
Česnek M, Skácel J, Jansa P, Dračínský M, Šmídková M, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from Bordetella pertussis and Bacillus anthracis. ChemMedChem 2018; 13:1779-1796. [PMID: 29968968 PMCID: PMC6415679 DOI: 10.1002/cmdc.201800332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Indexed: 02/06/2023]
Abstract
A series of 13 acyclic nucleoside phosphonates (ANPs) as bisamidate prodrugs was prepared. Five compounds were found to be non-cytotoxic and selective inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT) in J774A.1 macrophage cell-based assays. The 8-aza-7-deazapurine derivative of adefovir (PMEA) was found to be the most potent ACT inhibitor in the series (IC50 =16 nm) with substantial selectivity over mammalian adenylate cyclases (mACs). AC inhibitory properties of the most potent analogues were confirmed by direct evaluation of the corresponding phosphonodiphosphates in cell-free assays and were found to be potent inhibitors of both ACT and edema factor (EF) from Bacillus anthracis (IC50 values ranging from 0.5 to 21 nm). Moreover, 7-halo-7-deazapurine analogues of PMEA were discovered to be potent and selective mammalian AC1 inhibitors (no inhibition of AC2 and AC5) with IC50 values ranging from 4.1 to 5.6 μm in HEK293 cell-based assays.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Monica P Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
15
|
Sadeghpour Heravi F, Nikbin VS, Nakhost Lotfi M, Badiri P, Jannesar Ahmadi N, Zahraei SM, Shahcheraghi F. Strain variation and antigenic divergence among Bordetella pertussis circulating strains isolated from patients in Iran. Eur J Clin Microbiol Infect Dis 2018; 37:1893-1900. [PMID: 30094521 DOI: 10.1007/s10096-018-3323-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
Despite global efforts and widespread vaccination to control whooping cough (pertussis) caused by B. pertussis, the re-emergence of pertussis still is being reported all over the world. Antigenic divergence in B. pertussis virulence factors is one of the reasons of pertussis resurgence, resulting in dissimilarity of local and vaccine strains. In this study, clonal spread and variation of B. pertussis virulence factor in isolated strains from Iranian patients have been analyzed. A total of 100 B. pertussis isolates were obtained from Pertussis Reference Laboratory of Pasteur Institute of Iran. Real-time PCR were performed to confirm the B. pertussis strains. The genomic patterns of B. pertussis strains were analyzed by pulsed-field gel electrophoresis (PFGE). Predominant alleles of local strains were ptxP3, ptxA1, prn2, fim 2-1, fim3-2, and cya2. PFGE results showed 25 patterns clustered into 18 PFGE groups. A few similarities between the circulating isolates, vaccine, and standard strains were obtained. Significantly, 48% of the isolates showed dominant pattern with different allelic profiles from vaccine strains. According to the genomic profiles, the clonal spread was observed among the circulating strains. Predominant virulence factor profile was also comparable with other countries. It may be suggested that strain variation between vaccine and local strains may have an effect on pertussis resurgence in Iran like other parts of the world.
