1
|
Zheng J, Li Y, Zhang T, Fu Y, Long P, Gao X, Wang Z, Guan Z, Qi X, Hong W, Xiao Y. Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury: PERK as a potential target for intervention. Neural Regen Res 2025; 20:1455-1466. [PMID: 39075912 DOI: 10.4103/nrr.nrr-d-23-00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/21/2023] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00028/figure1/v/2024-07-28T173839Z/r/image-tiff Several studies have shown that activation of unfolded protein response and endoplasmic reticulum (ER) stress plays a crucial role in severe cerebral ischemia/reperfusion injury. Autophagy occurs within hours after cerebral ischemia, but the relationship between ER stress and autophagy remains unclear. In this study, we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury. We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2 subunit alpha (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP), increased neuronal apoptosis, and induced autophagy. Furthermore, inhibition of ER stress using inhibitors or by siRNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis, indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy. Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis, indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury. Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy, and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ju Zheng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou Province, China
| | - Yixin Li
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yanlin Fu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Peiyan Long
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xiao Gao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Zhengwei Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou Province, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou Province, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Sun J, Zhao K, Zhang W, Guo C, Liu H. Ecdysterone improves oxidative damage induced by acute ischemic stroke via inhibiting ferroptosis in neurons through ACSL4. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118204. [PMID: 38679397 DOI: 10.1016/j.jep.2024.118204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute ischemic stroke (AIS) is a prominent cause of disability and mortality around the world. Achyranthes bidentata Blume, a regularly prescribed traditional Chinese herb, plays a significant role in traditional Chinese stroke therapy due to its ability to promote blood circulation and remove stasis. Ecdysterone (EDS) is one of the key active components in Achyranthes bidentata Blume, which exhibits antioxidant and anti-cerebral hypoxia properties. However, whether EDS improves AIS and the mechanism of action of AIS is still unclear. AIM OF THE STUDY The objective of this study was to observe whether EDS ameliorates oxidative damage caused by AIS by inhibiting ferroptosis in neurons via ACSL4. MATERIALS AND METHODS In vivo, the Middle cerebral artery occlusion (MCAO) rat model was established for research. After treatment with EDS, Neurologic score, TTC, HE and FJC staining were performed, followed by measurements of oxidative stress-related indicators, the content of Fe2+, iron deposition levels and expression of ACSL4, NCOA4 and FTH1 in brain tissue. In vitro, oxygen-glucose deprivation and reperfusion (OGD/R) cell model was established. After treatment with EDS, cell viability, oxidative stress-related indicators, the content of Fe2+ and expression of ACSL4, NCOA4 and FTH1 were detected. In addition, the overexpression of ACSL4 and CETSA technology further elucidated that EDS improves AIS through ACSL4. RESULTS The results showed that the treatment of EDS could improve the oxidative damage of MCAO rats by inhibiting ferroptosis, and then improve AIS. Importantly, EDS inhibited ferroptosis via ACSL4, thereby inhibiting oxidative stress in MCAO rats or OGD/R-induced PC12 cells. CONCLUSIONS These results provide evidence that EDS ameliorates oxidative damage caused by AIS by inhibiting ferroptosis via ACSL4, and provide new insights into the potential use of EDS as an effective drug development candidate for AIS.
Collapse
Affiliation(s)
- Jia Sun
- Department of Encephalopathy, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China
| | - Keke Zhao
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenyue Zhang
- Department of Encephalopathy, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China
| | - Chen Guo
- Department of Brain Surgery, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China
| | - Hua Liu
- Department of Encephalopathy, Yixing Traditional Chinese Medicine Hospital, Yixing, 214200, China.
| |
Collapse
|
3
|
Chen X, Yao N, Mao Y, Xiao D, Huang Y, Zhang X, Wang Y. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions. Neural Regen Res 2024; 19:1541-1547. [PMID: 38051897 PMCID: PMC10883507 DOI: 10.4103/1673-5374.386398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00033/figure1/v/2023-11-20T171125Z/r/image-tiff
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier. However, the potential links between them following ischemic stroke remain largely unknown. The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway. Meanwhile, Wnt/β-catenin pathway activation by the pharmacological inhibitor, TWS119, relieved oxidative stress, increased the levels of cytochrome P450 1B1 (CYP1B1) and tight junction-associated proteins (zonula occludens-1 [ZO-1], occludin and claudin-5), as well as brain microvascular density in cerebral ischemia rats. Moreover, rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress, suppression of the Wnt/β-catenin pathway, aggravated cell apoptosis, downregulated CYP1B1 and tight junction protein levels, and inhibited cell proliferation and migration. Overexpression of β-catenin or knockdown of β-catenin and CYP1B1 genes in rat brain microvascular endothelial cells at least partly ameliorated or exacerbated these effects, respectively. In addition, small interfering RNA-mediated β-catenin silencing decreased CYP1B1 expression, whereas CYP1B1 knockdown did not change the levels of glycogen synthase kinase 3β, Wnt-3a, and β-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivation/reoxygenation. Thus, the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling, and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress, increased tight junction levels, and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
Collapse
Affiliation(s)
- Xingyong Chen
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nannan Yao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yanguang Mao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dongyun Xiao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yiyi Huang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Academy of Medical Science, Fuzhou, Fujian Province, China
- Key Testing Laboratory of Fujian Province, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Ma W, Yang J, Zhang J, He R, Luo Y, Li C, Zhao F, Tao F, Fan J, Yin L, Zhu K, Niu S, Li L. Cerebral protective effect of in situ and remote ischemic postconditioning on ischemic stroke rat via the TGFβ1-Smad2/3 signaling pathway. Brain Res 2024; 1824:148685. [PMID: 38006988 DOI: 10.1016/j.brainres.2023.148685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Patients with acute ischemic stroke achieve inadequate benefit due to the short therapeutic window for thrombolysis and the risk of ischemia/reperfusion (IR) injury. Ischemic postconditioning induces endogenous cerebral protection for acute ischemic stroke, although the protective mechanisms associated with ischemic postconditioning haven't been well clarified. In present study, the rat models of ischemic cerebral stroke with in situ and remote ischemic postconditioning (ISP and RIP) were established successfully. The Zea Longa and the modified neurological severity scoring (mNSS) were carried out to evaluate neurological function in the rats, while the open field test was explored to estimate their autonomic athletic ability. The 2,3,5-riphenyltetrazolium chloride (TTC) staining method was used to measure the size of the infarcts. TUNEL and Nissl's staining were used to detect the apoptosis rate of cells in the ischemic penumbra, with the expression of TGFβ1, Smad2, and Smad3 in the ischemic penumbra and serum detected by immunohistochemical staining, qRT-PCR, Western blots, and ELISA analysis. We showed that application of both types of ischemic postconditioning had cerebral protective effects for the ischemic stroke rats, that included effective reduction in the volume of cerebral infarction, alleviation of apoptosis and inflammation in the ischemic penumbra, and promotion of recovery of neurological function. These effects included significantly enriched gene ontology (GO) terms after RIP intervention that were related to TGFβ1, increased protein levels of TGFβ1 and decreased levels of p-Smad2/3 and smad3 following RIP intervention. We showed that the TGFβ1-Smad2/3 signaling pathway was associated with the cerebral protection of ischemic postconditioning.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jinwei Yang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China; Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jinfen Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Rui He
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Yi Luo
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China; Department of Neurology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Zhao
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Fengping Tao
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Fan
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Luwei Yin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Kewei Zhu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Shourui Niu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
6
|
Yuan K, Jin X, Mo X, Zeng R, Zhang X, Chen Q, Jin L. Novel diagnostic biomarkers of oxidative stress, ferroptosis, immune infiltration characteristics and experimental validation in ischemic stroke. Aging (Albany NY) 2024; 16:746-761. [PMID: 38198162 PMCID: PMC10817366 DOI: 10.18632/aging.205415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
Ischemic stroke (IS) is a prominent type of cerebrovascular disease leading to death and disability in an aging society and is closely related to oxidative stress. Gene expression profiling (GSE222551) was derived from Gene Expression Omnibus (GEO), and 1934 oxidative stress (OS) genes were obtained from the GeneCards database. Subsequently, we identified 149 differentially expressed genes related to OS (DEOSGs). Finally, PTGS2, FOS, and RYR1 were identified as diagnostic markers of IS. Moreover, GSE16561 was used to validate the DEOSGs. Two diagnostic genes (PTGS2 and FOS) were significantly highly expressed, while RYR1 was significantly lowly expressed in the IS group. Remarkably, immune infiltration characteristics of these three genes were analyzed, and we found that PTGS2, FOS, and RYR1 were mainly correlated with Mast cells activated, Neutrophils, and Plasma cells, respectively. Next, we intersected three DEOSGs with the ferroptosis gene set, the findings revealed that only PTGS2 was a differentially expressed gene of ferroptosis. High PTGS2 expression levels in the infarcted cortex of middle cerebral artery occlusion (MCAO) rats were confirmed by immunofluorescence (IF), western blotting (WB), and Immunohistochemistry (IHC). Inhibition of PTGS2 clearly improved the neurological outcome of rats by decreasing infarct volume, neurological problems, and modified neurological severity scores following IS compared with the controls. The protective effect of silencing PTGS2 may be related to anti-oxidative stress and ferroptosis. In conclusion, this work may provide a new perspective for the research of IS, and further research based on PTGS2 may be a breakthrough.
