1
|
Xie C, Zhang HL, Yuan J, Zhang Y, Liu YC, Xu Q, Chen LR. Sirt6, Deubiquitinated and Stabilised by USP9X, Takes Essential Actions on the Pathogenesis of Experimental Autoimmune Myasthenia Gravis by Regulating CD4 + T Cells. Clin Exp Pharmacol Physiol 2025; 52:e70018. [PMID: 39756480 DOI: 10.1111/1440-1681.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Myasthenia gravis (MG) presents with symptoms that significantly affect patients' daily lives. Long-term MG therapies may lead to substantial side effects, predominantly due to prolonged immune suppression. Sirt6, which plays a vital role in maintaining cellular homeostasis and is recognised for its involvement in cytokine production in immune cells, has not yet been explored in relation to MG. PBMCs and CD4+ T cells were isolated from blood samples. RT-qPCR, western blot and ELISA were used to assess the expression of target genes and proteins. Flow cytometry was used to identify the subsets of T helper cells. Co-IP was conducted to investigate the interaction between USP9X and Sirt6. Finally, the experimental autoimmune myasthenia gravis (EAMG) model was established. In MG patients, Sirt6 levels were downregulated compared to healthy controls. Sirt6 overexpression led to a reduction in Th1 and Th17 cell populations while augmenting Treg cells in PBMCs. USP9X interacted with Sirt6, leading to its deubiquitination and stabilisation. Elevated Sirt6 levels subsequently mitigated symptoms in the EAMG model. The stabilisation of Sirt6, mediated by USP9X, has been found to relieve symptoms of EAMG by influencing the subtypes of T helper cells. This highlights the promising potential of Sirt6 as a viable therapeutic target in the treatment of MG.
Collapse
Affiliation(s)
- Chen Xie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurology, Xiangya Hospital Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurology, Nanchang, Jiangxi, China
| | - Hong-Lian Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurology, Xiangya Hospital Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurology, Nanchang, Jiangxi, China
| | - Jun Yuan
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Ye Zhang
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yang-Chun Liu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Li-Ru Chen
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Li Y, Chen P, Huang X, Huang H, Ma Q, Lin Z, Qiu L, Ou C, Liu W. Pathogenic Th17 cells are a potential therapeutic target for tacrolimus in AChR-myasthenia gravis patients. J Neuroimmunol 2024; 396:578464. [PMID: 39393213 DOI: 10.1016/j.jneuroim.2024.578464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
In our study, we investigated the impact of tacrolimus (TAC) on CD4+ T cell subsets in 41 AChR-MG patients over 12 weeks. Twenty-seven patients were classified as the response group (RG) (improved myasthenia gravis composite scores ≥3), while 14 were non-response. We found that TAC treatment significantly reduced Th17 and pathogenic Th17 cells, along with IL-17 levels in RG, while Th1 and Tfh cells slightly decreased without affecting Th2 or Treg subsets. This indicates that TAC's clinical benefits may be due to its inhibitory effect on the Th17 response, enhancing our insight into its immunomodulatory mechanisms in MG management.
Collapse
Affiliation(s)
- Yingkai Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Neuromuscular division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pei Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongqiang Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li Qiu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changyi Ou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Sharma S, Sharma U. The Pathogenesis of Rheumatic Heart Disease with Unsettled Issues. Indian J Clin Biochem 2024. [DOI: 10.1007/s12291-024-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/02/2024] [Indexed: 01/06/2025]
|
4
|
Zhu S, Wei W. Progress in research on the role of fluoride in immune damage. Front Immunol 2024; 15:1394161. [PMID: 38807586 PMCID: PMC11130356 DOI: 10.3389/fimmu.2024.1394161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Excessive fluoride intake from residential environments may affect multiple tissues and organs; however, the specific pathogenic mechanisms are unclear. Researchers have recently focused on the damaging effects of fluoride on the immune system. Damage to immune function seriously affects the quality of life of fluoride-exposed populations and increases the incidence of infections and malignant tumors. Probing the mechanism of damage to immune function caused by fluoride helps identify effective drugs and methods to prevent and treat fluorosis and improve people's living standards in fluorosis-affected areas. Here, the recent literature on the effects of fluoride on the immune system is reviewed, and research on fluoride damage to the immune system is summarized in terms of three perspectives: immune organs, immune cells, and immune-active substances. We reviewed that excessive fluoride can damage immune organs, lead to immune cells dysfunction and interfere with the expression of immune-active substances. This review aimed to provide a potential direction for future fluorosis research from the perspective of fluoride-induced immune function impairment. In order to seek the key regulatory indicators of fluoride on immune homeostasis in the future.
Collapse
Affiliation(s)
- Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Negi S, Rutman AK, Saw CL, Paraskevas S, Tchervenkov J. Pretransplant, Th17 dominant alloreactivity in highly sensitized kidney transplant candidates. FRONTIERS IN TRANSPLANTATION 2024; 3:1336563. [PMID: 38993777 PMCID: PMC11235243 DOI: 10.3389/frtra.2024.1336563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 07/13/2024]
Abstract
Introduction Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.
Collapse
Affiliation(s)
- Sarita Negi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | | | - Chee Loong Saw
- HLA Laboratory, Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Steven Paraskevas
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Jean Tchervenkov
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
6
|
Wørzner K, Zimmermann J, Buhl R, Desoi A, Christensen D, Dietrich J, Nguyen NDNT, Lindenstrøm T, Woodworth JS, Alhakeem RS, Yu S, Ødum N, Mortensen R, Ashouri JF, Pedersen GK. Repeated immunization with ATRA-containing liposomal adjuvant transdifferentiates Th17 cells to a Tr1-like phenotype. J Autoimmun 2024; 144:103174. [PMID: 38377868 DOI: 10.1016/j.jaut.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.
Collapse
Affiliation(s)
- Katharina Wørzner
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.
| | - Julie Zimmermann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Regitze Buhl
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anna Desoi
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Thomas Lindenstrøm
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Joshua S Woodworth
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Steven Yu
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Denmark
| | - Rasmus Mortensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Judith F Ashouri
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Shimon SV, Desai K, Miteva M, Nadji M, Romanelli P. High expression of interleukin-17A in cutaneous sarcoidosis. Br J Dermatol 2024; 190:434-436. [PMID: 37936307 DOI: 10.1093/bjd/ljad438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/09/2023]
Abstract
Increasing evidence of Th17 pathways is implicated in sarcoidosis granulomatous inflammation and maintenance. Our study evaluated the presence of IL-17A, a downstream proinflammatory cytokine, in cutaneous sarcoidosis biopsies. We found that all 26 biopsy samples had increased expression of IL-17A, predominantly located in macrophages within granulomas, in the cytoplasm of multinucleated histiocytes surrounding the granulomas and within lymphocytic infiltrates surrounding the inflammation.
Collapse
Affiliation(s)
- Stephanie V Shimon
- Nova Southeastern University College of Allopathic Medicine, Fort Lauderdale
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami
| | - Karishma Desai
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami
| | - Mehrdad Nadji
- Department of Clinical Pathology, University of Miami Health Systems, Miami, FL, USA
| | - Paolo Romanelli
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami
| |
Collapse
|
8
|
Novianti Y, Hidayat W, Rosa DE. Severe Xerostomia Induced by Multiple Systemic Diseases in a Patient with Psoriasis Vulgaris: A Case Report and Literature Review. Int Med Case Rep J 2024; 17:77-88. [PMID: 38314323 PMCID: PMC10838493 DOI: 10.2147/imcrj.s453097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Psoriasis is a complex autoimmune disease associated with chronic systemic keratinization and inflammation, which can affect the skin, joints, and oral cavity. Xerostomia is a subjective feeling of oral dryness that impairs patient comfort and lowers the quality of life. The aim of this case report is to describe the clinical mechanism of xerostomia in a psoriasis patient with multiple systemic diseases. Case Report A 51-year-old inpatient man with psoriasis vulgaris was referred to the Oral Medicine Department with complaints of difficulty swallowing due to a sore throat and dry tongue since last week. The patient had psoriasis vulgaris 15 years ago, chronic adrenal insufficiency, psoriatic arthritis, acute circulatory collapse, anemia of inflammation, acute kidney injury, dehydration, gastritis, urinary tract infections, and malnutrition. A complete anamnesis and oral examination were done. The patient was diagnosed with severe xerostomia, a fissured tongue, exfoliative cheilitis, angular cheilitis, and gingivitis by the Oral Medicine Department. Case Management The patient was treated with petroleum jelly, chlorine dioxide mouthwash, miconazole cream, and benzydamine HCl lozenges. Conclusion Based on case reports and reviews, multiple systemic diseases may not only increase the risk of xerostomia but also aggravate its severity.
