1
|
Torta F, Hoffmann N, Burla B, Alecu I, Arita M, Bamba T, Bennett SAL, Bertrand-Michel J, Brügger B, Cala MP, Camacho-Muñoz D, Checa A, Chen M, Chocholoušková M, Cinel M, Chu-Van E, Colsch B, Coman C, Connell L, Sousa BC, Dickens AM, Fedorova M, Eiríksson FF, Gallart-Ayala H, Ghorasaini M, Giera M, Guan XL, Haid M, Hankemeier T, Harms A, Höring M, Holčapek M, Hornemann T, Hu C, Hülsmeier AJ, Huynh K, Jones CM, Ivanisevic J, Izumi Y, Köfeler HC, Lam SM, Lange M, Lee JC, Liebisch G, Lippa K, Lopez-Clavijo AF, Manzi M, Martinefski MR, Math RGH, Mayor S, Meikle PJ, Monge ME, Moon MH, Muralidharan S, Nicolaou A, Nguyen-Tran T, O'Donnell VB, Orešič M, Ramanathan A, Riols F, Saigusa D, Schock TB, Schwartz-Zimmermann H, Shui G, Singh M, Takahashi M, Thorsteinsdóttir M, Tomiyasu N, Tournadre A, Tsugawa H, Tyrrell VJ, van der Gugten G, Wakelam MO, Wheelock CE, Wolrab D, Xu G, Xu T, Bowden JA, Ekroos K, Ahrends R, Wenk MR. Concordant inter-laboratory derived concentrations of ceramides in human plasma reference materials via authentic standards. Nat Commun 2024; 15:8562. [PMID: 39362843 PMCID: PMC11449902 DOI: 10.1038/s41467-024-52087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.
Collapse
Affiliation(s)
- Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore, 169857, Singapore
| | - Nils Hoffmann
- Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Irina Alecu
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, and Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takeshi Bamba
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | - Steffany A L Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, and Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, K1H 8M5, Canada
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Mónica P Cala
- Metabolomics Core Facility-MetCore, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, United Kingdom
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Emeline Chu-Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Cristina Coman
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | | | - Bebiana C Sousa
- Babraham Institute, Babraham Research Campus, Cambridge, MA, CB22 3AT, USA
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, 04013, Leipzig, Germany
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307, Dresden, Germany
| | - Finnur Freyr Eiríksson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
- ArcticMass, Reykjavik, Iceland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mohan Ghorasaini
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marcus Höring
- University Hospital of Regensburg, Institute of Clinical Chemistry and Laboratory Medicine, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Zurich, 8952, Schlieren, Switzerland
| | - Chunxiu Hu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Andreas J Hülsmeier
- Institute of Clinical Chemistry, University Zurich, 8952, Schlieren, Switzerland
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christina M Jones
- Chemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yoshihiro Izumi
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, 8010, Graz, Austria
| | - Sin Man Lam
- LipidALL Technologies, Changzhou, 213000, Jiangshu, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mike Lange
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, 04013, Leipzig, Germany
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Gerhard Liebisch
- University Hospital of Regensburg, Institute of Clinical Chemistry and Laboratory Medicine, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Katrice Lippa
- Chemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | | | - Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Desarrollo Analítico y Control de Procesos, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, Buenos Aires, Argentina
| | - Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, Junin 954, Junin, C1113AAD, CABA, Argentina
| | - Raviswamy G H Math
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, United Kingdom
| | - Thao Nguyen-Tran
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, and Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81, Örebro, Sweden
| | - Arvind Ramanathan
- Institute for Stem Cell Science and Regenerative Medicine, 560065, Bangalore, India
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Tracey B Schock
- Chemical Science Division, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Heidi Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFATulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Madhulika Singh
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Masatomo Takahashi
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | - Margrét Thorsteinsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
- ArcticMass, Reykjavik, Iceland
| | - Noriyuki Tomiyasu
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | | | - Hiroshi Tsugawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Grace van der Gugten
- St. Paul's Hospital, Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada
| | - Michael O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, MA, CB22 3AT, USA
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tianrun Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Espoo, Finland.
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria.
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
Iannone V, Lok J, Babu AF, Gómez-Gallego C, Willman RM, Koistinen VM, Klåvus A, Kettunen MI, Kårlund A, Schwab U, Hanhineva K, Kolehmainen M, El-Nezami H. Associations of altered hepatic gene expression in American lifestyle-induced obesity syndrome diet-fed mice with metabolic changes during NAFLD development and progression. J Nutr Biochem 2023; 115:109307. [PMID: 36868506 DOI: 10.1016/j.jnutbio.2023.109307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains poorly understood due to the complex metabolic and inflammatory changes in the liver. This study aimed to elucidate hepatic events related to inflammation and lipid metabolism and their linkage with metabolic alterations during NAFLD in American lifestyle-induced obesity syndrome (ALIOS) diet-fed mice. Forty-eight C57BL/6J male mice were fed with ALIOS diet (n=24) or control chow diet (n=24) for 8, 12, and 16 weeks. At the end of each timepoint, eight mice were sacrificed where plasma and liver were collected. Hepatic fat accumulation was followed using magnetic resonance imaging and confirmed with histology. Further, targeted gene expression and non-targeted metabolomics analysis were conducted. Our results showed higher hepatic steatosis, body weight, energy consumption, and liver mass in ALIOS diet-fed mice compared to control mice. ALIOS diet altered expression of genes related to inflammation (Tnfa and IL-6) and lipid metabolism (Cd36, Fasn, Scd1, Cpt1a, and Ppara). Metabolomics analysis indicated decrease of lipids containing polyunsaturated fatty acids such as LPE(20:5) and LPC(20:5) with increase of other lipid species such as LPI(16:0) and LPC(16:2) and peptides such as alanyl-phenylalanine and glutamyl-arginine. We further observed novel correlations between different metabolites including sphingolipid, lysophospholipids, peptides, and bile acid with inflammation, lipid uptake and synthesis. Together with the reduction of antioxidant metabolites and gut microbiota-derived metabolites contribute to NAFLD development and progression. The combination of non-targeted metabolomics with gene expression in future studies can further identify key metabolic routes during NAFLD which could be the targets of potential novel therapeutics.
Collapse
Affiliation(s)
- Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Roosa Maria Willman
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Mikael Koistinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland; Department of Life technologies, Food Sciences Unit, University of Turku, Turku, Finland
| | | | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Kårlund
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland; Department of Life technologies, Food Sciences Unit, University of Turku, Turku, Finland.
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Hong Kong China
| |
Collapse
|
3
|
Jiang X, Hao J, Zhu Y, Liu Z, Li L, Zhou Y, Li Y, Teng L, Wang D. The anti-obesity effects of a water-soluble glucan from Grifola frondosa via the modulation of chronic inflammation. Front Immunol 2022; 13:962341. [PMID: 35967316 PMCID: PMC9367694 DOI: 10.3389/fimmu.2022.962341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides from Grifola frondosa (G. frondosa) have anti-obesity and anti-inflammatory activities. In this study, the major type, molecular weight, homogeneity and structure of a polysaccharide purified from G. frondosa (denoted GFPA) were determined. In high-fat diet (HFD)-treated mice, 8 weeks of GFPA administration efficiently decreased body weight and blood glucose concentration and counteracted hyperlipidemia. GFPA efficiently decreased adipocyte size and ameliorated inflammatory infiltration in the three types of white adipose tissue and alleviated steatosis, fat accumulation and inflammatory infiltration in the livers of HFD-fed mice. GFPA also decreased the concentrations of aspartate aminotransferase, alanine aminotransferase and pro-inflammatory factors in the sera and livers of HFD-treated mice. Furthermore, GFPA was found to regulate lipid metabolism via the inhibition of ceramide levels in HFD-treated mice. GFPA exhibited strong anti-obesity effects via the modulation of chronic inflammation through Toll-like receptor 4/nuclear factor kappa-B signaling, which supports the use of GFPA for the treatment of obesity.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun, China
| | - Zijian Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Di Wang, ; ; Lirong Teng,
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Wang, ; ; Lirong Teng,
| |
Collapse
|
4
|
Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. Int J Mol Sci 2022; 23:ijms23052719. [PMID: 35269861 PMCID: PMC8911014 DOI: 10.3390/ijms23052719] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Ceramides, composed of a sphingosine and a fatty acid, are bioactive lipid molecules involved in many key cellular pathways (e.g., apoptosis, oxidative stress and inflammation). There is much evidence on the relationship between ceramide species and cardiometabolic disease, especially in relationship with the onset and development of diabetes and acute and chronic coronary artery disease. This review reports available evidence on ceramide structure and generation, and discusses their role in cardiometabolic disease, as well as current translational chances and difficulties for ceramide application in the cardiometabolic clinical settings.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3153525
| |
Collapse
|
5
|
Michelucci E, Rocchiccioli S, Gaggini M, Ndreu R, Berti S, Vassalle C. Ceramides and Cardiovascular Risk Factors, Inflammatory Parameters and Left Ventricular Function in AMI Patients. Biomedicines 2022; 10:biomedicines10020429. [PMID: 35203637 PMCID: PMC8962314 DOI: 10.3390/biomedicines10020429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Ceramides, biologically active lipids correlated to oxidative stress and inflammation, have been associated with adverse outcomes in acute myocardial infarction (AMI). The purpose of this study was to assess the association between ceramides/ratios included in the CERT1 score and increased cardiovascular (CV) risk, inflammatory and left ventricular function parameters in AMI. Methods: high performance liquid chromatography-tandem mass spectrometry was used to identify Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels and their ratios to Cer(d18:1/24:0), in 123 AMI patients (FTGM coronary unit, Massa, Italy). Results: Cer(d18:1/16:0): higher in female patients (<0.05), in patients with dyslipidemia (<0.05), and it directly and significantly correlated with aging, brain natriuretic peptide-BNP, erythrocyte sedimentation rate-ESR and fibrinogen. Cer(d18:1/18:0): higher in females (<0.01) and patients with dyslipidemia (<0.01), and increased according to the number of CV risk factors (considering hypertension, dyslipidemia and diabetes). Moreover, it significantly correlated with BNP, troponin at admission, ESR, C reactive protein-CRP, and fibrinogen. Cer(d18:1/24:1): significantly correlated with aging, BNP, fibrinogen and neutrophils. Cer(d18:1/16:0)/Cer(d18:1/24:0): higher in female patients (<0.05), and in patients with higher wall motion score index-WMSI (>1.7; ≤0.05), and in those with multivessel disease (<0.05). Moreover, it significantly correlated with aging, BNP, CRP, ESR, neutrophil-to-lymphocyte ratio-NRL, and fibrinogen. Cer(d18:1/18:0)/Cer(d18:1/24:0): higher in female patients (<0.001), and increased according to age. Moreover, it was higher in patients with lower left ventricular ejection fraction (<35%, ≤0.01), higher WMSI (>1.7, <0.05), and in those with multivessel disease (0.13 ± 0.06 vs. 0.10 ± 0.05 µM, <0.05), and correlates with BNP, ESR, CRP, fibrinogen and neutrophils, platelets, NLR, and troponin at admission. Multiple regression analysis showed that Cer(d18:1/16:0)/Cer(d18:1/24:0) and Cer(d18:1/18:0)/Cer(d18:1/24:0) remained as independent determinants for WMSI after multivariate adjustment (Std coeff 0.17, T-value 1.9, ≤0.05; 0.21, 2.6, <0.05, respectively). Conclusion: Distinct ceramide species are associated with CV risk, inflammation and disease severity in AMI. Thus, a detailed analysis of ceramides may help to better understand CV pathobiology and suggest these new biomarkers as possible risk predictors and pharmacological targets in AMI patients.
