1
|
Fang Q, Xue Y, Yao T, Liu X, Chen J, Han Q, Wang X. Identification of COMMD gene family in large yellow croaker (Larimichthys crocea): Immune response induced by Pseudomonas plecoglossicida infection and acute hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109780. [PMID: 39033968 DOI: 10.1016/j.fsi.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The COMMD (Copper Metabolism gene MURR1 Domain) gene family consists of 10 members, which are involved in various biological processes such as copper and sodium transport, NF-κB activity and cell cycle progression. However, the study of COMMD gene family in large yellow croaker (Larimichthys crocea) is largely unknown. In this study, 10 COMMD gene family members (named LcCOMMDs) were successfully identified from large yellow croaker. The results showed that there were differences in the number of LcCOMMDs exons at the level of gene structure, which reflected that they had adjusted and changed accordingly in the process of evolution to adapt to the environment and achieved functional diversification. Through phylogenetic analysis, we found that the LcCOMMDs was highly conserved, indicating their important functions in organisms. It was worth noting that the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5 and LcCOMMD10 in the spleen changed significantly after bacterial stress, which suggested that these genes might be involved in the regulation of innate immune response. In addition, the expression levels of LcCOMMD1, LcCOMMD2, LcCOMMD3, LcCOMMD5, LcCOMMD7, LcCOMMD8, LcCOMMD9 and LcCOMMD10 changed significantly after hypoxia exposure, which further proved the role of LcCOMMDs in immune function. In summary, this study not only revealed the important role of COMMD genes in the innate immune response of large yellow croaker, but also provided valuable information for further understanding the regulatory mechanism of COMMD gene family under different conditions.
Collapse
Affiliation(s)
- Qian Fang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - TingYan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
2
|
Liu X, Mao X, Zhu C, Liu H, Fang Y, Fu T, Fan L, Liu M, Xiong Z, Tang H, Hu P, Le A. COMMD10 inhibited DNA damage to promote the progression of gastric cancer. J Cancer Res Clin Oncol 2024; 150:305. [PMID: 38871970 PMCID: PMC11176250 DOI: 10.1007/s00432-024-05817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). METHODS Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. RESULTS The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (P = 0.044) and tumor size (P = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM-p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM-p53 signaling pathway in xenograft tumor tissue. CONCLUSION COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Xiaocheng Mao
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Chao Zhu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Hongfei Liu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Yangyang Fang
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Tianmei Fu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Linwei Fan
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Mengwei Liu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Ziqing Xiong
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Hong Tang
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China
| | - Piaoping Hu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.
| | - Aiping Le
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Wan R, Pan L, Wang Q, Shen G, Guo R, Qin Y, Huang X, Wang R, Fan X. Decoding Gastric Cancer: Machine Learning Insights Into the Significance of COMMDs Family in Immunotherapy and Diagnosis. J Cancer 2024; 15:3580-3595. [PMID: 38817875 PMCID: PMC11134438 DOI: 10.7150/jca.94360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Copper, an indispensable trace element for the human body, serves not only as a crucial auxiliary factor in redox reactions within the organism but also as a significant constituent of numerous key metabolic enzymes. The COMMD family plays a vital role in regulating copper at both the cellular and systemic levels, particularly in the realm of tumor research, an area notably deficient in gastric cancer investigations. With the advancement of precision medical techniques, individualized and precise screening and treatment have become paramount considerations in the contemporary medical landscape for gastric cancer therapy. In light of this, we meticulously scrutinized existing transcriptomic datasets for gastric cancer, validating the expression levels and prognostic value of COMMD family genes. Simultaneously, employing the ssGSEA algorithm, we devised the COMMDs score. Enrichment analysis, gene mutations, and clinical features were incorporated into the assessment of this score. Furthermore, we contextualized the COMMDs score within the framework of the immune microenvironment, evaluating the relationship between the COMMDs family and immune factors as well as immune cells. The results suggest a correlation between the COMMDs score and various immune-related features. Based on this foundation, multiple machine learning approaches indicated Logistic Regression, with a remarkable ROC of 0.972, as the optimal diagnostic model. To accentuate the translational medical value of the COMMDs family, we selected COMMD10 as a differential gene in gastric cancer for further validation. Functional experiments revealed a decline in the proliferative and migratory capabilities of gastric cancer cells upon silencing COMMD10. Additionally, through pathway intervention, we unveiled the PI3K-AKT pathway as a potential mechanism through which COMMD10 influences gastric cancer activity. In summary, our study affirms the prospective role of the COMMDs family as potential markers for the diagnosis and treatment of gastric cancer in the future.
Collapse
Affiliation(s)
- Rong Wan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lujuan Pan
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise, Guangxi, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Guangxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Guanliang Shen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - RuoNan Guo
- Department of Laboratory, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yueqiu Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise, Guangxi, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ruo Wang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Tang M, Burgess JT, Fisher M, Boucher D, Bolderson E, Gandhi NS, O'Byrne KJ, Richard DJ, Suraweera A. Targeting the COMMD4-H2B protein complex in lung cancer. Br J Cancer 2023; 129:2014-2024. [PMID: 37914802 PMCID: PMC10703884 DOI: 10.1038/s41416-023-02476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.
Collapse
Affiliation(s)
- Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark Fisher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Didier Boucher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Neha S Gandhi
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Derek J Richard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Amila Suraweera
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. EMBO Rep 2023; 24:e56901. [PMID: 37497756 PMCID: PMC10481653 DOI: 10.15252/embr.202356901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors-ZAP, IFIT3, and IFIT1-together constitute the majority of interferon-mediated restriction of VEEV, while accounting for < 0.5% of the interferon-induced transcriptome. Together, our data suggest a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
Affiliation(s)
- Matthew B McDougal
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Anthony M De Maria
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Maikke B Ohlson
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Ashwani Kumar
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Chao Xing
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - John W Schoggins
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
6
|
Hancock JL, Kalimutho M, Straube J, Lim M, Gresshoff I, Saunus JM, Lee JS, Lakhani SR, Simpson KJ, Bush AI, Anderson RL, Khanna KK. COMMD3 loss drives invasive breast cancer growth by modulating copper homeostasis. J Exp Clin Cancer Res 2023; 42:90. [PMID: 37072858 PMCID: PMC10111822 DOI: 10.1186/s13046-023-02663-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.
Collapse
Affiliation(s)
- Janelle L Hancock
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Malcolm Lim
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
| | - Irma Gresshoff
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
| | - Jodi M Saunus
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Sunil R Lakhani
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3010, Australia
- Sir Peter MacCallum Department of Oncology and the Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
| |
Collapse
|
7
|
Li B, Chen X, Hu J, Ke G, Jiang N, Zhang F, Lian Z, Wen S, Wu Q, Xia Y, Zhang H, Kuang S, Xu L, Deng C, Liu S. COMMD5 is involved in the mechanisms of hypotension after parathyroidectomy in patients receiving hemodialysis. Eur J Pharmacol 2023; 944:175596. [PMID: 36804542 DOI: 10.1016/j.ejphar.2023.175596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Secondary hyperparathyroidism (SHPT) is a common complication of end-stage renal disease. Parathyroidectomy (PTx) is often employed for treatment of severe SHPT. However, PTx may cause hypotension via unknown mechanisms. COMM domain-containing protein 5 (COMMD5) in the parathyroid glands has been linked to blood pressure regulation of spontaneously hypertensive rats. OBJECTIVE To explore the relationship between COMMD5 levels and reduced BP after PTx in patients receiving hemodialysis (HD). METHODS AND RESULTS (1) The study cohort included 31 patients receiving HD who underwent PTx. Serum COMMD5 levels were higher post-PTx vs. pre-PTx. (2) Sprague-Dawley rats (n = 22) were assigned to a 5/6 nephrectomy group or sham surgery group, vascular rings of the thoracic aorta from rats with CKD were incubated with COMMD5, and changes in vascular tension were compared. COMMD5 inhibited vasoconstriction of vascular rings with intact endothelium, but had no effect on vascular rings without the endothelium. (3) Human umbilical vein endothelial cells were stimulated with COMMD5 or small interfering RNA (siRNA). The expression levels of atrial natriuretic peptide (ANP) and endothelial nitric oxide synthase (eNOS) were up-regulated and down-regulated, respectively. CONCLUSIONS Serum COMMD5 levels were increased after PTx in SHPT patients. COMMD5 promoted high expression of ANP and eNOS in endothelial cells, leading to vasodilation and resulting in hypotension.