Collapse
Affiliation(s)
- Kaisheng Yuan
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiao Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaocong Mo
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ruiqi Zeng
- Department of Urology, The Second Peoples Hospital of Yibin City, Yibin, China
| | - Xu Zhang
- Department of Basic Medicine, Harbin Medical University, Harbin, China
| | - Qiufang Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Yu J, Zhu H, Taheri S, Lee JY, Diamond DM, Kirstein C, Kindy MS. Serum amyloid A-dependent inflammasome activation and acute injury in a mouse model of experimental stroke. RESEARCH SQUARE 2023:rs.3.rs-3258406. [PMID: 37720021 PMCID: PMC10503850 DOI: 10.21203/rs.3.rs-3258406/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Serum amyloid A (SAA) proteins increase dramatically in the blood following inflammation. Recently, SAAs are increased in humans following stroke and in ischemic animal models. However, the impact of SAAs on whether this signal is critical in the ischemic brain remains unknown. Therefore, we investigated the role of SAA and SAA signaling in the ischemic brain. Wildtype and SAA deficient mice were exposed to middle cerebral artery occlusion and reperfusion, examined for the impact of infarct volumes, behavioral changes, inflammatory markers, TUNEL staining, and BBB changes. The underlying mechanisms were investigated using SAA deficient mice, transgenic mice and viral vectors. SAA levels were significantly increase following MCAo and mice deficient in SAAs showed reduced infarct volumes and improved behavioral outcomes. SAA deficient mice showed a reduction in TUNEL staining, inflammation and decreased glial activation. Mice lacking acute phase SAAs demonstrated a reduction in expression of the NLRP3 inflammasome and SAA/NLRP3 KO mice showed improvement. Restoration of SAA expression via SAA tg mice or adenoviral expression reestablished the detrimental effects of SAA. A reduction in BBB permeability was seen in the SAA KO mice and anti-SAA antibody treatment reduced the effects on ischemic injury. SAA signaling plays a critical role in regulating NLRP3-induced inflammation and glial activation in the ischemic brain. Blocking this signal will be a promising approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Jin Yu
- University of South Florida
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu X, Yang L, Zhang G, Ling J. Neuroprotective Effects of Phenolic Antioxidant Tert-butylhydroquinone (tBHQ) in Brain Diseases. Mol Neurobiol 2023; 60:4909-4923. [PMID: 37191855 DOI: 10.1007/s12035-023-03370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Human life and health are gravely threatened by brain diseases. The onset and progression of the illnesses are influenced by a variety of factors, including pathogenic causes, environmental factors, mental issues, etc. According to scientific studies, neuroinflammation and oxidative stress play a significant role in the development and incidence of brain diseases by producing pro-inflammatory cytokines and oxidative tissue damage to induce inflammation and apoptosis. Neuroinflammation, oxidative stress, and oxidative stress-related changes are inseparable factors in the etiology of several brain diseases. Numerous neurodegenerative diseases have undergone substantial research into the therapeutic alternatives that target oxidative stress, the function of oxidative stress, and the possible therapeutic use of antioxidants. Formerly, tBHQ is a synthetic phenolic antioxidant, which has been widely used as a food additive. According to recent researches, tBHQ can suppress the processes that lead to neuroinflammation and oxidative stress, which offers a fresh approach to treating brain diseases. In order to achieve the goal of decreasing inflammation and apoptosis, tBHQ is a specialized nuclear factor erythroid 2-related factor (Nrf2) activator that decreases oxidative stress and enhances antioxidant status by upregulating the Nrf2 gene and reducing nuclear factor kappa-B (NF-κB) activity. This article reviews the effects of tBHQ on neuroinflammation and oxidative stress in recent years and looks into how tBHQ inhibits neuroinflammation and oxidative stress through human, animal, and cell experiments to play a neuroprotective role in Alzheimer's disease (AD), stroke, depression, and Parkinson's disease (PD). It is anticipated that this article will be useful as a reference for upcoming research and the creation of drugs to treat brain diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Shandong Medical College, Linyi, 276000, China
| | - Luodan Yang
- College of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
9
|
Varlamova EG, Uspalenko NI, Khmil NV, Shigaeva MI, Stepanov MR, Ananyan MA, Timchenko MA, Molchanov MV, Mironova GD, Turovsky EA. A Comparative Analysis of Neuroprotective Properties of Taxifolin and Its Water-Soluble Form in Ischemia of Cerebral Cortical Cells of the Mouse. Int J Mol Sci 2023; 24:11436. [PMID: 37511195 PMCID: PMC10380368 DOI: 10.3390/ijms241411436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral ischemia, and, as a result, insult, attacks up to 15 million people yearly in the world. In this connection, the development of effective preventive programs and methods of therapy has become one of the most urgent problems in modern angiology and pharmacology. The cytoprotective action of taxifolin (TAX) in ischemia is well known, but its limitations are also known due to its poor solubility and low capacity to pass through the hematoencephalic barrier. Molecular mechanisms underlying the protective effect of TAX in complex systems such as the brain remain poorly understood. It is known that the main cell types of the brain are neurons, astrocytes, and microglia, which regulate the activity of each other through neuroglial interactions. In this work, a comparative study of cytoprotective mechanisms of the effect of TAX and its new water-soluble form aqua taxifolin (aqTAX) was performed on cultured brain cells under ischemia-like conditions (oxygen-glucose deprivation (OGD)) followed by the reoxygenation of the culture medium. The concentration dependences of the protective effects of both taxifolin forms were determined using fluorescence microscopy, PCR analysis, and vitality tests. It was found that TAX began to effectively inhibit necrosis and the late stages of apoptosis in the concentration range of 30-100 µg/mL, with aqTAX in the range of 10-30 µg/mL. At the level of gene expression, aqTAX affected a larger number of genes than TAX; enhanced the basic and OGD/R-induced expression of genes encoding ROS-scavenging proteins with a higher efficiency, as well as anti-inflammatory and antiapoptotic proteins; and lowered the level of excitatory glutamate receptors. As a result, aqTAX significantly inhibited the OGD-induced increase in the Ca2+ levels in the cytosol ([Ca2+]i) in neurons and astrocytes under ischemic conditions. After a 40 min preincubation of cells with aqTAX under hypoxic conditions, these Ca2+ signals were completely inhibited, resulting in an almost complete suppression of necrotic death of cerebral cortical cells, which was not observed with the use of classical TAX.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nina I Uspalenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Natalia V Khmil
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria I Shigaeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Maria A Timchenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
10
|
Kamal FZ, Lefter R, Jaber H, Balmus IM, Ciobica A, Iordache AC. The Role of Potential Oxidative Biomarkers in the Prognosis of Acute Ischemic Stroke and the Exploration of Antioxidants as Possible Preventive and Treatment Options. Int J Mol Sci 2023; 24:ijms24076389. [PMID: 37047362 PMCID: PMC10094154 DOI: 10.3390/ijms24076389] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ischemic strokes occur when the blood supply to a part of the brain is interrupted or reduced due to arterial blockage, and it often leads to damage to brain cells or death. According to a myriad of experimental studies, oxidative stress is an important pathophysiological mechanism of ischemic stroke. In this narrative review, we aimed to identify how the alterations of oxidative stress biomarkers could suggest a severity-reflecting diagnosis of ischemic stroke and how these interactions may provide new molecular targets for neuroprotective therapies. We performed an eligibility criteria-based search on three main scientific databases. We found that patients with acute ischemic stroke are characterized by increased oxidative stress markers levels, such as the total antioxidant capacity, F2-isoprostanes, hydroxynonenal, total and perchloric acid oxygen radical absorbance capacity (ORACTOT and ORACPCA), malondialdehyde (MDA), myeloperoxidase, and urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Thus, acute ischemic stroke is causing significant oxidative stress and associated molecular and cellular damage. The assessment of these molecular markers could be useful in diagnosing ischemic stroke, finding its causes, predicting its severity and outcomes, reducing its impact on the cellular structures of the brain, and guiding preventive treatment towards antioxidant-based therapy as novel therapeutic alternatives.