Collapse
Affiliation(s)
- Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.M.); (S.R.); (M.G.); (R.N.)
| | - Sergio Berti
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy;
- Correspondence:
| |
Collapse
|
6
|
Ożegowska K, Plewa S, Mantaj U, Pawelczyk L, Matysiak J. Serum Metabolomics in PCOS Women with Different Body Mass Index. J Clin Med 2021; 10:jcm10132811. [PMID: 34202365 PMCID: PMC8268990 DOI: 10.3390/jcm10132811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine and metabolic disorder, affecting 5–10% of women of reproductive age. It results from complex environmental factors, genetic predisposition, hyperinsulinemia, hormonal imbalance, neuroendocrine abnormalities, chronic inflammation, and autoimmune disorders. PCOS impacts menstrual regularities, fertility, and dermatological complications, and may induce metabolic disturbances, diabetes, and coronary heart disease. Comprehensive metabolic profiling of patients with PCOS may be a big step in understanding and treating the disease. The study aimed to search for potential differences in metabolites concentrations among women with PCOS according to different body mass index (BMI) in comparison to healthy controls. We used broad-spectrum targeted metabolomics to evaluate metabolites’ serum concentrations in PCOS patients and compared them with healthy controls. The measurements were performed using high-performance liquid chromatography coupled with the triple quadrupole tandem mass spectrometry technique, which has highly selective multiple reaction monitoring modes. The main differences were found in glycerophospholipid concentrations, with no specific tendency to up-or down-regulation. Insulin resistance and elevated body weight influence acylcarnitine C2 levels more than PCOS itself. Sphingomyelin (SM) C18:1 should be more intensively observed and examined in future studies and maybe serve as one of the PCOS biomarkers. No significant correlations were observed between anthropometric and hormonal parameters and metabolome results.
Collapse
Affiliation(s)
- Katarzyna Ożegowska
- Department of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
- Correspondence:
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (S.P.); (J.M.)
| | - Urszula Mantaj
- Division of Reproduction, Medical Faculty I, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Leszek Pawelczyk
- Department of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (S.P.); (J.M.)
| |
Collapse
|
7
|
Associations between plasma ceramides and mortality in patients with coronary artery disease. Atherosclerosis 2020; 314:77-83. [DOI: 10.1016/j.atherosclerosis.2020.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
|
8
|
Mohamed DA, Mohamed NM, Abdelrahaman S. Histological and Biochemical Changes in Adult Male Rat Liver after Spinal Cord Injury with Evaluation of the Role of Granulocyte-Colony Stimulating Factor. Ultrastruct Pathol 2020; 44:395-411. [PMID: 33280459 DOI: 10.1080/01913123.2020.1844829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease leading to motor disability. Metabolic dysfunction is another complication of SCI. Thus, we aimed to study the effect of SCI on the histological and biochemical structure of the liver in adult male rats and to delineate the role of post-injury administration of G-CSF. Thirty adult male Sprague-Dawley rats were assigned into three groups: Group I; control (18 rats subdivided equally into three subgroups), and 12 rats underwent SCI and were divided into an SCI group II and G-SCF-treated group III. Twenty-one days post-injury, liver sections were processed for light and electron microscopic examinations and immunohistochemical staining for PCNA and CD68 antibodies. The biochemical assay was carried out for detection of serum levels of ALT, AST, total proteins, albumin, total cholesterol, triglycerides, HDL-c, GSH and MDA. Liver tissue levels of GPx and MDA as well as semiquantitative RT-PCR analysis of hepatic cytokine expression were also conducted. In the SCI group, results showed liver tissue damage in the form of lipid infiltration, blood vessel congestion, vacuolated cells with apoptotic nuclei and increased collagen deposition. Increased CD68-positive macrophages and a decreased number of PCNA-positive cells was detected. Moreover, liver enzymes, total cholesterol and triglycerides were increased while serum albumin, total proteins and HDL-c were decreased in the SCI group. Oxidative stress and increased expression of inflammatory cytokines were detected. Administration of G-CSF induced significant liver improvement with retained liver function by anti-inflammatory, immune-modulatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Dalia A Mohamed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University , Zagazig, Egypt.,Anatomy and Histology Department, College of Medicine, Qassim University , Elmulida, KSA
| | - Noura Mostafa Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University , Zagazig, Egypt.,Department of Science, Faculty of Preparatory Year of Health Sciences, PNU University , Riyadh, KSA
| | - Shaimaa Abdelrahaman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University , Zagazig, Egypt
| |
Collapse
|
9
|
Ketones Elicit Distinct Alterations in Adipose Mitochondrial Bioenergetics. Int J Mol Sci 2020; 21:ijms21176255. [PMID: 32872407 PMCID: PMC7503338 DOI: 10.3390/ijms21176255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: The rampant growth of obesity worldwide has stimulated explosive research into human metabolism. Energy expenditure has been shown to be altered by diets differing in macronutrient composition, with low-carbohydrate, ketogenic diets eliciting a significant increase over other interventions. The central aim of this study was to explore the effects of the ketone β-hydroxybutyrate (βHB) on mitochondrial bioenergetics in adipose tissue. Methods: We employed three distinct systems—namely, cell, rodent, and human models. Following exposure to elevated βHB, we obtained adipose tissue to quantify mitochondrial function. Results: In every model, βHB robustly increased mitochondrial respiration, including an increase of roughly 91% in cultured adipocytes, 113% in rodent subcutaneous adipose tissue (SAT), and 128% in human SAT. However, this occurred without a commensurate increase in adipose ATP production. Furthermore, in cultured adipocytes and rodent adipose, we quantified and observed an increase in the gene expression involved in mitochondrial biogenesis and uncoupling status following βHB exposure. Conclusions: In conclusion, βHB increases mitochondrial respiration, but not ATP production, in mammalian adipocytes, indicating altered mitochondrial coupling. These findings may partly explain the increased metabolic rate evident in states of elevated ketones, and may facilitate the development of novel anti-obesity interventions.
Collapse
|
10
|
Klatt‐Schreiner K, Valek L, Kang J, Khlebtovsky A, Trautmann S, Hahnefeld L, Schreiber Y, Gurke R, Thomas D, Wilken‐Schmitz A, Wicker S, Auburger G, Geisslinger G, Lötsch J, Pfeilschifter W, Djaldetti R, Tegeder I. High Glucosylceramides and Low Anandamide Contribute to Sensory Loss and Pain in Parkinson's Disease. Mov Disord 2020; 35:1822-1833. [DOI: 10.1002/mds.28186] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
| | - Lucie Valek
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Jun‐Suk Kang
- Department of Neurology Goethe‐University Hospital Frankfurt Germany
| | - Alexander Khlebtovsky
- Department of Neurology Rabin Medical Center Petach Tiqva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Sandra Trautmann
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | | | - Robert Gurke
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Annett Wilken‐Schmitz
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Sabine Wicker
- Occupational Health Service Goethe‐University Hospital Frankfurt Germany
| | - Georg Auburger
- Department of Neurology Goethe‐University Hospital Frankfurt Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology Branch Translational Medicine Frankfurt Germany
- Fraunhofer Cluster of Excellence for immune mediated diseases (CIMD)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology Branch Translational Medicine Frankfurt Germany
- Fraunhofer Cluster of Excellence for immune mediated diseases (CIMD)
| | | | - Ruth Djaldetti
- Department of Neurology Rabin Medical Center Petach Tiqva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| |
Collapse
|
11
|
Chen T, Hill JT, Moore TM, Cheung ECK, Olsen ZE, Piorczynski TB, Marriott TD, Tessem JS, Walton CM, Bikman BT, Hansen JM, Thomson DM. Lack of skeletal muscle liver kinase B1 alters gene expression, mitochondrial content, inflammation and oxidative stress without affecting high-fat diet-induced obesity or insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165805. [PMID: 32339642 DOI: 10.1016/j.bbadis.2020.165805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
Ad libitum high-fat diet (HFD) induces obesity and skeletal muscle metabolic dysfunction. Liver kinase B1 (LKB1) regulates skeletal muscle metabolism by controlling the AMP-activated protein kinase family, but its importance in regulating muscle gene expression and glucose tolerance in obese mice has not been established. The purpose of this study was to determine how the lack of LKB1 in skeletal muscle (KO) affects gene expression and glucose tolerance in HFD-fed, obese mice. KO and littermate control wild-type (WT) mice were fed a standard diet or HFD for 14 weeks. RNA sequencing, and subsequent analysis were performed to assess mitochondrial content and respiration, inflammatory status, glucose and insulin tolerance, and muscle anabolic signaling. KO did not affect body weight gain on HFD, but heavily impacted mitochondria-, oxidative stress-, and inflammation-related gene expression. Accordingly, mitochondrial protein content and respiration were suppressed while inflammatory signaling and markers of oxidative stress were elevated in obese KO muscles. KO did not affect glucose or insulin tolerance. However, fasting serum insulin and skeletal muscle insulin signaling were higher in the KO mice. Furthermore, decreased muscle fiber size in skmLKB1-KO mice was associated with increased general protein ubiquitination and increased expression of several ubiquitin ligases, but not muscle ring finger 1 or atrogin-1. Taken together, these data suggest that the lack of LKB1 in skeletal muscle does not exacerbate obesity or insulin resistance in mice on a HFD, despite impaired mitochondrial content and function and elevated inflammatory signaling and oxidative stress.