Collapse
Affiliation(s)
- Bohou Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xueqin Chen
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Juan Hu
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Nan Jiang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Fengxia Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiwen Lian
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Sichun Wen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiong Wu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yubin Xia
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Sujuan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lixia Xu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Chunyu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Phan KP, Pelargos P, Tsytsykova AV, Tsitsikov EN, Wiley G, Li C, Bebak M, Dunn IF. COMMD10 Is Essential for Neural Plate Development during Embryogenesis. J Dev Biol 2023; 11:13. [PMID: 36976102 PMCID: PMC10051640 DOI: 10.3390/jdb11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The COMMD (copper metabolism MURR1 domain containing) family includes ten structurally conserved proteins (COMMD1 to COMMD10) in eukaryotic multicellular organisms that are involved in a diverse array of cellular and physiological processes, including endosomal trafficking, copper homeostasis, and cholesterol metabolism, among others. To understand the role of COMMD10 in embryonic development, we used Commd10Tg(Vav1-icre)A2Kio/J mice, where the Vav1-cre transgene is integrated into an intron of the Commd10 gene, creating a functional knockout of Commd10 in homozygous mice. Breeding heterozygous mice produced no COMMD10-deficient (Commd10Null) offspring, suggesting that COMMD10 is required for embryogenesis. Analysis of Commd10Null embryos demonstrated that they displayed stalled development by embryonic day 8.5 (E8.5). Transcriptome analysis revealed that numerous neural crest-specific gene markers had lower expression in mutant versus wild-type (WT) embryos. Specifically, Commd10Null embryos displayed significantly lower expression levels of a number of transcription factors, including a major regulator of the neural crest, Sox10. Moreover, several cytokines/growth factors involved in early embryonic neurogenesis were also lower in mutant embryos. On the other hand, Commd10Null embryos demonstrated higher expression of genes involved in tissue remodeling and regression processes. Taken together, our findings show that Commd10Null embryos die by day E8.5 due to COMMD10-dependent neural crest failure, revealing a new and critical role for COMMD10 in neural development.
Collapse
Affiliation(s)
- Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Panayiotis Pelargos
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| | - Graham Wiley
- Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Chuang Li
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.L.); (M.B.)
| | - Melissa Bebak
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.L.); (M.B.)
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.P.P.); (P.P.); (A.V.T.); (E.N.T.)
| |
Collapse
|
9
|
Wang S, Liu Y, Li S, Chen Y, Liu Y, Yan J, Wu J, Li J, Wang L, Xiang R, Shi Y, Qin X, Yang S. COMMD3-Mediated Endosomal Trafficking of HER2 Inhibits the Progression of Ovarian Carcinoma. Mol Cancer Res 2023; 21:199-213. [PMID: 36445330 DOI: 10.1158/1541-7786.mcr-22-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The dysregulated endocytic traffic of oncogenic receptors, such as the EGFR family especially HER2, contributes to the uncontrolled activation of the downstream oncogenic signaling and progression of various carcinomas, including 90% of ovarian carcinoma. However, the key regulators in the intracellular trafficking of HER2 and their impacts for cancer progression remain largely unknown. In this study, through a genome-wide CRISPR/Cas9 screening for key genes affecting the peritoneal disseminated metastasis of ovarian carcinoma, we identified a member of COMMD family, that is, COMMD3, as a key regulator in the endosomal trafficking of HER2. In the patients with high-grade serous ovarian carcinoma (HGSOC), the expression of COMMD3 is dramatically decreased in the peritoneal disseminated ovarian carcinoma cells comparing with that in the primary ovarian carcinoma cells. COMMD3 greatly inhibits the proliferation, migration, and epithelial-mesenchymal transition (EMT) of HGSOC cells, and dramatically suppresses the tumor growth, the formation of malignant ascites, and the peritoneal dissemination of cancer cells in the orthotopic murine model of HGSOC. Further transcriptome analysis reveals that silencing COMMD3 boosts the activation of HER2 downstream signaling. As a component in the Retriever-associated COMMD/CCDC22/CCDC93 complex responsible for the recognition and recycling of membrane receptors, COMMD3 physically interacts with HER2 for directing it to the slow recycling pathway, leading to the attenuated downstream tumor-promoting signaling. IMPLICATIONS Collectively, this study reveals a novel HER2 inactivation mechanism with a high value for the clinic diagnosis of new ovarian carcinoma types and the design of new therapeutic strategy.
Collapse
Affiliation(s)
- Shiqing Wang
- The School of Medicine, Nankai University, Tianjin, China
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxin Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Siyu Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanan Chen
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanhua Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- The School of Medicine, Nankai University, Tianjin, China
| | - Jiayi Wu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jia Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Longlong Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- The School of Medicine, Nankai University, Tianjin, China
| | - Xuan Qin
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuang Yang
- The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
10
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529297. [PMID: 36865157 PMCID: PMC9980057 DOI: 10.1101/2023.02.21.529297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors - ZAP, IFIT3, and IFIT1 - together constitute the majority of interferon-mediated restriction of VEEV, while accounting for less than 0.5% of the interferon-induced transcriptome. Together, our data suggests a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
|
11
|
Ditercalinium chloride: A potential inhibitor targeting recurrent in frame COMMD10-AP3S1 fusions in CRCs. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Tai P, Wang Z, Chen X, Chen A, Gong L, Cheng Y, Cao K. Multi-omics analysis of the oncogenic value of copper Metabolism-Related protein COMMD2 in human cancers. Cancer Med 2022. [PMID: 36205192 DOI: 10.1002/cam4.5320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The copper metabolism MURR1 domain (COMMD) protein family is involved in tumorigenicity of malignant tumors. However, as the member of COMMD, the role of COMMD2 in human tumors remains unknown. METHODS We used The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA) database, Cancer Cell Line Encyclopedia (CCLE) platform, univariate Cox regression analysis, Kaplan-Meier curve, cBioPortal, UALCAN database, Sangerbox online platform, GSCA database gene set enrichment analysis (GSEA), and GeneMANIA to analyze the expression of COMMD2, its prognostic values, genomic alteration patterns, and the correlation with tumor stemness, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrates, drug sensitivity, and gene function enrichment in pan-cancer. qRT-PCR, CCK-8, EdU, wound healing, and transwell migration assays were performed to confirm the function of COMMD2. RESULTS COMMD2 was strongly expressed in most cancer types. Elevated COMMD2 expression affects the prognosis, clinicopathological stage, and molecular or immune subtypes of various tumors. Moreover, promoter hypomethylation and mutations in the COMMD2 gene may be associated with its high expression and poor survival. Additionally, we discovered that COMMD2 expression was linked to tumor stemness, TMB, MSI, immune cell infiltration, immune-checkpoint inhibitors, and drug sensitivity in pan-cancer. Furthermore, the COMMD2 gene co-expression network is constructed with GSEA analysis, displaying significant interaction of COMMD2 with E2F targets, G2-M checkpoint, and mitotic spindle in bladder cancer (BLCA). Finally, RNA interference data showed suppression of COMMD2 prevented proliferation and migration of BLCA and uterine corpus endometrial carcinoma (UCEC) cells. CONCLUSION Our findings shed light on the COMMD2 functions in human cancers and demonstrate that it is a promising prognostic biomarker and therapeutic target in pan-cancer.
Collapse
Affiliation(s)
- Panpan Tai
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Liu Z, Peng L, Sun Y, Lu Z, Wu B, Wang W, Zhang X, Hao H, Gong P. COMMD4 is a novel prognostic biomarker and relates to potential drug resistance mechanism in glioma. Front Pharmacol 2022; 13:974107. [PMID: 36249824 PMCID: PMC9562965 DOI: 10.3389/fphar.2022.974107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Glioma as the most frequently discovered tumor affecting the brain shows significant morbidity and fatality rates with unfavorable prognosis. There is an urgent need to find novel therapeutic targets to overcome the low chemotherapeutic efficacy of glioma. This research examined whether the copper-metabolism-domain protein, COMMD4, had predictive and therapeutic significance in glioma. Methods: Using the freely accessible CGGA (The Chinese Glioma Atlas) and TCGA (The Cancer Genome Atlas) databases, we examined the function of COMMD4 in GBM and LGG. CIBERSORT and TIMER were utilized to assess the associations between COMMD4 and immune cells. The Gene Set Enrichment Analysis (GSEA) was employed to examine the functional data. Furthermore, the link between COMMD4 expression and predicted treatment response was evaluated via CellMiner Cross-Database. Meanwhile, qRT-PCR was conducted to examine COMMD4 expression in human glioma. Finally, Migration and invasion of glioma cells (U-87, U-251) were assessed using transwell assays. R was used to analyze the statistical data. Results: According to our findings, COMMD4 expression level was higher in patients having grade-dependent glioma who also showed an unfavorable prognosis. Furthermore, qRT-PCR confirmed the high expression of COMMD4 in glioma tissues and cells. Additionally, using integrated correlation analysis, we acquired significant prognostic findings between isocitrate dehydrogenase 1(IDH1) and COMMD4. Meanwhile, a link between COMMD4 and many tumor-infiltrating immune cells was observed. GSEA and drug response analysis revealed the potential mechanism of COMMD4 in drug resistance of glioma. Conclusion: The current findings validated COMMD4 as a novel biological marker, which might offer insights into the possible drug resistance mechanisms and the impact of the immune microenvironment on glioma. COMMD4 might be used to predict glioma prognosis.
Collapse
Affiliation(s)
- Zongheng Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Long Peng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yidan Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bing Wu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Postgraduate School, Dalian Medical University, Dalian, China
| | - Weichen Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiaomei Zhang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Haiyan Hao
- Department of Outpatient, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Peipei Gong, ; Haiyan Hao,
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Peipei Gong, ; Haiyan Hao,
| |
Collapse
|
14
|
Amakura Y, Taguchi YH. Estimation of Metabolic Effects upon Cadmium Exposure during Pregnancy Using Tensor Decomposition. Genes (Basel) 2022; 13:genes13101698. [PMID: 36292583 PMCID: PMC9602417 DOI: 10.3390/genes13101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
A simple tensor decomposition model was applied to the liver transcriptome analysis data to elucidate the cause of cadmium-induced gene overexpression. In addition, we estimated the mechanism by which prenatal Cd exposure disrupts insulin metabolism in offspring. Numerous studies have reported on the toxicity of Cd. A liver transcriptome analysis revealed that Cd toxicity induces intracellular oxidative stress and mitochondrial dysfunction via changes in gene expression, which in turn induces endoplasmic reticulum-associated degradation via abnormal protein folding. However, the specific mechanisms underlying these effects remain unknown. In this study, we found that Cd-induced endoplasmic reticulum stress may promote increased expression of tumor necrosis factor-α (TNF-α). Based on the high expression of genes involved in the production of sphingolipids, it was also found that the accumulation of ceramide may induce intracellular oxidative stress through the overproduction of reactive oxygen species. In addition, the high expression of a set of genes involved in the electron transfer system may contribute to oxidative stress. These findings allowed us to identify the mechanisms by which intracellular oxidative stress leads to the phosphorylation of insulin receptor substrate 1, which plays a significant role in the insulin signaling pathway.