Collapse
|
11
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Luo H, Guo H, Zhou Y, Fang R, Zhang W, Mei Z. Neutrophil Extracellular Traps in Cerebral Ischemia/Reperfusion Injury: Friend and Foe. Curr Neuropharmacol 2023; 21:2079-2096. [PMID: 36892020 PMCID: PMC10556361 DOI: 10.2174/1570159x21666230308090351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 03/10/2023] Open
Abstract
Cerebral ischemic injury, one of the leading causes of morbidity and mortality worldwide, triggers various central nervous system (CNS) diseases, including acute ischemic stroke (AIS) and chronic ischemia-induced Alzheimer's disease (AD). Currently, targeted therapies are urgently needed to address neurological disorders caused by cerebral ischemia/reperfusion injury (CI/RI), and the emergence of neutrophil extracellular traps (NETs) may be able to relieve the pressure. Neutrophils are precursors to brain injury following ischemic stroke and exert complicated functions. NETs extracellularly release reticular complexes of neutrophils, i.e., double-stranded DNA (dsDNA), histones, and granulins. Paradoxically, NETs play a dual role, friend and foe, under different conditions, for example, physiological circumstances, infection, neurodegeneration, and ischemia/reperfusion. Increasing evidence indicates that NETs exert anti-inflammatory effects by degrading cytokines and chemokines through protease at a relatively stable and moderate level under physiological conditions, while excessive amounts of NETs release (NETosis) irritated by CI/RI exacerbate the inflammatory response and aggravate thrombosis, disrupt the blood-brain barrier (BBB), and initiates sequential neuron injury and tissue damage. This review provides a comprehensive overview of the machinery of NETs formation and the role of an abnormal cascade of NETs in CI/RI, as well as other ischemia-induced neurological diseases. Herein, we highlight the potential of NETs as a therapeutic target against ischemic stroke that may inspire translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Haoyue Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hanjing Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Rui Fang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
13
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Cai J, Chen X, Liu X, Li Z, Shi A, Tang X, Xia P, Zhang J, Yu P. AMPK: The key to ischemia-reperfusion injury. J Cell Physiol 2022; 237:4079-4096. [PMID: 36134582 DOI: 10.1002/jcp.30875] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Ischemia-reperfusion injury (IRI) refers to a syndrome in which tissue damage is further aggravated and organ function further deteriorates when blood flow is restored after a period of tissue ischemia. Acute myocardial infarction, stress ulcer, pancreatitis, intestinal ischemia, intermittent claudication, acute tubular necrosis, postshock liver failure, and multisystem organ failure are all related to reperfusion injury. AMP-activated protein kinase (AMPK) has been identified in multiple catabolic and anabolic signaling pathways. The functions of AMPK during health and diseases are intriguing but still need further research. Except for its conventional roles as an intracellular energy switch, emerging evidence reveals the critical role of AMPK in IRI as an energy-sensing signal molecule by regulating metabolism, autophagy, oxidative stress, inflammation, and other progressions. At the same time, drugs based on AMPK for the treatment of IRI are constantly being researched and applied in clinics. In this review, we summarize the mechanisms underlying the effects of AMPK in IRI and describe the AMPK-targeting drugs in treatment, hoping to increase the understanding of AMPK in IRI and provide new insights into future clinical treatment.
Collapse
Affiliation(s)
- Jie Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Chen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ao Shi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| |
Collapse
|
15
|
KANG JB, KOH PO. Identification of changed proteins by retinoic acid in cerebral ischemic damage: a proteomic study. J Vet Med Sci 2022; 84:1194-1204. [PMID: 35831120 PMCID: PMC9523306 DOI: 10.1292/jvms.22-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a severe neurodegenerative disease with a high mortality rate. Retinoic acid is a representative metabolite of vitamin A. It has many beneficial effects including anti-inflammatory, anti-apoptotic, and neuroprotective effects. The purpose of this study is to identify specific proteins that are regulated by retinoic acid in ischemic stroke. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally into male rats for four days prior to MCAO operation. Neurobehavioral tests were performed 24 hr after MCAO and the cerebral cortex was collected for proteomic study. Retinoic acid alleviates neurobehavioral deficits and histopathological changes caused by MCAO. Furthermore, we identified various proteins that were altered by retinoic acid in MCAO damage. Among these identified proteins, adenosylhomocysteinase, isocitrate dehydrogenase [NAD+] subunit α, glycerol-3-phosphate dehydrogenase, Rab GDP dissociation inhibitor β, and apolipoprotein A1 were down-regulated in MCAO animals with vehicle treatment, whereas retinoic acid treatment alleviated these reductions. However, heat shock protein 60 was up-regulated in MCAO animals with vehicle, while retinoic acid treatment attenuated this increase. The changes in these expressions were confirmed by reverse transcription-PCR. These proteins regulate cell metabolism and mediate stress responses. Our results demonstrated that retinoic acid attenuates the neuronal damage by MCAO and regulates the various protein expressions that are involved in the survival of cells. Thus, we can suggest that retinoic acid exerts neuroprotective effects on focal cerebral ischemia by modulation of specific proteins.
Collapse
Affiliation(s)
- Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
16
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol 2022; 13:908689. [PMID: 35936890 PMCID: PMC9355297 DOI: 10.3389/fphys.2022.908689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Perez-Pinzon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
17
|
Qi S, Zhang X, Fu Z, Pi A, Shi F, Fan Y, Zhang J, Xiao T, Shang D, Lin M, Gao N, Chang J, Gao Y. (±)-5-bromo-2-(5-fluoro-1-hydroxyamyl) Benzoate Protects Against Oxidative Stress Injury in PC12 Cells Exposed to H2O2 Through Activation of Nrf2 Pathway. Front Pharmacol 2022; 13:943111. [PMID: 35935850 PMCID: PMC9348035 DOI: 10.3389/fphar.2022.943111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Oxidative stress is associated with the pathogenesis of ischemic stroke (±)-5-bromo-2-(5-fluoro-1-hydroxyamyl) benzoate (BFB) is a novel compound modified by dl-3-n-butylphthalide (NBP). Here, we hypothesized that BFB may protect the PC12 cells against H2O2-induced oxidative stress injury through activation of the Nrf2 pathway. Methods: We measured the cell viability and levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) to determine the construction of the H2O2-induced models of oxidative stress in PC12 cells. Additionally, apoptotic cell death, mitochondrial membrane potential, and cellular morphology were examined to determine the effect of BFB on oxidative stress injury in H2O2-treated PC12 cells. The expression levels of Nrf2-related and autophagy-related genes and proteins were detected using real time quantative PCR (RT-qPCR), Western Blot, and immunofluorescence analyses. Results: Our study showed that BFB treatment reduced the elevated levels of MDA, LDH, and ROS, and decreased cell viability and GSH in H2O2-treated PC12 cells. We also observed the elevated expression of Nrf2 pathway-related factors and intranuclear transitions and found that Nrf2 inhibitors (ML385) could block the protective effect of BFB. The inhibitory effect of BFB on oxidative stress may be partially regulated by Nrf2 activation, and the initiation and induction of autophagy. Conclusion: BFB inhibited H2O2-induced oxidative stress injury in PC12 cells by activating the Nrf2 pathway, initiating and inducing autophagy, suggesting that BFB may be a promising therapeutic agent in treating neurological disorders like cerebral ischemia.