Collapse
Affiliation(s)
- Ting Chen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Eric C K Cheung
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Zachary E Olsen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Tanner D Marriott
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Chase M Walton
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA; Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
12
|
Goodus MT, McTigue DM. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology? Exp Neurol 2019; 325:113160. [PMID: 31863731 DOI: 10.1016/j.expneurol.2019.113160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The liver is essential for numerous physiological processes, including filtering blood from the intestines, metabolizing fats, proteins, carbohydrates and drugs, and regulating iron storage and release. The liver is also an important immune organ and plays a critical role in response to infection and injury throughout the body. Liver functions are regulated by autonomic parasympathetic innervation from the brainstem and sympathetic innervation from the thoracic spinal cord. Thus, spinal cord injury (SCI) at or above thoracic levels disrupts major regulatory mechanisms for hepatic functions. Work in rodents and humans shows that SCI induces liver pathology, including hepatic inflammation and fat accumulation characteristic of a serious form of non-alcoholic fatty liver disease (NAFLD) called non-alcoholic steatohepatitis (NASH). This hepatic pathology is associated with and likely contributes to indices of metabolic dysfunction often noted in SCI individuals, such as insulin resistance and hyperlipidemia. These occur at greater rates in the SCI population and can negatively impact health and quality of life. In this review, we will: 1) Discuss acute and chronic changes in human and rodent liver pathology and function after SCI; 2) Describe how these hepatic changes affect systemic inflammation, iron regulation and metabolic dysfunction after SCI; 3) Describe how disruption of the hepatic autonomic nervous system may be a key culprit in post-injury chronic liver pathology; and 4) Preview ongoing and future research that aims to elucidate mechanisms driving liver and metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Hammoudeh S, Gadelhak W, Janahi IA. Asthma and obesity in the Middle East region: An overview. Ann Thorac Med 2019; 14:116-121. [PMID: 31007762 PMCID: PMC6467016 DOI: 10.4103/atm.atm_115_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 01/03/2023] Open
Abstract
This paper aims to cover the current status of asthma and obesity in the Middle East, as well as to introduce the various studies tying the two diseases; further expanding on the proposed mechanisms. Finally, the paper covers recent literature related to sphingolipids and its role in asthma, followed by recommendations and future directions. In preparation of this paper, we searched PubMed and Google Scholar, with no restrictions, using the following terms; asthma, obesity, Middle East, sphingolipids. We also used the reference list of retrieved articles to further expand on the pool of articles that were used for this review.
Collapse
Affiliation(s)
- Samer Hammoudeh
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Wessam Gadelhak
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahim A. Janahi
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
- Pediatric Pulmonology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
14
|
Kim MS, Kim IY, Sung HR, Nam M, Kim YJ, Kyung DS, Seong JK, Hwang GS. Metabolic dysfunction following weight regain compared to initial weight gain in a high-fat diet-induced obese mouse model. J Nutr Biochem 2019; 69:44-52. [PMID: 31048208 DOI: 10.1016/j.jnutbio.2019.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Diet-induced weight loss and regain leads to physiological and metabolic changes, some of which are potentially harmful. However, the specific metabolic processes and dysfunctions associated with weight regain, and how they differ from initial weight gain, remain unclear. Thus, we examined the metabolic profiles of mice following weight regain compared to initial weight gain. Mice were fed a normal diet or a high-fat diet or were cycled between the two diets to alternate between obese and lean states. Liver samples were collected and hepatic metabolites were profiled using nuclear magnetic resonance (NMR). The identified metabolites associated with weight regain were quantified using gas chromatography/mass spectrometry (GC/MS) and lipid profiles were assessed using ultra-high-performance liquid chromatography-quadrupole time-of-flight MS (UPLC-QTOF-MS). In addition, changes in expression of pro-inflammatory cytokines and gluconeogenic enzymes were investigated using polymerase chain reaction (PCR) and western blotting, respectively. Hepatic levels of several amino acids were reduced in mice during weight regain compared with initial weight gain. In addition, gluconeogenic enzyme levels were increased following weight regain, indicating an up-regulation of gluconeogenesis. Lipidomic profiling revealed that levels of ceramide and sphingomyelin, which are related to obesity-induced inflammation, were significantly increased during weight regain compared to initial weight gain. Moreover, tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) levels were significantly up-regulated during weight regain. In this study, weight regains lead to an up-regulation of gluconeogenesis and aggravated inflammation. Additionally, weight regain can worsen the metabolic dysfunction associated with obesity.
Collapse
Affiliation(s)
- Min-Sun Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Republic of Korea; Food Analysis Center, Korea Food Research Institute, Wanju, Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Rim Sung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Republic of Korea; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Soo Kyung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Republic of Korea; Department of Life Science, Ewha Woman's University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
15
|
Alterations of Sphingolipid Metabolism in Different Types of Polycystic Ovary Syndrome. Sci Rep 2019; 9:3204. [PMID: 30824725 PMCID: PMC6397209 DOI: 10.1038/s41598-019-38944-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
The roles of sphingolipids in polycystic ovary syndrome (PCOS) are still unknown. This study aimed to investigate the sphingolipid characteristics for different types of PCOS using liquid chromatography-mass spectrometry (LC-MS). A total of 107 women with PCOS and 37 healthy women as normal controls were studied. PCOS patients were further classified into non-obesity with insulin resistance (IR) (NOIR), obesity with IR (OIR), and non-obesity and non-IR (NIR) subgroups. A total of 87 serum sphingolipids, including 9 sphingosines, 3 sphinganines, 1 sphingosine-1-phosphate (S1P), 19 ceramides (Cers), 1 ceramide-1-phosphate, 44 sphingomyelins (SMs), 4 hexosylceramides, and 6 lactosylceramides (LacCers) were analyzed using an improved sphingolipidomic approach based on LC-MS. Notable elevations in the levels of S1P, Cer, and SM were observed in PCOS patients when compared with healthy women, and SM species with long saturated acyl chains showed potential as novel biomarkers of PCOS. In addition, the level of LacCer was only elevated in NIR, and there was almost no change in NOIR and OIR. This study is the first to report the comprehensive sphingolipidomic profiling of different subgroups of PCOS with or without IR or obesity and suggests that serum sphingolipids might be useful as diagnostic biomarkers for different types of PCOS.
Collapse
|
16
|
Vitamin E alleviates non-alcoholic fatty liver disease in phosphatidylethanolamine N-methyltransferase deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1865:14-25. [PMID: 30300671 DOI: 10.1016/j.bbadis.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt-/- mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt-/- mice. Treatment with vitamin E (0.5 g/kg) for 3 weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt-/- mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.
Collapse
|
17
|
Feng S, Dai Z, Liu AB, Huang J, Narsipur N, Guo G, Kong B, Reuhl K, Lu W, Luo Z, Yang CS. Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1274-1284. [PMID: 30305244 DOI: 10.1016/j.bbalip.2018.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/28/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD). METHODS Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17 weeks. RESULTS Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides. CONCLUSION Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.
Collapse
Affiliation(s)
- Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhuqing Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Anna B Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinbao Huang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; State Key Laboratory of Tea Plant Biology and Utilization School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Nihal Narsipur
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenyun Lu
- Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zisheng Luo
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Régnier M, Polizzi A, Guillou H, Loiseau N. Sphingolipid metabolism in non-alcoholic fatty liver diseases. Biochimie 2018; 159:9-22. [PMID: 30071259 DOI: 10.1016/j.biochi.2018.07.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) involves a panel of pathologies starting with hepatic steatosis and continuing to irreversible and serious conditions like steatohepatitis (NASH) and hepatocarcinoma. NAFLD is multifactorial in origin and corresponds to abnormal fat deposition in liver. Even if triglycerides are mostly associated with these pathologies, other lipid moieties seem to be involved in the development and severity of NAFLD. That is the case with sphingolipids and more particularly ceramides. In this review, we explore the relationship between NAFLD and sphingolipid metabolism. After providing an analysis of complex sphingolipid metabolism, we focus on the potential involvement of sphingolipids in the different pathologies associated with NAFLD. An unbalanced ratio between ceramides and terminal metabolic products in the liver and plasma promotes weight gain, inflammation, and insulin resistance. In the etiology of NAFLD, some sphingolipid species such as ceramides may be potential biomarkers for NAFLD. We review the clinical relevance of sphingolipids in liver diseases.