Collapse
Affiliation(s)
- Yessy Novianti
- Oral Medicine Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Wahyu Hidayat
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Desi Elvhira Rosa
- Oral Medicine Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
9
|
Li N, Han X, Ruan M, Huang F, Yang L, Xu T, Wang H, Wu H, Shi S, Wang Y, Wu X, Wang S. Prebiotic inulin controls Th17 cells mediated central nervous system autoimmunity through modulating the gut microbiota and short chain fatty acids. Gut Microbes 2024; 16:2402547. [PMID: 39287045 PMCID: PMC11409507 DOI: 10.1080/19490976.2024.2402547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination occurring in the central nervous system (CNS). Inulin is a common prebiotic that can improve metabolic disorders by modulating the gut microbiota. However, its capacity to affect CNS autoimmunity is poorly recognized. Experimental autoimmune encephalomyelitis (EAE) is a classical mouse model of MS. Herein, we found that oral administration of inulin ameliorated the severity EAE in mice, accompanied by reductions in inflammatory cell infiltration and demyelination in the CNS. These reductions were associated with decreased proportion and numbers of Th17 cells in brain and spleen. Consistent with the findings, the serum concentrations of IL-17, IL-6, and TNF-α were reduced in inulin treated EAE mice. Moreover, the proliferation of auto-reactive lymphocytes, against MOG35-55 antigen, was attenuated ex vivo. Mechanistically, inulin treatment altered the composition of gut microbiota. It increased Lactobacillus and Dubosiella whereas decreased g_Prevotellaceae_NK3B31_group at the genus level, alongside with elevated concentration of butyric acid in fecal content and serum. In vitro, butyrate, but not inulin, could inhibit the activation of MOG35-55 stimulated lymphocytes. Furthermore, fecal microbiota transplantation assay confirmed that fecal contents of inulin-treated normal mice had an ameliorative effect on EAE mice. In contrast, antibiotic cocktail (ABX) treatment diminished the therapeutic effect of inulin in EAE mice as well as the reduction of Th17 cells, while supplementation with Lactobacillus reuteri restored the amelioration effect. These results confirmed that the attenuation of inulin on Th17 cells and inflammatory demyelination in EAE mice was dependent on its modulation on gut microbiota and metabolites. Our findings provide a potential therapeutic regimen for prebiotic inulin supplementation in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyan Han
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Gu J, Zhang J, Liu Q, Xu S. Neurological risks of COVID-19 in women: the complex immunology underpinning sex differences. Front Immunol 2023; 14:1281310. [PMID: 38035090 PMCID: PMC10685449 DOI: 10.3389/fimmu.2023.1281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic has uncovered many mysteries about SARS-CoV-2, including its potential to trigger abnormal autoimmune responses. Emerging evidence suggests women may face higher risks from COVID-induced autoimmunity manifesting as persistent neurological symptoms. Elucidating the mechanisms underlying this female susceptibility is now imperative. We synthesize key insights from existing studies on how COVID-19 infection can lead to immune tolerance loss, enabling autoreactive antibodies and lymphocyte production. These antibodies and lymphocytes infiltrate the central nervous system. Female sex hormones like estrogen and X-chromosome mediated effects likely contribute to dysregulated humoral immunity and cytokine profiles among women, increasing their predisposition. COVID-19 may also disrupt the delicate immunological balance of the female microbiome. These perturbations precipitate damage to neural damage through mechanisms like demyelination, neuroinflammation, and neurodegeneration - consistent with the observed neurological sequelae in women. An intentional focus on elucidating sex differences in COVID-19 pathogenesis is now needed to inform prognosis assessments and tailored interventions for female patients. From clinical monitoring to evaluating emerging immunomodulatory therapies, a nuanced women-centered approach considering the hormonal status and immunobiology will be vital to ensure equitable outcomes. Overall, deeper insights into the apparent female specificity of COVID-induced autoimmunity will accelerate the development of solutions mitigating associated neurological harm.
Collapse
Affiliation(s)
- Jienan Gu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianhui Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Feng W, Beer JC, Hao Q, Ariyapala IS, Sahajan A, Komarov A, Cha K, Moua M, Qiu X, Xu X, Iyengar S, Yoshimura T, Nagaraj R, Wang L, Yu M, Engel K, Zhen L, Xue W, Lee CJ, Park CH, Peng C, Zhang K, Grzybowski A, Hahm J, Schmidt SV, Odainic A, Spitzer J, Buddika K, Kuo D, Fang L, Zhang B, Chen S, Latz E, Yin Y, Luo Y, Ma XJ. NULISA: a proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing. Nat Commun 2023; 14:7238. [PMID: 37945559 PMCID: PMC10636041 DOI: 10.1038/s41467-023-42834-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The blood proteome holds great promise for precision medicine but poses substantial challenges due to the low abundance of most plasma proteins and the vast dynamic range of the plasma proteome. Here we address these challenges with NUcleic acid Linked Immuno-Sandwich Assay (NULISA™), which improves the sensitivity of traditional proximity ligation assays by ~10,000-fold to attomolar level, by suppressing assay background via a dual capture and release mechanism built into oligonucleotide-conjugated antibodies. Highly multiplexed quantification of both low- and high-abundance proteins spanning a wide dynamic range is achieved by attenuating signals from abundant targets with unconjugated antibodies and next-generation sequencing of barcoded reporter DNA. A 200-plex NULISA containing 124 cytokines and chemokines and other proteins demonstrates superior sensitivity to a proximity extension assay in detecting biologically important low-abundance biomarkers in patients with autoimmune diseases and COVID-19. Fully automated NULISA makes broad and in-depth proteomic analysis easily accessible for research and diagnostic applications.
Collapse
Affiliation(s)
- Wei Feng
- Alamar Biosciences, Inc, Fremont, CA, USA
| | | | - Qinyu Hao
- Alamar Biosciences, Inc, Fremont, CA, USA
| | | | | | | | - Katie Cha
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Mason Moua
- Alamar Biosciences, Inc, Fremont, CA, USA
| | | | - Xiaomei Xu
- Alamar Biosciences, Inc, Fremont, CA, USA
| | | | | | | | - Li Wang
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Ming Yu
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Kate Engel
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Lucas Zhen
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Wen Xue
- Alamar Biosciences, Inc, Fremont, CA, USA
| | | | | | - Cheng Peng
- Alamar Biosciences, Inc, Fremont, CA, USA
| | | | | | | | - Susanne V Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jasper Spitzer
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Dwight Kuo
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Lei Fang
- Alamar Biosciences, Inc, Fremont, CA, USA
| | | | - Steve Chen
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Berlin, Germany
| | - Yiyuan Yin
- Alamar Biosciences, Inc, Fremont, CA, USA
| | - Yuling Luo
- Alamar Biosciences, Inc, Fremont, CA, USA.
| | | |
Collapse
|
12
|
Wang T, Guo W, Ren X, Lang F, Ma Y, Qiu C, Jiang J. Progress of immunotherapies in gestational trophoblastic neoplasms. J Cancer Res Clin Oncol 2023; 149:15275-15285. [PMID: 37594534 DOI: 10.1007/s00432-023-05010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Different from other malignant gynecologic tumors, gestational trophoblastic neoplasms (GTNs) exhibit an exceptionally high cure rate primarily through chemotherapeutic interventions. However, there exists a small subset of refractory GTNs that do not respond to conventional chemotherapies. In such cases, the emergence of immunotherapies has demonstrated significant benefits in managing various challenging GTNs. PURPOSE This article aims to provide a comprehensive and systematic review of the immune microenvironment and immunotherapeutic approaches for GTNs. The purpose is to identify potential biomarkers that could enhance disease management and summarize the available immunotherapies for ease of reference. METHODS We reviewed the relevant literatures toward immunotherapies of GTNs from PubMed. CONCLUSION Current immunotherapeutic strategies for GTNs mainly revolve around immune checkpoint inhibitors (ICIs) targeting programmed death receptor 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Prominent examples include avelumab, pembrolizumab, and camrelizumab. However, existing researches into the underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Tong Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Wenxiu Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiaochen Ren
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fangfang Lang
- Maternal and Child Health Hospital of Shandong Province, Jinan, Shandong, People's Republic of China
| | - Ying Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Richter P, Macovei LA, Mihai IR, Cardoneanu A, Burlui MA, Rezus E. Cytokines in Systemic Lupus Erythematosus-Focus on TNF-α and IL-17. Int J Mol Sci 2023; 24:14413. [PMID: 37833861 PMCID: PMC10572174 DOI: 10.3390/ijms241914413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder known for its complex pathogenesis, in which cytokines play an essential role. It seems that the modulation of these cytokines may impact disease progression, being considered potential biomarkers. Thus, TNF (tumor necrosis factor)-α and IL (interleukin)-17 are molecules of great interest in SLE. TNF-α plays a dual role in SLE, with both immunosuppressive and proinflammatory functions. The role of IL-17 is clearly described in the pathogenesis of SLE, having a close association with IL-23 in stimulating the inflammatory response and consecutive tissue destruction. It appears that patients with elevated levels of these cytokines are associated with high disease activity expressed by the SLE disease activity index (SLEDAI) score, although some studies do not confirm this association. However, TNF-α and IL-17 are found in increased titers in lupus patients compared to the general population. Whether inhibition of these cytokines would lead to effective treatment is under discussion. In the case of anti-TNF-α therapies in SLE, the possibility of ATIL (anti-TNF-induced lupus) is a serious concern that limits their use. The use of anti-IL-17 therapies in SLE is a promising option, but not yet approved. Future studies of these cytokines in large cohorts will provide valuable information for the management of SLE.
Collapse
Affiliation(s)
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.R.); (I.R.M.); (A.C.); (M.A.B.); (E.R.)
| | | | | | | | | |
Collapse
|
14
|
Rojewski S, Westberg M, Nordsletten L, Meyer HE, Holvik K, Furnes O, Fenstad AM, Dahl J. Postvaccination immune responses and risk of primary total hip arthroplasty-A population-based cohort study. Osteoarthritis Cartilage 2023; 31:1249-1256. [PMID: 37236299 DOI: 10.1016/j.joca.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To investigate the relationship between individual postvaccination immune responses and subsequent risk of total hip arthroplasty (THA) due to idiopathic osteoarthritis (OA) or rheumatoid arthritis (RA). METHOD Results of tuberculin skin tests (TSTs) following the Bacille Calmette-Guerin (BCG) vaccination were used as a marker of individual immune responses. TST results from the mandatory mass tuberculosis screening program 1948-1975 (n = 236 770) were linked with information on subsequent THA during 1987-2020 from the Norwegian Arthroplasty Register. The multivariable Cox proportional hazard regression was performed. RESULTS A total of 10 698 individuals received a THA during follow-up. In men, there was no association between TST and risk of THA due to OA (Hazard ratio [HR] 1.01, 95% confidence interval [CI] 0.92-1.12 for positive versus negative TST and HR 1.06, 95% CI 0.95-1.18 for strong positive vs negative TST), while the risk estimates increased with increasingly restrictive sensitivity analyses. In women, there was no association with THA due to OA for positive versus negative TST (HR 0.98, 95% CI 0.92-1.05), while a strong positive TST was associated with reduced risk of THA (HR 0.90, 95% CI 0.84-0.97). No significant associations were observed in the sensitivity analysis for women or for THA due to RA. CONCLUSION Our results suggest that an increased postvaccination immune response is associated with a nonsignificant trend of increased risk of THA among men and a decreased risk among women, although risk estimates were small.
Collapse
Affiliation(s)
- Sonia Rojewski
- Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marianne Westberg
- Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Lars Nordsletten
- Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Haakon E Meyer
- Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway; Department of Community Medicine and Global Health, University of Oslo, Oslo, Norway.
| | - Kristin Holvik
- Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ove Furnes
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway; Norwegian Arthroplasty Register, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Anne Marie Fenstad
- Norwegian Arthroplasty Register, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Jesper Dahl
- Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
15
|
Bayraktar N, Eren MA, Bayraktar M, Öztürk A, Erdoğdu H. Analysis of Interleukin-17, Interleukin-23, neopterin and Nesfatin-1 levels in the sera of Hashimoto patients. J Med Biochem 2023; 42:460-468. [PMID: 37790207 PMCID: PMC10542705 DOI: 10.5937/jomb0-40683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/27/2022] [Indexed: 10/05/2023] Open
Abstract
Background Hashimoto's thyroiditis (HT) is an autoimmune disorder affecting the thyroid gland and may present as goiter or atrophic thyroiditis that may result in various metabolic and inflammatory disorders. The aim of this study is to determine the changes in serum levels of interleukin-17 (IL-17), IL-23, neopterin, and nesfatin-1 parameters in HT patients and to evaluate the possible relationship among these parameters. Methods 90 HT patients and 30 healthy individuals were included in this study. Demographic data of the patients included in the study were recorded and detailed physical examinations were performed. IL-17, IL-23, neopterin, and nesfatin-1 levels were measured in the serum samples of the participants by the ELISA method.