Collapse
Affiliation(s)
- Saidan Qi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaojiao Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Fu
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Anran Pi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Feiyan Shi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yanan Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jiahua Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Tingting Xiao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Dong Shang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Meng Lin
- Department of Experimental Center, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Department of Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Junbiao Chang
- Department of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Yuan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuan Gao,
| |
Collapse
|
18
|
Xu Q, Liu M, Gu J, Ling S, Liu X, Luo Z, Jin Y, Chai R, Ou W, Liu S, Liu N. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1. Cell Death Dis 2022; 8:291. [PMID: 35710902 PMCID: PMC9203583 DOI: 10.1038/s41420-022-01086-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/03/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a complex pathological process that is still not fully understood. The oxidative stress response has a critical role in the occurrence and progression of myocardial ischemia/reperfusion injury. This study investigated the specific mechanism of ubiquitin-specific protease 7 (USP7) regulation of myocardial ischemia/reperfusion injury from the perspective of proteasome degradation and its relation with the Keap1 pathway, a vital regulator of cytoprotective responses to endogenous and exogenous stress induced by reactive oxygen species (ROS) and electrophiles. Our data indicated that USP7 expression is increased during myocardial ischemia/reperfusion injury in mice, while its inhibiting suppressed the generation of oxygen free radicals and myocardial cell apoptosis, reduced myocardial tissue damage, and improved heart function. Mechanistically, USP7 stabilizes Keap1 by regulating its ubiquitination. Taken together, these findings demonstrate the potential therapeutic effect of USP7 on myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Mingke Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jielei Gu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Sisi Ling
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaolin Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhenyu Luo
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yangshuo Jin
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Renjie Chai
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenchao Ou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
19
|
Ma W, Zhu K, Yin L, Yang J, Zhang J, Wu H, Liu K, Li C, Liu W, Guo J, Li L. Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke. Bioengineered 2022; 13:14799-14814. [PMID: 36420646 PMCID: PMC9704383 DOI: 10.1080/21655979.2022.2108266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stroke is a main cause of disability and death among adults in China, and acute ischemic stroke accounts for 80% of cases. The key to ischemic stroke treatment is to recanalize the blocked blood vessels. However, more than 90% of patients cannot receive effective treatment within an appropriate time, and delayed recanalization of blood vessels causes reperfusion injury. Recent research has revealed that ischemic postconditioning has a neuroprotective effect on the brain, but the mechanism has not been fully clarified. Long non-coding RNAs (lncRNAs) have previously been associated with ischemic reperfusion injury in ischemic stroke. LncRNAs regulate important cellular and molecular events through a variety of mechanisms, but a comprehensive analysis of potential lncRNAs involved in the brain protection produced by ischemic postconditioning has not been conducted. In this review, we summarize the common mechanisms of cerebral injury in ischemic stroke and the effect of ischemic postconditioning, and we describe the potential mechanisms of some lncRNAs associated with ischemic stroke.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Luwei Yin
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinfen Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chunyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China,Jianhui Guo Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650034, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China,CONTACT Liyan Li Institute of Neurosicence, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
20
|
Hua W, Zhang X, Tang H, Li C, Han N, Li H, Ma H, Liu P, Zhou Y, Zhang H, Zhang Y, Zhang L, Li Z, Shen H, Xing P, Yu L, Zhang Y, Zhou Y, Yang P, Liu J. AKG Attenuates Cerebral Ischemia-Reperfusion Injury through c-Fos/IL-10/Stat3 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6839385. [PMID: 35592527 PMCID: PMC9113869 DOI: 10.1155/2022/6839385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022]
Abstract
Inflammation is dominant in the pathogenesis of ischemic stroke (IS). Alpha-ketoglutarate (AKG), according to previous studies, has demonstrated a variety of pharmacological effects such as antioxidation and inhibitive inflammation activities. However, whether AKG ameliorates cerebral ischemic injury, as well as the underlying molecular events, is still unclear. Therefore, the effect and underlying mechanisms of AKG on ischemic brain injury should be identified. The study established a cerebral ischemia-reperfusion (I/R) model in mice as well as an oxygen-glucose deprivation/reperfusion (OGD/R) model in SH-SY5Y cells, respectively. It was observed that AKG markedly suppressed infarction volume and neuronal injuries and improved the neurological score in vivo. Moreover, AKG reduced the inflammatory response and lowered the expression of proinflammatory cytokines. In vitro, AKG treatment strongly inhibited OGD/R-induced neuronal injury and the proinflammatory factors. It was also found that the increased SOD and GSH levels, as well as the lower ROS levels, showed that AKG reduced oxidative stress in OGD/R-treated SY-SY5Y cells. Mechanistically, AKG largely promoted IL-10 expression in ischemic brain injury and OGD/R-induced neuronal injury. Furthermore, IL-10 silencing neutralized the protective effect of AKG on inflammation. Notably, it was discovered that AKG could upregulate IL-10 expression by promoting the translocation of c-Fos from the cytoplasm to the nucleus. The results indicated that AKG demonstrated neuroprotection on cerebral ischemia while inhibiting inflammation through c-Fos/IL-10/stat3 pathway.
Collapse
Affiliation(s)
- Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haishuang Tang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ning Han
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pei Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yihan Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongjian Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongxin Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zifu Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongjian Shen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Xing
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Longjuan Yu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongwei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Wasan H, Singh D, Joshi B, Sharma U, Dinda AK, Reeta KH. Post Stroke Safinamide Treatment Attenuates Neurological Damage by Modulating Autophagy and Apoptosis in Experimental Model of Stroke in Rats. Mol Neurobiol 2021; 58:6121-6135. [PMID: 34453687 DOI: 10.1007/s12035-021-02523-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Exploring and repurposing a drug have become a lower risk alternative. Safinamide, approved for Parkinson's disease, has shown neuroprotection in various animal models of neurological disorders. The present study aimed to explore the potential of safinamide in cerebral ischemia/reperfusion (I/R) in rats. Sprague-Dawley rats were used in middle cerebral artery occlusion model of stroke. The effective dose of safinamide was selected based on the results of neurobehavioral parameters and reduction in infarct size assessed 24 h post-reperfusion. For sub-acute study, the treatment with effective dose was extended for 3 days and effects on neurobehavioral parameters, infarct size (TTC staining and MRI), oxidative stress parameters (MDA, GSH, SOD, NOX-2), inflammatory cytokines (TNF-α, IL-1β, IL-10), apoptosis (Bax, Bcl-2, cleaved caspase-3 expression, and TUNEL staining), and autophagy (pAMPK, Beclin-1, LC3-II expression) were studied. The results of dose selection study showed significant reduction (p < 0.05) in infarct size and improvement in neurobehavioral parameters with safinamide (80 mg/kg). In sub-acute study, safinamide showed significant (p < 0.05) improvement in motor coordination and infarct size reduction. Additionally, safinamide treatment significantly normalized altered redox homeostasis and inflammatory cytokine levels. However, no change was observed in expression of NOX-2 in I/R or safinamide treatment group when compared with sham. I/R induced deranged expression of apoptotic markers and increased TUNEL positive cells in cortex were significantly normalized with safinamide treatment. Further, safinamide significantly (p < 0.05) induced the expressions of autophagic proteins (Beclin-1 and LC3-II) in cortex. Overall, the results demonstrated neuroprotective potential of safinamide via anti-oxidant, anti-inflammatory, anti-apoptotic, and autophagy inducing properties. Thus, safinamide can be explored for repurposing in ischemic stroke after further exploration.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Balu Joshi
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - A K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
22
|
Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke. Antioxidants (Basel) 2021; 10:antiox10121886. [PMID: 34942989 PMCID: PMC8698986 DOI: 10.3390/antiox10121886] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
The production of free radicals is inevitably associated with metabolism and other enzymatic processes. Under physiological conditions, however, free radicals are effectively eliminated by numerous antioxidant mechanisms. Oxidative stress occurs due to an imbalance between the production and elimination of free radicals under pathological conditions. Oxidative stress is also associated with ageing. The brain is prone to oxidative damage because of its high metabolic activity and high vulnerability to ischemic damage. Oxidative stress, thus, plays a major role in the pathophysiology of both acute and chronic pathologies in the brain, such as stroke, traumatic brain injury or neurodegenerative diseases. The goal of this article is to summarize the basic concepts of oxidative stress and its significance in brain pathologies, as well as to discuss treatment strategies for dealing with oxidative stress in stroke.
Collapse
|
23
|
Hsieh YS, Shin YK, Seol GH. Protection of the neurovascular unit from calcium-related ischemic injury by linalyl acetate. CHINESE J PHYSIOL 2021; 64:88-96. [PMID: 33938819 DOI: 10.4103/cjp.cjp_94_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Calcium-related ischemic injury (CRII) can damage cells of the neurovascular unit (NVU). Here, we investigate the protective effects of linalyl acetate (LA) against CRII-induced NVU damage and evaluate the underlying mechanisms. The protective effects of LA in cell lines representative of NVU components (BEND, SH-SY5Y, BV2, and U373 cells) were evaluated following exposure to oxygen-glucose deprivation/reoxygenation alone (OGD/R-only) or OGD/R in the presence of 5 mM extracellular calcium ([Ca2+]o) to mimic CRII. LA reversed damage under OGD/R-only conditions by blocking p47phox/NADPH oxidase (NOX) 2 expression, reactive oxygen species (ROS) production, nitric oxide (NO) abnormality, and lactate dehydrogenase (LDH) release only in the BEND cells. However, under CRII-mimicking conditions, LA reversed NO abnormality and matrix metalloproteinase (MMP)-9 activation in the BEND murine brain endothelial cells; inhibited p47phox expression in the human SH-SY5Y neural-like cells; decreased NOX2 expression and ROS generation in the BV2 murine microglial cells; and reduced p47phox expression in the U373 human astrocyte-like cells. Importantly, LA protected against impairment of the neural cells, astrocytes, and microglia, all of which are cellular components of the NVU induced by exposure to CRII-mimicking conditions, by reducing LDH release. We found that LA exerted a protective effect in the BEND cells that may differ from its protective effects in other NVU cell types, following OGD/R-induced damage in the context of elevated [Ca2+]o.