Collapse
Affiliation(s)
- Yuki Amakura
- Graduate School of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
- Correspondence:
| |
Collapse
|
15
|
COMMD3 Expression Affects Angiogenesis through the HIF1α/VEGF/NF-κB Signaling Pathway in Hepatocellular Carcinoma In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1655502. [PMID: 36092163 PMCID: PMC9463002 DOI: 10.1155/2022/1655502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
Background High expression of copper metabolizing MURR1 domain (COMMD3) is significantly correlated with poor prognosis in hepatocellular carcinoma (HCC) patients. Here, we explored the mechanism by which COMMD3 affects HCC angiogenesis through the HIF1α/VEGF/NF-κB signaling pathway. Methods SK-Hep1 and Hep-3B cell lines were transfected by COMMD3 overexpression and RNA interference lentivirus and verified using RT-qPCR and western blotting techniques. Using RNA sequencing, we analyzed differentially expressed genes in COMMD3-overexpressed and COMMD3-knockdown HCC cells. Altogether, colony formation assay, wound healing assay, transwell cell invasion assay, flow cytometry apoptosis experiments, HUVEC tube formation detection, phalloidin staining assay, western blotting, immunohistochemical staining, and a nude mouse xenograft model were used for experimental verification. Results Lentivirus COMMD3 overexpression and knockdown were successfully established in HCC cells. COMMD3 overexpression significantly promoted the proliferation, angiogenesis, migration, and invasion capacities of HCC cells with no obvious effect on apoptosis versus controls while COMMD3 knockdown showed the opposite trend. The expression and protein levels of COMMD3 as well as HIF1α, VEGF, and NF-κB were increased in COMMD3-overexpressing HCC cells versus control cells, while they were reduced after COMMD3 knockdown. In addition, RNA-seq indicated that COMMD3 is an indispensable gene for HCC angiogenesis through HIF1α and NF-κB signaling pathways. Conclusion This study showed that low expression of COMMD3 can inhibit HCC angiogenesis by suppressing the HIF1α/VEGF/NF-κB pathway. This implicates COMMD3 as a potential biomarker for improving the therapeutic outcome of HCC.
Collapse
|
16
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
17
|
Yang M, Wu X, Li L, Li S, Li N, Mao M, Pan S, Du R, Wang X, Chen M, Xiao N, Zhu X, He G, Zhang L, Huang W, Pan H, Deng L, Chen L, Liang L, Guan J. COMMD10 inhibits tumor progression and induces apoptosis by blocking NF-κB signal and values up BCLC staging in predicting overall survival in hepatocellular carcinoma. Clin Transl Med 2021; 11:e403. [PMID: 34047468 PMCID: PMC8093973 DOI: 10.1002/ctm2.403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Currently, there is limited knowledge of dysregulation of cellular proliferation and apoptosis that contribute to the malignant phenotype in HCC. Copper metabolism gene MURR1 domain 10 (COMMD10) is initially identified as a suppressor gene in the pathogenesis of HCC in our observations. Here we aimed to explore its function and prognostic value in the progression of HCC. METHODS Functional experiments were performed to explore the role of COMMD10 in HCC. The molecular mechanisms of COMMD10 were determined by luciferase assay, immunofluorescence, and immunoprecipitation. The nomogram was based on a retrospective and multicenter study of 516 patients who were pathologically diagnosed with HCC from three Chinese hospitals. The predictive accuracy and discriminative ability of the nomogram were determined by a C-index and calibration curve and were compared with COMMD10 and the Barcelona Clinic Liver Cancer (BCLC) staging system. The primary endpoint was overall survival (OS). RESULTS COMMD10 expression was significantly lower in HCC than that in normal liver tissues. In vitro and in vivo experiments revealed that COMMD10 suppressed cell proliferation and induced apoptosis in HCC. Mechanistically, COMMD10 inhibits TNFα mediated ubiquitination of IκBα and p65 nuclear translocation through the combination of COMMD10-N terminal to the Rel homology domain of p65, which inhibited NF-κB activity and increased expression of cleaved caspase9/3 in HCC. Clinically, COMMD10 stratifies early-stage HCC patients into two risk groups with significantly different OS. Additionally, the nomogram based on COMMD10 and BCLC stage yielded more accuracy than BCLC stage alone for predicting OS of HCC patients in three cohorts. CONCLUSIONS COMMD10 suppresses proliferation and promotes apoptosis by inhibiting NF-κB signaling and values up BCLC staging in predicting OS, which provides evidence for the identification of potential therapeutic targets and the accurate prediction of prognosis for patients with HCC.
Collapse
Affiliation(s)
- Mi Yang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lu Li
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shaoqun Li
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nan Li
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Mengyuan Mao
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Suming Pan
- Department of RadiotherapyYue Bei People's Hospital of Guangdong provinceShaoguanGuangdongChina
| | - Richang Du
- Department of PathologyYue Bei People's Hospital of Guangdong provinceShaoguanGuangdongChina
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Chen
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nanjie Xiao
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaohui Zhu
- Department of Patholog, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Patholog, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdongChina
| | - Guoyang He
- Department of Patholog, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Patholog, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdongChina
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hua Pan
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lan Deng
- Department of Hematology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Li Liang
- Department of Patholog, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Department of Patholog, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Guangdong Province Key Laboratory of Molecular Tumor PathologyGuangzhouGuangdongChina
| | - Jian Guan
- Department of Radiation Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
18
|
Weiskirchen R, Penning LC. COMMD1, a multi-potent intracellular protein involved in copper homeostasis, protein trafficking, inflammation, and cancer. J Trace Elem Med Biol 2021; 65:126712. [PMID: 33482423 DOI: 10.1016/j.jtemb.2021.126712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Copper is a trace element indispensable for life, but at the same time it is implicated in reactive oxygen species formation. Several inherited copper storage diseases are described of which Wilson disease (copper overload, mutations in ATP7B gene) and Menkes disease (copper deficiency, mutations in ATP7A gene) are the most prominent ones. After the discovery in 2002 of a novel gene product (i.e. COMMD1) involved in hepatic copper handling in Bedlington terriers, studies on the mechanism of action of COMMD1 revealed numerous non-copper related functions. Effects on hepatic copper handling are likely mediated via interactions with ATP7B. In addition, COMMD1 has many more interacting partners which guide their routing to either the plasma membrane or, often in an ubiquitination-dependent fashion, trigger their proteolysis via the S26 proteasome. By stimulating NF-κB ubiquitination, COMMD1 dampens an inflammatory reaction. Finally, targeting COMMD1 function can be a novel approach in the treatment of tumors.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen, Aachen, Germany
| | - Louis C Penning
- Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Department of Clinical Sciences of Companion Animals, 3584 CM, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Campion CG, Verissimo T, Cossette S, Tremblay J. Does Subtelomeric Position of COMMD5 Influence Cancer Progression? Front Oncol 2021; 11:642130. [PMID: 33768002 PMCID: PMC7985453 DOI: 10.3389/fonc.2021.642130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The COMMD proteins are a family of ten pleiotropic factors which are widely conserved throughout evolution and are involved in the regulation of many cellular and physiological processes. COMMD proteins are mainly expressed in adult tissue and their downregulation has been correlated with tumor progression and poor prognosis in cancer. Among this family, COMMD5 emerged as a versatile modulator of tumor progression. Its expression can range from being downregulated to highly up regulated in a variety of cancer types. Accordingly, two opposing functions could be proposed for COMMD5 in cancer. Our studies supported a role for COMMD5 in the establishment and maintenance of the epithelial cell phenotype, suggesting a tumor suppressor function. However, genetic alterations leading to amplification of COMMD5 proteins have also been observed in various types of cancer, suggesting an oncogenic function. Interestingly, COMMD5 is the only member of this family that is located at the extreme end of chromosome 8, near its telomere. Here, we review some data concerning expression and role of COMMD5 and propose a novel rationale for the potential link between the subtelomeric position of COMMD5 on chromosome 8 and its contrasting functions in cancer.
Collapse
Affiliation(s)
- Carole G Campion
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Thomas Verissimo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Cossette
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Johanne Tremblay
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
20
|
Corbee RJ, Penning LC. COMMD1 Exemplifies the Power of Inbred Dogs to Dissect Genetic Causes of Rare Copper-Related Disorders. Animals (Basel) 2021; 11:ani11030601. [PMID: 33668783 PMCID: PMC7996361 DOI: 10.3390/ani11030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Wilson's Disease is a rare autosomal recessive disorder in humans, often presenting with hepatic copper overload. Finding the genetic cause of a rare disease, especially if it is related to food constituents like the trace element copper, is a Herculean task. This review describes examples of how the unique population structure of in-bred dog strains led to the discovery of a novel gene and two modifier genes involved in inherited copper toxicosis. COMMD1, after the discovery in 2002, was shown to be a highly promiscuous protein involved in copper transport, protein trafficking/degradation, regulation of virus replication, and inflammation. Mutations in the ATP7A and ATP7B proteins in Labrador retrievers and Dobermann dogs resulted in a wide variation in hepatic copper levels in these breeds. To our knowledge, numerous dog breeds with inherited copper toxicosis of unknown genetic origin exist. Therefore, the possibility that men's best friend will provide new leads in rare copper storage diseases seems realistic.