Collapse
Affiliation(s)
| | - Vajihe Sadat Nikbin
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Masomeh Nakhost Lotfi
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Pouran Badiri
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Jannesar Ahmadi
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohsen Zahraei
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
Raksanoh V, Prangkio P, Imtong C, Thamwiriyasati N, Suvarnapunya K, Shank L, Angsuthanasombat C. Structural requirement of the hydrophobic region of the Bordetella pertussis CyaA-hemolysin for functional association with CyaC-acyltransferase in toxin acylation. Biochem Biophys Res Commun 2018; 499:862-867. [PMID: 29625104 DOI: 10.1016/j.bbrc.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 01/21/2023]
Abstract
Previously, we demonstrated that the ∼130-kDa CyaA-hemolysin (CyaA-Hly, Met482-Arg1706) from Bordetella pertussis was palmitoylated at Lys983 when co-expressed with CyaC-acyltransferase in Escherichia coli, and thus activated its hemolytic activity. Here, further investigation on a possible requirement of the N-terminal hydrophobic region (HP, Met482-Leu750) for toxin acylation was performed. The ∼100-kDa RTX (Repeat-in-ToXin) fragment (CyaA-RTX, Ala751-Arg1706) containing the Lys983-acylation region (AR, Ala751-Gln1000), but lacking HP, was co-produced with CyaC in E. coli. Hemolysis assay indicated that CyaA-RTX showed no hemolytic activity. Additionally, MALDI-TOF/MS and LC-MS/MS analyses confirmed that CyaA-RTX was non-acylated, although the co-expressed CyaC-acyltransferase was able to hydrolyze its chromogenic substrate-p-nitrophenyl palmitate and acylate CyaA-Hly to become hemolytically active. Unlike CyaA-RTX, the ∼70-kDa His-tagged CyaA-HP/BI fragment which is hemolytically inactive and contains both HP and AR was constantly co-eluted with CyaC during IMAC-purification as the presence of CyaC was verified by Western blotting. Such potential interactions between the two proteins were also revealed by semi-native PAGE. Moreover, structural analysis via electrostatic potential calculations and molecular docking suggested that CyaA-HP comprising α1-α5 (Leu500-Val698) can interact with CyaC through several hydrogen and ionic bonds formed between their opposite electrostatic surfaces. Overall, our results demonstrated that the HP region of CyaA-Hly is conceivably required for not only membrane-pore formation but also functional association with CyaC-acyltransferase, and hence effective palmitoylation at Lys983.
Collapse
Affiliation(s)
- Veerada Raksanoh
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panchika Prangkio
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Niramon Thamwiriyasati
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Kittipong Suvarnapunya
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | - Lalida Shank
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand; Laboratory of Molecular Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Fang, Chiang Mai 50110, Thailand.
| |
Collapse
|
17
|
Abstract
Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas.
Collapse
Affiliation(s)
| | - Marta V Pinto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver BC, Canada.
| | - Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
18
|
|
19
|
Gill C, Rohani P, Thea DM. The relationship between mucosal immunity, nasopharyngeal carriage, asymptomatic transmission and the resurgence of Bordetella pertussis. F1000Res 2017; 6:1568. [PMID: 28928960 PMCID: PMC5580413 DOI: 10.12688/f1000research.11654.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2017] [Indexed: 12/11/2022] Open
Abstract
The incidence of whooping cough in the US has been rising slowly since the 1970s, but the pace of this has accelerated sharply since acellular pertussis vaccines replaced the earlier whole cell vaccines in the late 1990s. A similar trend occurred in many other countries, including the UK, Canada, Australia, Ireland, and Spain, following the switch to acellular vaccines. The key question is why. Two leading theories (short duration of protective immunologic persistence and evolutionary shifts in the pathogen to evade the vaccine) explain some but not all of these shifts, suggesting that other factors may also be important. In this synthesis, we argue that sterilizing mucosal immunity that blocks or abbreviates the duration of nasopharyngeal carriage of
Bordetella pertussis and impedes person-to-person transmission (including between asymptomatically infected individuals) is a critical factor in this dynamic. Moreover, we argue that the ability to induce such mucosal immunity is fundamentally what distinguishes whole cell and acellular pertussis vaccines and may be pivotal to understanding much of the resurgence of this disease in many countries that adopted acellular vaccines. Additionally, we offer the hypothesis that observed herd effects generated by acellular vaccines may reflect a modification of disease presentation leading to reduced potential for transmission by those already infected, as opposed to inducing resistance to infection among those who have been exposed.