Collapse
Affiliation(s)
- Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea; Department of Nursing, School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing; BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
25
|
Han Y, Geng XK, Lee H, Li F, Ding Y. Neuroprotective Effects of Early Hypothermia Induced by Phenothiazines and DHC in Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1207092. [PMID: 33531913 PMCID: PMC7834782 DOI: 10.1155/2021/1207092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
METHODS Adult male Sprague Dawley rats were studied in 4 groups: (1) sham; (2) stroke; (3) stroke treated with pharmacological hypothermia before reperfusion (interischemia hypothermia); and (4) stroke treated with pharmacological hypothermia after reperfusion is initiated (inter-reperfusion hypothermia). The combination of chlorpromazine and promethazine with dihydrocapsaicin (DHC) was used to induce hypothermia. To compare the neuroprotective effects of drug-induced hypothermia between the interischemia and inter-reperfusion groups, brain damage was evaluated using infarct volume and neurological deficits at 24 h reperfusion. In addition, mRNA expressions of NADPH oxidase (NOX) subunits (gp91phox, p67phox, p47phox, and p22phox) and glucose transporter subtypes (GLUT1 and GLUT3) were determined by real-time PCR at 6 and 24 h reperfusion. ROS production was measured by flow cytometry assay at the same time points. RESULTS In both hypothermia groups, the cerebral infarct volumes and neurological deficits were reduced in the ischemic rats. At 6 and 24 h reperfusion, ROS production and the expressions of NOX subunits and glucose transporter subtypes were also significantly reduced in both hypothermia groups as compared to the ischemic group. While there were no statistically significant differences between the two hypothermia groups at 6 h reperfusion, brain damage was significantly further decreased by interischemia hypothermia at 24 h. CONCLUSION Both interischemia and inter-reperfusion pharmacological hypothermia treatments play a role in neuroprotection after stroke. Interischemia hypothermia treatment may be better able to induce stronger neuroprotection after ischemic stroke. This study provides a new avenue and reference for stronger neuroprotective hypothermia before vascular recanalization in stroke patients.
Collapse
Affiliation(s)
- Yun Han
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Clinical Institute, Capital Medical University, Beijing, China
| | - Xiao-kun Geng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Clinical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fengwu Li
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
26
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metab Brain Dis 2021; 36:53-65. [PMID: 33044640 DOI: 10.1007/s11011-020-00562-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
Ischemic postconditioning (PostC) conventionally refers to a series of brief blood vessel occlusions and reperfusions, which can induce an endogenous neuroprotective effect and reduce cerebral ischemia/reperfusion (I/R) injury. Depending on the site of adaptive ischemic intervention, PostC can be classified as in situ ischemic postconditioning (ISPostC) and remote ischemic postconditioning (RIPostC). Many studies have shown that ISPostC and RIPostC can reduce cerebral IS injury through protective mechanisms that increase cerebral blood flow after reperfusion, decrease antioxidant stress and anti-neuronal apoptosis, reduce brain edema, and regulate autophagy as well as Akt, MAPK, PKC, and KATP channel cell signaling pathways. However, few studies have compared the intervention methods, protective mechanisms, and cell signaling pathways of ISPostC and RIPostC interventions. Thus, in this article, we compare the history, common intervention methods, neuroprotective mechanisms, and cell signaling pathways of ISPostC and RIPostC.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
27
|
Su XT, Wang L, Ma SM, Cao Y, Yang NN, Lin LL, Fisher M, Yang JW, Liu CZ. Mechanisms of Acupuncture in the Regulation of Oxidative Stress in Treating Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7875396. [PMID: 33178387 PMCID: PMC7644298 DOI: 10.1155/2020/7875396] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is the major type of cerebrovascular disease usually resulting in death or disability among the aging population globally. Oxidative stress has been closely linked with ischemic stroke. Disequilibrium between excessive production of reactive oxygen species (ROS) and inherent antioxidant capacity leads to subsequent oxidative damage in the pathological progression of ischemic brain injury. Acupuncture has been applied widely in treating cerebrovascular diseases from time immemorial in China. This review mainly lays stress on the evidence to illuminate the possible mechanisms of acupuncture therapy in treating ischemic stroke through regulating oxidative stress. We found that by regulating a battery of molecular signaling pathways involved in redox modulation, acupuncture not only activates the inherent antioxidant enzyme system but also inhibits the excessive generation of ROS. Acupuncture therapy possesses the potential in alleviating oxidative stress caused by cerebral ischemia, which may be linked with the neuroprotective effect of acupuncture.
Collapse
Affiliation(s)
- Xin-Tong Su
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Lu-Lu Lin
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jing-Wen Yang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
McKay EC, Counts SE. Oxytocin Receptor Signaling in Vascular Function and Stroke. Front Neurosci 2020; 14:574499. [PMID: 33071746 PMCID: PMC7544744 DOI: 10.3389/fnins.2020.574499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
The oxytocin receptor (OXTR) is a G protein-coupled receptor with a diverse repertoire of intracellular signaling pathways, which are activated in response to binding oxytocin (OXT) and a similar nonapeptide, vasopressin. This review summarizes the cell and molecular biology of the OXTR and its downstream signaling cascades, particularly focusing on the vasoactive functions of OXTR signaling in humans and animal models, as well as the clinical applications of OXTR targeting cerebrovascular accidents.
Collapse
Affiliation(s)
- Erin C McKay
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Department of Family Medicine, Michigan State University, Grand Rapids, MI, United States.,Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States.,Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Warpsinski G, Smith MJ, Srivastava S, Keeley TP, Siow RCM, Fraser PA, Mann GE. Nrf2-regulated redox signaling in brain endothelial cells adapted to physiological oxygen levels: Consequences for sulforaphane mediated protection against hypoxia-reoxygenation. Redox Biol 2020; 37:101708. [PMID: 32949969 PMCID: PMC7502377 DOI: 10.1016/j.redox.2020.101708] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is associated with a surge in reactive oxygen species generation during reperfusion. The narrow therapeutic window for the delivery of intravenous thrombolysis and endovascular thrombectomy limits therapeutic options for patients. Thus, understanding the mechanisms regulating neurovascular redox defenses are key for improved clinical translation. Our previous studies in a rodent model of ischemic stroke established that activation of Nrf2 defense enzymes by pretreatment with sulforaphane (SFN) affords protection against neurovascular and neurological deficits. We here further investigate SFN mediated protection in mouse brain microvascular endothelial cells (bEnd.3) adapted long-term (5 days) to hyperoxic (18 kPa) and normoxic (5 kPa) O2 levels. Using an O2-sensitive phosphorescent nanoparticle probe, we measured an intracellular O2 level of 3.4 ± 0.1 kPa in bEnd 3 cells cultured under 5 kPa O2. Induction of HO-1 and GCLM by SFN (2.5 μM) was significantly attenuated in cells adapted to 5 kPa O2, despite nuclear accumulation of Nrf2. To simulate ischemic stroke, bEnd.3 cells were adapted to 18 or 5 kPa O2 and subjected to hypoxia (1 kPa O2, 1 h) and reoxygenation. In cells adapted to 18 kPa O2, reoxygenation induced free radical generation was abrogated by PEG-SOD and significantly attenuated by pretreatment with SFN (2.5 μM). Silencing Nrf2 transcription abrogated HO-1 and NQO1 induction and led to a significant increase in reoxygenation induced free radical generation. Notably, reoxygenation induced oxidative stress, assayed using the luminescence probe L-012 and fluorescence probes MitoSOX™ Red and FeRhoNox™-1, was diminished in cells cultured under 5 kPa O2, indicating an altered redox phenotype in brain microvascular cells adapted to physiological normoxia. As redox and other intracellular signaling pathways are critically affected by O2, the development of antioxidant therapies targeting the Keap1-Nrf2 defense pathway in treatment of ischemia-reperfusion injury in stroke, coronary and renal disease will require in vitro studies conducted under well-defined O2 levels. Physiological normoxia alters the redox phenotype of murine microvascular brain endothelial cells. Intracellular GSH levels are lower in bEnd.3 cells adapted to 5 kPa versus 18 kPa O2. Nrf2 activated HO-1 and GCLM expression is attenuated under physiological normoxia. Sulforaphane protects against reoxygenation induced reactive oxygen species generation via Nrf2.