Collapse
|
21
|
Suraweera A, Duijf PHG, Jekimovs C, Schrobback K, Liu C, Adams MN, O’Byrne KJ, Richard DJ. COMMD1, from the Repair of DNA Double Strand Breaks, to a Novel Anti-Cancer Therapeutic Target. Cancers (Basel) 2021; 13:830. [PMID: 33669398 PMCID: PMC7920454 DOI: 10.3390/cancers13040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has the highest incidence and mortality among all cancers, with non-small cell lung cancer (NSCLC) accounting for 85-90% of all lung cancers. Here we investigated the function of COMMD1 in the repair of DNA double strand breaks (DSBs) and as a prognostic and therapeutic target in NSCLC. COMMD1 function in DSB repair was investigated using reporter assays in COMMD1-siRNA-depleted cells. The role of COMMD1 in NSCLC was investigated using bioinformatic analysis, qRT-PCR and immunoblotting of control and NSCLC cells, tissue microarrays, cell viability and cell cycle experiments. DNA repair assays demonstrated that COMMD1 is required for the efficient repair of DSBs and reporter assays showed that COMMD1 functions in both non-homologous-end-joining and homologous recombination. Bioinformatic analysis showed that COMMD1 is upregulated in NSCLC, with high levels of COMMD1 associated with poor patient prognosis. COMMD1 mRNA and protein were upregulated across a panel of NSCLC cell lines and siRNA-mediated depletion of COMMD1 decreased cell proliferation and reduced cell viability of NSCLC, with enhanced death after exposure to DNA damaging-agents. Bioinformatic analyses demonstrated that COMMD1 levels positively correlate with the gene ontology DNA repair gene set enrichment signature in NSCLC. Taken together, COMMD1 functions in DSB repair, is a prognostic maker in NSCLC and is potentially a novel anti-cancer therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Pascal H. G. Duijf
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Christian Jekimovs
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Karsten Schrobback
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
- Envoi Specialist Pathologists, 5/38 Bishop Street, Kelvin Grove, QLD 4059, Australia
| | - Mark N. Adams
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Derek J. Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
22
|
Wang S, Wang T, Liu D, Kong H. LncRNA MALAT1 Aggravates the Progression of Non-Small Cell Lung Cancer by Stimulating the Expression of COMMD8 via Targeting miR-613. Cancer Manag Res 2020; 12:10735-10747. [PMID: 33149680 PMCID: PMC7605591 DOI: 10.2147/cmar.s263538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a common malignant tumor in humans. Long non-coding RNA (lncRNA) involved in cancer progression has been reported frequently. The objective of this study was to investigate the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and explore a novel mechanism in NSCLC development. Materials and Methods The expression of MALAT1, copper metabolism MURR1 domain-containing 8 (COMMD8) and microRNA-613 (miR-613) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of COMMD8, Cyclin D1, Ki67, B cell lymphoma/leukemia-2 (Bcl-2), Bcl-2 associated X protein (Bax), lactate dehydrogenase A (LDHA), CD63 and CD81 were determined by Western blot. Cell proliferation, the number of colonies and cell apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation and flow cytometry assays, respectively. Glycolysis was distinguished based on glucose consumption, lactate production and LDHA activity. The role of MALAT1 in vivo was verified by animal experiments. The relationship between miR-613 and MALAT1 or COMMD8 was predicted by the bioinformatics tool starbase and verified by dual-luciferase reporter assay. The exosomes were isolated using the corresponding kit and identified by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Results MALAT1 and COMMD8 were aberrantly upregulated in NSCLC tissues and cells. MALAT1 or COMMD8 knockdown blocked cell proliferation, colony formation and glycolysis but accelerated cell apoptosis in vitro. Besides, MALAT1 knockdown reduced tumor growth in vivo. We found that miR-613 was a target of MALAT1, and miR-613 could bind to the 3ʹ untranslated region (3ʹUTR) of COMMD8. MALAT1 regulated the expression of COMMD8 by absorbing miR-613. Moreover, the extracellular MALAT1 was transmitted by wrapping into exosomes. Conclusion MALAT1 promoted malignant activities of NSCLC cells through targeting miR-613/COMMD8 axis, and exosome-mediated transfer of NSCLC might be a novel approach for NSCLC treatment.
Collapse
Affiliation(s)
- Shouzhong Wang
- Department of Minimally Invasive Intervention Center, Zaozhuang Tumor Hospital, Zaozhuang, Shandong 277500, People's Republic of China
| | - Tao Wang
- Department of Minimally Invasive Intervention Center, Zaozhuang Tumor Hospital, Zaozhuang, Shandong 277500, People's Republic of China
| | - Darui Liu
- Department of Burn and Plastic Surgery, Tengzhou Central People's Hospital, Zaozhuang, Shandong 277500, People's Republic of China
| | - Haiyan Kong
- Department of Clinical Laboratory, Tengzhou Central People's Hospital, Tengzhou, Shandong, People's Republic of China
| |
Collapse
|
23
|
Dumoulin B, Ufer C, Stehling S, Heydeck D, Kuhn H, Sofi S. Identification of the COMM-domain containing protein 1 as specific binding partner for the guanine-rich RNA sequence binding factor 1. Biochim Biophys Acta Gen Subj 2020; 1864:129678. [PMID: 32645484 DOI: 10.1016/j.bbagen.2020.129678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified. METHODS To search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins. Subsequently, we explored the protein-protein-interaction of the recombiant proteins, carried out immunoprecipitation experiments to confirm the interaction of the native proteins in living cells and performed truncation studies to identify the protein-binding motif of GRSF1. RESULTS Using the yeast two-hybrid system we identified the COMM-domain containing protein 1 (COMMD1) as specific GRSF1 binding protein and in vitro truncation studies suggested that COMMD1 interacts with the alanine-rich domain of GRSF1. Co-immunoprecipitation strategies indicated that COMMD1-GRSF1 interaction was RNA independent and also occurred in living cells expressing the two native proteins. CONCLUSION In mammalian cells the COMM-domain containing protein 1 (COMMD1) specifically interacts with the Ala-rich domain of GRSF1 in an RNA-independent manner. GENERAL SIGNIFICANCE This is the first report describing a specific GRSF1 binding protein.
Collapse
Affiliation(s)
- Bernhard Dumoulin
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Sajad Sofi
- University of York, Department of Biology, York YO10 5DD, United Kingdom
| |
Collapse
|
24
|
Suraweera A, Duff A, Adams MN, Jekimovs C, Duijf PHG, Liu C, McTaggart M, Beard S, O'Byrne KJ, Richard DJ. Defining COMMD4 as an anti-cancer therapeutic target and prognostic factor in non-small cell lung cancer. Br J Cancer 2020; 123:591-603. [PMID: 32439936 PMCID: PMC7434762 DOI: 10.1038/s41416-020-0899-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/19/2020] [Accepted: 05/01/2020] [Indexed: 01/04/2023] Open
Abstract
Background Non-small cell lung cancers (NSCLC) account for 85–90% of all lung cancers. As drug resistance critically impairs chemotherapy effectiveness, there is great need to identify new therapeutic targets. The aims of this study were to investigate the prognostic and therapeutic potential of the copper-metabolism-domain-protein, COMMD4, in NSCLC. Methods The expression of COMMD4 in NSCLC was investigated using bioinformatic analysis, immunoblotting of immortalised human bronchial epithelial (HBEC) and NSCLC cell lines, qRT-PCR and immunohistochemistry of tissue microarrays. COMMD4 function was additionally investigated in HBEC and NSCLC cells depleted of COMMD4, using small interfering RNA sequences. Results Bioinformatic analysis and in vitro analysis of COMMD4 transcripts showed that COMMD4 levels were upregulated in NSCLC and elevated COMMD4 was associated with poor prognosis in adenocarcinoma (ADC). Immunoblotting demonstrated that COMMD4 expression was upregulated in NSCLC cells and siRNA-depletion of COMMD4, decreased cell proliferation and reduced cell viability. Cell death was further enhanced after exposure to DNA damaging agents. COMMD4 depletion caused NSCLC cells to undergo mitotic catastrophe and apoptosis. Conclusions Our data indicate that COMMD4 may function as a prognostic factor in ADC NSCLC. Additionally, COMMD4 is a potential therapeutic target for NSCLC, as its depletion induces cancer cell death.