Collapse
Affiliation(s)
- Christopher Gill
- Centre for Global Health and Development , Boston University School of Public Health, Boston, Massachusetts, 02118, USA.,Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, 02118, USA
| | - Pejman Rohani
- Department of Infectious Diseases College of Veterinary Medicine, Odum School of Ecology , University of Georgia, Athens, Georgia, 30602, USA
| | - Donald M Thea
- Centre for Global Health and Development , Boston University School of Public Health, Boston, Massachusetts, 02118, USA.,Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, 02118, USA
| |
Collapse
|
20
|
Raksanoh V, Shank L, Prangkio P, Yentongchai M, Sakdee S, Imtong C, Angsuthanasombat C. Zn 2+-dependent autocatalytic activity of the Bordetella pertussis CyaA-hemolysin. Biochem Biophys Res Commun 2017; 485:720-724. [PMID: 28238785 DOI: 10.1016/j.bbrc.2017.02.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
Proteolytic degradation of the ∼100-kDa isolated RTX (Repeat-in-ToXin) subdomain (CyaA-RTX) of the Bordetella pertussis CyaA-hemolysin (CyaA-Hly) was evidently detected upon solely-prolonged incubation. Here, a truncated CyaA-Hly fragment (CyaA-HP/BI) containing hydrophobic and acylation regions connected with the first RTX block (BI1015-1088) was constructed as a putative precursor for investigating its potential autocatalysis. The 70-kDa His-tagged CyaA-HP/BI fragment which was over-expressed in Escherichia coli as insoluble aggregate was entirely solubilized with 4 M urea. After re-naturation in a Ni2+-NTA affinity column, the purified-refolded CyaA-HP/BI fragment in HEPES buffer (pH 7.4) supplemented with 2 mM CaCl2 was completely degraded upon incubation at 37 °C for 3 h. Addition of 1,10-phenanthroline‒an inhibitor of Zn2+-dependent metalloproteases markedly reduced the extent of degradation for CyaA-HP/BI and CyaA-RTX, but the degradative effect was clearly enhanced by addition of 100 mM ZnCl2. Structural analysis of a plausible CyaA-HP/BI model revealed a potential Zn2+-binding His-Asp cluster located between the acylation region and RTX-BI1015-1088. Moreover, Arg997‒one of the identified cleavage sites of the CyaA-RTX fragment was located in close proximity to the Zn2+-binding catalytic site. Overall results demonstrated for the first time that the observed proteolysis of CyaA-HP/BI and CyaA-RTX fragments is conceivably due to their Zn2+-dependent autocatalytic activity.
Collapse
Affiliation(s)
- Veerada Raksanoh
- Division of Biochemistry and Biochemical Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lalida Shank
- Division of Biochemistry and Biochemical Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Panchika Prangkio
- Division of Biochemistry and Biochemical Technology, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mattayaus Yentongchai
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | - Somsri Sakdee
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Chanan Angsuthanasombat
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand; Laboratory of Molecular Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Bangkok 10160, Thailand.
| |
Collapse
|
21
|
van Twillert I, Bonačić Marinović AA, Kuipers B, van Gaans-van den Brink JAM, Sanders EAM, van Els CACM. Impact of age and vaccination history on long-term serological responses after symptomatic B. pertussis infection, a high dimensional data analysis. Sci Rep 2017; 7:40328. [PMID: 28091579 PMCID: PMC5238437 DOI: 10.1038/srep40328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
Capturing the complexity and waning patterns of co-occurring immunoglobulin (Ig) responses after clinical B. pertussis infection may help understand how the human host gradually loses protection against whooping cough. We applied bi-exponential modelling to characterise and compare B. pertussis specific serological dynamics in a comprehensive database of IgG, IgG subclass and IgA responses to Ptx, FHA, Prn, Fim2/3 and OMV antigens of (ex-) symptomatic pertussis cases across all age groups. The decay model revealed that antigen type and age group were major factors determining differences in levels and kinetics of Ig (sub) classes. IgG-Ptx waned fastest in all age groups, while IgA to Ptx, FHA, Prn and Fim2/3 decreased fast in the younger but remained high in older (ex-) cases, indicating an age-effect. While IgG1 was the main IgG subclass in response to most antigens, IgG2 and IgG3 dominated the anti-OMV response. Moreover, vaccination history plays an important role in post-infection Ig responses, demonstrated by low responsiveness to Fim2/3 in unvaccinated elderly and by elevated IgG4 responses to multiple antigens only in children primed with acellular pertussis vaccine (aP). This work highlights the complexity of the immune response to this re-emerging pathogen and factors determining its Ig quantity and quality.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Axel A Bonačić Marinović