Collapse
Affiliation(s)
- Gabriela Warpsinski
- King's British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Matthew J Smith
- King's British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Salil Srivastava
- King's British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Thomas P Keeley
- King's British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Richard C M Siow
- King's British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Paul A Fraser
- King's British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Giovanni E Mann
- King's British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
30
|
Eastman CL, D'Ambrosio R, Ganesh T. Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology 2020; 172:107907. [PMID: 31837825 PMCID: PMC7274911 DOI: 10.1016/j.neuropharm.2019.107907] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in young adults worldwide. TBI survival is associated with persistent neuropsychiatric and neurological impairments, including posttraumatic epilepsy (PTE). To date, no pharmaceutical treatment has been found to prevent PTE or ameliorate neurological/neuropsychiatric deficits after TBI. Brain trauma results in immediate mechanical damage to brain cells and blood vessels that may never be fully restored given the limited regenerative capacity of brain tissue. This primary insult unleashes cascades of events, prominently including neuroinflammation and massive oxidative stress that evolve over time, expanding the brain injury, but also clearing cellular debris and establishing homeostasis in the region of damage. Accumulating evidence suggests that oxidative stress and neuroinflammatory sequelae of TBI contribute to posttraumatic epileptogenesis. This review will focus on possible roles of reactive oxygen species (ROS), their interactions with neuroinflammation in posttraumatic epileptogenesis, and emerging therapeutic strategies after TBI. We propose that inhibitors of the professional ROS-generating enzymes, the NADPH oxygenases and myeloperoxidase alone, or combined with selective inhibition of cyclooxygenase mediated signaling may have promise for the treatment or prevention of PTE and other sequelae of TBI. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Clifford L Eastman
- Department of Neurological Surgery, 325 Ninth Ave., Seattle, WA, 98104, USA.
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery, 325 Ninth Ave., Seattle, WA, 98104, USA; Regional Epilepsy Center, University of Washington, 325 Ninth Ave., Seattle, WA, 98104, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, Georgia.
| |
Collapse
|
31
|
Buyang Huanwu Decoction Promotes Angiogenesis after Cerebral Ischemia by Inhibiting the Nox4/ROS Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5264205. [PMID: 32802129 PMCID: PMC7415092 DOI: 10.1155/2020/5264205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Background Buyang Huanwu decoction (BYHWD), an important traditional Chinese medicine (TCM), has been used clinically for centuries for the treatment of various diseases. The study aims to explore the BYHWD effects on angiogenesis and neuroprotection after cerebral ischemia/reperfusion (CI/R) injury in rats and to explore the underlying angiogenic roles and mechanisms of BYHWD in hydrogen peroxide (H2O2) induced oxidative stress in human umbilical vein endothelial cells (HUVECs) model. Methods The effects of BYHWD on neurological function were screened by measuring neurological deficits, spatial memory function, and angiogenesis (by microvascular density (MVD) and cerebral blood flow (CBF)) after CI/R injury in middle cerebral artery occlusion (MCAO) in vivo in rats. In vitro, we examined the angiogenic roles and mechanisms of action of BYHWD in an H2O2-induced oxidative stress HUVECs model by measuring cell viability, apoptosis, vascular tube formation, intracellular ROS generation, NADPH oxidase (Nox) activity, and Nox4 protein expression. Results BYHWD significantly improved neurological function, including neurological deficits and spatial learning and memory, and significantly increased MVD and CBF in the ischemic penumbra after CI/R injury in rats. BYHWD significantly increased cell viability, inhibited apoptosis, induced vascular tube formation, decreased intracellular ROS generation, and reduced Nox activity and Nox4 protein expression in H2O2-treated HUVECs in a dose-dependent manner. Conclusions Our study demonstrates that BYHWD promotes neurological function recovery and increases angiogenesis. BYHWD exerts angiogenic effects against cerebral ischemic injury through the downregulation of Nox4, which results in the reduction of ROS generation.
Collapse
|
32
|
El-Mahdy MA, Abdelghany TM, Hemann C, Ewees MG, Mahgoup EM, Eid MS, Shalaan MT, Alzarie YA, Zweier JL. Chronic cigarette smoke exposure triggers a vicious cycle of leukocyte and endothelial-mediated oxidant stress that results in vascular dysfunction. Am J Physiol Heart Circ Physiol 2020; 319:H51-H65. [PMID: 32412791 DOI: 10.1152/ajpheart.00657.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although there is a strong association between cigarette smoking exposure (CSE) and vascular endothelial dysfunction (VED), the underlying mechanisms by which CSE triggers VED remain unclear. Therefore, studies were performed to define these mechanisms using a chronic mouse model of cigarette smoking (CS)-induced cardiovascular disease mirroring that in humans. C57BL/6 male mice were subjected to CSE for up to 48 wk. CSE impaired acetylcholine (ACh)-induced relaxation of aortic and mesenteric segments and triggered hypertension, with mean arterial blood pressure at 32 and 48 wk of exposure of 122 ± 6 and 135 ± 5 mmHg compared with 99 ± 4 and 102 ± 6 mmHg, respectively, in air-exposed mice. CSE led to monocyte activation with superoxide generation in blood exiting the pulmonary circulation. Macrophage infiltration with concomitant increase in NADPH oxidase subunits p22phox and gp91phox was seen in aortas of CS-exposed mice at 16 wk, with further increase out to 48 wk. Associated with this, increased superoxide production was detected that decreased with Nox inhibition. Tetrahydrobiopterin was progressively depleted in CS-exposed mice but not in air-exposed controls, resulting in endothelial nitric oxide synthase (eNOS) uncoupling and secondary superoxide generation. CSE led to a time-dependent decrease in eNOS and Akt expression and phosphorylation. Overall, CSE induces vascular monocyte infiltration with increased NADPH oxidase-mediated reactive oxygen species generation and depletes the eNOS cofactor tetrahydrobiopterin, uncoupling eNOS and triggering a vicious cycle of oxidative stress with VED and hypertension. Our study provides important insights toward understanding the process by which smoking contributes to the genesis of cardiovascular disease and identifies biomarkers predictive of disease.NEW & NOTEWORTHY In a chronic model of smoking-induced cardiovascular disease, we define underlying mechanisms of smoking-induced vascular endothelial dysfunction (VED). Smoking exposure triggered VED and hypertension and led to vascular macrophage infiltration with concomitant increase in superoxide and NADPH oxidase levels as early as 16 wk of exposure. This oxidative stress was accompanied by tetrahydrobiopterin depletion, resulting in endothelial nitric oxide synthase uncoupling with further superoxide generation triggering a vicious cycle of oxidative stress and VED.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tamer M Abdelghany
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Craig Hemann
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mohamed G Ewees
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Elsayed M Mahgoup
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud S Eid
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud T Shalaan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yasmin A Alzarie
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Helwan University, National Organization of Drug Control and Research, Cairo, Egypt
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Wang J, Liu Y, Shen H, Li H, Wang Z, Chen G. Nox2 and Nox4 Participate in ROS-Induced Neuronal Apoptosis and Brain Injury During Ischemia-Reperfusion in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2020; 127:47-54. [PMID: 31407062 DOI: 10.1007/978-3-030-04615-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previously studies have shown that Nox2 and Nox4, as members of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, Nox), participate in brain damage caused by ischemia-reperfusion (I/R). The aim of this study is to investigate the effects of specific chemical inhibitors of Nox2 and Nox4 on cerebral I/R-induced brain injury in rats. METHODS At 0.5 h before MCAO surgery, the rats were pretreated with vehicle, Nox2 inhibitor (gp91ds-tat), and Nox4 inhibitor (GKT137831), respectively. After reperfusion for 24 h, the infarct sizes of brain tissues in rats in various groups are determined. The penumbra (ischemic) tissues are collected to measure ROS levels, neuronal apoptosis, and degeneration, as well as the integrity of the blood-brain barrier (BBB) in brain tissues of rats. RESULTS gp91ds-tat and GKT137831 pretreatment significantly reduced the infarct sizes in brain tissues of rats, effectively suppressed I/R-induced increase in ROS levels, neuronal apoptosis and degeneration, and obviously alleviated BBB damage. CONCLUSION Under cerebral I/R conditions, Nox2 inhibitor (gp91ds-tat) and Nox4 inhibitor (GKT137831) can effectively play a protective role in the brain tissues of rats.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Jiangsu Shengze Hospital, Suzhou, China