Collapse
Affiliation(s)
- Nihayet Bayraktar
- Harran University, Faculty of Medicine, Department of Medical Biochemistry, Şanlıurfa, Turkey
| | - Mehmet Ali Eren
- Harran University, Faculty of Medicine, Department of Endocrinology, Şanlıurfa, Turkey
| | - Mustafa Bayraktar
- Yıldırım Beyazıt University, Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Ali Öztürk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Medical Microbiology, Niğde, Turkey
| | - Hamza Erdoğdu
- Harran University, Faculty of Business Administration, Department of Statistics, Şanlıurfa, Turkey
| |
Collapse
|
16
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
17
|
Ge X, Zhang Y, Fang R, Zhao J, Huang J. Exploring the inhibition mechanism of interleukin-1-beta in gouty arthritis by polygonum cuspidatum using network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e34396. [PMID: 37478249 PMCID: PMC10662804 DOI: 10.1097/md.0000000000034396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Polygonum cuspidatum (Huzhang, HZ) is one of the commonly used traditional Chinese medicines for treating gouty arthritis (GA), but the specific mechanism is not clear. This study employed network pharmacology and molecular docking techniques to examine the molecular mechanisms underlying the therapeutic effects of HZ on GA. The network pharmacology approach, including active ingredient and target screening, drug-compound-target-disease network construction, protein-protein interaction (PPI) networks, enrichment analysis, and molecular docking, was used to explore the mechanism of HZ against GA. Ten active ingredients of HZ were predicted to interact with 191 targets, 14 of which interact with GA targets. Network pharmacology showed that quercetin, physovenine, luteolin, and beta-sitosterol are the core components of HZ, and IL (interleukin)-1β, IL-6, and tumor necrosis factor (TNF) are the core therapeutic targets. The mechanism of HZ in GA treatment was shown to be related to the IL-17 signaling pathway, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway, and is involved in the inflammatory response, positive regulation of gene expression, cellular response to lipopolysaccharide, and other biological processes. Molecular docking showed that all four core compounds had good binding properties to IL-1β, with luteolin and beta-sitosterol showing better docking results than anakinra, suggesting that they could be used as natural IL-1β inhibitors in further experimental studies. The mechanism of action of HZ against GA has multi-target and multi-pathway characteristics, which provides an important theoretical basis for the study of the active ingredients of HZ as natural IL-1β inhibitors.
Collapse
Affiliation(s)
- Xiao Ge
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Zhang
- Intensive Care Union, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rulu Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaojiao Zhao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiyong Huang
- Department of Immunology and Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Feng W, Beer J, Hao Q, Ariyapala IS, Sahajan A, Komarov A, Cha K, Moua M, Qiu X, Xu X, Iyengar S, Yoshimura T, Nagaraj R, Wang L, Yu M, Engel K, Zhen L, Xue W, Lee CJ, Park CH, Peng C, Zhang K, Grzybowski A, Hahm J, Schmidt SV, Odainic A, Spitzer J, Buddika K, Kuo D, Fang L, Zhang B, Chen S, Latz E, Yin Y, Luo Y, Ma XJ. NULISA: a novel proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536130. [PMID: 37090549 PMCID: PMC10120728 DOI: 10.1101/2023.04.09.536130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The blood proteome holds great promise for precision medicine but poses substantial challenges due to the low abundance of most plasma proteins and the vast dynamic range across the proteome. We report a novel proteomic technology - NUcleic acid Linked Immuno-Sandwich Assay (NULISA™) - that incorporates a dual capture and release mechanism to suppress the assay background and improves the sensitivity of the proximity ligation assay by over 10,000-fold to the attomolar level. It utilizes pairs of antibodies conjugated to DNA oligonucleotides that enable immunocomplex purification and generate reporter DNA containing target- and sample-specific barcodes for a next-generation sequencing-based, highly multiplexed readout. A 200-plex NULISA targeting 124 cytokines and chemokines and 80 other immune response-related proteins demonstrated superior sensitivity for detecting low-abundance proteins and high concordance with other immunoassays. The ultrahigh sensitivity allowed the detection of previously difficult-to-detect, but biologically important, low-abundance biomarkers in patients with autoimmune diseases and COVID-19. Fully automated NULISA addresses longstanding challenges in proteomic analysis of liquid biopsies and makes broad and in-depth proteomic analysis accessible to the general research community and future diagnostic applications.
Collapse
|
19
|
Wu P, Yang K, Sun Z, Zhao Y, Manthari RK, Wang J, Cao J. Interleukin-17A knockout or self-recovery alleviated autoimmune reaction induced by fluoride in mouse testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163616. [PMID: 37086998 DOI: 10.1016/j.scitotenv.2023.163616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Fluoride (F) is usually treated as a hazardous material, and F-caused public health problem has attracted global attention. Previous studies demonstrate that interleukin-17A (IL-17A) plays a crucial role in F-elicited autoimmune orchitis and self-recovery reverses F-induced testicular toxicity to some extent, but these basic mechanisms remain unclear. Thus, we established a 180 d F exposure model of wild type (WT) mice and IL-17A knockout mice (C57BL/6 J background), and 60 d & 120 d self-recovery model based on F exposure model of WT mice, and used various techniques like qRT-PCR, western blot, immunohistochemistry and ELISA to further explore the mechanism of F-induced autoimmune reaction, the role of IL-17A in it and the reversibility of F-caused toxicity in testis. The results indicated that F exposure for 180 d caused the decreased sperm quality, the damaged testis histopathology, the enhanced mRNA and protein expression levels of inflammatory cytokines, the changes of autoantibody such as the appearance and increased content of anti-testicular autoantibodies in sera and the autoantibody deposition in testis, the alterations of autoimmune related genes containing the decreased mRNA and protein expressions of AIRE and FOXP3 with an increase of MHCII, and the reduced protein expressions of CTLA4, and the activation of IL-17A signaling cascade like the elevated mRNA and protein expressions of IL-17A, Act1, NF-κB, AP-1 and CEBPβ, and the increased protein expressions of IL-17RC, with a decrease of IκBα. After IL-17A knockout, 29 of 35 F-induced changes were alleviated. In two self-recovery models, all F-caused differences except fluorine concentration in femur were gradually restored in a time-dependent manner. This study concluded that IL-17A knockout or self-recovery attenuated F-induced testicular injury and decrease of sperm quality through alleviating autoimmune reaction which was involved with the activation of IL-17A pathway, the damage of self-tolerance and the enhancement of antigen presentation.
Collapse
Affiliation(s)
- Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Kaidong Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Department of Biotechnology, GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
20
|
Lin CC, Liao SL, Wei YH. The Role of Interleukin-17A and NLRP3 Inflammasome in the Pathogenesis of Graves' Ophthalmopathy. Life (Basel) 2023; 13:life13041007. [PMID: 37109536 PMCID: PMC10141012 DOI: 10.3390/life13041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of Graves' ophthalmopathy (GO) is associated with autoimmune dysfunction. Recent studies have indicated that IL-17A, inflammasomes, and related cytokines may be involved in the etiology of GO. We sought to investigate the pathogenic role of IL-17A and NLRP3 inflammasomes in GO. Orbital fat specimens were collected from 30 patients with GO and 30 non-GO controls. Immunohistochemical staining and orbital fibroblast cultures were conducted for both groups. IL-17A was added to the cell cultures, and cytokine expression, signaling pathways, and inflammasome mechanisms were investigated using reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and small interfering RNA (siRNA) methods. Immunohistochemical staining showed higher NLRP3 expression in GO orbital tissue than in non-GO controls. IL-17A upregulated pro-IL-1β mRNA levels and IL-1β protein levels in the GO group. Furthermore, IL-17A was confirmed to enhance caspase-1 and NLRP3 protein expression in orbital fibroblasts, suggesting NLRP3 inflammasome activation. Inhibiting caspase-1 activity could also decrease IL-1β secretion. In siRNA-transfected orbital fibroblasts, significantly decreased NLRP3 expression was observed, and IL-17A-mediated pro-IL-1β mRNA release was also downregulated. Our observations illustrate that IL-17A promotes IL-1β production from orbital fibroblasts via the NLRP3 inflammasome in GO, and cytokines subsequently released may induce more inflammation and autoimmunity.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Ophthalmology, Taipei City Hospital, Taipei 103212, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
21
|
Leiding JW, Vogel TP, Santarlas VGJ, Mhaskar R, Smith MR, Carisey A, Vargas-Hernández A, Silva-Carmona M, Heeg M, Rensing-Ehl A, Neven B, Hadjadj J, Hambleton S, Ronan Leahy T, Meesilpavikai K, Cunningham-Rundles C, Dutmer CM, Sharapova SO, Taskinen M, Chua I, Hague R, Klemann C, Kostyuchenko L, Morio T, Thatayatikom A, Ozen A, Scherbina A, Bauer CS, Flanagan SE, Gambineri E, Giovannini-Chami L, Heimall J, Sullivan KE, Allenspach E, Romberg N, Deane SG, Prince BT, Rose MJ, Bohnsack J, Mousallem T, Jesudas R, Santos Vilela MMD, O'Sullivan M, Pachlopnik Schmid J, Průhová Š, Klocperk A, Rees M, Su H, Bahna S, Baris S, Bartnikas LM, Chang Berger A, Briggs TA, Brothers S, Bundy V, Chan AY, Chandrakasan S, Christiansen M, Cole T, Cook MC, Desai MM, Fischer U, Fulcher DA, Gallo S, Gauthier A, Gennery AR, Gonçalo Marques J, Gottrand F, Grimbacher B, Grunebaum E, Haapaniemi E, Hämäläinen S, Heiskanen K, Heiskanen-Kosma T, Hoffman HM, Gonzalez-Granado LI, Guerrerio AL, Kainulainen L, Kumar A, Lawrence MG, Levin C, Martelius T, Neth O, Olbrich P, Palma A, Patel NC, Pozos T, Preece K, Lugo Reyes SO, Russell MA, Schejter Y, Seroogy C, Sinclair J, Skevofilax E, Suan D, Suez D, Szabolcs P, Velasco H, Warnatz K, Walkovich K, Worth A, Seppänen MRJ, Torgerson TR, Sogkas G, Ehl S, Tangye SG, Cooper MA, Milner JD, Forbes Satter LR. Monogenic early-onset lymphoproliferation and autoimmunity: Natural history of STAT3 gain-of-function syndrome. J Allergy Clin Immunol 2023; 151:1081-1095. [PMID: 36228738 PMCID: PMC10081938 DOI: 10.1016/j.jaci.2022.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In 2014, germline signal transducer and activator of transcription (STAT) 3 gain-of-function (GOF) mutations were first described to cause a novel multisystem disease of early-onset lymphoproliferation and autoimmunity. OBJECTIVE This pivotal cohort study defines the scope, natural history, treatment, and overall survival of a large global cohort of patients with pathogenic STAT3 GOF variants. METHODS We identified 191 patients from 33 countries with 72 unique mutations. Inclusion criteria included symptoms of immune dysregulation and a biochemically confirmed germline heterozygous GOF variant in STAT3. RESULTS Overall survival was 88%, median age at onset of symptoms was 2.3 years, and median age at diagnosis was 12 years. Immune dysregulatory features were present in all patients: lymphoproliferation was the most common manifestation (73%); increased frequencies of double-negative (CD4-CD8-) T cells were found in 83% of patients tested. Autoimmune cytopenias were the second most common clinical manifestation (67%), followed by growth delay, enteropathy, skin disease, pulmonary disease, endocrinopathy, arthritis, autoimmune hepatitis, neurologic disease, vasculopathy, renal disease, and malignancy. Infections were reported in 72% of the cohort. A cellular and humoral immunodeficiency was observed in 37% and 51% of patients, respectively. Clinical symptoms dramatically improved in patients treated with JAK inhibitors, while a variety of other immunomodulatory treatment modalities were less efficacious. Thus far, 23 patients have undergone bone marrow transplantation, with a 62% survival rate. CONCLUSION STAT3 GOF patients present with a wide array of immune-mediated disease including lymphoproliferation, autoimmune cytopenias, and multisystem autoimmunity. Patient care tends to be siloed, without a clear treatment strategy. Thus, early identification and prompt treatment implementation are lifesaving for STAT3 GOF syndrome.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore; Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St Petersburg.
| | - Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | | | - Rahul Mhaskar
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| | - Madison R Smith
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | - Alexandre Carisey
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | - Manuel Silva-Carmona
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris
| | - Jérôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle (United Kingdom)
| | | | - Kornvalee Meesilpavikai
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Cullen M Dutmer
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk
| | - Mervi Taskinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Turku and Kuopio, Finland
| | - Ignatius Chua
- Department of Rheumatology, Immunology and Allergy, Christchurch Hospital, Christchurch; Clinical Immunogenomics Research Consortium of Australasia (CIRCA)
| | | | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo
| | - Akaluck Thatayatikom
- Division of Pediatric Allergy/Immunology/Rheumatology, Shands Children's Hospital, University of Florida, Gainesville
| | - Ahmet Ozen
- School of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul
| | - Anna Scherbina
- Dmitry Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow
| | - Cindy S Bauer
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter
| | - Eleonora Gambineri
- Department of NEUROFARBA, Section of Children's Health, University of Florence, Anna Meyer Children's Hospital, Florence
| | | | - Jennifer Heimall
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Kathleen E Sullivan
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Eric Allenspach
- Pediatric Immunology/Rheumatology, University of Washington, Seattle; Seattle Children's Hospital, Seattle
| | - Neil Romberg
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Sean G Deane
- Department of Allergy, The Permanente Medical Group, Sacramento, and the Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, School of Medicine, Sacramento
| | - Benjamin T Prince
- Nationwide Children's Hospital Department of Allergy and Immunology, Columbus; College of Medicine, The Ohio State University, Columbus
| | - Melissa J Rose
- College of Medicine, The Ohio State University, Columbus; Division of Pediatric Hematology-Oncology, Nationwide Children's Hospital, Columbus
| | - John Bohnsack
- Department of Pediatrics, University of Utah, Salt Lake City
| | | | - Rohith Jesudas
- Department of Hematology, St Jude Children's Research Hospital, Memphis
| | - Maria Marluce Dos Santos Vilela
- Pediatric Allergy and Immunology/Center of Investigation in Pediatrics, Faculty of Medical Sciences, State University of Campinas-Unicamp, São Paulo
| | - Michael O'Sullivan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Immunology Department, Perth Children's Hospital, Nedlands
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Children's Research Center (CRC), Zurich
| | - Štěpánka Průhová
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine and University Hospital Motol, Charles University in Prague, Prague
| | - Matthew Rees
- Department of Hematology, St Jude Children's Research Hospital, Memphis
| | - Helen Su
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Sami Bahna
- Allergy and Immunology Section, Louisiana State University Health Sciences Center, Shreveport
| | - Safa Baris
- School of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul
| | - Lisa M Bartnikas
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston
| | - Amy Chang Berger
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester; NW Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester
| | - Shannon Brothers
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Starship Children's Hospital, Auckland
| | - Vanessa Bundy
- Allergy and Immunology, University of California, Los Angeles
| | - Alice Y Chan
- Department of Medicine, University of California, San Francisco
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta
| | | | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne
| | - Matthew C Cook
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra
| | | | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf
| | - David A Fulcher
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra
| | - Silvanna Gallo
- Department of Pediatrics, Immunology and Rheumatology Section, Puerto Montt Hospital, Puerto Montt
| | - Amelie Gauthier
- Department of Allergy and Immunology, CHU de Québec-CHUL, Laval University Hospital Center, Laval University, Quebec City
| | - Andrew R Gennery
- Newcastle University Translational and Clinical Research Institute, Newcastle (United Kingdom)
| | - José Gonçalo Marques
- Infectious Diseases and Immunodeficiencies Unit, Department of Pediatrics, Hospital de Santa Maria-CHULN and Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Frédéric Gottrand
- University Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Eyal Grunebaum
- Division of Immunology and Allergy, and the Department of Pediatrics, Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto
| | - Emma Haapaniemi
- Centre for Molecular Medicine Norway, Oslo; Department of Pediatric Research, Oslo
| | | | - Kaarina Heiskanen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Turku and Kuopio, Finland
| | | | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla; Rady Children's Hospital San Diego, Division of Pediatric Allergy, Immunology, and Rheumatology, San Diego
| | - Luis Ignacio Gonzalez-Granado
- Pediatrics Department, University Hospital 12 de Octubre, Research Institute Hospital, School of Medicine Complutense University, Madrid
| | - Anthony L Guerrerio
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore
| | - Leena Kainulainen
- Department of Pediatrics and Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Ashish Kumar
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati
| | | | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Centre, Afula, and the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | - Timi Martelius
- Adult Immunodeficiency Unit, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Alejandro Palma
- Servicio de Immunología y Reumatología, Hospital Nacional de Pediatría Prof Dr Juan P. Garrahan, Buenos Aires
| | - Niraj C Patel
- Division of Allergy and Immunology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta
| | - Tamara Pozos
- Department of Clinical Immunology, Children's Minnesota, Minneapolis
| | - Kahn Preece
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Department of Paediatric Immunology, John Hunter Children's Hospital, Newcastle (Australia)
| | | | | | - Yael Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Ein-Kerem Medical Center and Faculty of Medicine, Hebrew University, Jerusalem
| | - Christine Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Jan Sinclair
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Starship Children's Hospital, Auckland
| | - Effie Skevofilax
- Department of Pediatric Hematology-Oncology (TAO) and First Department of Pediatrics, Aghia Sophia Children's Hospital, Athens
| | - Daniel Suan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Garvan Institute of Medical Research, Darlinghurst; Westmead Clinical School, University of Sydney, Westmead
| | - Daniel Suez
- Allergy, Asthma & Immunology Clinic, PA, Irving
| | - Paul Szabolcs
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh
| | - Helena Velasco
- Division of Allergy and Clinical Immunology, Moinhos de Vento Hospital, Porto Alegre
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Kelly Walkovich
- Department of Pediatrics, C. S. Mott Children's Hospital, Michigan Medicine, Ann Arbor
| | - Austen Worth
- Great Ormond Street Hospital for Children, London
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki
| | | | - Georgios Sogkas
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hanover
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Stuart G Tangye
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Garvan Institute of Medical Research, Darlinghurst; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology and Immunology, Washington University School of Medicine, St Louis
| | - Joshua D Milner
- Department of Pediatrics, Division of Allergy and Immunology, Columbia University, New York Presbyterian Hospital, New York
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston.
| |
Collapse
|
22
|
Sun JL, Dai WJ, Shen XY, Lü N, Zhang YQ. Interleukin-17 is involved in neuropathic pain and spinal synapse plasticity on mice. J Neuroimmunol 2023; 377:578068. [PMID: 36948094 DOI: 10.1016/j.jneuroim.2023.578068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Neuropathic pain seriously affects people's life, but its mechanism is not clear. Interleukin-17 (IL-17) is a proinflammation cytokine and involved in pain regulation. Our previous study found that IL-17 markedly enhanced the excitatory activity of spinal dorsal neurons in mice spinal slices. The present study attempts to explore if IL-17 contributes to neuropathic pain and spinal synapse plasticity. A model of spared nerve injury (SNI) was established in C57BL/6 J mice and IL-17a mutant mice. The pain-like behaviors was tested by von Frey test and dynamic mechanical stimuli, and the expression of IL-17 and its receptor, IL-17RA, was detected by immunohistochemical staining. C-fiber evoked field potentials were recorded in vivo. In the spinal dorsal horn, IL-17 predominantly expressed in the superficial spinal astrocytes and IL-17RA expressed mostly in neurons and slightly in astrocytes. The SNI-induced static and dynamic allodynia was significantly prevented by pretreatment of neutralizing IL-17 antibody (intrathecal injection, 2 μg/10 μL) and attenuated in IL-17a mutant mice. Post-treatment of IL-17 neutralizing antibody also partially relieved the established mechanical allodynia. Moreover, spinal long-term potentiation (LTP) of C-fiber evoked field potentials, a substrate for central sensitization, was suppressed by IL-17 neutralizing antibody. Intrathecal injection of IL-17 recombinant protein (0.2 μg/10 μL) mimicked the mechanical allodynia and facilitated the spinal LTP. These data implied that IL-17 in the spinal cord played a crucial role in neuropathic pain and central sensitization.
