1
|
Przybyla-Toscano J, Chetouhi C, Pennera L, Boursiac Y, Galeone A, Devime F, Balliau T, Santoni V, Bourguignon J, Alban C, Ravanel S. New insights into uranium stress responses of Arabidopsis roots through membrane- and cell wall-associated proteome analysis. CHEMOSPHERE 2025; 370:143873. [PMID: 39647793 DOI: 10.1016/j.chemosphere.2024.143873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Uranium (U) is a non-essential and toxic metal for plants. In Arabidopsis thaliana plants challenged with uranyl nitrate, we showed that U was mostly (64-71% of the total) associated with the root insoluble fraction containing membrane and cell wall proteins. Therefore, to uncover new molecular mechanisms related to U stress, we used label-free quantitative proteomics to analyze the responses of the root membrane- and cell wall-enriched proteome. Of the 2,802 proteins identified, 458 showed differential accumulation (≥1.5-fold change) in response to U. Biological processes affected by U include response to stress, amino acid metabolism, and previously unexplored functions associated with membranes and the cell wall. Indeed, our analysis supports a dynamic and complex reorganization of the cell wall under U stress, including lignin and suberin synthesis, pectin modification, polysaccharide hydrolysis, and Casparian strips formation. Also, the abundance of proteins involved in vesicular trafficking and water flux was significantly altered by U stress. Measurements of root hydraulic conductivity and leaf transpiration indicated that U significantly decreased the plant's water flux. This disruption in water balance is likely due to a decrease in PIP aquaporin levels, which may serve as a protective mechanism to reduce U toxicity. Finally, the abundance of transporters and metal-binding proteins was altered, suggesting that they may be involved in regulating the fate and toxicity of U in Arabidopsis. Overall, this study highlights how U stress impacts the insoluble root proteome, shedding light on the mechanisms used by plants to mitigate U toxicity.
Collapse
Affiliation(s)
| | - Cherif Chetouhi
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Lorraine Pennera
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Adrien Galeone
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190, Gif-sur-Yvette, France
| | - Véronique Santoni
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France.
| |
Collapse
|
2
|
Ye X, Qin K, Fernie AR, Zhang Y. Prospects for synthetic biology in 21 st Century agriculture. J Genet Genomics 2024:S1673-8527(24)00369-2. [PMID: 39742963 DOI: 10.1016/j.jgg.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.
Collapse
Affiliation(s)
- Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
de Oliveira HO, Siqueira JA, Medeiros DB, Fernie AR, Nunes-Nesi A, Araújo WL. Harnessing the dynamics of plant organic acids metabolism following abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 220:109465. [PMID: 39787814 DOI: 10.1016/j.plaphy.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Viswam AKS, Johnson S, Koyyappurath S, Mujeeb A. Non-invasive laser bio-speckle technique for the study of optical irradiation on plant leaf lamina: Application to monitor salicylic acid modulated response in Zamioculcas zamiifolia. Biochem Biophys Res Commun 2024; 739:150955. [PMID: 39531909 DOI: 10.1016/j.bbrc.2024.150955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The intensity of light is one of the major factors influencing the rate of plant physiological activity. For optimization of the agricultural lighting necessary for plant growth, it is vital to understand the plant behavioral response under different light intensities. In the present study, the dynamic activity due to the physiological phenomena in the leaf of a plant when exposed to optical radiation from artificial LED sources is quantified non-destructively. The laser bio-speckle algorithm of obtaining Inertia Moment (IM) values from the Time History of Speckle Patterns (THSP) is utilized as a quantitative measure of the plant leaf dynamic activity. The plant leaf laminas were probed using the laser and the IM values were generated. The dynamic activity variations with the increase in optical intensity were studied on the leaves of Philodendron erubescens, Syngonium podophyllum, Piper nigrum, Plectranthus amboinicus and Epipremnum aureum. The obtained results reveal a unique pattern for each plant leaf and displayed consistent repeatability under fixed experimental conditions. The method was extended to monitor dynamic activity variation with optical irradiation intensity in Zamioculas zamiifolia leaves before and after treatment with salicylic acid, a measure to induce hormonal cross-talks. The obtained results were validated using biochemical estimation techniques and can be useful insights for the development of a non-invasive sensor for analyzing the plant's physiological activity under various light intensity conditions. The present study is the first of its kind to elucidate the viability of conducting a non-invasive analysis of abiotic stress effects on a sample and control plant using laser speckle technique.