Collapse
Affiliation(s)
- Amila Suraweera
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia. .,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Alex Duff
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Christian Jekimovs
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,University of Queensland Diamantina Insitute, Translational Research Institute, 37 Kent Street, Woolloogabba, QLD, 4102, Australia
| | - Cheng Liu
- Envoi Specialist Pathologists, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Herston, QLD, 4006, Australia.,The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Matthew McTaggart
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Sam Beard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation and Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia. .,Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
25
|
Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na + channel. Am J Physiol Renal Physiol 2019; 318:F1-F13. [PMID: 31657249 DOI: 10.1152/ajprenal.00277.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Renal Na+ reabsorption, facilitated by the epithelial Na+ channel (ENaC), is subject to multiple forms of control to ensure optimal body blood volume and pressure through altering both the ENaC population and activity at the cell surface. Here, the focus is on regulating the number of ENaCs present in the apical membrane domain through pathways of ENaC synthesis and targeting to the apical membrane as well as ENaC removal, recycling, and degradation. Finally, the mechanisms by which ENaC trafficking pathways are regulated are summarized.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Kruitwagen HS, Fieten H, Penning LC. Towards Bioengineered Liver Stem Cell Transplantation Studies in a Preclinical Dog Model for Inherited Copper Toxicosis. Bioengineering (Basel) 2019; 6:E88. [PMID: 31557851 PMCID: PMC6955979 DOI: 10.3390/bioengineering6040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Wilson Disease is a rare autosomal recessive liver disorder in humans. Although its clinical presentation and age of onset are highly variable, hallmarks include signs of liver disease, neurological features and so-called Kayser-Fleischer rings in the eyes of the patient. Hepatic copper accumulation leads to liver disease and eventually to liver cirrhosis. Treatment options include life-long copper chelation therapy and/or decrease in copper intake. Eventually liver transplantations are indicated. Although clinical outcome of liver transplantations is favorable, the lack of suitable donor livers hampers large numbers of transplantations. As an alternative, cell therapies with hepatocytes or liver stem cells are currently under investigation. Stem cell biology in relation to pets is in its infancy. Due to the specific population structure of dogs, canine copper toxicosis is frequently encountered in various dog breeds. Since the histology and clinical presentation resemble Wilson Disease, we combined genetics, gene-editing, and matrices-based stem cell cultures to develop a translational preclinical transplantation model for inherited copper toxicosis in dogs. Here we describe the roadmap followed, starting from the discovery of a causative copper toxicosis mutation in a specific dog breed and culminating in transplantation of genetically-engineered autologous liver stem cells.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands.
| |
Collapse
|
27
|
Role of endoplasmic reticulum stress and protein misfolding in disorders of the liver and pancreas. Adv Med Sci 2019; 64:315-323. [PMID: 30978662 DOI: 10.1016/j.advms.2019.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. The fraction of protein passing through the ER represents a large proportion of the total protein in the cell. Protein folding, glycosylation, sorting and transport are essential tasks of the ER and a compromised ER folding network has been recognized to be a key component in the disease pathogenicity of common neurodegenerative, metabolic and malignant diseases. On the other hand, the ER protein folding machinery also holds significant potential for therapeutic interventions. Many causes can lead to ER stress. A disturbed calcium homeostasis, the generation of reactive oxygen species (ROS) and a persistent overload of misfolded proteins within the ER can drive the course of adisease. In this review the role of ER-stress in diseases of the liver and pancreas will be examined using pancreatitis and Wilson´s disease as examples. Potential therapeutic targets in ER-stress pathways will also be discussed.
Collapse
|
28
|
Umbreen S, Banday MM, Jamroze A, Mansini AP, Ganaie AA, Ferrari MG, Maqbool R, Beigh FH, Murugan P, Morrissey C, Corey E, Konety BR, Saleem M. COMMD3:BMI1 Fusion and COMMD3 Protein Regulate C-MYC Transcription: Novel Therapeutic Target for Metastatic Prostate Cancer. Mol Cancer Ther 2019; 18:2111-2123. [PMID: 31467179 DOI: 10.1158/1535-7163.mct-19-0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Gene rearrangement is reported to be associated to the aggressive phenotype and poor prognosis in prostate cancer. We identified a gene fusion between a transcription repressor (BMI1) and transcriptional factor (COMMD3) in human prostate cancer. We show that COMMD3:BMI1 fusion expression is significantly increased in prostate cancer disease in an order: normal tissue < primary < metastatic tumors (Mets). Although elevated TMPRSS-ERG/ETV fusion is reported in prostate cancer, we identified a subtype of Mets exhibiting low TMPRSS:ETV and high COMMD3:BMI1 We delineated the mechanism and function of COMMD3 and COMMD3:BMI1 in prostate cancer. We show that COMMD3 level is elevated in prostate cancer cell models, PDX models (adenocarcinoma, NECaP), and Mets. The analysis of TCGA/NIH/GEO clinical data showed a positive correlation between increased COMMD3 expression to the disease recurrence and poor survival in prostate cancer. We show that COMMD3 drives proliferation of normal cells and promotes migration/invasiveness of neoplastic cells. We show that COMMD3:BMI1 and COMMD3 regulate C-MYC transcription and C-MYC downstream pathway. The ChIP analysis showed that COMMD3 protein is recruited at the promoter of C-MYC gene. On the basis of these data, we investigated the relevance of COMMD3:BMI1 and COMMD3 as therapeutic targets using in vitro and xenograft mouse models. We show that siRNA-mediated targeting of COMMD3:BMI1 and COMMD3 significantly decreases (i) C-MYC expression in BRD/BET inhibitor-resistant cells, (ii) proliferation/invasion in vitro, and (iii) growth of prostate cancer cell tumors in mice. The IHC analysis of tumors confirmed the targeting of COMMD3-regulated molecular pathway under in vivo conditions. We conclude that COMMD3:BMI1 and COMMD3 are potential progression biomarkers and therapeutic targets of metastatic prostate cancer.
Collapse
Affiliation(s)
- Syed Umbreen
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Queens University, Belfast, Northern Ireland
| | - Mudassir Meraj Banday
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anmbreen Jamroze
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Hormel Institute, Austin, Minnesota
| | - Adrian P Mansini
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Arsheed A Ganaie
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marina G Ferrari
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raihana Maqbool
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Firdous H Beigh
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Badrinath R Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
29
|
Gilleron J, Gerdes JM, Zeigerer A. Metabolic regulation through the endosomal system. Traffic 2019; 20:552-570. [PMID: 31177593 PMCID: PMC6771607 DOI: 10.1111/tra.12670] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
The endosomal system plays an essential role in cell homeostasis by controlling cellular signaling, nutrient sensing, cell polarity and cell migration. However, its place in the regulation of tissue, organ and whole body physiology is less well understood. Recent studies have revealed an important role for the endosomal system in regulating glucose and lipid homeostasis, with implications for metabolic disorders such as type 2 diabetes, hypercholesterolemia and non-alcoholic fatty liver disease. By taking insights from in vitro studies of endocytosis and exploring their effects on metabolism, we can begin to connect the fields of endosomal transport and metabolic homeostasis. In this review, we explore current understanding of how the endosomal system influences the systemic regulation of glucose and lipid metabolism in mice and humans. We highlight exciting new insights that help translate findings from single cells to a wider physiological level and open up new directions for endosomal research.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Mediterranean Center of Molecular Medicine (C3M)NiceFrance
| | - Jantje M. Gerdes
- Institute for Diabetes and RegenerationHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Anja Zeigerer
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
30
|
Kruitwagen HS, Penning LC. Preclinical models of Wilson's disease, why dogs are catchy alternatives. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S71. [PMID: 31179308 DOI: 10.21037/atm.2019.02.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copper toxicosis is frequently encountered in various dog breeds. A number of differences and similarities occur between Wilson disease and copper toxicosis in Bedlington terriers, caused by a mutation in the COMMD1 gene, and copper toxicosis in Labrador retrievers, caused by mutations in both ATP7A and ATP7B gene. First the specific population structure of dog breeds is explained with reference to its applicability for genetic investigations. The relatively large body size (variable from less than 1 kg to over 50 kg) and life-span (over 10 years) of dogs facilitates preclinical studies on safety on long-term effects of novel procedures. Then copper toxicosis in the two dog breeds is described in detail with an emphasis on the functions of the causative proteins. Some of the advantages of this species for preclinical studies are described with an example of liver stem cell transplantations in COMMD1 deficient dogs. Since the genetic background of copper toxicosis in other dogs' breeds has not yet been elucidated, it is conceivable that novel copper-related gene products or modifier genes will be discovered. About a century after the Novel prize was awarded to the research on dogs (Pavlov), dogs are in spotlight again as important preclinical model animals.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
31
|
Expression profile and bioinformatics analysis of COMMD10 in BALB/C mice and human. Cancer Gene Ther 2019; 27:216-225. [PMID: 30787448 DOI: 10.1038/s41417-019-0087-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 11/08/2022]
Abstract
COMMD10, a member of COMMD protein, has been proved to target p65 NF-kappaB (nuclear factor-kappaB) subunit and reduce its nuclear translocation, thereby leading to the inactivation of NF-kappaB pathway and suppression of colorectal cancer invasion and metastasis. The aim of this study is to explore its expression pattern and tissue distribution in human normal tissues and other tumor tissues and to investigate the relevant mechanism. We firstly provided the expression profile and histological distribution of COMMD10 in various BALB/c mice tissues and identified the biological distribution of COMMD10 in different kinds of human normal and tumor tissues. We verified the expression profile of COMMD10 using TCGA database. The interacting genes of COMMD10 were predicted by using STRING using. Finally, we performed database, and the microRNAs targeting COMMD10 were predicted using miRDB, miRWalk, TargetScan and microRNA. GO and KEGG pathway analyses were performed to predict the biological function of COMMD10 and its interacting genes. mRNA expression of COMMD10 showed the highest level in the lung and spleen, and the lowest level in the heart and brain. Immunohistochemistry detection revealed that COMMD10 was expressed in different tissues with different degrees and was was located mainly in the cytoplasm. Subsequently, we showed that COMMD10 displayed various degrees of expression in different human normal tissues that mainly located in cytoplasm, while COMMD10 of liver cells resided in both nucleus and cytoplasm. All the tumor tissues except breast small cell carcinoma, breast phyllodes tumor, lung adenocarcinoma, thymoma, cervical cancer and bladder urothelial carcinoma showed that COMMD10 was positive staining in cytoplasm. Kaplan-Meier plotter indicated that renal clear cell carcinoma patients with increased expression level of COMMD10 exhibited longer survival. STRING database revealed that COMMD10 had 41 interacting genes, and data from 4 different databases indicated that hsa-miR-590-3p may be the potential regulator of COMMD10. GO analysis demonstrated that COMMD10 and its interacting genes were mainly enriched in Cullin-RING ubiquitin ligase complexes, binding and transport of copper ions, the transport and steady-state maintenance of copper ions, transcription, translation and transport of proteins, and negatively regulate the activity of NF-kappaB transcription factors. KEGG pathway showed that COMMD10 and its interacting genes were mainly involved in renal cell carcinoma, HIF-1 signaling pathways, ubiquitination-mediated proteolysis, endocytosis and mineral absorption. COMMD10 may play a tumor suppressive role in renal clear cell carcinoma through the miR-590-3p-COMMD10-Cul2-RBX1-NF-κB/HIF/NRF2 pathway and regulate the chemotherapy resistance of various tumor cells to cisplatin.