Collapse
Affiliation(s)
- Jia-Lu Sun
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wen-Jing Dai
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xin-Yuan Shen
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Lü
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
24
|
Peripheral Blood Mononuclear Cells from Patients with Type 1 Diabetes and Diabetic Retinopathy Produce Higher Levels of IL-17A, IL-10 and IL-6 and Lower Levels of IFN-γ-A Pilot Study. Cells 2023; 12:cells12030467. [PMID: 36766809 PMCID: PMC9913819 DOI: 10.3390/cells12030467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammation is key to the pathogenesis of diabetic retinopathy (DR). This prospective study investigated alterations in inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) in 41 people with type 1 diabetes (T1D), sub-grouped into mild non-proliferative DR (mNPDR; n = 13) and active and inactive (each n = 14) PDR. Age/gender-matched healthy controls (n = 13) were included. PBMCs were isolated from blood samples. Intracellular cytokine expression by PBMCs after 16-h stimulation (either E. coli lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate plus ionomycin, D-glucose or D-mannitol) were assessed by flow cytometry. Cytokine production in plasma, non-stimulated and LPS-stimulated PBMC supernatant was also assessed. Increased BMC IL-10 secretion and reduced expression of IL-6 and IFN-γ in CD3+ cells were observed in mNPDR. Reduced IL-6 and IL-10 secretion, and higher levels of intracellular IL-6 expression, especially in CD11b+ PBMCs, was detected in aPDR; levels were positively correlated with DR duration. Patients with T1D demonstrated increased intracellular expression of IL-17A in myeloid cells and reduced IFN-γ expression in CD3+ cells. Plasma levels of IL-1R1 were increased in mNPDR compared with controls. Results suggest that elevated PBMC-released IL-10, IL-6, in particular myeloid-produced IL-17A, may be involved in early stages of DR. IL-6-producing myeloid cells may play a role in PDR development.
Collapse
|
25
|
Zhu X, Li Q, George V, Spanoudis C, Gilkes C, Shrestha N, Liu B, Kong L, You L, Echeverri C, Li L, Wang Z, Chaturvedi P, Muniz GJ, Egan JO, Rhode PR, Wong HC. A novel interleukin-2-based fusion molecule, HCW9302, differentially promotes regulatory T cell expansion to treat atherosclerosis in mice. Front Immunol 2023; 14:1114802. [PMID: 36761778 PMCID: PMC9907325 DOI: 10.3389/fimmu.2023.1114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by deposition of oxidative low-density lipoprotein (LDL) in the arterial intima which triggers the innate immune response through myeloid cells such as macrophages. Regulatory T cells (Tregs) play an important role in controlling the progression or regression of atherosclerosis by resolving macrophage-mediated inflammatory functions. Interleukin-2 (IL-2) signaling is essential for homeostasis of Tregs. Since recombinant IL-2 has an unfavorable pharmacokinetic profile limiting its therapeutic use, we constructed a fusion protein, designated HCW9302, containing two IL-2 domains linked by an extracellular tissue factor domain. We found that HCW9302 exhibited a longer serum half-life with an approximately 1000-fold higher affinity for the IL-2Rα than IL-2. HCW9302 could be administered to mice at a dosing range that expanded and activated Tregs but not CD4+ effector T cells. In an ApoE-/- mouse model, HCW9302 treatment curtailed the progression of atherosclerosis through Treg activation and expansion, M2 macrophage polarization and myeloid-derived suppressor cell induction. HCW9302 treatment also lessened inflammatory responses in the aorta. Thus, HCW9302 is a potential therapeutic agent to expand and activate Tregs for treatment of inflammatory and autoimmune diseases.
Collapse
|
26
|
Lin HC, Chang HM, Hung YM, Chang R, Chen HH, Wei JCC. Hashimoto's thyroiditis increases the risk of new-onset systemic lupus erythematosus: a nationwide population-based cohort study. Arthritis Res Ther 2023; 25:20. [PMID: 36759862 PMCID: PMC9909872 DOI: 10.1186/s13075-023-02999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Previous studies have shown systemic lupus erythematosus (SLE) patients had a significantly higher prevalence of thyroid diseases and hypothyroidism than matched controls, and some case reports showed SLE may occur after Hashimoto's thyroiditis (HT). OBJECTIVE This study aimed to investigate the subsequent risk of SLE in patients with HT. METHODS In this retrospective cohort study done by the Taiwan National Health Insurance Research Database, the HT group (exposure group) and the non-HT group (comparator group) were propensity score matched at a ratio of 1:2 by demographic data, comorbidities, medications, and the index date. We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Several sensitivity analyses were done for cross-validation of our findings. RESULTS We identified 15,512 HT patients and matched 31,024 individuals. The incidence rate ratio of SLE was 3.58 (95% CI, 2.43-5.28; p < 0.01). Several sensitivity analyses show adjusted hazard ratio (aHR) (CIs) of 4.35 (3.28-5.76), 4.39 (3.31-5.82), 5.11 (3.75-6.98), and 4.70 (3.46-6.38), consistent with the results of the main model. CONCLUSION Our study showed an increased risk of SLE in the HT group after adjustment for baseline characteristics, comorbidities, and medical confounders compared with the reference group.
Collapse
Affiliation(s)
- Hong-Ci Lin
- grid.411641.70000 0004 0532 2041School of Medicine, Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsu-Min Chang
- grid.415011.00000 0004 0572 9992Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yao-Min Hung
- grid.415007.70000 0004 0477 6869Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan ,grid.419674.90000 0004 0572 7196College of Health and Nursing, Meiho University, Pingtung, Taiwan
| | - Renin Chang
- grid.415011.00000 0004 0572 9992Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan. .,Institute of Biomedical Science and Rong Hsing Research Centre for Translational Medicine, Chung Hsing University, Taichung, Taiwan. .,Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
27
|
Neobaicalein Inhibits Th17 Cell Differentiation Resulting in Recovery of Th17/Treg Ratio through Blocking STAT3 Signaling Activation. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010018. [PMID: 36615213 PMCID: PMC9822447 DOI: 10.3390/molecules28010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Huangqin is the dried root of Scutellaria baicalensis Georgi, which has been widely utilized for heat-clearing (Qingre) and dewetting (Zaoshi), heat-killed (Xiehuo) and detoxifying (Jiedu) in the concept of Traditional Chinese Medicine and is used for treating inflammation and cancer in clinical formulas. Neobaicalein (NEO) is of flavonoid isolated from Huangqin and has been reported to possess prominent anti-inflammatory effects in published work. Th17/Treg balance shift to Th17 cells is an essential reason for autoimmune inflammatory diseases. However, the role NEO plays in Th17 and Treg and the underlying mechanism has not been elucidated yet. Network pharmacology-based study revealed that NEO predominantly regulated IL-17 signaling pathway. Moreover, our result shown that NEO (3-30 μmol/L) down-regulated Th17 differentiation and cellular supernatant and intracellular IL-17A level and tumor necrosis factor α production in a concentration-dependent manner. The further mechanism research revealed that NEO also specifically inhibited phosphorylation of STAT3(Tyr725) and STAT4 (Y693) without influence on activation of STAT5 and STAT6 in splenocytes. Immunofluorescence results illuminated that NEO effectively blocked STAT3 translocated into nucleus. Interestingly, NEO at appreciated dose could only inhibit Th17 cell differentiation and have no effect on Treg differentiation. The present study revealed that NEO effectively inhibited Th17 cell differentiation through specifically blocking the activation of STAT3 signaling without inactivation of STAT5 and STAT6. Additional inhibitory effect on activation of STAT4 by NEO also suggested the potential for antagonism against Th1 differentiation. All work suggested that NEO may be a potential candidate for immunoregulation and treating autoimmune inflammatory diseases through inhibiting immune cell viability and T cell differentiation.
Collapse
|
28
|
A functional microRNA binding site variant in IL-23R gene in systemic lupus erythematosus and rheumatoid arthritis: is there any correlation? Mol Biol Rep 2022; 49:11821-11828. [DOI: 10.1007/s11033-022-07922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
|
29
|
Gendelman O, Tripto-Shkolnik L, Vered I, Lidar M. Bisphosphonates Related Ocular Side Effects: A Case Series and Review of Literature. Ocul Immunol Inflamm 2022; 30:1995-1999. [PMID: 34014797 DOI: 10.1080/09273948.2021.1922705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To describe the clinical features of patients with bisphosphonate related ocular side effects (BROSE). METHODS The medical records of all patients with BROSE between January 2009 and December 2019 were reviewed. RESULTS Nine cases with BROSE were identified. All subjects were female. Median age at diagnosis was of 69 years. The leading indication for bisphosphonate treatment was osteoporosis (n=7), Paget's disease of bone (n=1) and breast cancer (n=1). Six (66.67%) patients presented with uveitis, one (11%) episcleritis and two (22%) with orbital inflammation. Five events (55.5%) occurred within 10 days of initiating the bisphosphonate and the rest (44.44%) developed within 2 weeks to 3 years later. Four (44.44%) patients had concurrent thyroid disease. An association was found between underlying thyroid disease or autoimmunity. CONCLUSION BROSE is an uncommon complication of bisphosphonate therapy occurring more frequently in patients with an autoimmune predisposition.
Collapse
Affiliation(s)
- Omer Gendelman
- Rheumatology Unit, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Liana Tripto-Shkolnik
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Israel
| | - Iris Vered
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Israel
| | - Merav Lidar
- Rheumatology Unit, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
30
|
Hartel JC, Merz N, Grösch S. How sphingolipids affect T cells in the resolution of inflammation. Front Pharmacol 2022; 13:1002915. [PMID: 36176439 PMCID: PMC9513432 DOI: 10.3389/fphar.2022.1002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of proper resolution of inflammation rather than counteracting it, gained a lot of attention in the past few years. Re-assembly of tissue and cell homeostasis as well as establishment of adaptive immunity after inflammatory processes are the key events of resolution. Neutrophiles and macrophages are well described as promotors of resolution, but the role of T cells is poorly reviewed. It is also broadly known that sphingolipids and their imbalance influence membrane fluidity and cell signalling pathways resulting in inflammation associated diseases like inflammatory bowel disease (IBD), atherosclerosis or diabetes. In this review we highlight the role of sphingolipids in T cells in the context of resolution of inflammation to create an insight into new possible therapeutical approaches.