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Immunology and Infectious Diseases, Wilhelmina Childrens Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
22
|
Meetum K, Imtong C, Katzenmeier G, Angsuthanasombat C. Acylation of the Bordetella pertussis CyaA-hemolysin: Functional implications for efficient membrane insertion and pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:312-318. [PMID: 27993565 DOI: 10.1016/j.bbamem.2016.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Previously, the ~130-kDa CyaA-hemolysin domain (CyaA-Hly) from Bordetella pertussis co-expressed with CyaC-acyltransferase in Escherichia coli was demonstrated to be palmitoylated at Lys983 and thus activated its hemolytic activity against target erythrocytes. Here, we report the functional importance of Lys983-palmitoylation for membrane insertion and pore formation of CyaA-Hly. Intrinsic fluorescence emissions of both non-acylated CyaA-Hly (NA/CyaA-Hly) and CyaA-Hly were indistinguishable, suggesting no severe conformational change upon acylation at Lys983. Following pre-incubation of sheep erythrocytes with NA/CyaA-Hly, there was a drastic decrease in CyaA-Hly-induced hemolysis. Direct interactions between NA/CyaA-Hly and target erythrocyte membranes were validated via membrane-binding assays along with Western blotting, suggestive of acylation-independent capability of NA/CyaA-Hly to interact with erythrocyte membranes. As compared with CyaA-Hly, NA/CyaA-Hly displayed a slower rate of incorporation into DOPC:DOPE:Ch or DiPhyPC bilayers under symmetrical conditions (1M KCl, 10mM HEPES, pH7.4) and formed channels exhibiting different conductance. Further analysis revealed that channel-open lifetime in DOPC:DOPE:Ch bilayers of NA/CyaA-Hly was much shorter than that of the acylated form, albeit slightly shorter lifetime found in DiPhyPC bilayers. Sequence alignments of the Lys983-containing CyaA-segment with those of related RTX-cytolysins revealed a number of highly conserved hydrophobic residues and a Lys/Arg cluster that is predicted be important for toxin-membrane interactions. Altogether, our data disclosed that the Lys983-linked palmitoyl group is not directly involved in either binding to target erythrocyte membranes or toxin-induced channel conductivity, but rather required for efficient membrane insertion and pore formation of the acylated CyaA-Hly domain.
Collapse
Affiliation(s)
- Kanungsuk Meetum
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Gerd Katzenmeier
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand
| | - Chanan Angsuthanasombat
- Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand; Laboratory of Molecular Biophysics and Structural Biochemistry, Biophysics Institute for Research and Development (BIRD), Bangkok 10160, Thailand.
| |
Collapse
|
23
|
Hoffman C, Eby J, Gray M, Heath Damron F, Melvin J, Cotter P, Hewlett E. Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Mol Microbiol 2016; 103:214-228. [PMID: 27731909 DOI: 10.1111/mmi.13551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, secretes and releases adenylate cyclase toxin (ACT), which is a protein bacterial toxin that targets host cells and disarms immune defenses. ACT binds filamentous haemagglutinin (FHA), a surface-displayed adhesin, and until now, the consequences of this interaction were unknown. A B. bronchiseptica mutant lacking ACT produced more biofilm than the parental strain; leading Irie et al. to propose the ACT-FHA interaction could be responsible for biofilm inhibition. Here we characterize the physical interaction of ACT with FHA and provide evidence linking that interaction to inhibition of biofilm in vitro. Exogenous ACT inhibits biofilm formation in a concentration-dependent manner and the N-terminal catalytic domain of ACT (AC domain) is necessary and sufficient for this inhibitory effect. AC Domain interacts with the C-terminal segment of FHA with ∼650 nM affinity. ACT does not inhibit biofilm formation by Bordetella lacking the mature C-terminal domain (MCD), suggesting the direct interaction between AC domain and the MCD is required for the inhibitory effect. Additionally, AC domain disrupts preformed biofilm on abiotic surfaces. The demonstrated inhibition of biofilm formation by a host-directed protein bacterial toxin represents a novel regulatory mechanism and identifies an unprecedented role for ACT.