Collapse
Affiliation(s)
- A K Sooraj Viswam
- International School of Photonics, Cochin University of Science and Technology, Kochi, Kerala, India.
| | - Sinoy Johnson
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Sayuj Koyyappurath
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - A Mujeeb
- International School of Photonics, Cochin University of Science and Technology, Kochi, Kerala, India; Digital University Kerala, India
| |
Collapse
|
5
|
Liu S, Wang G, Xing Z, Xue H, Wang Y, Wang H, Dong X, Chen H, Liu Y. Stable Isotope and Multiomics Reveal Uptake, Translocation, and Transformation Mechanisms of Tris(2-chloroethyl) Phosphate in Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27797-27807. [PMID: 39654329 DOI: 10.1021/acs.jafc.4c08393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Uptake, translocation, and transformation mechanisms of tris(2-chloroethyl) phosphate (TCEP) in hydroponic wheat (Triticum aestivum L.) were systematically investigated using compound-specific stable isotope and multiomics analyses in this study. Results showed that TCEP was quickly adsorbed on root epidermis and then absorbed in roots via water and anion channels as well as an active process dependent on energy. Active process and anion channel preferentially translocated TCEP-containing light carbon isotopes and dominated the transmembrane transport of TCEP to enter vascular bundle. Transcriptomic and metabolomic analyses indicated gene-encoding ATP-binding cassette (ABC) transporters and purple acid phosphatases (PAPs) and glutathione S-transferases (GSTs) involved in TCEP transport and transformation, respectively. Molecular docking simulations showed that TCEP bound to the hydrophilic cavity of ABC transporter/PAP and hydrophobic cavity of GST, and hydrogen bonding was the important driving force. The results of this study offered insights for future effective mitigation of TCEP risk in edible plants.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Hongyi Xue
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Yana Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Haiyue Chen
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| |
Collapse
|
6
|
Rahmawati D, Adan MFY, Ikram MMM, Iman MN, Fukusaki E, Putri SP. Effect of sodium metabisulfite treatment and storage condition on metabolic profile of young coconut (Cocos nucifera L.). J Biosci Bioeng 2024; 138:515-521. [PMID: 39343696 DOI: 10.1016/j.jbiosc.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
Young coconuts (Cocos nucifera L.) used for export are trimmed to reduce their size and weight to lower transport costs. However, trimmed coconuts have a shorter shelf life due to microbial spoilage and surface discoloration caused by enzymatic browning. To minimize these effects, trimmed coconuts were dipped in an anti-browning agent, sodium metabisulfite (SMB), and stored under ambient conditions. However, there have been no reports on the effects of SMB treatment on metabolome changes in the flesh and water of young coconuts. Hence, this study investigated the metabolite changes in trimmed young coconuts after SMB treatment under different storage conditions using a gas chromatography (GC)/mass spectrometry (MS) metabolomic profiling approach. Tall young coconut samples were trimmed and treated with a 2% SMB solution for 5 min before storage at 25 °C or 4 °C for 2-4 weeks. Coconut flesh and water samples were collected after storage for 0, 2, and 4 weeks, and were subjected to GC-MS analysis. The results showed that the major metabolites affected by coconut deterioration were amino acids, sugars, and sugar alcohols. SMB treatment and/or refrigeration can help prevent metabolite changes in the flesh and water of young coconuts. In the future, improvements in storage conditions based on metabolite profiles should be explored.