Collapse
Affiliation(s)
- Marion Régnier
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Arnaud Polizzi
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Nicolas Loiseau
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France.
| |
Collapse
|
19
|
Kato S, Berzofsky JA, Terabe M. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity. Front Immunol 2018; 9:314. [PMID: 29520281 PMCID: PMC5827362 DOI: 10.3389/fimmu.2018.00314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Jay A. Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Masaki Terabe
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Summers SA. Could Ceramides Become the New Cholesterol? Cell Metab 2018; 27:276-280. [PMID: 29307517 DOI: 10.1016/j.cmet.2017.12.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022]
Abstract
The Mayo Clinic recently introduced a diagnostic test that quantifies plasma ceramides in order to identify patients at risk of major adverse cardiac events. By comparing recent discoveries about these biomarker ceramides with the exhaustive body of literature surrounding cholesterol, Summers aims to highlight important advances and critically needed areas of investigation on this exciting class of bioactive lipids.
Collapse
Affiliation(s)
- Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Carlsson ER, Grundtvig JLG, Madsbad S, Fenger M. Changes in Serum Sphingomyelin After Roux-en-Y Gastric Bypass Surgery Are Related to Diabetes Status. Front Endocrinol (Lausanne) 2018; 9:172. [PMID: 29922223 PMCID: PMC5996901 DOI: 10.3389/fendo.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Metabolic surgery is superior to lifestyle intervention in reducing weight and lowering glycemia and recently suggested as treatment for type 2 diabetes mellitus. Especially Roux-en-Y gastric bypass (RYGB) has been focus for much research, but still the mechanisms of action are only partly elucidated. We suggest that several mechanisms might be mediated by sphingolipids like sphingomyelin. We measured serum sphingomyelin before and up to 2 years after RYGB surgery in 220 patients, divided before surgery in one non-diabetic subgroup and two diabetic subgroups, one of which contained patients obtaining remission of type 2 diabetes after RYGB, while patients in the other still had diabetes after RYGB. Pre- and postoperative sphingomyelin levels were compared within and between groups. Sphingomyelin levels were lower in diabetic patients than in non-diabetic patients before surgery. Following RYGB, mean sphingomyelin concentration fell significantly in the non-diabetic subgroup and the preoperative difference between patients with and without diabetes disappeared. Changes in diabetic subgroups were not significant. Relative to bodyweight, an increase in sphingomyelin was seen in all subgroups, irrespective of diabetes status. We conclude that RYGB has a strong influence on sphingomyelin metabolism, as seen reflected in changed serum levels. Most significantly, no differences between the two diabetic subgroups were detected after surgery, which might suggest that patients in both groups still are in a "diabetic state" using the non-diabetic subgroup as a reference.
Collapse
Affiliation(s)
- Elin Rebecka Carlsson
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
22
|
Study of the metabolomics characteristics of patients with metabolic syndrome based on liquid chromatography quadrupole time-of-flight mass spectrometry. ANNALES D'ENDOCRINOLOGIE 2017; 79:37-44. [PMID: 29246383 DOI: 10.1016/j.ando.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/14/2017] [Accepted: 05/27/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metabolic syndrome (MS) is a disease with complex pathophysiology and pathogenesis involving multiple systems of the human body. This study aimed to identify serum metabolites that are relevant to MS. MATERIAL AND METHODS This study involved 40 patients with MS and 28 healthy adults, and the following data were statistically analyzed: basic clinical data, blood lipids, fasting blood glucose, blood pressure, waist circumference, and visceral fat coefficient. Serum samples from both groups were collected and analyzed by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS); multivariate and univariate statistical methods were used to identify potential MS biomarkers and MS-related metabolic pathways. In addition, leucine and valine levels in serum from MS patients and normal subjects were measured using enzyme-linked immunosorbent assays (ELISAs). RESULTS In this study, 23 potential biomarkers were identified in the plasma of MS patients. These biomarkers were mainly related to metabolism; the tricarboxylic acid cycle; galactose metabolism; arachidonic acid metabolism; valine, leucine, and isoleucine degradation; and valine, leucine, and isoleucine biosynthesis. ELISAs were utilized to verify serum leucine and valine levels, and the results supported the experimental metabolomics results. CONCLUSIONS In total, 23 MS-related metabolites were identified in the serum; these differential metabolites were mainly associated with lipid metabolism, amino acid metabolism, glucose metabolism, purine metabolism, and other related metabolic pathways. This study shows that LC/MS-based metabolomics methods can be used to investigate the pathological changes in MS patients and identify biomarkers for the early diagnosis of MS.
Collapse
|
23
|
Moisá SJ, Ji P, Drackley JK, Rodriguez-Zas SL, Loor JJ. Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy. J Anim Sci Biotechnol 2017; 8:85. [PMID: 29214018 PMCID: PMC5713657 DOI: 10.1186/s40104-017-0215-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Dairy cows can readily overconsume dietary energy during most of the prepartum period, often leading to higher prepartal concentrations of insulin and glucose and excessive body fat deposition. The end result of these physiologic changes is greater adipose tissue lipolysis post-partum coupled with excessive hepatic lipid accumulation and compromised health. Although transcriptional regulation of the adipose response to energy availability is well established in non-ruminants, such regulation in cow adipose tissue depots remains poorly characterized. Results Effects of ad-libitum access to high [HIGH; 1.62 Mcal/kg of dry matter (DM)] or adequate (CON; 1.35 Mcal/kg of DM) dietary energy for 8 wk on mesenteric (MAT) and subcutaneous (SAT) adipose tissue transcript profiles were assessed in non-pregnant non-lactating Holstein dairy cows using a 13,000-sequence annotated bovine oligonucleotide microarray. Statistical analysis revealed 409 and 310 differentially expressed genes (DEG) due to tissue and diet. Bioinformatics analysis was conducted using the Dynamic Impact Approach (DIA) with the KEGG pathway database. Compared with SAT, MAT had more active biological processes related to adipose tissue accumulation (adiponectin secretion) and signs of pro-inflammatory processes due to adipose tissue expansion and macrophage infiltration (generation of ceramides). Feeding the HIGH diet led to changes in mRNA expression of genes associated with cell hypertrophy (regucalcin), activation of adipogenesis (phospholipid phosphatase 1), insulin signaling activation (neuraminidase 1) and angiogenesis (semaphorin 4G, plexin B1). Further, inflammation due to HIGH was underscored by mRNA expression changes associated with oxidative stress response (coenzyme Q3, methyltransferase), ceramide synthesis (N-acylsphingosine amidohydrolase 1), and insulin signaling (interferon regulatory factor 1, phosphoinositide-3-kinase regulatory subunit 1, retinoic acid receptor alpha). Activation of ribosome in cows fed HIGH indicated the existence of greater adipocyte growth rate (M-phase phosphoprotein 10, NMD3 ribosome export adaptor). Conclusions The data indicate that long-term ad-libitum access to a higher-energy diet led to transcriptional changes in adipose tissue that stimulated hypertrophy and the activity of pathways associated with a slight but chronic inflammatory response. Further studies would be helpful in determining the extent to which mRNA results also occur at the protein level.
Collapse
Affiliation(s)
- S J Moisá
- Department of Animal Sciences, Auburn University, 231 Upchurch Hall, 361 Mell Street, Auburn, AL 36849-5426 USA
| | - P Ji
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| | - S L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| |
Collapse
|
24
|
de Mello-Coelho V, Cutler RG, Bunbury A, Tammara A, Mattson MP, Taub DD. Age-associated alterations in the levels of cytotoxic lipid molecular species and oxidative stress in the murine thymus are reduced by growth hormone treatment. Mech Ageing Dev 2017; 167:46-55. [PMID: 28865931 DOI: 10.1016/j.mad.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/24/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
During age-associated thymic involution, thymocytes decrease and lipid-laden cells accumulate. However, if and how aging affects the thymic lipid profile is not well understood, nor is it known if the hormonal milieu modifies this process. Here we demonstrate a correlation between reduced thymocyte numbers and markers of inflammation and oxidative stress with age. Evaluating the lipidomics profile of the whole thymus, between the ages of 4 (young) and 18 months (old), we found increased amounts of triacylglycerides, free cholesterol, cholesterol ester and 4-hydroxynonenal (4-HNE) with age. Moreover, levels of C24:0 and C24:1 sphingomyelins and ceramide C16:0 were elevated in 12-14 month-old (middle-aged) mice while the levels of sulfatide ceramide and ganglioside GD1a increased in the old thymus. Evaluating isolated thymocytes, we found increased levels of cholesterol ester and 4-HNE adducts, as compared to young mice. Next, we treated middle-aged mice with growth hormone (GH), which has been considered a potent immunomodulator. GH reduced thymic levels of TNF-α and 4-HNE and increased the number of thymocytes as well as the thymic levels of dihydroceramide, a ceramide precursor and autophagic stimuli for cell survival. In conclusion, GH treatment attenuated inflammation and age-related increases in oxidative stress and lipotoxicity in the thymus.
Collapse
Affiliation(s)
- Valeria de Mello-Coelho
- Laboratory of Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6825, USA; Laboratory of Immunophysiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Roy G Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6825, USA.
| | - Allyson Bunbury
- Laboratory of Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6825, USA.
| | - Anita Tammara
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6825, USA.