| | - Yin Liu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Suzhou Municipal Hospital, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
35
|
Role of NADPH oxidase-2 in the progression of the inflammatory response secondary to striatum excitotoxic damage. J Neuroinflammation 2019; 16:91. [PMID: 30995916 PMCID: PMC6471795 DOI: 10.1186/s12974-019-1478-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/03/2019] [Indexed: 01/11/2023] Open
Abstract
Background During excitotoxic damage, neuronal death results from the increase in intracellular calcium, the induction of oxidative stress, and a subsequent inflammatory response. NADPH oxidases (NOX) are relevant sources of reactive oxygen species (ROS) during excitotoxic damage. NADPH oxidase-2 (NOX-2) has been particularly related to neuronal damage and death, as well as to the resolution of the subsequent inflammatory response. As ROS are crucial components of the regulation of inflammatory response, in this work, we evaluated the role of NOX-2 in the progression of inflammation resulting from glutamate-induced excitotoxic damage of the striatum in an in vivo model. Methods The striata of wild-type C57BL/6 J and NOX-2 KO mice (gp91Cybbtm1Din/J) were stereotactically injected with monosodium glutamate either alone or in combination with IL-4 or IL-10. The damage was evaluated in histological sections stained with cresyl violet and Fluoro-Jade B. The enzymatic activity of caspase-3 and NOX were also measured. Additionally, the cytokine profile was identified by ELISA and motor activity was verified by the tests of the cylinder, the adhesive tape removal, and the inverted grid. Results Our results show a neuroprotective effect in mice with a genetic inhibition of NOX-2, which is partially due to a differential response to excitotoxic damage, characterized by the production of anti-inflammatory cytokines. In NOX-2 KO animals, the excitotoxic condition increased the production of interleukin-4, which could contribute to the production of interleukin-10 that decreased neuronal apoptotic death and the magnitude of striatal injury. Treatment with interleukin-4 and interleukin-10 protected from excitotoxic damage in wild-type animals. Conclusions The release of proinflammatory cytokines during the excitotoxic event promotes an additional apoptotic death of neurons that survived the initial damage. During the subsequent inflammatory response to excitotoxic damage, ROS generated by NOX-2 play a decisive role in the extension of the lesion and consequently in the severity of the functional compromise, probably by regulating the anti-inflammatory cytokines production. Electronic supplementary material The online version of this article (10.1186/s12974-019-1478-4) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Cananzi SG, Mayhan WG. In Utero Exposure to Alcohol Impairs Reactivity of Cerebral Arterioles and Increases Susceptibility of the Brain to Damage Following Ischemia/Reperfusion in Adulthood. Alcohol Clin Exp Res 2019; 43:607-616. [PMID: 30748017 DOI: 10.1111/acer.13979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/01/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Maternal consumption of alcohol produces abnormalities in the developing fetus and can contribute to an increased incidence of many cardiovascular-related diseases. The first goal of this study was to determine whether in utero exposure to alcohol influences reactivity of cerebral arterioles in adult (12 to 15 weeks old) rats. The second goal of this study was to examine whether in utero exposure to alcohol increased the susceptibility of the brain to damage following an ischemic event in adult rats. METHODS We fed Sprague Dawley dams a liquid diet with or without alcohol (3% ethanol) for the duration of their pregnancy (21 to 23 days). In the first series of studies, we examined reactivity of cerebral arterioles to endothelial nitric oxide synthase (eNOS)- (adenosine diphosphate [ADP]) and neuronal nitric oxide synthase (nNOS)-dependent N-methyl-D-aspartate (NMDA, and NOS-independent agonists in adult rats before and during application of l-NMMA. In another series of studies, we examined infarct volume following middle cerebral artery occlusion in adult offspring exposed to alcohol in utero. In both series of studies, we also determined the role for an increase in oxidative stress by feeding dams apocynin for the duration of their pregnancy. RESULTS We found that in utero exposure to alcohol reduced responses of cerebral arterioles to ADP and NMDA, but not to nitroglycerin in adult rats. In addition, treatment of the dams with apocynin prevented this impairment in cerebral vascular function. We also found that in utero exposure to alcohol worsened brain damage following ischemia/reperfusion in adult rats and that treatment of dams with apocynin prevented this increase in brain damage following ischemia/reperfusion. CONCLUSIONS We suggest that our findings may have important implications for the pathogenesis of brain abnormalities associated with fetal alcohol exposure.
Collapse
Affiliation(s)
- Sergio G Cananzi
- Department of Molecular Biology , University of Texas-Southwestern, Dallas, Texas
| | - William G Mayhan
- Division of Basic Biomedical Sciences , Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
37
|
Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 2019; 125:496-502. [DOI: 10.1016/j.ijbiomac.2018.11.190] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
|
38
|
Hosseini E, Ghasemzadeh M, Atashibarg M, Haghshenas M. ROS scavenger, N-acetyl-l-cysteine and NOX specific inhibitor, VAS2870 reduce platelets apoptosis while enhancing their viability during storage. Transfusion 2019; 59:1333-1343. [DOI: 10.1111/trf.15114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
- Australian Centre for Blood Diseases; Monash University; Melbourne Victoria Australia
| | - Mahtab Atashibarg
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| | - Masood Haghshenas
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| |
Collapse
|
39
|
Shen J, Rastogi R, Geng X, Ding Y. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen Res 2019; 14:948-953. [PMID: 30761998 PMCID: PMC6404502 DOI: 10.4103/1673-5374.250568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
40
|
Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y, Yang H, Ma H, Yao J, Lawler SE, Zhang X, Fu J, Rozental R, Aly H, Johnson MD, Chiocca EA, Wang X. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 2019; 130:215-233. [PMID: 30315933 DOI: 10.1016/j.freeradbiomed.2018.10.402] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/01/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.
Collapse
Affiliation(s)
- Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Yongchun Cui
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongwei Yang
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Renato Rozental
- Lab Neuroproteção & Estratégias Regenerativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Mark D Johnson
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Li Z, Yulei J, Yaqing J, Jinmin Z, Xinyong L, Jing G, Min L. Protective effects of tetramethylpyrazine analogue Z-11 on cerebral ischemia reperfusion injury. Eur J Pharmacol 2018; 844:156-164. [PMID: 30502344 DOI: 10.1016/j.ejphar.2018.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
The aim of our study was to investigate the effects of a new synthetic compound (E) -1- (E) -1- (2- hydroxy -5- chlorophenyl) -3- (3, 5, 6- three methyl pyrazine -2- based) -2- propylene -1 ketone, Z-11, a tetramethylpyrazine analogue, on cerebral ischemia reperfusion injury and the underlying mechanism. 240-260 g adult male Wistar rats were subjected to middle cerebral artery occlusion for 2 h, followed by 22 h of reperfusion. Z-11 (1.7, 3.4 and 6.8 mg/kg, i.p.), Edaravone (3 mg/kg, i.p.) and DMSO (1‰, i.p.) was administered at 2 h after the onset of ischemia. The rats' neurological score, infarct volume, and body weight change were tested, and some oxidative stress markers such as superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were evaluated after 22 h of reperfusion. Results showed that neurologic deficit, infarct volume and body weight change were ameliorated after cerebral ischemia reperfusion, and that Z-11 exhibits an excellent effect at a dosage of 6.8 mg/kg. This dose also reduced the content of MDA, and upregulated SOD activity and GSH content. Similarly, 6.8 mg/kg Z-11 treatment inhibited the reactive oxygen species content and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, with the protein levels of Ras-related C3 botulinum toxin substrate1(Rac-1) and mitogenic oxidase (Nox2) downregulated even further. Moreover, the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream anti-oxidant protein heme oxygenase-1 (HO-1) were upregulated. This indicates that Z-11 could play a protective role in cerebral ischemia-reperfusion injury, and that the protective effect of Z-11 may be related to improvements in the antioxidant capacity of brain tissue. The mechanisms are associated with enhancing oxidant defence systems via the activation of Nrf2/HO-1 and Rac-1/NADPH oxidase pathways.