Collapse
Affiliation(s)
- Casandra Hoffman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Joshua Eby
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mary Gray
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - F Heath Damron
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jeffrey Melvin
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Peggy Cotter
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Erik Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Wu DX, Chen Q, Shen KL. [Recent progress in clinical research on pertussis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:897-902. [PMID: 27655551 PMCID: PMC7389973 DOI: 10.7499/j.issn.1008-8830.2016.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pertussis is a highly contagious respiratory disease. Despite the high vaccination coverage, re-emergence of pertussis has been reported in many countries over the past two decades. With the increase in the incidence of pertussis, there has been a shift in the epidemiological features: an increased incidence of pertussis has been noted in older children and adults, who normally lack typical clinical manifestations, and who may be easily missed according to current diagnostic references for pertussis. In order to achieve better prevention and treatment of pertussis, this review article summarized the recent research progress in the epidemiology, clinical features, etiology, diagnosis, treatment, and prevention of pertussis, particularly focusing on the diagnosis of pertussis in older children and adults.
Collapse
Affiliation(s)
- Dan-Xia Wu
- Department of Respiratory Diseases, Jiangxi Provincial Children's Hospital, Nanchang 330006, China.
| | | | | |
Collapse
|
25
|
Vittucci AC, Spuri Vennarucci V, Grandin A, Russo C, Lancella L, Tozzi AE, Bartuli A, Villani A. Pertussis in infants: an underestimated disease. BMC Infect Dis 2016; 16:414. [PMID: 27528377 PMCID: PMC4986228 DOI: 10.1186/s12879-016-1710-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/12/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The clinical diagnosis of pertussis is not easy in early infancy since clinical manifestations can overlap with several different diseases. Many cases are often misclassified and underdiagnosed. We conducted a retrospective study on infants to assess how often physicians suspected pertussis and the actual frequency of Bordetella pertussis infections. METHODS We analyzed all infants with age ≤90 days hospitalized from March 2011 until September 2013 for acute respiratory symptoms tested with a Real Time Polymerase Chain Reaction able to detect Bordetella pertussis and with a Real Time Polymerase Chain Reaction for a multipanel respiratory virus. Therefore, we compared patients with pertussis positive aspirate, patients with respiratory virus positive aspirate and patients with negative aspirate to identify symptoms or clinical findings predictive of pertussis. RESULTS Out of 215 patients analyzed, 53 were positive for pertussis (24.7 %), 119 were positive for respiratory virus (55.3 %) and 43 had a negative aspirate (20 %). Pertussis was suspected in 22 patients at admission and 16 of them were confirmed by laboratory tests, while 37 infants with different admission diagnosis resulted positive for pertussis. The sensitivity of clinical diagnosis was 30.2 % and the specificity 96.3 %. Infants with pertussis had more often paroxysmal cough, absence of fever and a higher absolute lymphocyte count than infants without pertussis. CONCLUSIONS Pertussis is a serious disease in infants and it is often unrecognized; some features should help pediatricians to suspect pertussis, but clinical suspicion has a low sensitivity. We suggest a systematic use of Real Time Polymerase Chain Reaction to support the clinical suspicion of pertussis in patients with less than 3 months of age hospitalized with acute respiratory symptoms.