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6825, USA.
| | - Dennis D Taub
- Laboratory of Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6825, USA; Center for Translational Studies, Medical Service, VA Medical Center-DC, Washington DC, 20422, USA.
| |
Collapse
|
25
|
Taylor OJ, Thatcher MO, Carr ST, Gibbs JL, Trumbull AM, Harrison ME, Winden DR, Pearson MJ, Tippetts TS, Holland WL, Reynolds PR, Bikman BT. High-Mobility Group Box 1 Disrupts Metabolic Function with Cigarette Smoke Exposure in a Ceramide-Dependent Manner. Int J Mol Sci 2017; 18:E1099. [PMID: 28531105 PMCID: PMC5455007 DOI: 10.3390/ijms18051099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 11/23/2022] Open
Abstract
We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1), which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure.
Collapse
Affiliation(s)
- Oliver J Taylor
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Mikayla O Thatcher
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Sheryl T Carr
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jonathan L Gibbs
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Annie M Trumbull
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Mitchell E Harrison
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Duane R Winden
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA.
| | - Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390; USA.
| | - Trevor S Tippetts
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390; USA.
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390; USA.
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
26
|
Gessner DK, Winkler A, Koch C, Dusel G, Liebisch G, Ringseis R, Eder K. Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract. BMC Genomics 2017; 18:253. [PMID: 28335726 PMCID: PMC5364584 DOI: 10.1186/s12864-017-3638-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background It was recently reported that dairy cows fed a polyphenol-rich grape seed and grape marc meal extract (GSGME) during the transition period had an increased milk yield, but the underlying reasons remained unclear. As polyphenols exert a broad spectrum of metabolic effects, we hypothesized that feeding of GSGME influences metabolic pathways in the liver which could account for the positive effects of GSGME in dairy cows. In order to identify these pathways, we performed genome-wide transcript profiling in the liver and lipid profiling in plasma of dairy cows fed GSGME during the transition period at 1 week postpartum. Results Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts, from which 156 were up- and 51 were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were dealing with cell cycle regulation and the most enriched Kyoto Encyclopedia of Genes and Genomes pathways were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that a great part of these genes are involved in endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and inflammatory processes. Accordingly, protein folding, response to unfolded protein, unfolded protein binding, chemokine activity and heat shock protein binding were identified as one of the most enriched GO biological process and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma concentrations of the acute phase proteins serum amyloid A (SAA) and haptoglobin were reduced in cows fed GSGME compared to control cows. Lipidomic analysis of plasma revealed no differences in the concentrations of individual species of major and minor lipid classes between cows fed GSGME and control cows. Conclusions Analysis of hepatic transcript profile in cows fed GSGME during the transition period at 1 week postpartum indicates that polyphenol-rich feed components are able to inhibit ER stress-induced UPR and inflammatory processes, both of which are considered to contribute to liver-associated diseases and to impair milk performance in dairy cows, in the liver of dairy cows during early lactation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3638-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Anne Winkler
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, Muenchweiler an der Alsenz, 67728, Germany
| | - Christian Koch
- Department Life Sciences and Engineering, University of Applied Sciences, Bingen am Rhein, 55411, Germany
| | - Georg Dusel
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, Muenchweiler an der Alsenz, 67728, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| |
Collapse
|
27
|
Jonscher KR, Stewart MS, Alfonso-Garcia A, DeFelice BC, Wang XX, Luo Y, Levi M, Heerwagen MJR, Janssen RC, de la Houssaye BA, Wiitala E, Florey G, Jonscher RL, Potma EO, Fiehn O, Friedman JE. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 2016; 31:1434-1448. [PMID: 28007783 DOI: 10.1096/fj.201600906r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.
Collapse
Affiliation(s)
- Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Michael S Stewart
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | | | - Brian C DeFelice
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA
| | - Xiaoxin X Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yuhuan Luo
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret J R Heerwagen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Rachel C Janssen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Becky A de la Houssaye
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Ellen Wiitala
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Garrett Florey
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Raleigh L Jonscher
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Eric O Potma
- Beckman Laser Institute, and.,Department of Biomedical Engineering,University of California, Irvine, Irvine, California, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA.,Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| |
Collapse
|
28
|
Myśliwiec H, Baran A, Harasim-Symbor E, Choromańska B, Myśliwiec P, Milewska AJ, Chabowski A, Flisiak I. Increase in circulating sphingosine-1-phosphate and decrease in ceramide levels in psoriatic patients. Arch Dermatol Res 2016; 309:79-86. [PMID: 27988894 PMCID: PMC5309277 DOI: 10.1007/s00403-016-1709-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023]
Abstract
Psoriasis is characterized by hyperproliferation, deregulated differentiation and impaired apoptosis of keratinocytes. Mechanisms of lipid profile disturbances and metabolic syndrome in the psoriatic patients are still not fully understood. Sphingolipids, namely ceramides (CER) and sphingosine-1-phosphate (S1P) are signal molecules which can regulate cell growth, apoptosis and immune reactions. The aim of the study was to evaluate circulating CER and S1P levels in plaque-type psoriasis and their associations with the disease activity, inflammatory or metabolic markers and the presence of psoriatic comorbidities. Eighty-five patients with exacerbated plaque-type psoriasis and thirty-two healthy controls were enrolled. Serum CER and S1P concentrations before the treatment were examined. General patient characteristics included: PASI (Psoriasis Area and Severity Index), BMI (Body Mass Index), inflammatory and biochemical markers, lipid profile and presence of psoriatic comorbidities. Total serum concentration of CER was significantly decreased (p = 0.02) and concomitantly S1P levels significantly increased (p = 0.002) in psoriatic patients compared to the healthy control group. Among patients with psoriasis no significant correlations with the disease activity and inflammation markers were observed and only patients with psoriatic arthritis had significantly higher CER total concentration. Serum sphingolipid disturbances in psoriatic patients were observed. Decreased total CER and increased S1P serum levels may reflect their epidermal altered composition and metabolism. Patients with psoriatic arthritis have higher CER levels than psoriasis with skin involvement only. It might provide additional predictive value for psoriatic arthritis and may convey higher risk of metabolic and cardiovascular disease development in this group of patients.
Collapse
Affiliation(s)
- Hanna Myśliwiec
- Department of Dermatology and Venereology, Medical University of Bialystok, Żurawia Str. 14, 15-540, Bialystok, Poland.
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Żurawia Str. 14, 15-540, Bialystok, Poland
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Choromańska
- I Department of General and Endocrinological Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Myśliwiec
- I Department of General and Endocrinological Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Anna Justyna Milewska
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Żurawia Str. 14, 15-540, Bialystok, Poland
| |
Collapse
|
29
|
Chen X, Wang C, Zhang K, Xie Y, Ji X, Huang H, Yu X. Reduced femoral bone mass in both diet-induced and genetic hyperlipidemia mice. Bone 2016; 93:104-112. [PMID: 27669658 DOI: 10.1016/j.bone.2016.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023]
Abstract
Growing evidence argues for a relationship between lipid and bone metabolisms with inconsistent conclusions. Sphingosine-1-phosphate (S1P) has been recognized as a suitable candidate for possible link between lipid metabolism and bone metabolism. This study was designed to investigate the effects of hyperlipidemia on bone metabolism using diet-induced and genetic-induced hyperlipidemia animal models and to explore whether S1P is involved. Wild-type mice and low-density lipoprotein receptor gene deficient (LDLR-/-) mice at age of 8weeks were placed on either control diet or high-fat diet (HFD) for 12weeks. Bone structural parameters were determined using microCT. Cross-linked type I collagen (CTx) and S1P levels in plasma were measured by ELISA methods. Bone marrow cells from wild type and LDLR-/- mice were induced to differentiate into osteoblasts, osteoclasts and adipocytes respectively. Gene expressions in distal femur metaphyses and cultured cells were studied by qRT-PCR. Moderate hypercholesterolemia was found in HFD-feeding mice; severe hypercholesterolemia and moderate hypertriglyceridemia were present in LDLR-/- mice. Femoral trabecular bone mass was reduced in both diet-induced and genetic hyperlipidemia mice. Mice feeding on HFD showed higher CTx levels, and mice with hyperlipidemia had elevated S1P levels. Correlation analysis found a positive correlation between CTx and S1P levels. Lower Runx2 expression and higher TRAP expression were found in both diet-induced and genetic hyperlipidemia mice, indicating decreased osteoblastic functions and increased osteoclastic functions in these mice. Bone marrow cells from LDLR-/- mice also showed increased adipogenesis and inhibited osteogenesis accompanied by enhanced PPARγ expression. In conclusion, our study found decreased bone mass in both diet-induced and genetic hyperlipidemia mice.
Collapse
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Chunyu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Hui Huang
- Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, 610041, People's Republic of China
| |
Collapse
|
30
|
Castillo RI, Rojo LE, Henriquez-Henriquez M, Silva H, Maturana A, Villar MJ, Fuentes M, Gaspar PA. From Molecules to the Clinic: Linking Schizophrenia and Metabolic Syndrome through Sphingolipids Metabolism. Front Neurosci 2016; 10:488. [PMID: 27877101 PMCID: PMC5100552 DOI: 10.3389/fnins.2016.00488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MS) is a prevalent and severe comorbidity observed in schizophrenia (SZ). The exact nature of this association is controversial and very often accredited to the effects of psychotropic medications and disease-induced life-style modifications, such as inactive lifestyle, poor dietary choices, and smoking. However, drug therapy and disease-induced lifestyle factors are likely not the only factors contributing to the observed converging nature of these conditions, since an increased prevalence of MS is also observed in first episode and drug-naïve psychosis populations. MS and SZ share common intrinsic susceptibility factors and etiopathogenic mechanisms, which may change the way we approach clinical management of SZ patients. Among the most relevant common pathogenic pathways of SZ and MS are alterations in the sphingolipids (SLs) metabolism and SLs homeostasis. SLs have important structural functions as they participate in the formation of membrane “lipid rafts.” SLs also play physiological roles in cell differentiation, proliferation, and inflammatory processes, which might be part of MS/SZ common pathophysiological processes. In this article we review a plausible mechanism to explain the link between MS and SZ through a disruption in SL homeostasis. Additionally, we provide insights on how this hypothesis can lead to the developing of new diagnostic/therapeutic technologies for SZ patients.