Collapse
Affiliation(s)
- Della Rahmawati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Food Technology, Faculty of Life Science and Technology, Swiss German University, Tangerang, Banten 15143, Indonesia
| | - Mary Faith Yamballa Adan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Muhammad Maulana Malikul Ikram
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Marvin Nathanael Iman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
de Vries J, de Vries S, Fernie AR. Current and future perspectives for enhancing our understanding of the evolution of plant metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240253. [PMID: 39343013 PMCID: PMC11439503 DOI: 10.1098/rstb.2024.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 10/01/2024] Open
Abstract
The special issue 'The evolution of plant metabolism' has brought together original research, reviews and opinions that cover various aspects from the full breath of plant metabolism including its interaction with the environment including other species. Here, we briefly summarize these efforts and attempts to extract a consensus opinion of the best manner in which to tackle this subject both now and in the future. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr.1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| |
Collapse
|
8
|
Barrett DP, Subbaraj AK, Pakeman RJ, Peterson P, McCormick AC. Metabolomics reveals altered biochemical phenotype of an invasive plant with potential to impair its biocontrol agent's establishment and effectiveness. Sci Rep 2024; 14:27150. [PMID: 39511211 PMCID: PMC11543852 DOI: 10.1038/s41598-024-76228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
A plausible, but largely unexplored reason for many weed biocontrol agents failing to establish or being ineffective, could involve abiotically induced changes to an invasive plants' biochemical phenotype and consequent enhanced herbivore resistance. Considerable literature demonstrates that chemically altered plant phenotypes can impair insect life history performance. Heather beetle, (Lochmaea suturalis), introduced to control invasive heather (Calluna vulgaris) in New Zealand (NZ) was difficult to establish and displays variable effectiveness. Using UHPLC-MS non-targeted metabolomics, we analysed primary and secondary metabolites of C. vulgaris from its native range (Scotland) and it's introduced range (NZ), between which, differences in soil nutrients and ultraviolet light exist. We also explored secondary metabolite variation between sites within each range. New Zealand samples had the highest number of amplified metabolites, most notably defensive phenylpropanoids, supporting the concept of abiotically induced upregulation of key biosynthetic pathways. Analysis of secondary metabolite variation within each range revealed differences between sites but found little correlation of phenylpropanoid levels being influenced by variable soil nutrients. These results validate questions about the possibility of abiotically altered biochemical phenotypes in invasive plants, influencing weed biocontrol agent establishment and effectiveness, and show the potential for metabolomics in assisting future, or retrospectively analysing biological control programmes.
Collapse
Affiliation(s)
- D Paul Barrett
- School of Natural Sciences, Massey University, PB 11 222, Palmerston North, 4410, New Zealand.
| | - Arvind K Subbaraj
- AgResearch Ltd., Tuhiraki, 19 Ellesmere Junction Road, Lincoln, 7608, New Zealand
| | - Robin J Pakeman
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Paul Peterson
- Manaaki Whenua - Landcare Research, PB 11 052, Palmerston North, 4442, New Zealand
| | - Andrea Clavijo McCormick
- School of Agriculture and Environment, Massey University, PB 11 222, Palmerston North, 4410, New Zealand
| |
Collapse
|
9
|
Zhang F, Sun M, Li D, You M, Yan J, Bai S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules 2024; 29:5133. [PMID: 39519780 PMCID: PMC11548012 DOI: 10.3390/molecules29215133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is a common species in the alpine meadows of the QTP, with high-stress resistance, large biomass, and high nutritional value. This species plays an important role in establishing artificial grasslands and improving degraded grasslands. In this study, UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes were subjected to simulated short-term (5 days, 10 days) and long-term (15 days, 20 days) UV-B radiation stress and the metabolite profiles evaluated to explore the mechanism underlying UV-B radiation resistance in E. sibiricus. A total of 699 metabolites were identified, including 11 primary metabolites such as lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and their derivatives, and organic oxygen compounds. Principal component analysis distinctly clustered the samples according to the cultivar, indicating that the two genotypes exhibit distinct response mechanisms to UV-B radiation stress. The results showed that 14 metabolites, including linoleic acid, LPC 18:2, xanthosine, and 23 metabolites, including 2-one heptamethoxyflavone, glycyrrhizin, and caffeic acid were differentially expressed under short-term and long-term UV-B radiation stress, respectively. Therefore, these compounds are potential biomarkers for evaluating E. sibiricus response to UV-B radiation stress. Allantoin specific and consistent expression was up-regulated in the UV-B radiation-tolerant genotype, thereby it can be used to identify varieties resistant to UV-B radiation. Different metabolic profiles and UV-B radiation response mechanisms were observed between the UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes. A model for the metabolic pathways and metabolic profiles was constructed for the two genotypes. This metabolomic study on the E. sibiricus response to UV-B radiation stress provides a reference for the breeding of new UV-B radiation-tolerant E. sibiricus cultivars.