Collapse
|
32
|
Composition of the Survival Motor Neuron (SMN) Complex in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:491-503. [PMID: 30563832 PMCID: PMC6385987 DOI: 10.1534/g3.118.200874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila melanogaster Using transgenic flies that exclusively express Flag-tagged SMN from its native promoter, we previously found that Gemin2, Gemin3, Gemin5, and all nine classical Sm proteins, including Lsm10 and Lsm11, co-purify with SMN. Here, we show that CG2941 is also highly enriched in the pulldown. Reciprocal co-immunoprecipitation reveals that epitope-tagged CG2941 interacts with endogenous SMN in Schneider2 cells. Bioinformatic comparisons show that CG2941 shares sequence and structural similarity with metazoan Gemin4. Additional analysis shows that three other genes (CG14164, CG31950 and CG2371) are not orthologous to Gemins 6-7-8, respectively, as previously suggested. In D.melanogaster, CG2941 is located within an evolutionarily recent genomic triplication with two other nearly identical paralogous genes (CG32783 and CG32786). RNAi-mediated knockdown of CG2941 and its two close paralogs reveals that Gemin4 is essential for organismal viability.
Collapse
|
33
|
Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F. Copper Metabolism of Newborns Is Adapted to Milk Ceruloplasmin as a Nutritive Source of Copper: Overview of the Current Data. Nutrients 2018; 10:E1591. [PMID: 30380720 PMCID: PMC6266612 DOI: 10.3390/nu10111591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Copper, which can potentially be a highly toxic agent, is an essential nutrient due to its role as a cofactor for cuproenzymes and its participation in signaling pathways. In mammals, the liver is a central organ that controls copper turnover throughout the body, including copper absorption, distribution, and excretion. In ontogenesis, there are two types of copper metabolism, embryonic and adult, which maintain the balance of copper in each of these periods of life, respectively. In the liver cells, these types of metabolism are characterized by the specific expression patterns and activity levels of the genes encoding ceruloplasmin, which is the main extracellular ferroxidase and copper transporter, and the proteins mediating ceruloplasmin metalation. In newborns, the molecular genetic mechanisms responsible for copper homeostasis and the ontogenetic switch from embryonic to adult copper metabolism are highly adapted to milk ceruloplasmin as a dietary source of copper. In the mammary gland cells, the level of ceruloplasmin gene expression and the alternative splicing of its pre-mRNA govern the amount of ceruloplasmin in the milk, and thus, the amount of copper absorbed by a newborn is controlled. In newborns, the absorption, distribution, and accumulation of copper are adapted to milk ceruloplasmin. If newborns are not breast-fed in the early stages of postnatal development, they do not have this natural control ensuring alimentary copper balance in the body. Although there is still much to be learned about the neonatal consequences of having an imbalance of copper in the mother/newborn system, the time to pay attention to this problem has arrived because the neonatal misbalance of copper may provoke the development of copper-related disorders.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, 197376 St.-Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, 195251 St.-Petersburg, Russia.
| | - Polina S Babich
- Department of Zoology, Herzen State Pedagogical University of Russia, Kazanskaya str., 6, 191186 St.-Petersburg, Russia.
| | - Yulia A Zatulovskaia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
| | - Francesca Di Sole
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA.
| |
Collapse
|
34
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
35
|
Song Y, Liu Y, Wu P, Zhang F, Wang G. Genome-wide mRNA expression analysis of peripheral blood from patients with obsessive-compulsive disorder. Sci Rep 2018; 8:12583. [PMID: 30135499 PMCID: PMC6105577 DOI: 10.1038/s41598-018-30624-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
The onset of obsessive-compulsive disorder (OCD) involves the interaction of heritability and environment. The aim of this study is to identify the global messenger RNA (mRNA) expressed in peripheral blood from 30 patients with OCD and 30 paired healthy controls. We generated whole-genome gene expression profiles of peripheral blood mononuclear cells (PBMCs) from all the subjects using microarrays. The expression of the top 10 mRNAs was verified by real-time quantitative PCR (qRT-PCR) analysis. We also performed an enrichment analysis of the gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotations of the differentially expressed mRNAs. We identified 51 mRNAs that were significantly differentially expressed between the subjects with OCD and the controls (fold change ≥1.5; false discovery rate <0.05); 45 mRNAs were down-regulated and 6 mRNAs were up-regulated. The qRT-PCR analysis of 10 selected genes showed that they were all up-regulated, which was opposite to the results obtained from the microarrays. The GO and KEGG enrichment analysis showed that ribosomal pathway was the most enriched pathway among the differentially expressed mRNAs. Our findings support the idea that altered genome expression profiles may underlie the development of OCD.
Collapse
Affiliation(s)
- Yuqing Song
- Peking University Sixth Hospital (Institute of Mental Health), Key Laboratory of Mental Health, Ministry of Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yansong Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Panpan Wu
- Wuxi Mental Health Centre, Nanjing Medical University, Wuxi, 214151, Jiangsu, China
| | - Fuquan Zhang
- Wuxi Mental Health Centre, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| | - Guoqiang Wang
- Wuxi Mental Health Centre, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
36
|
Healy MD, Hospenthal MK, Hall RJ, Chandra M, Chilton M, Tillu V, Chen KE, Celligoi DJ, McDonald FJ, Cullen PJ, Lott JS, Collins BM, Ghai R. Structural insights into the architecture and membrane interactions of the conserved COMMD proteins. eLife 2018; 7:e35898. [PMID: 30067224 PMCID: PMC6089597 DOI: 10.7554/elife.35898] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
The COMMD proteins are a conserved family of proteins with central roles in intracellular membrane trafficking and transcription. They form oligomeric complexes with each other and act as components of a larger assembly called the CCC complex, which is localized to endosomal compartments and mediates the transport of several transmembrane cargos. How these complexes are formed however is completely unknown. Here, we have systematically characterised the interactions between human COMMD proteins, and determined structures of COMMD proteins using X-ray crystallography and X-ray scattering to provide insights into the underlying mechanisms of homo- and heteromeric assembly. All COMMD proteins possess an α-helical N-terminal domain, and a highly conserved C-terminal domain that forms a tightly interlocked dimeric structure responsible for COMMD-COMMD interactions. The COMM domains also bind directly to components of CCC and mediate non-specific membrane association. Overall these studies show that COMMD proteins function as obligatory dimers with conserved domain architectures.
Collapse
Affiliation(s)
- Michael D Healy
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | | | - Ryan J Hall
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Mintu Chandra
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUnited Kingdom
| | - Vikas Tillu
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Kai-En Chen
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Dion J Celligoi
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | | | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences BuildingUniversity of BristolBristolUnited Kingdom
| | - J Shaun Lott
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| | - Rajesh Ghai
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
37
|
Endosomal Retrieval of Cargo: Retromer Is Not Alone. Trends Cell Biol 2018; 28:807-822. [PMID: 30072228 DOI: 10.1016/j.tcb.2018.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Endosomes are major protein sorting stations in cells. Endosomally localised multi-protein complexes sort integral proteins, including signaling receptors, nutrient transporters, adhesion molecules, and lysosomal hydrolase receptors, for lysosomal degradation or conversely for retrieval and subsequent recycling to various membrane compartments. Correct endosomal sorting of these proteins is essential for maintaining cellular homeostasis, with defects in endosomal sorting implicated in various human pathologies including neurodegenerative disorders. Retromer, an ancient multi-protein complex, is essential for the retrieval and recycling of hundreds of transmembrane proteins. While retromer is a major player in endosomal retrieval and recycling, several studies have recently identified retrieval mechanisms that are independent of retromer. Here, we review endosomal retrieval complexes, with a focus on recently discovered retromer-independent mechanisms.