Collapse
Affiliation(s)
- Rolando I Castillo
- Translational Psychiatry Laboratory, Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile Santiago, Chile
| | - Leonel E Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Marcela Henriquez-Henriquez
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA; Department of Pathology and Cell Biology, Columbia UniversityNew York, NY, USA
| | - Hernán Silva
- Translational Psychiatry Laboratory, Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de ChileSantiago, Chile; Facultad de Medicina, Biomedical Neuroscience Institute, Universidad de ChileSantiago, Chile
| | - Alejandro Maturana
- Translational Psychiatry Laboratory, Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile Santiago, Chile
| | - María J Villar
- Translational Psychiatry Laboratory, Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile Santiago, Chile
| | - Manuel Fuentes
- Departamento de Psiquiatría, Clínica Alemana Santiago, Chile
| | - Pablo A Gaspar
- Translational Psychiatry Laboratory, Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de ChileSantiago, Chile; Facultad de Medicina, Biomedical Neuroscience Institute, Universidad de ChileSantiago, Chile; Departamento de Psiquiatría, Clínica AlemanaSantiago, Chile
| |
Collapse
|
31
|
Lipopolysaccharide Disrupts Mitochondrial Physiology in Skeletal Muscle via Disparate Effects on Sphingolipid Metabolism. Shock 2016; 44:585-92. [PMID: 26529656 PMCID: PMC4851226 DOI: 10.1097/shk.0000000000000468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipopolysaccharides (LPS) are prevalent pathogenic molecules that are found within tissues and blood. Elevated circulating LPS is a feature of obesity and sepsis, both of which are associated with mitochondrial abnormalities that are key pathological features of LPS excess. However, the mechanism of LPS-induced mitochondrial alterations remains poorly understood. Herein we demonstrate the necessity of sphingolipid accrual in mediating altered mitochondrial physiology in skeletal muscle following LPS exposure. In particular, we found LPS elicited disparate effects on the sphingolipids dihydroceramides (DhCer) and ceramides (Cer) in both cultured myotubes and in muscle of LPS-injected mice. Although LPS-treated myotubes had reduced DhCer and increased Cer as well as increased mitochondrial respiration, muscle from LPS-injected mice manifested a reverse trend, namely elevated DhCer, but reduced Cer as well as reduced mitochondrial respiration. In addition, we found that LPS treatment caused mitochondrial fission, likely via dynamin-related protein 1, and increased oxidative stress. However, inhibition of de novo sphingolipid biosynthesis via myriocin protected normal mitochondrial function in spite of LPS, but inhibition of DhCer desaturase 1, which increases DhCer, but not Cer, exacerbated mitochondrial respiration with LPS. In an attempt to reconcile the incongruent effects of LPS in isolated muscle cells and whole muscle tissue, we incubated myotubes with conditioned medium from treated macrophages. In contrast to direct myotube LPS treatment, conditioned medium from LPS-treated macrophages reduced myotube respiration, but this was again mitigated with sphingolipid inhibition. Thus, macrophage sphingolipid production appears to be necessary for LPS-induced mitochondrial alterations in skeletal muscle tissue.
Collapse
|
32
|
Chang X, Wang Z, Zhang J, Yan H, Bian H, Xia M, Lin H, Jiang J, Gao X. Lipid profiling of the therapeutic effects of berberine in patients with nonalcoholic fatty liver disease. J Transl Med 2016; 14:266. [PMID: 27629750 PMCID: PMC5024486 DOI: 10.1186/s12967-016-0982-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We recently demonstrated a positive effect of berberine on nonalcoholic fatty liver disease patients after 16 weeks of treatment by comparing mere lifestyle intervention in type 2 diabetes patients with berberine treatment, which decreased the content of hepatic fat. However, the potential mechanisms of the clinical effects are unclear. We used a lipidomic approach to characterize the state of lipid metabolism as reflected in the circulation of subjects with nonalcoholic fatty liver disease (NAFLD) before and after berberine treatment. METHODS Liquid chromatography-mass spectrometry evaluated the various lipid metabolites in serum samples obtained from the participants (41 patients in the berberine group and 39 patients in the mere lifestyle intervention group) before and after treatment. RESULTS A total of 256 serum lipid molecular species were identified and quantified. Both treatments regulated various types of lipids in metabolic pathways, such as free fatty acids, phosphoglycerides and glycerides, in metabolic pathways, but berberine induced a substantially greater change in serum lipid species compared with mere lifestyle intervention after treatment. Berberine also caused obvious differences on ceramides. Berberine treatment markedly decreased serum levels of ceramide and ceramide-1-phosphate. CONCLUSIONS Berberine altered circulating ceramides, which may underlie the improvement in fatty liver disease. ClinicalTrials.gov NCT00633282, Registered March 3, 2008.
Collapse
Affiliation(s)
- Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Metabolic Disease of Fudan University, Shanghai, China
| | - Zhe Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Jinlan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Metabolic Disease of Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Metabolic Disease of Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Metabolic Disease of Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Metabolic Disease of Fudan University, Shanghai, China
| | - Jiandong Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China. .,Institute of Metabolic Disease of Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Ilan Y. Compounds of the sphingomyelin-ceramide-glycosphingolipid pathways as secondary messenger molecules: new targets for novel therapies for fatty liver disease and insulin resistance. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1102-17. [PMID: 27173510 DOI: 10.1152/ajpgi.00095.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/04/2016] [Indexed: 01/31/2023]
Abstract
The compounds of sphingomyelin-ceramide-glycosphingolipid pathways have been studied as potential secondary messenger molecules in various systems, along with liver function and insulin resistance. Secondary messenger molecules act directly or indirectly to affect cell organelles and intercellular interactions. Their potential role in the pathogenesis of steatohepatitis and diabetes has been suggested. Data samples collected from patients with Gaucher's disease, who had high levels of glucocerebroside, support a role for compounds from these pathways as a messenger molecules in the pathogenesis of fatty liver disease and diabetes. The present review summarizes some of the recent data on the role of glycosphingolipid molecules as messenger molecules in various physiological and pathological conditions, more specifically including insulin resistance and fatty liver disease.
Collapse
Affiliation(s)
- Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; 21:802-18. [DOI: 10.1016/j.drudis.2016.01.013] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
|
35
|
Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci Rep 2016; 6:23133. [PMID: 27033998 PMCID: PMC4817027 DOI: 10.1038/srep23133] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiome is a unique ecosystem that influences metabolism in humans. Experimental evidence indicates that intestinal microbiota can transfer an obese phenotype from humans to mice. Since mothers transmit intestinal microbiota to their offspring during labor, we hypothesized that among vaginal deliveries, maternal body mass index is associated with neonatal gut microbiota composition. We report the association of maternal pre-pregnancy body mass index on stool microbiota from 74 neonates, 18 born vaginally (5 to overweight or obese mothers) and 56 by elective C-section (26 to overweight or obese mothers). Compared to neonates delivered vaginally to normal weight mothers, neonates born to overweight or obese mothers had a distinct gut microbiota community structure (weighted UniFrac distance PERMANOVA, p < 0.001), enriched in Bacteroides and depleted in Enterococcus, Acinetobacter, Pseudomonas, and Hydrogenophilus. We show that these microbial signatures are predicted to result in functional differences in metabolic signaling and energy regulation. In contrast, among elective Cesarean deliveries, maternal body mass index was not associated with neonatal gut microbiota community structure (weighted UniFrac distance PERMANOVA, p = 0.628). Our findings indicate that excess maternal pre-pregnancy weight is associated with differences in neonatal acquisition of microbiota during vaginal delivery, but not Cesarean delivery. These differences may translate to altered maintenance of metabolic health in the offspring.
Collapse
|
36
|
Oral Gingival Cell Cigarette Smoke Exposure Induces Muscle Cell Metabolic Disruption. Int J Dent 2016; 2016:2763160. [PMID: 27034671 PMCID: PMC4789482 DOI: 10.1155/2016/2763160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoke exposure compromises health through damaging multiple physiological systems, including disrupting metabolic function. The purpose of this study was to determine the role of oral gingiva in mediating the deleterious metabolic effects of cigarette smoke exposure on skeletal muscle metabolic function. Using an in vitro conditioned medium cell model, skeletal muscle cells were incubated with medium from gingival cells treated with normal medium or medium containing suspended cigarette smoke extract (CSE). Following incubation of muscle cells with gingival cell conditioned medium, muscle cell mitochondrial respiration and insulin signaling and action were determined as an indication of overall muscle metabolic health. Skeletal muscle cells incubated with conditioned medium of CSE-treated gingival cells had a profound reduction in mitochondrial respiration and respiratory control. Furthermore, skeletal muscle cells had a greatly reduced response in insulin-stimulated Akt phosphorylation and glycogen synthesis. Altogether, these results provide a novel perspective on the mechanism whereby cigarette smoke affects systemic metabolic function. In conclusion, we found that oral gingival cells treated with CSE create an altered milieu that is sufficient to both disrupted skeletal muscle cell mitochondrial function and insulin sensitivity.