Collapse
Affiliation(s)
- Fei Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Sun
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Daxu Li
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Minghong You
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Jiajun Yan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiqie Bai
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
10
|
Jahan K, Supty MSA, Lee JS, Choi KH. Transcriptomic Analysis Provides New Insights into the Tolerance Mechanisms of Green Macroalgae Ulva prolifera to High Temperature and Light Stress. BIOLOGY 2024; 13:725. [PMID: 39336152 PMCID: PMC11428574 DOI: 10.3390/biology13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Our research focused on understanding the genetic mechanisms that contribute to the tolerance of Ulva prolifera (Chlorophyta), a marine macroalgae, to the combined stress of high temperature and high light intensity. At the mRNA level, the up-regulated DEGs showed enrichment in pathways related to ribosomes, proteasomes, and peroxisomes. The spliceosome pathway genes were found to be vital for U. prolifera's ability to adapt to various challenging situations in all the comparison groups. In response to elevated temperature and light intensity stress, there was a significant increase in genes and pathways related to ribosomes, proteasomes, and peroxisomes, whereas autophagy showed an increase in response to stress after 24 h, but not after 48 h. These findings provide novel insights into how U. prolifera adapts to elevated temperature and light stress.
Collapse
Affiliation(s)
| | | | | | - Keun-Hyung Choi
- Department of Earth, Environmental and Space Sciences, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon 34134, Republic of Korea; (K.J.)
| |
Collapse
|
11
|
Kang Y, Li CZ, Ullah A, Zhang Q, Yu XZ. The Accumulation of Abscisic Acid Increases the Innate Pool of Soluble Phenolics through Polyamine Metabolism in Rice Seedlings under Hexavalent Chromium Stress. TOXICS 2024; 12:577. [PMID: 39195679 PMCID: PMC11359078 DOI: 10.3390/toxics12080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Potential toxic element (PTE) pollution has emerged as a significant environmental and social concern in global agriculture. Chromium (Cr) occurs in different oxidation states naturally, among them Cr(VI), which is highly toxic. This study carried out biochemical and molecular tests to elucidate the accumulation of total soluble phenolics (TSPs) in rice plants exposed to Cr(VI) at 2.0, 8.0, and 16.0 mg Cr/L, emphasizing the interaction between polyamines (PAs) and abscisic acid (ABA). The results revealed significant Cr accumulation in different tissues of rice plants, which hindered their growth. Cr(VI) exposure increased the ABA concentration, with higher levels detected in the shoots than in the roots. The TSP concentration in rice tissues showed a positive relationship with the supplied concentrations of Cr(VI). The measured PAs, including spermine (Spm), putrescine (Put), and spermidine (Spd), exhibited varied responses to Cr(VI) stress, with only Spm concentration increasing with Cr(VI) concentrations. Real-time qRT-PCR showed PAs and ABA synthesis-associated genes such as OsADC1, OsAIH, OsCPA1, and OsCPA4 were significantly up-regulated in shoot of rice plants treated with Cr(VI). These genes are associated with the second pathway of Put synthesis, originating from Arg. Almost all genes activated in the Met pathway were significantly up-regulated as well. Moreover, the genes involved in the interconversion among the three species of PAs exhibited completely different responses to Cr(VI) exposure. Overall, the biochemical analysis and gene expression data indicate that the interaction between ABA and Spm is likely to enhance the TSP levels in rice plants subjected to Cr(VI) toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China; (Y.K.); (C.-Z.L.); (A.U.); (Q.Z.)