Collapse
Affiliation(s)
- Jennifer Christina Hartel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Department of Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nadine Merz
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- *Correspondence: Sabine Grösch,
| |
Collapse
|
31
|
Autoimmune Encephalitis: A Physician’s Guide to the Clinical Spectrum Diagnosis and Management. Brain Sci 2022; 12:brainsci12091130. [PMID: 36138865 PMCID: PMC9497072 DOI: 10.3390/brainsci12091130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The rapidly expanding spectrum of autoimmune encephalitis in the last fifteen years is largely due to ongoing discovery of many neuronal autoantibodies. The diagnosis of autoimmune encephalitis can be challenging due to the wide spectrum of clinical presentations, prevalence of psychiatric features that mimic primary psychiatric illnesses, frequent absence of diagnostic abnormalities on conventional brain MR-imaging, non-specific findings on EEG testing, and the lack of identified IgG class neuronal autoantibodies in blood or CSF in a subgroup of patients. Early recognition and treatment are paramount to improve outcomes and achieve complete recovery from these debilitating, occasionally life threatening, disorders. This review is aimed to provide primary care physicians and hospitalists who, together with neurologist and psychiatrists, are often the first port of call for individuals presenting with new-onset neuropsychiatric symptoms, with up-to-date data and evidence-based approach to the diagnosis and management of individuals with neuropsychiatric disorders of suspected autoimmune origin.
Collapse
|
32
|
Sex Steroids Effects on Asthma: A Network Perspective of Immune and Airway Cells. Cells 2022; 11:cells11142238. [PMID: 35883681 PMCID: PMC9318292 DOI: 10.3390/cells11142238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
A multitude of evidence has suggested the differential incidence, prevalence and severity of asthma between males and females. A compilation of recent literature recognized sex differences as a significant non-modifiable risk factor in asthma pathogenesis. Understanding the cellular and mechanistic basis of sex differences remains complex and the pivotal point of this ever elusive quest, which remains to be clarified in the current scenario. Sex steroids are an integral part of human development and evolution while also playing a critical role in the conditioning of the immune system and thereby influencing the function of peripheral organs. Classical perspectives suggest a pre-defined effect of sex steroids, generalizing estrogens popularly under the “estrogen paradox” due to conflicting reports associating estrogen with a pro- and anti-inflammatory role. On the other hand, androgens are classified as “anti-inflammatory,” serving a protective role in mitigating inflammation. Although considered mainstream and simplistic, this observation remains valid for numerous reasons, as elaborated in the current review. Women appear immune-favored with stronger and more responsive immune elements than men. However, the remarkable female predominance of diverse autoimmune and allergic diseases contradicts this observation suggesting that hormonal differences between the sexes might modulate the normal and dysfunctional regulation of the immune system. This review illustrates the potential relationship between key elements of the immune cell system and their interplay with sex steroids, relevant to structural cells in the pathophysiology of asthma and many other lung diseases. Here, we discuss established and emerging paradigms in the clarification of observed sex differences in asthma in the context of the immune system, which will deepen our understanding of asthma etiopathology.
Collapse
|
33
|
P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules 2022; 12:biom12070983. [PMID: 35883539 PMCID: PMC9313346 DOI: 10.3390/biom12070983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage and inflammation. P2 receptor expression and function are affected by numerous single nucleotide polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nucleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activation, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor (P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle, markers of immune-mediated disease conditions.
Collapse
|
34
|
Gobbo MM, Bomfim MB, Alves WY, Oliveira KC, Corsetti PP, de Almeida LA. Antibiotic-induced gut dysbiosis and autoimmune disease: A systematic review of preclinical studies. Clin Exp Rheumatol 2022; 21:103140. [PMID: 35830954 DOI: 10.1016/j.autrev.2022.103140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 12/20/2022]
Abstract
Antibiotic-induced gut dysbiosis is believed to be associated with the onset and development of autoimmune diseases. To evaluate microbiota's variations triggered by antibiotic therapy and its outcomes on autoimmune diseases, preclinical studies regarding these subjects were included in this review. The studies were selected on PubMed, Scopus and Web of Science from 2011 to 2021 by three researchers that extracted study data and risk of bias, which were verified by a further 3 independent researchers. The team assessed the strength of evidence across studies. Of the eligible studies, 17 showed an improvement of the studied disease after antibiotic therapy and 10 had a negative effect on the course of the condition. The ameliorating factors of the studied diseases were mostly seen when using an antibiotic cocktail. Male animals had a good outcome after therapy and, for all genders, the increase in IL-10 and Treg cells was often shown to ameliorate disease after the antibiotic intervention. Firmicutes, Proteobacteria and Bacteroidetes appeared altered after the antibiotic intervention, leading to amelioration or worsening of the condition depending on the autoimmune disease. We identified that the number of autoimmune conditions approached leads to specific conclusions regarding the interventions, making it difficult to achieve an overall conclusion. Overall, even though pre-clinical studies must be translated to the human model, the studied aspects of gender, age, lineage and disease model substantially impact the outcomes that make for many intricacies that were not-established in the study of antibiotic-induced gut dysbiosis and autoimmunity.
Collapse
Affiliation(s)
- Marcela Mizuhira Gobbo
- Medical School, Federal University of Alfenas, Alfenas, Brazil; Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil.
| | - Marina Bocamino Bomfim
- Medical School, Federal University of Alfenas, Alfenas, Brazil; Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Wille Ygor Alves
- Medical School, Federal University of Alfenas, Alfenas, Brazil; Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil.
| | - Karen Cristina Oliveira
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo Augusto de Almeida
- Medical School, Federal University of Alfenas, Alfenas, Brazil; Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
35
|
Network Pharmacology and Molecular Docking Study of Yupingfeng Powder in the Treatment of Allergic Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1323744. [PMID: 35855823 PMCID: PMC9288288 DOI: 10.1155/2022/1323744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the potential mechanisms of Yupingfeng Powder (YPFP) in the treatment of allergic diseases by using network pharmacology and molecular docking technology. Methods The active components and targets of YPFP were screened by the TCMSP database. The targets associated with atopic dermatitis, asthma, allergic rhinitis, and food allergy were obtained from GeneCards and OMIM databases, respectively. The intersection of the above disease-related targets was identified as allergy-related targets. Then, allergy-related targets and YPFP-related targets were crossed to obtain the potential targets of YPFP for allergy treatment. A protein-protein-interaction (PPI) network and a drug-target-disease topology network were constructed to screen hub targets and key ingredients. Next, GO and KEGG pathway enrichment analyses were performed separately on the potential targets and hub targets to identify the biological processes and signaling pathways involved. Finally, molecular docking was conducted to verify the binding affinity between key ingredients and hub targets. Results In this study, 45 active ingredients were identified from YPFP, and 48 allergy-related targets were predicted by network pharmacology. IL6, TNF, IL1B, PTGS2, CXCL8, JUN, CCL2, IL10, IFNG, and IL4 were screened as hub targets by the PPI network. However, quercetin, kaempferol, wogonin, formononetin, and 7-O-methylisomucronulatol were identified as key ingredients by the drug-target-disease topological network. GO and KEGG pathway enrichment analysis indicated that the therapeutic effect of YPFP on allergy involved multiple biological processes and signaling pathways, including positive regulation of fever generation, positive regulation of neuroinflammatory response, vascular endothelial growth factor production, negative regulation of cytokine production involved in immune response, positive regulation of mononuclear cell migration, type 2 immune response, and negative regulation of lipid storage. Molecular docking verified that all the key ingredients had good binding affinity with hub targets. Conclusion This study revealed the key ingredients, hub targets, and potential mechanisms of YPFP antiallergy, and these data can provide some theoretical basis for subsequent allergy treatment and drug development.
Collapse
|
36
|
Ihsan Rashan A, Mahdi Rheima A, Ghadhanfar Alwan M, Abed Jawad M, Mohammed HT, Gaber Abdel Razzaq M, Ahmed Al-Tawee A, Attia Thijail H, Ahjel S, Jalil Obaid A. Evaluating the Level of Serum IL-23 in Brucellosis Infection by ELISA and Investigating its Relationship in Cases with Failure to Respond to Treatment. ARCHIVES OF RAZI INSTITUTE 2022; 77:1275-1279. [PMID: 36618293 PMCID: PMC9759221 DOI: 10.22092/ari.2022.358877.2324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Brucella is belonging to the small immobile gram-negative spore-lacking cocco-bacilli bacteria family that grows in an aerobic environment, it is known as a zoonosis infection named brucellosis. This study was designed to investigate serum values of IL-23 in patient with brucellosis and investigate its relationship with cases with failure to respond to conventional medical therapy. A total of 372 individuals were divided into 2 groups (n=186) as follows: Group A comprising 186 infected participants with brucella (7-80 years-old), these people had not received antibiotics for at least 6 months ago. Group B including the healthy participants. All the participants in both groups were in the same age range. 5 ml blood samples were obtained from the participants intravenously (without anticoagulation substance). The serum level of IL-23 was investigated by ELISA diagnostic kit. The recorded data showed that the levels of IL-23 in the serum samples obtained from group A (143.64 Pg/ml) significantly (P<0.001) increased compared with this value in group B (23.14 Pg/ml). Based on the recorded data in the forms completed by all the participants at the day 0 of the experiment, 44 out of 186 individuals in group A, had experienced Brucellosis attack 2-3 times in spite of receiving medical prescriptions. A hypothesis about the possible immune system disorders in these participants lead us to did the re-sampling following drug administration. Results illustrated failure to respond to conventional medical therapy in patients with low level of serum IL-23.