Collapse
|
38
|
Campion CG, Zaoui K, Verissimo T, Cossette S, Matsuda H, Solban N, Hamet P, Tremblay J. COMMD5/HCaRG Hooks Endosomes on Cytoskeleton and Coordinates EGFR Trafficking. Cell Rep 2018; 24:670-684.e7. [DOI: 10.1016/j.celrep.2018.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
|
39
|
Domínguez-Acosta O, Vega L, Estrada-Muñiz E, Rodríguez MS, Gonzalez FJ, Elizondo G. Activation of aryl hydrocarbon receptor regulates the LPS/IFNγ-induced inflammatory response by inducing ubiquitin-proteosomal and lysosomal degradation of RelA/p65. Biochem Pharmacol 2018; 155:141-149. [PMID: 29935959 DOI: 10.1016/j.bcp.2018.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Several studies have identified the aryl hydrocarbon receptor (AhR) as a negative regulator of the innate and adaptive immune responses. However, the molecular mechanisms by which this transcription factor exerts such modulatory effects are not well understood. Interaction between AhR and RelA/p65 has previously been reported. RelA/p65 is the major NFκB subunit that plays a critical role in immune responses to infection. The aim of the present study was to determine whether the activation of AhR disrupted RelA/p65 signaling in mouse peritoneal macrophages by decreasing its half-life. The data demonstrate that the activation of AhR by TCDD and β-naphthoflavone (β-NF) decreased protein levels of the pro-inflammatory cytokines TNF-α, IL-6 and IL-12 after macrophage activation with LPS/IFNγ. In an AhR-dependent manner, TCDD treatment induces RelA/p65 ubiquitination and proteosomal degradation, an effect dependent on AhR transcriptional activity. Activation of AhR also induced lysosome-like membrane structure formation in mouse peritoneal macrophages and RelA/p65 lysosome-dependent degradation. In conclusion, these results demonstrate that AhR activation promotes RelA/p65 protein degradation through the ubiquitin proteasome system, as well as through the lysosomes, resulting in decreased pro-inflammatory cytokine levels in mouse peritoneal macrophages.
Collapse
Affiliation(s)
- O Domínguez-Acosta
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - L Vega
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - E Estrada-Muñiz
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - M S Rodríguez
- Institut des Technologies Avancées en Sciences du Vivant (ITAV) CNRS-USR3505, Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS UMR8601, Université de Toulouse, 31106 Toulouse, France
| | - F J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - G Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico.
| |
Collapse
|
40
|
Jin P, Lv C, Peng S, Cai L, Zhu J, Ma F. Genome-wide organization, evolutionary diversification of the COMMD family genes of amphioxus (Branchiostoma belcheri) with the possible role in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 77:31-39. [PMID: 29551666 DOI: 10.1016/j.fsi.2018.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The COMMD (COpper Metabolism gene MURR1 Domain) gene family with ten members participates in various biological processes, such as the regulation of copper and sodium transport, NF-κB activity and cell cycle progression. However, studies on the COMMD gene family in amphioxus (Branchiostoma belcheri) are yet largely unknown. In this study, we have identified and characterized the ten COMMD family members from amphioxus (designated as AmphiCOMMDs). Firstly, we clone the full length of AmphiCOMMDs, and all AmphiCOMMD proteins contain the conserved COMM domain with two NES (Nuclear Export Signal) motifs. Secondly, the genomic structure analysis demonstrates that genes of the COMMD family have undergone intron loss and gain during the process of divergence from amphioxus to vertebrates. Thirdly, phylogenetic analysis indicates that AmphiCOMMDs are more closely related to vertebrates, implying the AmphiCOMMDs may be the ancestor of the vertebrate COMMDs. Fourthly, AmphiCOMMDs are ubiquitously and differentially expressed in five investigated tissues (muscles, gills, intestine, heaptic cecum and notochord). Finally, our results show that expression levels of AmphiCOMMD genes are fluctuating after LPS stimulation to some different extent. Taken together, our studies have elaborated the evolutionary dynamic and the innate immune role of the COMMD family genes in amphioxus.
Collapse
Affiliation(s)
- Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Caiyun Lv
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Shuangli Peng
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lu Cai
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiu Zhu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
41
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
42
|
Yang SS, Li XM, Yang M, Ren XL, Hu JL, Zhu XH, Wang FF, Zeng ZC, Li JY, Cheng ZQ, Liao WT, Ding YQ, Guan J, Liang L. FMNL2 destabilises COMMD10 to activate NF-κB pathway in invasion and metastasis of colorectal cancer. Br J Cancer 2017; 117:1164-1175. [PMID: 28817833 PMCID: PMC5674093 DOI: 10.1038/bjc.2017.260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diaphanous-related formins (DRFs), actin necleator, have been known to participate in the progression of cancer cells. We previously reported that FMNL2 (Formin-like2), a member of DRFs, was a positive regulator in colorectal cancer (CRC) metastasis, yet proteins and pathways required for the function of this pro-invasive DRFs remain to be identified. METHODS The relationship between FMNL2 and COMMD10 was examined using Co-IP, GST pull-down, immunofluorescence and in vitro ubiquitination assay. The in vitro and in vivo function of COMMD10 in CRC was evaluated using CCK-8 proliferation assay, plate colony formation, cell cycle, apoptosis and animal models. The inhibition of NF-κB signalling by COMMD10 was detected using dual-luciferase reporter assay and western blotting. Co-IP, GST pull-down and nuclear protein extraction assay were performed to evaluate the effect on p65 by COMMD10. Real-time PCR and western blotting were performed to detect expressions of FMNL2, COMMD10 and p65 in paired tissues. RESULTS FMNL2 targets COMMD10 for ubiquitin-mediated proteasome degradation in CRC cells. COMMD10 targets p65 NF-κB (nuclear factor-κB) subunit and reduces its nuclear translocation, thereby leading to the inactivation of NF-κB pathway and suppression of CRC invasion and metastasis. Inhibition of NF-κB signalling by COMMD10 is necessary for FMNL2-mediated CRC cell behaviours. Downregulation of COMMD10 predicts poor prognosis of CRC patients. The expressions of FMNL2, COMMD10 and p65 are highly linked in CRC tissues. CONCLUSIONS These data demonstrate that the FMNL2/COMMD10/p65 axis acts as a critical regulator in the maintenance of metastatic phenotypes and is strongly associated with negative clinical outcomes.
Collapse
Affiliation(s)
- S S Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, People’s Republic of China
| | - X M Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Department of Pathology, Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen 518100, Guangdong Province, People’s Republic of China
| | - M Yang
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - X L Ren
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - J L Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - X H Zhu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - F F Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - Z C Zeng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - J Y Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - Z Q Cheng
- Department of Pathology, Shenzhen people’s Hospital, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong Province, People’s Republic of China
| | - W T Liao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - Y Q Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
| | - J Guan
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- E-mail:
| | - L Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong Province, People’s Republic of China
- E-mail:
| |
Collapse
|
43
|
XIAP Interacts with and Regulates the Activity of FAF1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1335-1348. [PMID: 28414080 DOI: 10.1016/j.bbamcr.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Cell death depends on the balance between the activities of pro- and anti-apoptotic factors. X-linked inhibitor of apoptosis protein (XIAP) plays an important role in the cytoprotective process by inhibiting the caspase cascade and regulating pro-survival signaling pathways. While searching for novel interacting partners of XIAP, we identified Fas-associated factor 1 (FAF1). Contrary to XIAP, FAF1 is a pro-apoptotic factor that also regulates several signaling pathways in which XIAP is involved. However, the functional relationship between FAF1 and XIAP is unknown. Here, we describe a new interaction between XIAP and FAF1 and describe the functional implications of their opposing roles in cell death and NF-κB signaling. Our results clearly demonstrate the interaction of XIAP with FAF1 and define the specific region of the interaction. We observed that XIAP is able to block FAF1-mediated cell death by interfering with the caspase cascade and directly interferes in NF-κB pathway inhibition by FAF1. Furthermore, we show that XIAP promotes ubiquitination of FAF1. Conversely, FAF1 does not interfere with the anti-apoptotic activity of XIAP, despite binding to the BIR domains of XIAP; however, FAF1 does attenuate XIAP-mediated NF-κB activation. Altered expression of both factors has been implicated in degenerative and cancerous processes; therefore, studying the balance between XIAP and FAF1 in these pathologies will aid in the development of novel therapies.
Collapse
|
44
|
Bosse M, Lopes MS, Madsen O, Megens HJ, Crooijmans RPMA, Frantz LAF, Harlizius B, Bastiaansen JWM, Groenen MAM. Artificial selection on introduced Asian haplotypes shaped the genetic architecture in European commercial pigs. Proc Biol Sci 2017; 282:20152019. [PMID: 26702043 DOI: 10.1098/rspb.2015.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Early pig farmers in Europe imported Asian pigs to cross with their local breeds in order to improve traits of commercial interest. Current genomics techniques enabled genome-wide identification of these Asian introgressed haplotypes in modern European pig breeds. We propose that the Asian variants are still present because they affect phenotypes that were important for ancient traditional, as well as recent, commercial pig breeding. Genome-wide introgression levels were only weakly correlated with gene content and recombination frequency. However, regions with an excess or absence of Asian haplotypes (AS) contained genes that were previously identified as phenotypically important such as FASN, ME1, and KIT. Therefore, the Asian alleles are thought to have an effect on phenotypes that were historically under selection. We aimed to estimate the effect of AS in introgressed regions in Large White pigs on the traits of backfat (BF) and litter size. The majority of regions we tested that retained Asian deoxyribonucleic acid (DNA) showed significantly increased BF from the Asian alleles. Our results suggest that the introgression in Large White pigs has been strongly determined by the selective pressure acting upon the introgressed AS. We therefore conclude that human-driven hybridization and selection contributed to the genomic architecture of these commercial pigs.