| |
Collapse
|
12
|
Sharma S, Kumar M, Sircar D, Prasad R. Metabolic profiling and biomarkers identification in cluster bean under drought stress using GC-MS technique. Metabolomics 2024; 20:80. [PMID: 39066988 DOI: 10.1007/s11306-024-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The Cluster bean is an economically significant annual legume, widely known as guar. Plant productivity is frequently constrained by drought conditions. OBJECTIVE In this work, we have identified the untargeted drought stress-responsive metabolites in mature leaves of cluster beans under drought and control condition. METHODS To analyse the untargeted metabolites, gas chromatography-mass spectrometry (GC-MS) technique was used. Supervised partial least-squares discriminate analysis and heat map were used to identify the most significant metabolites for drought tolerance. RESULTS The mature leaves of drought-treated C. tetragonoloba cv. 'HG-365' which is a drought-tolerant cultivar, showed various types of amino acids, fatty acids, sugar alcohols and sugars as the major classes of metabolites recognized by GC-MS metabolome analysis. Metabolite profiling of guar leaves showed 23 altered metabolites. Eight metabolites (proline, valine, D-pinitol, palmitic acid, dodecanoic acid, threonine, glucose, and glycerol monostearate) with VIP score greater than one were considered as biomarkers and three metabolite biomarkers (D-pinitol, valine, and glycerol monostearate) were found for the first time in guar under drought stress. In this work, four amino acids (alanine, valine, serine and aspartic acid) were also studied, which played a significant role in drought-tolerant pathway in guar. CONCLUSION This study provides information on the first-ever GC-MS metabolic profiling of guar. This work gives in-depth details on guar's untargeted drought-responsive metabolites and biomarkers, which can plausibly be used for further identification of biochemical pathways, enzymes, and the location of various genes under drought stress.
Collapse
Affiliation(s)
- Shipra Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mukund Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
13
|
Zohar I, Ganem HE, DiSegni DM, Jonas-Levi A. The impact of alternative recycled and synthetic phosphorus sources on plant growth and responses, soil interactions and sustainable agriculture - lettuce (Lactuca sativa) as a case model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174719. [PMID: 39019270 DOI: 10.1016/j.scitotenv.2024.174719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
This research assesses the efficacy of two phosphorus (P) adsorbents as alternative fertilizers in promoting lettuce growth. A synthetic Mg/Al-layered double hydroxide (LDH) and an iron-based recycled water treatment residual (Fe-WTR), both enriched with P from dairy wastewater and added at three dosage levels. We hypothesized that the adsorbents' physicochemical nature will overshadow the biological efforts in the plant ecosystem to increase P solubility, impacting plant growth, nutritional composition, and metabolite profiles. Fe-WTR significantly enhanced lettuce biomass compared to LDH. Yet, elemental analysis revealed higher or equal P concentrations in the low-biomass LDH plants relative to other treatments. Phosphorus uptake appears to influence the assimilation of other nutrients that divided into two groups: calcium, magnesium, zinc, and copper with notable correlations to P and nitrogen, iron, aluminum, vanadium and manganese with low correlations to P. Conversely, P retained poor correlation with most metabolites whereas iron showed a higher correlation with numerous metabolites. Analysis of metabolites, encompassing carbohydrates, the Krebs cycle, amino acids, nucleic acids, and stress and regulatory pathways, revealed diminished levels in the LDH treatments. Overall, carbon assimilation (plant growth) was more effectively predicted by soil P availability (adsorbent type and dose) rather than by cellular P concentration, suggesting root signaling was at play, influencing carbohydrate translocation to the roots. Diminished levels of cellular sugars further affect metabolic pathways and iron uptake, thus restricting photosynthesis. The results illustrate the substantial influence of the P source on the plant's metabolic processes and soil biogeochemistry. The synthetic LDH adsorbent with high sorption capacity, tightly binds its substantial P pool, rendering it inaccessible and potentially disrupting rhizosphere biogeochemical interactions. In contrast, the chemical nature of Fe-WTR enabled efficient nutrients acquisition bioactivity. The study highlights Fe-WTR as a promising sustainable alternative to conventional fertilizers, emphasizing its potential scalability and adaptability in agricultural contexts.
Collapse
Affiliation(s)
- I Zohar
- Department of Environmental Sciences, Tel-Hai College, Upper Galilee, 12210, Israel.