Collapse
Affiliation(s)
- Anna Chiara Vittucci
- General Pediatric and Infectious Diseases Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Annalisa Grandin
- General Pediatric and Infectious Diseases Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Russo
- Virology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Laura Lancella
- General Pediatric and Infectious Diseases Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Bartuli
- Rare Disease and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Alberto Villani
- General Pediatric and Infectious Diseases Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Eby JC, Hoffman CL, Gonyar LA, Hewlett EL. Review of the neutrophil response to Bordetella pertussis infection. Pathog Dis 2015; 73:ftv081. [PMID: 26432818 DOI: 10.1093/femspd/ftv081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 01/13/2023] Open
Abstract
The nature and timing of the neutrophil response to infection with Bordetella pertussis is influenced by multiple virulence factors expressed by the bacterium. After inoculation of the host airway, the recruitment of neutrophils signaled by B. pertussis lipooligosaccharide (LOS) is suppressed by pertussis toxin (PTX). Over the next week, the combined activities of PTX, LOS and adenylate cyclase toxin (ACT) result in production of cytokines that generate an IL-17 response, promoting neutrophil recruitment which peaks at 10-14 days after inoculation in mice. Arriving at the site of infection, neutrophils encounter the powerful local inhibitory activity of ACT, in conjunction with filamentous hemagglutinin. With the help of antibodies, neutrophils contribute to clearance of B. pertussis, but only after 28-35 days in a naïve mouse. Studies of the lasting, antigen-specific IL-17 response to infection in mice and baboons has led to progress in vaccine development and understanding of pathogenesis. Questions remain about the mediators that coordinate neutrophil recruitment and the mechanisms by which neutrophils overcome B. pertussis virulence factors.
Collapse
Affiliation(s)
- Joshua C Eby
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Casandra L Hoffman
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Laura A Gonyar
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Erik L Hewlett
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Safarchi A, Octavia S, Luu LDW, Tay CY, Sintchenko V, Wood N, Marshall H, McIntyre P, Lan R. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine 2015; 33:6277-81. [PMID: 26432908 DOI: 10.1016/j.vaccine.2015.09.064] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 11/25/2022]
Abstract
Whooping cough or pertussis is a highly infectious respiratory disease in humans caused by Bordetella pertussis. The use of acellular vaccines (ACV) has been associated with the recent resurgence of pertussis in developed countries including Australia despite high vaccination coverage where B. pertussis strains that do not express pertactin (Prn), a key antigenic component of the ACV, have emerged and become prevalent. In this study, we used an in vivo competition assay in mice immunised with ACV and in naïve (control) mice to compare the proportion of colonisation with recent clinical Prn positive and Prn negative B. pertussis strains from Australia. The Prn negative strain colonised the respiratory tract more effectively than the Prn positive strain in immunised mice, out-competing the Prn positive strain by day 3 of infection. However, in control mice, the Prn positive strain out-competed the Prn negative strain. Our findings of greater ability of Prn negative strains to colonise ACV-immunised mice are consistent with reports of selective advantage for these strains in ACV-immunised humans.
Collapse
Affiliation(s)
- Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research-Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Children's Hospital at Westmead and University of Sydney, New South Wales, Australia
| | - Helen Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital and School of Paediatrics and Reproductive Health and Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - Peter McIntyre
- National Centre for Immunisation Research and Surveillance, Children's Hospital at Westmead and University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
28
|
van Twillert I, Han WGH, van Els CACM. Waning and aging of cellular immunity to Bordetella pertussis. Pathog Dis 2015; 73:ftv071. [PMID: 26371178 DOI: 10.1093/femspd/ftv071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 02/04/2023] Open
Abstract
While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| |
Collapse
|
29
|
Martín C, Etxaniz A, Uribe KB, Etxebarria A, González-Bullón D, Arlucea J, Goñi FM, Aréchaga J, Ostolaza H. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells. Sci Rep 2015; 5:13774. [PMID: 26346097 PMCID: PMC4642564 DOI: 10.1038/srep13774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.