Collapse
Affiliation(s)
- Mirte Bosse
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708WD, The Netherlands
| | - Marcos S Lopes
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708WD, The Netherlands Topigs Norsvin Research Center, Beuningen 6640AA, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708WD, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708WD, The Netherlands
| | | | - Laurent A F Frantz
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708WD, The Netherlands
| | | | - John W M Bastiaansen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708WD, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708WD, The Netherlands
| |
Collapse
|
45
|
COMMD9 promotes TFDP1/E2F1 transcriptional activity via interaction with TFDP1 in non-small cell lung cancer. Cell Signal 2017; 30:59-66. [DOI: 10.1016/j.cellsig.2016.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
|
46
|
Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J Immunol Res 2016; 2016:4368101. [PMID: 28116318 PMCID: PMC5223024 DOI: 10.1155/2016/4368101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.
Collapse
|
47
|
Cypryk W, Lorey M, Puustinen A, Nyman TA, Matikainen S. Proteomic and Bioinformatic Characterization of Extracellular Vesicles Released from Human Macrophages upon Influenza A Virus Infection. J Proteome Res 2016; 16:217-227. [PMID: 27723984 DOI: 10.1021/acs.jproteome.6b00596] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza A viruses (IAVs) are aggressive pathogens that cause acute respiratory diseases and annual epidemics in humans. Host defense against IAV infection is initiated by macrophages, which are the principal effector cells of the innate immune system. We have previously shown that IAV infection of human macrophages is associated with robust secretion of proteins via conventional and unconventional protein release pathways. Here we have characterized unconventional, extracellular vesicle (EV)-mediated protein secretion in human macrophages during IAV infection using proteomics, bioinformatics, and functional studies. We demonstrate that at 9 h postinfection a robust EV-mediated protein secretion takes place. We identified 2359 human proteins from EVs of IAV-infected macrophages compared with 1448 proteins identified from EVs of control cells. Bioinformatic analysis shows that many proteins involved in translation, like components of spliceosome machinery and the ribosome, are secreted in EVs in response to IAV infection. Our data also shows that EVs derived from IAV-infected macrophages contain fatty acid-binding proteins, antiviral cytokines, copper metabolism Murr-1 domain proteins, and autophagy-related proteins. In addition, our data suggest that secretory autophagy plays a role in activating EV-mediated protein secretion during IAV infection.
Collapse
Affiliation(s)
- Wojciech Cypryk
- Institute of Biotechnology, University of Helsinki , P.O. Box 56, 00014 Helsinki, Finland
| | - Martina Lorey
- University of Helsinki and Helsinki University Hospital, Rheumatology , 00029 Helsinki, Finland
| | - Anne Puustinen
- Finnish Institute of Occupational Health , Topeliuksenkatu 41 a A, 00250 Helsinki, Finland
| | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki , P.O. Box 56, 00014 Helsinki, Finland.,Institute of Clinical Medicine , Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Sampsa Matikainen
- University of Helsinki and Helsinki University Hospital, Rheumatology , 00029 Helsinki, Finland
| |
Collapse
|
48
|
Li H, Koo Y, Mao X, Sifuentes-Dominguez L, Morris LL, Jia D, Miyata N, Faulkner RA, van Deursen JM, Vooijs M, Billadeau DD, van de Sluis B, Cleaver O, Burstein E. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling. J Cell Biol 2016; 211:605-17. [PMID: 26553930 PMCID: PMC4639872 DOI: 10.1083/jcb.201505108] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
COMMD protein family member COMMD9 regulates the endosome to plasma membrane trafficking of Notch through a unique COMMD–CCDC22–CCDC93 (CCC) complex. Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosomal system is critical in its regulation. In this study we report that Notch recycling to the cell surface is dependent on the COMMD–CCDC22–CCDC93 (CCC) complex, a recently identified regulator of endosomal trafficking. Disruption in this system leads to intracellular accumulation of Notch2 and concomitant reduction in Notch signaling. Interestingly, among the 10 copper metabolism MURR1 domain containing (COMMD) family members that can associate with the CCC complex, only COMMD9 and its binding partner, COMMD5, have substantial effects on Notch. Furthermore, Commd9 deletion in mice leads to embryonic lethality and complex cardiovascular alterations that bear hallmarks of Notch deficiency. Altogether, these studies highlight that the CCC complex controls Notch activation by modulating its intracellular trafficking and demonstrate cargo-specific effects for members of the COMMD protein family.
Collapse
Affiliation(s)
- Haiying Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yeon Koo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xicheng Mao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Lindsey L Morris
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Da Jia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Naoteru Miyata
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rebecca A Faulkner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW-School for Developmental Biology and Oncology, Maastricht University, 6229 ER Maastricht, Netherlands
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Bart van de Sluis
- Molecular Genetics Section - Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
49
|
Esposito E, Napolitano G, Pescatore A, Calculli G, Incoronato MR, Leonardi A, Ursini MV. COMMD7 as a novel NEMO interacting protein involved in the termination of NF-κB signaling. J Cell Physiol 2016; 231:152-61. [PMID: 26060140 DOI: 10.1002/jcp.25066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/05/2015] [Indexed: 11/08/2022]
Abstract
NEMO/IKKγ is the regulatory subunit of the IκB Kinase (IKK) complex, required for the activation of the NF-κB pathway, which is involved in a variety of key processes, including immunity, inflammation, differentiation, and cell survival. Termination of NF-κB activity on specific -κB responsive genes, which is crucial for the resolution of inflammatory responses, can be achieved by direct degradation of the chromatin-bound NF-κB subunit RelA/p65, a process mediated by a protein complex that contains Copper Metabolism Murr1 Domain 1 (COMMD1). In this study, we identify COMMD7, another member of the COMMDs protein family, as a novel NEMO-interacting protein. We show that COMMD7 exerts an inhibitory effect on NF-κB activation upon TNFα stimulation. COMMD7 interacts with COMMD1 and together they cooperate to down-regulate NF-κB activity. Accordingly, termination of TNFα-induced NF-κB activity on the -κB responsive gene, Icam1, is defective in cells silenced for COMMD7 expression. Furthermore, this impairment is not greatly increased when we silence the expression of both COMMD7 and COMMD1 indicating that the two proteins participate in the same pathway of termination of TNFα-induced NF-κB activity. Importantly, we have demonstrated that COMMD7's binding to NEMO does not interfere with the binding to the IKKs, and that the disruption of the IKK complex through the use of the NBP competitor impairs the termination of NF-κB activity. We propose that an intact IKK complex is required for the termination of NF-κB-dependent transcription and that COMMD7 acts as a scaffold in the IKK-mediated NF-κB termination.
Collapse
Affiliation(s)
- Elio Esposito
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Gennaro Napolitano
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Giuseppe Calculli
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | | | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, via S. Pansini 5, Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy.,IRCCS SDN, Via E. Gianturco 113, Naples, Italy
| |
Collapse
|
50
|
Yang Y, Zhou QJ, Chen XQ, Yan BL, Guo XL, Zhang HL, Du AF. Profiling of differentially expressed genes in sheep T lymphocytes response to an artificial primary Haemonchus contortus infection. Parasit Vectors 2015; 8:235. [PMID: 25903558 PMCID: PMC4406218 DOI: 10.1186/s13071-015-0844-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/06/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Haemonchus contortus is a common bloodsucking nematode causing widespread economic loss in agriculture. Upon H. contortus infection, a series of host responses is elicited, especially those related to T lymphocyte immunity. Existing studies mainly focus on the general immune responses of sheep T lymphocyte to H. contortus, lacking investigations at the molecular level. The objective of this study was to obtain a systematic transcriptional profiling of the T lymphocytes in H. contortus primary-infected sheep. METHODS Nematode-free sheep were orally infected once with H. contortus L3s. T lymphocyte samples were collected from the peripheral blood of 0, 3, 30 and 60 days post infection (dpi) infected sheep. Microarrays were used to compare gene transcription levels between samples. Quantitative RT-PCR was employed to validate the microarray data. Gene Ontology and KEGG pathway analysis were utilized for the annotation of differentially expressed genes. RESULTS Our microarray data was consistent with qPCR results. From microarrays, 853, 242 and 42 differentially expressed genes were obtained in the 3d vs. 0d, 30d vs. 0d and 60d vs. 0d comparison groups, respectively. Gene Ontology and KEGG pathway analysis indicated that these genes were involved in metabolism, signaling, cell growth and immune system processes. Functional analysis of significant differentially expressed genes, such as SLC9A3R2, ABCB9, COMMD4, SUGT1, FCER1G, GSK3A, PAK4 and FCER2, revealed a crucial association with cellular homeostasis maintenance and immune response. Our data suggested that maintaining both effective immunological response and natural cellular activity are important for T lymphocytes in fighting against H. contortus infection. CONCLUSIONS Our results provide a substantial list of candidate genes in sheep T lymphocytes response to H. contortus infection, and contribute novel insights into a general immune response upon infection.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Qian-Jin Zhou
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo, 315211, China.
| | - Xue-Qiu Chen
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Bao-Long Yan
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiao-Lu Guo
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Hong-Li Zhang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang center for animal disease control and prevention, Hangzhou, 310000, China.
| | - Ai-Fang Du
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|