| | - H E Ganem
- Department of Environmental Sciences, Tel-Hai College, Upper Galilee, 12210, Israel; MIGAL - Galilee Research Institute, Hydro-Geochemistry Laboratory, Kiryat Shmona, 11016, Israel
| | - D M DiSegni
- Department of Economics and Management, Tel-Hai College, Upper Galilee, 12210, Israel
| | - A Jonas-Levi
- Department of Food Sciences, Tel-Hai College, Upper Galilee, 12210, Israel
| |
Collapse
|
14
|
Morales-Merida BE, Grimaldi-Olivas JC, Cruz-Mendívil A, Villicaña C, Valdez-Torres JB, Heredia JB, León-Chan RG, Lightbourn-Rojas LA, Monribot-Villanueva JL, Guerrero-Analco JA, Ruiz-May E, León-Félix J. Integrating Proteomics and Metabolomics Approaches to Elucidate the Mechanism of Responses to Combined Stress in the Bell Pepper ( Capsicum annuum). PLANTS (BASEL, SWITZERLAND) 2024; 13:1861. [PMID: 38999705 PMCID: PMC11244445 DOI: 10.3390/plants13131861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Bell pepper plants are sensitive to environmental changes and are significantly affected by abiotic factors such as UV-B radiation and cold, which reduce their yield and production. Various approaches, including omics data integration, have been employed to understand the mechanisms by which this crop copes with abiotic stress. This study aimed to find metabolic changes in bell pepper stems caused by UV-B radiation and cold by integrating omic data. Proteome and metabolome profiles were generated using liquid chromatography coupled with mass spectrometry, and data integration was performed in the plant metabolic pathway database. The combined stress of UV-B and cold induced the accumulation of proteins related to photosynthesis, mitochondrial electron transport, and a response to a stimulus. Further, the production of flavonoids and their glycosides, as well as affecting carbon metabolism, tetrapyrrole, and scopolamine pathways, were identified. We have made the first metabolic regulatory network map showing how bell pepper stems respond to cold and UV-B stress. We did this by looking at changes in proteins and metabolites that help with respiration, photosynthesis, and the buildup of photoprotective and antioxidant compounds.
Collapse
Affiliation(s)
- Brandon Estefano Morales-Merida
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - Jesús Christian Grimaldi-Olivas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - Abraham Cruz-Mendívil
- CONAHCYT-Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Guasave 81101, Sinaloa, Mexico
| | - Claudia Villicaña
- CONAHCYT-Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - José Benigno Valdez-Torres
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - J Basilio Heredia
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| | - Rubén Gerardo León-Chan
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A.C., Carretera las Pampas Km 2.5, Jiménez 33980, Chihuahua, Mexico
| | - Luis Alberto Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A.C., Carretera las Pampas Km 2.5, Jiménez 33980, Chihuahua, Mexico
| | - Juan L Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Veracruz, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Veracruz, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Veracruz, Mexico
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Campo el Diez, Culiacán 80110, Sinaloa, Mexico
| |
Collapse
|
15
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
16
|
Jiang M, Yan Y, Zhou B, Li J, Cui L, Guo L, Liu W. Metabolomic and transcriptomic analyses highlight metabolic regulatory networks of Salvia miltiorrhiza in response to replant disease. BMC PLANT BIOLOGY 2024; 24:575. [PMID: 38890577 PMCID: PMC11184839 DOI: 10.1186/s12870-024-05291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Salvia miltiorrhiza, a well-known traditional Chinese medicine, frequently suffers from replant diseases that adversely affect its quality and yield. To elucidate S. miltiorrhiza's metabolic adaptations to replant disease, we analyzed its metabolome and transcriptome, comparing normal and replant diseased plants for the first time. RESULTS We identified 1,269 metabolites, 257 of which were differentially accumulated metabolites, and identified 217 differentially expressed genes. Integrated transcriptomic and metabolomic analyses revealed a significant up-regulation and co-expression of metabolites and genes associated with plant hormone signal transduction and flavonoid biosynthesis pathways in replant diseases. Within plant hormone signal transduction pathway, plants afflicted with replant disease markedly accumulated indole-3-acetic acid and abscisic acid, correlating with high expression of their biosynthesis-related genes (SmAmidase, SmALDH, SmNCED, and SmAAOX3). Simultaneously, changes in hormone concentrations activated plant hormone signal transduction pathways. Moreover, under replant disease, metabolites in the local flavonoid metabolite biosynthetic pathway were significantly accumulated, consistent with the up-regulated gene (SmHTC1 and SmHTC2). The qRT-PCR analysis largely aligned with the transcriptomic results, confirming the trends in gene expression. Moreover, we identified 10 transcription factors co-expressed with differentially accumulated metabolites. CONCLUSIONS Overall, we revealed the key genes and metabolites of S. miltiorrhiza under replant disease, establishing a robust foundation for future inquiries into the molecular responses to combat replant stress.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - YaXing Yan
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - BingQian Zhou
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Jian Li
- Jinan Institute of Product Quality Inspection, Jinan, 250101, China
| | - Li Cui
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - LanPing Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
17
|
John A, Krämer M, Lehmann M, Kunz HH, Aarabi F, Alseekh S, Fernie A, Sommer F, Schroda M, Zimmer D, Mühlhaus T, Peisker H, Gutbrod K, Dörmann P, Neunzig J, Philippar K, Neuhaus HE. Degradation of FATTY ACID EXPORT PROTEIN1 by RHOMBOID-LIKE PROTEASE11 contributes to cold tolerance in Arabidopsis. THE PLANT CELL 2024; 36:1937-1962. [PMID: 38242838 PMCID: PMC11062452 DOI: 10.1093/plcell/koae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis toward the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.