Collapse
Affiliation(s)
- A Ihsan Rashan
- Department of Pharmacy, Al-Hadba University College, Mosul, Iraq
| | - A Mahdi Rheima
- College of technical engineering, The Islamic University, Najaf, Iraq,
Department of Optics Techniques, Dijlah University College, Al-Masafi Street, Al-Dora, Baghdad 00964, Iraq
| | - M Ghadhanfar Alwan
- Medical laboratory techniques Department, Medical (Technology) College, Al-Farahidi University, Baghdad, Iraq
| | | | - H. T Mohammed
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | - H Attia Thijail
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - S Ahjel
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - A Jalil Obaid
- Medical Laboratory Techniques Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
37
|
Yang Y, Shi GN, Wu X, Xu M, Chen CJ, Zhou Y, Wei YZ, Wu L, Cui FF, Sun L, Zhang TT. Quercetin Impedes Th17 Cell Differentiation to Mitigate Arthritis Involving PPARγ-Driven Transactivation of SOCS3 and Redistribution Corepressor SMRT from PPARγ to STAT3. Mol Nutr Food Res 2022; 66:e2100826. [PMID: 35384292 DOI: 10.1002/mnfr.202100826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/03/2022] [Indexed: 01/08/2023]
Abstract
SCOPE Quercetin (QU) is one of the most abundant flavonoids in plants and has attracted the attention of researchers because of its remarkable antirheumatoid arthritis (RA) effects and extremely low adverse reactions. However, the underlying mechanism needs further study. METHODS AND RESULTS Flow cytometry, immunofluorescence, enzyme linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) reveal the obvious inhibitory effects of QU on Th17 cell differentiation in arthritic mice. More importantly, QU markedly limits the development of Th17 cell polarization, which is virtually compromised by the treatment with peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662 and knockdown of PPARγ. Additionally, molecular dynamics simulation and immunofluorescence exhibit QU directly binds to PPARγ and increases PPARγ nuclear translocation. Besides, QU confers its moderation effect on suppressor of cytokine signaling protein (SOCS3)/signal transducer and activator of transcription 3 (STAT3) axis partially depending on PPARγ. Furthermore, coimmunoprecipitation shows QU redistributes the corepressor silencing mediator for retinoid and thyroid-hormone receptors (SMRT) from PPARγ to STAT3. Finally, the inhibition of Th17 response and the antiarthritic effect of QU are nullified by GW9662 treatment in arthritic mice. CONCLUSION QU targets PPARγ and consequently inhibits Th17 cell differentiation by dual inhibitory activity of STAT3 to exert antiarthritic effect. The findings facilitate its development and put forth a stage for uncovering the mechanism of other naturally occurring compounds with chemical structures similar to QU.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Gao-Na Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Min Xu
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Cheng-Juan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya-Zi Wei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fen-Fang Cui
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian-Tai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Du LJ, Feng YX, He ZX, Huang L, Wang Q, Wen CP, Zhang Y. Norcantharidin ameliorates the development of murine lupus via inhibiting the generation of IL-17 producing cells. Acta Pharmacol Sin 2022; 43:1521-1533. [PMID: 34552214 PMCID: PMC9159996 DOI: 10.1038/s41401-021-00773-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a devastating autoimmune disorder associated with severe organ damage. The abnormality of T cell apoptosis is considered as an important pathogenetic mechanism of SLE. Norcantharidin (NCTD), a derivative of Cantharidin, is an efficacious anti-cancer drug by inhibiting cell proliferation and inducing cell apoptosis. Besides, NCTD has also been proved to protect the function of kidneys, while damaged renal function is the most important predictor of morbidity and mortality in SLE. All these suggest the potential effects of NCTD in SLE treatment. In this study we investigated whether NCTD exerted therapeutic effects in a mouse SLE model. Lupus prone female MRL/lpr mice were treated with NCTD (1, 2 mg·kg-1·d-1, ip) for 8 weeks. We showed that NCTD administration significantly decreased mortality rate, diminished the expression of anti-dsDNA IgG antibody, a diagnostic marker for SLE, as well as restored renal structure and function in MRL/lpr mice. Moreover, NCTD administration dose-dependently inhibited lymphoproliferation and T cell accumulation in the spleens of MRL/lpr mice. We further revealed that NCTD specifically inhibited DN T cell proliferation and Th17 cell differentiation both via blocking activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the other hand, NCTD did not affect T cell apoptosis in MRL/lpr mice. Taken together, our data suggest that NCTD may be as a promising therapeutic drug through targeting T cells for the treatment of SLE.
Collapse
Affiliation(s)
- Li-jun Du
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yu-xiang Feng
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Zhi-xing He
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Lin Huang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Qiao Wang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Cheng-ping Wen
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yun Zhang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| |
Collapse
|
39
|
Wu JH, Imadojemu S, Caplan AS. The Evolving Landscape of Cutaneous Sarcoidosis: Pathogenic Insight, Clinical Challenges, and New Frontiers in Therapy. Am J Clin Dermatol 2022; 23:499-514. [PMID: 35583850 DOI: 10.1007/s40257-022-00693-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Sarcoidosis is a multisystem disorder of unknown etiology characterized by accumulation of granulomas in affected tissue. Cutaneous manifestations are among the most common extrapulmonary manifestations in sarcoidosis and can lead to disfiguring disease requiring chronic therapy. In many patients, skin disease may be the first recognized manifestation of sarcoidosis, necessitating a thorough evaluation for systemic involvement. Although the precise etiology of sarcoidosis and the pathogenic mechanisms leading to granuloma formation, persistence, or resolution remain unclear, recent research has led to significant advances in our understanding of this disease. This article reviews recent advances in epidemiology, sarcoidosis clinical assessment with a focus on the dermatologist's role, disease pathogenesis, and new therapies in use and under investigation for cutaneous and systemic sarcoidosis.
Collapse
Affiliation(s)
- Julie H Wu
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, 240 East 38th Street, 11th Floor, New York, NY, 10016, USA
| | - Sotonye Imadojemu
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avrom S Caplan
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, 240 East 38th Street, 11th Floor, New York, NY, 10016, USA.
- New York University Sarcoidosis Program, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Han L, Lv Q, Guo K, Li L, Zhang H, Bian H. Th17 cell-derived miR-155-5p modulates interleukin-17 and suppressor of cytokines signaling 1 expression during the progression of systemic sclerosis. J Clin Lab Anal 2022; 36:e24489. [PMID: 35545753 PMCID: PMC9169208 DOI: 10.1002/jcla.24489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background miR‐155‐5p is associated with autoimmune diseases. T helper 17 (Th17) cells, interleukin (IL)‐17, and suppressor of cytokines signaling 1 (SOCS1) have important roles in the pathogenesis of systemic sclerosis (SSc). The purpose of this study was to explore the role of miR‐155‐5p in the regulation of IL‐17 and SOCS1 expression in Th17 cells and the subsequent effect on SSc disease progression. Methods Th17 cells were isolated from peripheral blood mononuclear cells of SSc patients and healthy controls (HCs). RT‐qPCR and western blotting were used to examine the expression patterns of miR‐155‐5p, IL‐17, and SOCS1. Luciferase reporter assays were performed to confirm SOCS1 as a target of miR‐155‐5p. RNA pull‐down assays were performed to detect the interaction of IL‐17 and SOCS1 with miR‐155‐5p. In situ hybridization was performed to analyze the co‐expression pattern of miR‐155‐5p and IL17A in Th17 cells. Results The levels of Th17 cell‐derived miR‐155‐5p were significantly up‐regulated in SSc patients compared with HCs, and its levels were negatively correlated with SOCS1 levels. Meanwhile, miR‐155‐5p positively regulated IL‐17 expression levels in Th17 cells isolated from SSc patients as the disease progressed. Using pmirGLO vectors, SOCS1 was confirmed as a target of miR‐155‐5p. The binding status of IL‐17 and SOCS1 to miR‐155‐5p was related to SSc progression. An increase in the co‐localization of miR‐155‐5p and IL‐17 was associated with greater SSc progression. Conclusions IL‐17 and SOCS1 expression modulated by Th17 cell‐derived miR‐155‐5p are critical for SSc progression, which may provide novel insights into the pathogenesis of SSc.
Collapse
Affiliation(s)
- Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Qin Lv
- Department of Chinese Medicine, Nanyang Medical College, Nanyang, China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Linyun Li
- Department of Rheumatism Immunity, Nanyang Traditional Chinese Medicine Hospital, Nanyang, China
| | - Hong Zhang
- Department of Rheumatism Immunity, Nanyang Central Hospital, Nanyang, China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| |
Collapse
|
41
|
Jung B, Ferrer G, Chiu PY, Aslam R, Ng A, Palacios F, Wysota M, Cardillo M, Kolitz JE, Allen SL, Barrientos JC, Rai KR, Chiorazzi N, Sherry B. Activated CLL cells regulate IL17F producing Th17 cells in miR155 dependent and outcome specific manners. JCI Insight 2022; 7:158243. [PMID: 35511436 DOI: 10.1172/jci.insight.158243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) results from expansion of a CD5+ B-cell clone that requires interactions with other cell types, including T cells. Moreover, CLL patients have elevated circulating IL17A+ and IL17F+ CD4+ T cells (Th17s), with higher IL17A+Th17s correlating with better outcomes. We report that CLL Th17s express more miR155, a Th17 differentiation regulator, than control Th17s, despite naïve CD4+ T cell (TN) basal miR155 levels being similar in both. We also found that CLL cells directly regulate miR155 levels in TN, thereby affecting Th17 differentiation by documenting that: co-culturing TN with resting (Brest) or activated (Bact) CLL cells alters the magnitude and direction of T-cell miR155 levels; CLL Bact promote IL17A+ and IL17F+ T cell generation by a miR155-dependent mechanism, confirmed by miR155 inhibition; co-cultures of TN with CLL Bact lead to a linear correlation between the degree and direction of T-cell miR155 expression changes and IL17F production, but not IL17A; Bact-mediated changes in TN miR155 expression correlate with outcome, irrespective of IGHV mutation status, a strong prognostic indicator. Together, the results identify a previously unrecognized CLL Bact-dependent mechanism, upregulation of TN miR155 expression and subsequent enhancement of IL17F+ Th17 generation, that favors better clinical courses.