Collapse
|
37
|
Nelson MB, Swensen AC, Winden DR, Bodine JS, Bikman BT, Reynolds PR. Cardiomyocyte mitochondrial respiration is reduced by receptor for advanced glycation end-product signaling in a ceramide-dependent manner. Am J Physiol Heart Circ Physiol 2015; 309:H63-9. [DOI: 10.1152/ajpheart.00043.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
Cigarette smoke exposure is associated with an increased risk of cardiovascular complications. The role of advanced glycation end products (AGEs) is already well established in numerous comorbidities, including cardiomyopathy. Given the role of AGEs and their receptor, RAGE, in activating inflammatory pathways, we sought to determine whether ceramides could be a mediator of RAGE-induced altered heart mitochondrial function. Using an in vitro model, we treated H9C2 cardiomyocytes with the AGE carboxy-methyllysine before mitochondrial respiration assessment. We discovered that mitochondrial respiration was significantly impaired in AGE-treated cells, but not when cotreated with myriocin, an inhibitor of de novo ceramide biosynthesis. Moreover, we exposed wild-type and RAGE knockout mice to secondhand cigarette smoke and found reduced mitochondrial respiration in the left ventricular myocardium from wild-type mice, but RAGE knockout mice were protected from this effect. Finally, conditional overexpression of RAGE in the lungs of transgenic mice elicited a robust increase in left ventricular ceramides in the absence of smoke exposure. Taken together, these findings suggest a RAGE-ceramide axis as an important contributor to AGE-mediated disrupted cardiomyocyte mitochondrial function.
Collapse
Affiliation(s)
- Michael B. Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Adam C. Swensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Duane R. Winden
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Jared S. Bodine
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Benjamin T. Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| |
Collapse
|
38
|
Kasumov T, Li L, Li M, Gulshan K, Kirwan JP, Liu X, Previs S, Willard B, Smith JD, McCullough A. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS One 2015; 10:e0126910. [PMID: 25993337 PMCID: PMC4439060 DOI: 10.1371/journal.pone.0126910] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is a serious comorbidity in nonalcoholic fatty liver disease (NAFLD). Since plasma ceramides are increased in NAFLD and sphingomyelin, a ceramide metabolite, is an independent risk factor for CVD, the role of ceramides in dyslipidemia was assessed using LDLR-/- mice, a diet-induced model of NAFLD and atherosclerosis. Mice were fed a standard or Western diet (WD), with or without myriocin, an inhibitor of ceramide synthesis. Hepatic and plasma ceramides were profiled and lipid and lipoprotein kinetics were quantified. Hepatic and intestinal expression of genes and proteins involved in insulin, lipid and lipoprotein metabolism were also determined. WD caused hepatic oxidative stress, inflammation, apoptosis, increased hepatic long-chain ceramides associated with apoptosis (C16 and C18) and decreased very-long-chain ceramide C24 involved in insulin signaling. The plasma ratio of ApoB/ApoA1 (proteins of VLDL/LDL and HDL) was increased 2-fold due to increased ApoB production. Myriocin reduced hepatic and plasma ceramides and sphingomyelin, and decreased atherosclerosis, hepatic steatosis, fibrosis, and apoptosis without any effect on oxidative stress. These changes were associated with decreased lipogenesis, ApoB production and increased HDL turnover. Thus, modulation of ceramide synthesis may lead to the development of novel strategies for the treatment of both NAFLD and its associated atherosclerosis.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology& Hepatology, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (TK); (AM)
| | - Ling Li
- Department of Research Core Services, Cleveland Clinic, Cleveland, OH, United States of America
| | - Min Li
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Kailash Gulshan
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH, United States of America
| | - John P. Kirwan
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Xiuli Liu
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Stephen Previs
- Department of Nutrition & Medicine, Case Western Reserve University School of Medicine Cleveland Clinic, Cleveland, OH, United States of America
| | - Belinda Willard
- Department of Research Core Services, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jonathan D. Smith
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH, United States of America
| | - Arthur McCullough
- Department of Gastroenterology& Hepatology, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (TK); (AM)
| |
Collapse
|
39
|
Dworski S, Berger A, Furlonger C, Moreau JM, Yoshimitsu M, Trentadue J, Au BCY, Paige CJ, Medin JA. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica 2015; 100:e162-5. [PMID: 25682603 DOI: 10.3324/haematol.2014.108530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | | | | | | | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | | | | | - Christopher J Paige
- University Health Network, Toronto, Canada Department of Immunology, University of Toronto, Canada Department of Medical Biophysics, University of Toronto, Canada
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Canada University Health Network, Toronto, Canada Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
40
|
Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem J 2015; 456:427-39. [PMID: 24073738 DOI: 10.1042/bj20130807] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramide is a sphingolipid that serves as an important second messenger in an increasing number of stress-induced pathways. Ceramide has long been known to affect the mitochondria, altering both morphology and physiology. We sought to assess the impact of ceramide on skeletal muscle mitochondrial structure and function. A primary observation was the rapid and dramatic division of mitochondria in ceramide-treated cells. This effect is likely to be a result of increased Drp1 (dynamin-related protein 1) action, as ceramide increased Drp1 expression and Drp1 inhibition prevented ceramide-induced mitochondrial fission. Further, we found that ceramide treatment reduced mitochondrial O2 consumption (i.e. respiration) in cultured myotubes and permeabilized red gastrocnemius muscle fibre bundles. Ceramide treatment also increased H2O2 levels and reduced Akt/PKB (protein kinase B) phosphorylation in myotubes. However, inhibition of mitochondrial fission via Drp1 knockdown completely protected the myotubes and fibre bundles from ceramide-induced metabolic disruption, including maintained mitochondrial respiration, reduced H2O2 levels and unaffected insulin signalling. These data suggest that the forced and sustained mitochondrial fission that results from ceramide accrual may alter metabolic function in skeletal muscle, which is a prominent site not only of energy demand (via the mitochondria), but also of ceramide accrual with weight gain.
Collapse
|
41
|
Rodriguez-Cuenca S, Barbarroja N, Vidal-Puig A. Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:40-50. [DOI: 10.1016/j.bbalip.2014.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022]
|
42
|
Abstract
Chronic inflammation including B-cell activation is commonly observed in both inherited (Gaucher disease [GD]) and acquired disorders of lipid metabolism. However, the cellular mechanisms underlying B-cell activation in these settings remain to be elucidated. Here, we report that β-glucosylceramide 22:0 (βGL1-22) and glucosylsphingosine (LGL1), 2 major sphingolipids accumulated in GD, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT) cells. Human βGL1-22- and LGL1-reactive CD1d tetramer-positive T cells have a distinct T-cell receptor usage and genomic and cytokine profiles compared with the classical type I NKT cells. In contrast to type I NKT cells, βGL1-22- and LGL1-specific NKT cells constitutively express T-follicular helper (TFH) phenotype. Injection of these lipids leads to an increase in respective lipid-specific type II NKT cells in vivo and downstream induction of germinal center B cells, hypergammaglobulinemia, and production of antilipid antibodies. Human βGL1-22- and LGL1-specific NKT cells can provide efficient cognate help to B cells in vitro. Frequency of LGL1-specific T cells in GD mouse models and patients correlates with disease activity and therapeutic response. Our studies identify a novel type II NKT-mediated pathway for glucosphingolipid-mediated dysregulation of humoral immunity and increased risk of B-cell malignancy observed in metabolic lipid disorders.
Collapse
|
43
|
Tippetts TS, Winden DR, Swensen AC, Nelson MB, Thatcher MO, Saito RR, Condie TB, Simmons KJ, Judd AM, Reynolds PR, Bikman BT. Cigarette smoke increases cardiomyocyte ceramide accumulation and inhibits mitochondrial respiration. BMC Cardiovasc Disord 2014; 14:165. [PMID: 25416336 PMCID: PMC4247675 DOI: 10.1186/1471-2261-14-165] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/17/2014] [Indexed: 11/10/2022] Open
Abstract
Background Cigarette smoking is a common and lethal worldwide habit, with considerable mortality stemming from its deleterious effects on heart function. While current theories posit altered blood lipids and fibrinogen metabolism as likely mediators, none have explored the role of the sphingolipid ceramide in exacerbating heart function with smoke exposure. Ceramide production is a consequence of cigarette smoke in the lung, and considering ceramide’s harmful effects on mitochondrial function, we sought to elucidate the role of ceramide in mediating smoke-induced altered heart mitochondrial respiration. Methods Lung cells (A549) were exposed to cigarette smoke extract (CSE) and heart cells (H9C2) were exposed to the lung-cell conditioned medium. Adult male mice were exposed sidestream cigarette smoke for 8 wk with dietary intervention and ceramide inhibition. Ceramides and heart cell or myocardial mitochondrial respiration were determined. Results Lung cell cultures revealed a robust response to cigarette smoke extract in both production and secretion of ceramides. Heart cells incubated with lung-cell conditioned medium revealed a pronounced inhibition of myocardial mitochondrial respiration, though this effect was mitigated with ceramide inhibition via myriocin. In vivo, heart ceramides increased roughly 600% in adult mice with long-term sidestream cigarette smoke exposure. This resulted in a significant ceramide-dependent reduction in left myocardial mitochondrial respiration, as heart mitochondria from the mice exposed to both smoke and myriocin injections respired normally. Conclusions These results suggest ceramide to be an important mediator of altered myocardial mitochondrial function with cigarette smoke exposure. Thus, anti-ceramide therapies might be considered in the future to protect heart mitochondrial function with smoke exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Benjamin T Bikman
- Department of Physiology and Developmental Biology and Chemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
44
|
Thatcher MO, Tippetts TS, Nelson MB, Swensen AC, Winden DR, Hansen ME, Anderson MC, Johnson IE, Porter JP, Reynolds PR, Bikman BT. Ceramides mediate cigarette smoke-induced metabolic disruption in mice. Am J Physiol Endocrinol Metab 2014; 307:E919-27. [PMID: 25269485 DOI: 10.1152/ajpendo.00258.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cigarette smoke exposure increases lung ceramide biosynthesis and alters metabolic function. We hypothesized that ceramides are released from the lung during cigarette smoke exposure and result in elevated skeletal muscle ceramide levels, resulting in insulin resistance and altered mitochondrial respiration. Employing cell and animal models, we explored the effect of cigarette smoke on muscle cell insulin signaling and mitochondrial respiration. Muscle cells were treated with conditioned medium from cigarette smoke extract (CSE)-exposed lung cells, followed by analysis of ceramides and assessment of insulin signaling and mitochondrial function. Mice were exposed to daily cigarette smoke and a high-fat, high-sugar (HFHS) diet with myriocin injections to inhibit ceramide synthesis. Comparisons were conducted between these mice and control animals on standard diets in the absence of smoke exposure and myriocin injections. Muscle cells treated with CSE-exposed conditioned medium were completely unresponsive to insulin stimulation, and mitochondrial respiration was severely blunted. These effects were mitigated when lung cells were treated with the ceramide inhibitor myriocin prior to and during CSE exposure. In mice, daily cigarette smoke exposure and HFHS diet resulted in insulin resistance, which correlated with elevated ceramides. Although myriocin injection was protective against insulin resistance with either smoke or HFHS, it was insufficient to prevent insulin resistance with combined CS and HFHS. However, myriocin injection restored muscle mitochondrial respiration in all treatments. Ceramide inhibition prevents metabolic disruption in muscle cells with smoke exposure and may explain whole body insulin resistance and mitochondrial dysfunction in vivo.