Collapse
Affiliation(s)
- César Martín
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Asier Etxaniz
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Kepa B. Uribe
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Aitor Etxebarria
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - David González-Bullón
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Jon Arlucea
- Departamento de Biología Celular, Facultad de Medicina, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | - Félix M. Goñi
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Juan Aréchaga
- Departamento de Biología Celular, Facultad de Medicina, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | - Helena Ostolaza
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| |
Collapse
|
30
|
Fedele G, Cassone A, Ausiello CM. T-cell immune responses to Bordetella pertussis infection and vaccination. Pathog Dis 2015; 73:ftv051. [PMID: 26242279 DOI: 10.1093/femspd/ftv051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
The recent immunological investigations, stemming from the studies performed in the nineties within the clinical trials of the acellular pertussis vaccines, have highlighted the important role played by T-cell immunity to pertussis in humans. These studies largely confirmed earlier investigations in the murine respiratory infection models that humoral immunity alone is not sufficient to confer protection against Bordetella pertussis infection and that T-cell immunity is required. Over the last years, knowledge of T-cell immune response to B. pertussis has expanded broadly, taking advantage of the general progress in the understanding of anti-bacterial immunity and of refinements in methods to approach immunological investigations. In particular, experimental models of B. pertussis infection highlighted the cooperative role played by T-helper (Th)1 and Th17 cells for protection. Furthermore, the new baboon experimental model suggested a plausible explanation for the differences observed in the strength and persistence of protective immunity induced by the acellular or whole-cell pertussis vaccines and natural infection in humans, contributing to explain the upsurge of recent pertussis outbreaks. Despite the progress, open questions remain, the answer to them will possibly provide better tools to fight one of the hardest-to-control vaccine preventable disease.
Collapse
Affiliation(s)
- Giorgio Fedele
- Anti-Infectious Immunity Unit, Department of Infectious Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Cassone
- Anti-Infectious Immunity Unit, Department of Infectious Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy Center of functional genomics, Polo della genomica, genetica e biologia, University of Perugia, 06132 Perugia, Italy
| | - Clara Maria Ausiello
- Anti-Infectious Immunity Unit, Department of Infectious Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
31
|
Skerry C, Scanlon K, Rosen H, Carbonetti NH. Sphingosine-1-phosphate Receptor Agonism Reduces Bordetella pertussis-mediated Lung Pathology. J Infect Dis 2014; 211:1883-6. [PMID: 25538274 DOI: 10.1093/infdis/jiu823] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/12/2014] [Indexed: 11/14/2022] Open
Abstract
Recent pertussis resurgence represents a major public health concern. Currently, there are no effective treatments for critical pertussis in infants. Recent data have demonstrated the potential of sphingosine-1-phosphate receptor (S1PR) agonism in the treatment of infectious diseases. We used the murine Bordetella pertussis model to test the hypothesis that treatment with S1PR agonist AAL-R reduces pulmonary inflammation during infection. AAL-R treatment resulted in reduced expression of inflammatory cytokines and chemokines and attenuated lung pathology in infected mice. These results demonstrate a role for sphingosine-1-phosphate (S1P) signaling in B. pertussis-mediated pathology and highlight the possibility of host-targeted therapy for pertussis.
Collapse
Affiliation(s)
- Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore
| | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore
| | - Hugh Rosen
- Departments of Chemical Physiology and Immunology, The Scripps Research Institute, La Jolla, California
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore
| |
Collapse
|
32
|
Gabutti G, Azzari C, Bonanni P, Prato R, Tozzi AE, Zanetti A, Zuccotti G. Pertussis. Hum Vaccin Immunother 2014; 11:108-17. [PMID: 25483523 PMCID: PMC4514233 DOI: 10.4161/hv.34364] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 01/12/2023] Open
Abstract
Pertussis continues to be an important public-health issue. The high immunization coverage rates achieved, mainly in industrialized countries, have certainly decreased the spread of the pathogen. However, as immunity wanes, adolescents and adults play an important role in the dynamics of the infection. The surveillance system has several limitations and the underestimation of pertussis in adolescents, young adults and adults is mainly related to the atypical clinical characteristics of cases and the lack of lab confirmation. The real epidemiological impact of pertussis is not always perceived. The unavailability of comprehensive data should not hamper the adoption of active prophylactic measures designed to avoid the impact of waning immunity against pertussis. Different immunization strategies have been suggested and/or already adopted such as immunization of newborns, pre-school and school children, adolescents, adults, healthcare workers, childcare workers, pregnant women, cocoon strategy. Prevention of pertussis requires an integrated approach and the adoption of different immunization strategies, with the objective of achieving and maintaining high coverage rates.