Collapse
Affiliation(s)
- Byeongho Jung
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Gerardo Ferrer
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Pui Yan Chiu
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Insitute for Medical Research, Manhasset, United States of America
| | - Rukhsana Aslam
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Anita Ng
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Florencia Palacios
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Michael Wysota
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Martina Cardillo
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Jonathan E Kolitz
- Department of Medicine, Northwell Health, New Hyde Park, United States of America
| | - Steven L Allen
- Department of Medicine, Northwell Health, New Hyde Park, United States of America
| | | | - Kanti R Rai
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Barbara Sherry
- Center for Immunology & Inflammation, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
42
|
Single Nucleotide Polymorphisms of the HIF1A Gene are Associated With Sensitivity of Glucocorticoid Treatment in Pediatric ITP Patients. J Pediatr Hematol Oncol 2022; 45:195-199. [PMID: 35537010 DOI: 10.1097/mph.0000000000002483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in both innate and adaptive immunity. Emerging evidence indicates that HIF-1α is associated with the inflammation and pathologic activities of autoimmune diseases, suggesting that HIF1α may be involved in immune dysregulation in patients with immune thrombocytopenia (ITP). The purpose of this study was to evaluate whether single nucleotide polymorphisms (SNPs) of the HIF1A gene are associated with susceptibility to ITP and its clinical prognosis including incidence of chronic ITP and glucocorticoid sensitivity. MATERIALS AND METHODS This study involved 197 Chinese ITP pediatric patients (discovery cohort) and 220 healthy controls. The Sequenom MassArray system (Sequenom, San Diego, CA) was used to detect 3 SNPs genotypes in the HIF1A gene: rs11549465, rs1957757, and rs2057482. We also used another ITP cohort (N=127) to validate the significant results of SNPs found in the discovery cohort. RESULTS The frequencies of the three SNPs did not show any significant differences between the ITP and healthy control groups. The CT genotype at rs11549465 was significantly higher in ITP patients sensitive to glucocorticoid treatment than in those insensitive to glucocorticoid treatment (P=0.025). These results were validated using another ITP cohort (N=127, P=0.033). Moreover, the CC genotype was a risk factor for insensitive to GT the odds ratio (95% confidence interval) was 5.96 (5.23-6.69) in standard prednisone (P=0.0069) and 6.35 (5.33-7.37) in high-dose dexamethasone (P=0.04). CONCLUSIONS Although HIF1A gene polymorphisms were not associated with susceptibility to ITP, the CT genotype at rs11549465 was associated with the sensitivity to glucocorticoid treatment of ITP patients, suggesting that the rs11549465 SNP may contribute to the sensitivity of glucocorticoid treatment in pediatric ITP patients.
Collapse
|
43
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
44
|
Abstract
T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.
Collapse
Affiliation(s)
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Khajehdehi M, Khalaj-Kondori M, Baradaran B. Molecular evidences on anti-inflammatory, anticancer, and memory-boosting effects of frankincense. Phytother Res 2022; 36:1194-1215. [PMID: 35142408 DOI: 10.1002/ptr.7399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
Chemical diversity of natural products with drug-like features has attracted much attention from medicine to develop more safe and effective drugs. Their anti-inflammatory, antitumor, analgesic, and other therapeutic properties are sometimes more successful than chemical drugs in controlling disease due to fewer drug resistance and side effects and being more tolerable in a long time. Frankincense, the oleo gum resin extracted from the Boswellia species, contains some of these chemicals. The anti-inflammatory effect of its main ingredient, boswellic acid, has been traditionally used to treat many diseases, mainly those target memory functions. In this review, we have accumulated research evidence from the beneficial effect of Frankincense consumption in memory improvement and the prevention of inflammation and cancer. Besides, we have discussed the molecular pathways mediating the therapeutic effects of this natural supplement.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Abstract
Despite numerous studies of immune sexual dimorphism, sexual differences are not rigorously mapped and dimorphic mechanisms are incompletely understood. Current immune research typically studies sex differences in specific cells, tissues, or diseases but without providing an integrated picture. To connect the dots, we suggest comprehensive research approaches to better our understanding of immune sexual dimorphism and its mechanisms.
Collapse
Affiliation(s)
- Shani Talia Gal-Oz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
47
|
Yang X, Wang C, Lin Y, Zhang P. Identification of Crucial Hub Genes and Differential T Cell Infiltration in Idiopathic Pulmonary Arterial Hypertension Using Bioinformatics Strategies. Front Mol Biosci 2022; 9:800888. [PMID: 35127829 PMCID: PMC8811199 DOI: 10.3389/fmolb.2022.800888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease. Growing evidence indicated that IPAH is a chronic immune disease. This study explored the molecular mechanisms and T cell infiltration of IPAH using integrated bioinformatics methods. Methods: Gene expression profiles of dataset GSE113439 were downloaded from the Gene Expression Omnibus and analyzed using R. Protein-protein interaction (PPI) network and gene set enrichment analysis (GSEA) were established by NetworkAnalyst. Gene Ontology enrichment analysis was performed using ClueGO. Transcription factors of differentially expressed genes (DEGs) were estimated using iRegulon. Transcription factors and selected hub genes were verified by real-time polymerase chain reaction (qPCR) in the lung tissues of rats with pulmonary artery hypertension. The least absolute shrinkage and selection operator regression model and the area under the receiver operating characteristic curve (AUC) were applied jointly to identify the crucial hub genes. Moreover, immune infiltration in IPAH was calculated using ImmuCellAI, and the correlation between key hub genes and immune cells was analyzed using R. Results: A total of 512 DEGs were screened, and ten hub genes and three transcription factors were filtered by the DEG PPI network. The DEGs were mainly enriched in mitotic nuclear division, chromosome organization, and nucleocytoplasmic transport. The ten hub genes and three transcription factors were confirmed by qPCR. Moreover, MAPK6 was identified as the most potent biomarker with an AUC of 100%, and ImmuCellAI immune infiltration analysis showed that a higher proportion of CD4-naive T cells and central memory T cells (Tcm) was apparent in the IPAH group, whereas the proportions of cytotoxic T cells (Tc), exhausted T cells (Tex), type 17 T helper cells, effector memory T cells, natural killer T cells (NKT), natural killer cells, gamma-delta T cells, and CD8 T cells were lower. Finally, MAPK6 was positively correlated with Tex and Tcm, and negatively correlated with Tc and NKT. Conclusion:MAPK6 was identified as a crucial hub gene to discriminate IPAH from the normal group. Dysregulated immune reactions were identified in the lung tissue of patients with IPAH.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Cheng Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Yicheng Lin
- Department of Neurology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
- *Correspondence: Peng Zhang,
| |
Collapse
|
48
|
Shen L, Li J, Liu Q, Das M, Song W, Zhang X, Tiruthani K, Dorosheva O, Hu H, Lai SK, Liu R, Huang L. Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth. J Control Release 2022; 343:303-313. [DOI: 10.1016/j.jconrel.2022.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
|
49
|
Prince C, Mitchell RE, Richardson TG. Integrative multiomics analysis highlights immune-cell regulatory mechanisms and shared genetic architecture for 14 immune-associated diseases and cancer outcomes. Am J Hum Genet 2021; 108:2259-2270. [PMID: 34741802 PMCID: PMC8715275 DOI: 10.1016/j.ajhg.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Developing functional insight into the causal molecular drivers of immunological disease is a critical challenge in genomic medicine. Here, we systematically apply Mendelian randomization (MR), genetic colocalization, immune-cell-type enrichment, and phenome-wide association methods to investigate the effects of genetically predicted gene expression on ten immune-associated diseases and four cancer outcomes. Using whole blood-derived estimates for regulatory variants from the eQTLGen consortium (n = 31,684), we constructed genetic risk scores for 10,104 genes. Applying the inverse-variance-weighted MR method transcriptome wide while accounting for linkage disequilibrium structure identified 664 unique genes with evidence of a genetically predicted effect on at least one disease outcome (p < 4.81 × 10-5). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci by using gene expression data derived from 18 types of immune cells. This highlighted many cell-type-dependent effects, such as PRKCQ expression and asthma risk (posterior probability = 0.998), which was T cell specific. Phenome-wide analyses on 311 complex traits and endpoints allowed us to explore shared genetic architecture and prioritize key drivers of disease risk, such as CASP10, which provided evidence of an effect on seven cancer-related outcomes. Our atlas of results can be used to characterize known and novel loci in immune-associated disease and cancer susceptibility, both in terms of elucidating cell-type-dependent effects as well as dissecting shared disease pathways and pervasive pleiotropy. As an exemplar, we have highlighted several key findings in this study, although similar evaluations can be conducted via our interactive web platform.
Collapse
Affiliation(s)
- Claire Prince
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ruth E Mitchell
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom G Richardson
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Novo Nordisk Research Centre, Headington, Oxford OX3 7FZ, UK.
| |
Collapse
|
50
|
Shin JS, Kim I, Moon JS, Ho CC, Choi MS, Ghosh S, Lee SK. Intranuclear Delivery of HIF-1α-TMD Alleviates EAE via Functional Conversion of TH17 Cells. Front Immunol 2021; 12:741938. [PMID: 34745114 PMCID: PMC8566938 DOI: 10.3389/fimmu.2021.741938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
T helper 17 (TH17) cells are involved in several autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA). In addition to retinoic acid receptor-related orphan nuclear receptor gamma t (ROR-γt), hypoxia-inducible factor-1α (HIF-1α) is essential for the differentiation and inflammatory function of TH17 cells. To investigate the roles of HIF-1α in the functional regulation of TH17 cells under the normal physiological condition without genetic modification, the nucleus-transducible form of transcription modulation domain (TMD) of HIF-1α (ntHIF-1α-TMD) was generated by conjugating HIF-1α-TMD to Hph-1 protein transduction domain (PTD). ntHIF-1α-TMD was effectively delivered into the nucleus of T cells without cellular cytotoxicity. ntHIF-1α-TMD significantly blocked the differentiation of naïve T cells into TH17 cells in a dose-dependent manner via IL-17A and ROR-γt expression inhibition. However, T-cell activation events such as induction of CD69, CD25, and IL-2 and the differentiation potential of naïve T cells into TH1, TH2, or Treg cells were not affected by ntHIF-1α-TMD. Interestingly, TH17 cells differentiated from naïve T cells in the presence of ntHIF-1α-TMD showed a substantial level of suppressive activity toward the activated T cells, and the increase of Foxp3 and IL-10 expression was detected in these TH17 cells. When mRNA expression pattern was compared between TH17 cells and ntHIF-1α-TMD-treated TH17 cells, the expression of the genes involved in the differentiation and functions of TH17 cells was downregulated, and that of the genes necessary for immune-suppressive functions of Treg cells was upregulated. When the mice with experimental autoimmune encephalomyelitis (EAE) were treated with ntHIF-1α-TMD with anti-IL-17A mAb as a positive control, the therapeutic efficacy of ntHIF-1α-TMD in vivo was comparable with that of anti-IL-17A mAb, and ntHIF-1α-TMD-mediated therapeutic effect was contributed by the functional conversion of TH17 cells into immune-suppressive T cells. The results in this study demonstrate that ntHIF-1α-TMD can be a new therapeutic reagent for the treatment of various autoimmune diseases in which TH17 cells are dominant and pathogenic T cells.
Collapse
Affiliation(s)
- Jin-Su Shin
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Ilkoo Kim
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Jae-Seung Moon
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Chun-Chang Ho
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Min-Sun Choi
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Sang-Kyou Lee
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea.,Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul, South Korea
| |
Collapse
|