Collapse
Affiliation(s)
- Mikayla O Thatcher
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Trevor S Tippetts
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Michael B Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Adam C Swensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Duane R Winden
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Melissa E Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Madeline C Anderson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Ian E Johnson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - James P Porter
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| |
Collapse
|
45
|
Sauerbeck AD, Laws JL, Bandaru VVR, Popovich PG, Haughey NJ, McTigue DM. Spinal cord injury causes chronic liver pathology in rats. J Neurotrauma 2014; 32:159-69. [PMID: 25036371 DOI: 10.1089/neu.2014.3497] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes major disruption to peripheral organ innervation and regulation. Relatively little work has investigated these post-SCI systemic changes, however, despite considerable evidence that multiple organ system dysfunction contributes to chronic impairments in health. Because metabolic dysfunction is common after SCI and the liver is a pivotal site for metabolic homeostasis, we sought to determine if liver pathology occurs as a result of SCI in a rat spinal contusion model. Histologic evidence showed excess lipid accumulation in the liver for at least 21 days post-injury after cervical or midthoracic SCI. Lipidomic analysis revealed an acute increase in hepatic ceramides as well as chronically elevated lactosylceramide. Post-SCI hepatic changes also included increased proinflammatory gene expression, including interleukin (IL)-1α, IL-1β, chemokine ligand-2, and tumor necrosis factor-α mRNA. These were coincident with increased CD68+ macrophages in the liver through 21 days post-injury. Serum alanine transaminase, used clinically to detect liver damage, was significantly increased at 21 days post-injury, suggesting that early metabolic and inflammatory damage preceded overt liver pathology. Surprisingly, liver inflammation was even detected after lumbar SCI. Collectively, these results suggest that SCI produces chronic liver injury with symptoms strikingly similar to those of nonalcoholic steatohepatitis (fatty liver disease). These clinically significant hepatic changes after SCI are known to contribute to systemic inflammation, cardiovascular disease, and metabolic syndrome, all of which are more prevalent in persons with SCI. Targeting acute and prolonged hepatic pathology may improve recovery and reduce long-term complications after SCI.
Collapse
Affiliation(s)
- Andrew D Sauerbeck
- 1 Department of Neuroscience, The Ohio State University , Columbus, Ohio
| | | | | | | | | | | |
Collapse
|
46
|
Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement 2014; 10:S76-83. [PMID: 24529528 DOI: 10.1016/j.jalz.2013.12.010] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
Abstract
A link between Alzheimer's disease (AD) and metabolic disorders has been established, with patients with type 2 diabetes at increased risk of developing AD and vice versa. The incidence of metabolic disorders, including insulin resistance and type 2 diabetes is increasing at alarming rates worldwide, primarily as a result of poor lifestyle habits. In parallel, as the world population ages, the prevalence of AD, the most common form of dementia in the elderly, also increases. In addition to their epidemiologic and clinical association, mounting recent evidence indicates shared mechanisms of pathogenesis between metabolic disorders and AD. We discuss the concept that peripheral and central nervous system inflammation link the pathogenesis of AD and metabolic diseases. We also explore the contribution of brain inflammation to defective insulin signaling and neuronal dysfunction. Last, we review recent evidence indicating that targeting neuroinflammation may provide novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Julia R Clarke
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Theresa R Bomfim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Hansen ME, Tippetts TS, Anderson MC, Holub ZE, Moulton ER, Swensen AC, Prince JT, Bikman BT. Insulin increases ceramide synthesis in skeletal muscle. J Diabetes Res 2014; 2014:765784. [PMID: 24949486 PMCID: PMC4052187 DOI: 10.1155/2014/765784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 02/07/2023] Open
Abstract
AIMS The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. METHODS Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG) were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. RESULTS In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. CONCLUSIONS This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects.
Collapse
Affiliation(s)
- M. E. Hansen
- Department of Physiology and Developmental Biology, 593 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - T. S. Tippetts
- Department of Physiology and Developmental Biology, 593 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - M. C. Anderson
- Department of Physiology and Developmental Biology, 593 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - Z. E. Holub
- Department of Physiology and Developmental Biology, 593 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - E. R. Moulton
- Department of Physiology and Developmental Biology, 593 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - A. C. Swensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - J. T. Prince
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - B. T. Bikman
- Department of Physiology and Developmental Biology, 593 WIDB, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
48
|
Martins IJ, Creegan R. Links between Insulin Resistance, Lipoprotein Metabolism and Amyloidosis in Alzheimer’s Disease. Health (London) 2014. [DOI: 10.4236/health.2014.612190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Huang X, Withers BR, Dickson RC. Sphingolipids and lifespan regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:657-64. [PMID: 23954556 DOI: 10.1016/j.bbalip.2013.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
Diseases including cancer, type 2 diabetes, cardiovascular and immune dysfunction and neurodegeneration become more prevalent as we age, and combined with the increase in average human lifespan, place an ever increasing burden on the health care system. In this chapter we focus on finding ways of modulating sphingolipids to prevent the development of age-associated diseases or delay their onset, both of which could improve health in elderly, fragile people. Reducing the incidence of or delaying the onset of diseases of aging has blossomed in the past decade because of advances in understanding signal transduction pathways and cellular processes, especially in model organisms, that are largely conserved in most eukaryotes and that can be modulated to reduce signs of aging and increase health span. In model organisms such interventions must also increase lifespan to be considered significant, but this is not a requirement for use in humans. The most encouraging interventions in model organisms involve lowering the concentration of one or more sphingolipids so as to reduce the activity of key signaling pathways, one of the most promising being the Target of Rapamycin Complex 1 (TORC1) protein kinase pathway. Other potential ways in which modulating sphingolipids may contribute to improving the health profile of the elderly is by reducing oxidative stresses, inflammatory responses and growth factor signaling. Lastly, perhaps the most interesting way to modulate sphingolipids and promote longevity is by lowering the activity of serine palmitoyltransferase, the first enzyme in the de novo sphingolipid biosynthesis pathway. Available data in yeasts and rodents are encouraging and as we gain insights into molecular mechanisms the strategies for improving human health by modulating sphingolipids will become more apparent. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA
| | - Bradley R Withers
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA
| | - Robert C Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA.
| |
Collapse
|
50
|
Perfield JW, Ortinau LC, Pickering RT, Ruebel ML, Meers GM, Rector RS. Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice. J Obes 2013; 2013:296537. [PMID: 23401753 PMCID: PMC3562693 DOI: 10.1155/2013/296537] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/17/2012] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly linked to obesity, insulin resistance, and abnormal hepatic lipid metabolism; however, the precise regulation of these processes remains poorly understood. Here we examined genes and proteins involved in hepatic oxidation and lipogenesis in 14-week-old leptin-deficient Ob/Ob mice, a commonly studied model of obesity and hepatic steatosis. Obese Ob/Ob mice had increased fasting glucose, insulin, and calculated HOMA-IR as compared with lean wild-type (WT) mice. Ob/Ob mice also had greater liver weights, hepatic triglyceride (TG) content, and markers of de novo lipogenesis, including increased hepatic gene expression and protein content of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD-1), as well as elevated gene expression of PPARγ and SREBP-1c compared with WT mice. While hepatic mRNA levels for PGC-1α, PPARα, and TFAM were elevated in Ob/Ob mice, measures of mitochondrial function (β-HAD activity and complete (to CO(2)) and total mitochondrial palmitate oxidation) and mitochondrial OXPHOS protein subunits I, III, and V content were significantly reduced compared with WT animals. In summary, reduced hepatic mitochondrial content and function and an upregulation in de novo lipogenesis contribute to obesity-associated NAFLD in the leptin-deficient Ob/Ob mouse.
Collapse
Affiliation(s)
- James W. Perfield
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Department of Food Science, University of Missouri, Columbia, MO 65211, USA
| | - Laura C. Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - R. Taylor Pickering
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Meghan L. Ruebel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Grace M. Meers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans' Medical Center, Columbia, MO 65201, USA
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans' Medical Center, Columbia, MO 65201, USA
- *R. Scott Rector:
| |
Collapse
|