Collapse
Affiliation(s)
- Giovanni Gabutti
- Department of Medical Sciences; University of Ferrara; Ferrara, Italy
| | - Chiara Azzari
- Department of Health Sciences; University of Florence and Anna Meyer Children’s University Hospital; Florence, Italy
| | - Paolo Bonanni
- Department of Health Sciences; University of Florence; Florence, Italy
| | - Rosa Prato
- Department of Medical and Surgical Sciences; University of Foggia; Foggia, Italy
| | - Alberto E Tozzi
- Bambino Gesù Children's Hospital and Research Institute; Rome, Italy
| | - Alessandro Zanetti
- Department of Biomedical Sciences for Health; University of Milan; Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics; University of Milan and Luigi Sacco Hospital; Milan, Italy
| |
Collapse
|
33
|
Hegerle N, Guiso N. Bordetella pertussisand pertactin-deficient clinical isolates: lessons for pertussis vaccines. Expert Rev Vaccines 2014; 13:1135-46. [DOI: 10.1586/14760584.2014.932254] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Abstract
The resurgence of pertussis (whooping cough) in countries with high vaccination coverage is alarming and invites reconsideration of the use of current acellular pertussis (aP) vaccines, which have largely replaced the old, reactogenic, whole-cell pertussis (wP) vaccine. Some drawbacks of these vaccines in terms of limited antigenic composition and early waning of antibody levels could be anticipated by the results of in-trial or postlicensure human investigations of B- and T-cell responses in aP versus wP vaccine recipients or unvaccinated, infected children. Recent data in experimental models, including primates, suggest that generation of vaccines capable of a potent, though regulated, stimulation of innate immunity driving effective, persistent adaptive immune responses against Bordetella pertussis infection should be privileged. Adjuvants that skew Th1/Th17 responses or new wP (detoxified or attenuated) vaccines should be explored. Nonetheless, the high merits of the current aP vaccines in persuading people to resume vaccination against pertussis should not be forgotten.
Collapse
|
35
|
Hegerle N, Guiso N. Antibody-mediated inhibition of Bordetella pertussis adenylate cyclase-haemolysin-induced macrophage cytotoxicity is influenced by variations in the bacterial population. MICROBIOLOGY-SGM 2014; 160:962-969. [PMID: 24554758 DOI: 10.1099/mic.0.074690-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whooping cough is a vaccine-preventable disease presenting with epidemic cycles linked to natural and/or vaccine-driven evolution of the aetiological agent of the disease, Bordetella pertussis. Adenylate cyclase-haemolysin (AC-Hly) is a major toxin produced by this pathogen, which mediates macrophage apoptosis in vitro and in vivo. While current acellular pertussis vaccine (APV) formulations do not include AC-Hly, they all contain pertussis toxin and can comprise filamentous haemagglutinin (FHA), which interacts with AC-Hly, and pertactin (PRN), which has been hypothesized also to interact with AC-Hly. We aimed to study the capacity of specific antibodies to inhibit the in vitro B. pertussis AC-Hly-mediated cytotoxicity of J774A.1 murine macrophages in a background of a changing bacterial population. We demonstrate that: (i) clinical isolates of different types or PRN phenotype are all cytotoxic and lethal in the mouse model of respiratory infection; (ii) lack of PRN production does not impact AC-Hly-related phenotypes; (iii) anti-AC-Hly antibodies inhibit cell lysis whatever the phenotype of the isolate, while anti-PRN antibodies significantly inhibit cell lysis provided the isolate produces this antigen, which might be relevant in vivo for APV-induced immunity; and (iv) anti-FHA antibodies only inhibit lysis induced by isolates collected in 2012, maybe indicating specific characteristics of epidemic lineages of B. pertussis.
Collapse
Affiliation(s)
- N Hegerle
- Institut Pasteur, CNRS-URA3012, Paris, France.,Prevention and Molecular Therapies of Human Diseases Unit, Institut Pasteur, Paris, France
| | - N Guiso
- Institut Pasteur, CNRS-URA3012, Paris, France.,Prevention and Molecular Therapies of Human Diseases Unit, Institut Pasteur, Paris, France
| |
Collapse
|