Collapse
Affiliation(s)
- Annalisa John
- Plant Physiology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Moritz Krämer
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Martin Lehmann
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Fayezeh Aarabi
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Saleh Alseekh
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Alisdair Fernie
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - David Zimmer
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Helga Peisker
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Katharina Gutbrod
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Peter Dörmann
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Jens Neunzig
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken D-66123, Germany
| | - Katrin Philippar
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken D-66123, Germany
| | | |
Collapse
|
18
|
Zhang F, Rosental L, Ji B, Brotman Y, Dai M. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:626-644. [PMID: 38241088 DOI: 10.1111/tpj.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Boming Ji
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Mingqiu Dai
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
19
|
Lu YA, Liu SJ, Hou SY, Ge YY, Xia BH, Xie MX. Metabolomics distinguishes different grades of Scrophularia ningpoensis hemsl: Towards a biomarker discovery and quality evaluation. Heliyon 2024; 10:e28458. [PMID: 38601543 PMCID: PMC11004711 DOI: 10.1016/j.heliyon.2024.e28458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
In managing unique complexities associated with Chinese medicinal quality assessment, metabolomics serves as an innovative tool. This study proposes an analytical approach to assess differing qualities of Scrophularia ningpoensis (S. ningpoensis)Hemsl by identifying potential biomarker metabolites and their activity with the corresponding secondary metabolites. The methodology includes four steps; first, a GC-MS based metabolomics exploration of the Scrophularia ningpoensis Hemsl. Second, a multivariate statistical analysis (PCA, PLS-DA, OPLS-DA) for quality assessment and biomarker identification. Third, the application of ROC analysis and pathway analysis based on identified biomarkers. Finally, validation of the associated active ingredients by HPLC. The analysis showed distinct metabolite profiles across varying grades of S. ningpoensis Hemsl, establishing a grading dependency relationship. Select biomarkers (gluconic Acid, d-xylulose, sucrose, etc.) demonstrated robust grading performances. Further, the Pentose Phosphate Pathway, deemed as most influential in grading, was tied to the synthesis of key constituents (iridoids, phenylpropanoids). HPLC validation tests affirm a decreasing trend in harpagoside and cinnamic acid levels between first and third-grade samples. In conclusion, this GC-MS based metabolomics combined HPLC method offers a sound approach to assess and distinguish quality variations in S. ningpoensis Hemsl samples.