Collapse
Affiliation(s)
- Zhai Li
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Jia Yulei
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Ji Yaqing
- Department of Neurology, Eighth People's Hospital Affiliated to Qiingdao University, Qingdao 266003, China
| | - Zou Jinmin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Liu Xinyong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Gao Jing
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liu Min
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
42
|
Liu Y, Wu X, An J, Lv W, Geng Y, Lou T, Zhang Y. Glaucocalyxin B protects against oxygen-glucose-deprivation/reperfusion-induced neuronal injury in PC-12 cells. J Cell Biochem 2018; 120:6137-6144. [PMID: 30304556 DOI: 10.1002/jcb.27901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023]
Abstract
Oxidative stress has been implicated in the development of cerebral ischemia/reperfusion (I/R) injury. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, was reported to possess neuroprotective activity. However, the effect of GLB on oxygen-glucose-deprivation/reperfusion (OGD/R)-induced cell injury in PC-12 cells has not been explored. PC-12 cells was treated with various concentrations of GLB (0, 2.5, 5 and 10 μM), and cell viability was detected using the MTT assay. PC-12 cells were pretreated with the indicated concentration of GLB (2.5-10 μM, 2 hours pretreatment), and were maintained under OGD for 3 hours, followed by 24 hours of reoxygenation. Cell viability was assessed using the MTT assay. The levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were detected using commercially available ELISA Kits. Intracellular reactive oxygen species level was measured using the fluorescent probe 2',7'-dichlorofluorescein diacetate. The levels of Bcl-2, Bax, p-Akt, Akt, p-mTOR, mTOR were detected using Western blot. Our results revealed that GLB significantly protected PC12 cells against OGD/R-induced cell injury. In addition, GLB efficiently inhibited oxidative stress and cell apoptosis in OGD/R-stimulated PC-12 cells. Mechanistic studies revealed that pretreatment with GLB could induce the activation of Akt/mTOR signaling pathway resulting in protection of OGD-treated PC12 cells. In conclusion, our data indicate for the first time that GLB protects against OGD/R-induced neuronal injury in PC-12 cells. The mechanism of the protective effect of GLB is partially associated with activation of the Akt/mTOR signaling pathway. Thus, GLB may be a potential agent for protection against cerebral I/R injury.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xianchuang Wu
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jihong An
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Weiling Lv
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yanna Geng
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Lou
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yongzhou Zhang
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
43
|
Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 2018; 139:124-136. [DOI: 10.1016/j.neuropharm.2018.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
44
|
Dexmedetomidine Protects Against Chemical Hypoxia-Induced Neurotoxicity in Differentiated PC12 Cells Via Inhibition of NADPH Oxidase 2-Mediated Oxidative Stress. Neurotox Res 2018; 35:139-149. [PMID: 30112693 DOI: 10.1007/s12640-018-9938-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Dexmedetomidine (Dex) is a widely used sedative in anesthesia and critical care units, and it exhibits neuroprotective activity. However, the precise mechanism of Dex-exerted neuroprotection is not clear. Increased neuronal NADPH oxidase 2 (NOX2) contributes to oxidative stress and neuronal damage in various hypoxia-related neurodegenerative disorders. The present study investigated whether Dex regulated neuronal NOX2 to exert its protective effects under hypoxic conditions. Well-differentiated PC12 cells were exposed to cobalt chloride (CoCl2) to mimic a neuronal model of chemical hypoxia-mediated neurotoxicity. The data showed that Dex pretreatment of PC12 cells significantly suppressed CoCl2-induced neurotoxicity, as evidenced by the enhanced cell viability, restoration of cellular morphology, and reduction in apoptotic cells. Dex improved mitochondrial function and inhibited CoCl2-induced mitochondrial apoptotic pathways. We further demonstrated that Dex attenuated oxidative stress, downregulated NOX2 protein expression and activity, and inhibited intracellular calcium ([Ca2+]i) overload in CoCl2-treated PC12 cells. Moreover, knockdown of the NOX2 gene markedly improved mitochondrial function and attenuated apoptosis under hypoxic conditions. These results demonstrated that the protective effects of Dex against hypoxia-induced neurotoxicity in neural cells were mediated, at least partially, via inhibition of NOX2-mediated oxidative stress.
Collapse
|
45
|
Navarro-Oviedo M, Roncal C, Salicio A, Belzunce M, Rabal O, Toledo E, Zandio B, Rodríguez JA, Páramo JA, Muñoz R, Orbe J. MMP10 Promotes Efficient Thrombolysis After Ischemic Stroke in Mice with Induced Diabetes. Transl Stroke Res 2018; 10:389-401. [PMID: 30051168 DOI: 10.1007/s12975-018-0652-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/21/2023]
Abstract
Diabetes is an important risk factor for ischemic stroke (IS). Tissue-type plasminogen activator (tPA) has been associated with less successful revascularization and poor functional outcome in diabetes. We assessed whether a new thrombolytic strategy based on MMP10 was more effective than tPA in a murine IS model of streptozotocin (STZ)-induced diabetes. Wild-type mice were administered a single dose of streptozotocin (STZ) (180 mg/kg) to develop STZ-induced diabetes mellitus. Two weeks later, IS was induced by thrombin injection into the middle cerebral artery and the effect of recombinant MMP10 (6.5 μg/kg), tPA (10 mg/kg) or tPA/MMP10 on brain damage and functional outcome were analysed. Motor activity was assessed using the open field test. Additionally, we studied plasminogen activator inhibitor-1 (PAI-1) and thrombin-antithrombin complex levels (TAT) by ELISA and oxidative stress and blood-brain barrier (BBB) integrity by immunohistochemistry and western blot. MMP10 treatment was more effective at reducing infarct size and neurodegeneration than tPA 24 h and 3 days after IS in diabetic mice. Locomotor activity was impaired by hyperglycemia and ischemic injury, but not by the thrombolytic treatments. Additionally, TAT, oxidative stress and BBB permeability were reduced by MMP10 treatment, whereas brain bleeding or PAI-1 expression did not differ between treatments. Thrombolytic treatment with MMP10 was more effective than tPA at reducing stroke and neurodegeneration in a diabetic murine model of IS, without increasing haemorrhage. Thus, we propose MMP10 as a potential candidate for the clinical treatment of IS in diabetic patients.
Collapse
Affiliation(s)
- Manuel Navarro-Oviedo
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Agustina Salicio
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain
| | - Miriam Belzunce
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Estefanía Toledo
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Ministry of Economy and Competitiveness, ISCIII, Pamplona, Spain
| | - Beatriz Zandio
- Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Jose A Rodríguez
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jose A Páramo
- CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Haematology Service, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Roberto Muñoz
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josune Orbe
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain. .,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain. .,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
46
|
Mizuma A, You JS, Yenari MA. Targeting Reperfusion Injury in the Age of Mechanical Thrombectomy. Stroke 2018; 49:1796-1802. [PMID: 29760275 DOI: 10.1161/strokeaha.117.017286] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Atsushi Mizuma
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.).,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.).,Department of Neurology, Tokai University School of Medicine, Isehara, Japan (A.M.)
| | - Je Sung You
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.).,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.).,Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea (J.S.Y.)
| | - Midori A Yenari
- From the Department of Neurology, University of California, San Francisco (A.M., J.S.Y., M.A.Y.) .,San Francisco Veterans Affairs Medical Center, CA (A.M., J.S.Y., M.A.Y.)
| |
Collapse
|
47
|
Kumfu S, Charununtakorn ST, Jaiwongkam T, Chattipakorn N, Chattipakorn SC. Humanin Exerts Neuroprotection During Cardiac Ischemia-Reperfusion Injury. J Alzheimers Dis 2018; 61:1343-1353. [DOI: 10.3233/jad-170708] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sirinart Kumfu
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Savitree T. Charununtakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
48
|
Bernhart E, Kogelnik N, Prasch J, Gottschalk B, Goeritzer M, Depaoli MR, Reicher H, Nusshold C, Plastira I, Hammer A, Fauler G, Malli R, Graier WF, Malle E, Sattler W. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells. Redox Biol 2018; 15:441-451. [PMID: 29413957 PMCID: PMC5975063 DOI: 10.1016/j.redox.2018.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.
Collapse
Affiliation(s)
- Eva Bernhart
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Nora Kogelnik
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Jürgen Prasch
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Madeleine Goeritzer
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| | - Maria Rosa Depaoli
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Helga Reicher
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Christoph Nusshold
- Institute of Physiological Chemistry, Medical University of Graz, Austria.
| | - Ioanna Plastira
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Astrid Hammer
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Cell Biology, Histology and Embryology, Medical University of Graz, Austria.
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria.
| | - Roland Malli
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| | - Ernst Malle
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Wolfgang Sattler
- Gottfried Schatz Research Center for Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| |
Collapse
|
49
|
Li X, Guo H, Zhao L, Wang B, Liu H, Yue L, Bai H, Jiang H, Gao L, Feng D, Qu Y. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3265-3276. [DOI: 10.1016/j.bbadis.2017.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/12/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
50
|
Keilhoff G, Esser T, Titze M, Ebmeyer U, Schild L. High-potential defense mechanisms of neocortex in a rat model of transient asphyxia induced cardiac arrest. Brain Res 2017; 1674:42-54. [DOI: 10.1016/j.brainres.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023]
|