Collapse
Affiliation(s)
- Yu-Ai Lu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Jun Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Yi Hou
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yu-Ying Ge
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Ming-Xia Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| |
Collapse
|
20
|
Hou X, Kong Y, Teng Z, Yang C, Li Y, Zhu Z. Integrating genes and metabolites: unraveling mango's drought resilience mechanisms. BMC PLANT BIOLOGY 2024; 24:208. [PMID: 38519933 PMCID: PMC10960439 DOI: 10.1186/s12870-024-04908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Mango (Mangifera indica L.) faces escalating challenges from increasing drought stress due to erratic climate patterns, threatening yields, and quality. Understanding mango's drought response mechanisms is pivotal for resilience and food security. RESULTS Our RNA-seq analyses unveil 12,752 differentially expressed genes linked to stress signaling, hormone regulation, and osmotic adjustment. Weighted Gene Co-expression Network Analysis identified three essential genes-WRKY transcription factor 3, polyamine oxidase 4, and protein MEI2-like 1-as drought defense components. WRKY3 having a role in stress signaling and defense validates its importance. Polyamine oxidase 4, vital in stress adaptation, enhances drought defense. Protein MEI2-like 1's significance emerges, hinting at novel roles in stress responses. Metabolite profiling illuminated Mango's metabolic responses to drought stress by presenting 990 differentially abundant metabolites, mainly related to amino acids, phenolic acids, and flavonoids, contributing to a deeper understanding of adaptation strategies. The integration between genes and metabolites provided valuable insights by revealing the correlation of WRKY3, polyamine oxidase 4 and MEI2-like 1 with amino acids, D-sphingnosine and 2,5-Dimethyl pyrazine. CONCLUSIONS This study provides insights into mango's adaptive tactics, guiding future research for fortified crop resilience and sustainable agriculture. Harnessing key genes and metabolites holds promise for innovative strategies enhancing drought tolerance in mango cultivation, contributing to global food security efforts.
Collapse
Affiliation(s)
- Xianbin Hou
- Guangxi Key Laboratory of Biology for Mongo, Baise University, Baise, 533000, China
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Yu Kong
- Guangxi Key Laboratory of Biology for Mongo, Baise University, Baise, 533000, China
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Zheng Teng
- Guangxi Key Laboratory of Biology for Mongo, Baise University, Baise, 533000, China
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Cuifeng Yang
- Guangxi Key Laboratory of Biology for Mongo, Baise University, Baise, 533000, China
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Yufeng Li
- Guangxi Key Laboratory of Biology for Mongo, Baise University, Baise, 533000, China.
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, China.
| | - Zhengjie Zhu
- Guangxi Key Laboratory of Biology for Mongo, Baise University, Baise, 533000, China.
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, China.
| |
Collapse
|
21
|
Martínez-Rivas FJ, Fernie AR. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1726-1740. [PMID: 37864494 PMCID: PMC10938048 DOI: 10.1093/jxb/erad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
22
|
Yoshida T, Fernie AR. Hormonal regulation of plant primary metabolism under drought. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1714-1725. [PMID: 37712613 DOI: 10.1093/jxb/erad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Phytohormones are essential signalling molecules globally regulating many processes of plants, including their growth, development, and stress responses. The promotion of growth and the enhancement of stress resistance have to be balanced, especially under adverse conditions such as drought stress, because of limited resources. Plants cope with drought stress via various strategies, including the transcriptional regulation of stress-responsive genes and the adjustment of metabolism, and phytohormones play roles in these processes. Although abscisic acid (ABA) is an important signal under drought, less attention has been paid to other phytohormones. In this review, we summarize progress in the understanding of phytohormone-regulated primary metabolism under water-limited conditions, especially in Arabidopsis thaliana, and highlight recent findings concerning the amino acids associated with ABA metabolism and signalling. We also discuss how phytohormones function antagonistically and synergistically in order to balance growth and stress responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
23
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
24
|
Zhang X, Li Z, Zhao C, Chen T, Wang X, Sun X, Zhao X, Lu X, Xu G. Leveraging Unidentified Metabolic Features for Key Pathway Discovery: Chemical Classification-driven Network Analysis in Untargeted Metabolomics. Anal Chem 2024; 96:3409-3418. [PMID: 38354311 DOI: 10.1021/acs.analchem.3c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Untargeted metabolomics using liquid chromatography-electrospray ionization-high-resolution tandem mass spectrometry (UPLC-ESI-MS/MS) provides comprehensive insights into the dynamic changes of metabolites in biological systems. However, numerous unidentified metabolic features limit its utilization. In this study, a novel approach, the Chemical Classification-driven Molecular Network (CCMN), was proposed to unveil key metabolic pathways by leveraging hidden information within unidentified metabolic features. The method was demonstrated by using the herbivore-induced metabolic response in corn silk as a case study. Untargeted metabolomics analysis using UPLC-MS/MS was performed on wild corn silk and two genetically modified lines (pre- and postinsect treatment). Global annotation initially identified 256 (ESI-) and 327 (ESI+) metabolites. MS/MS-based classifications predicted 1939 (ESI-) and 1985 (ESI+) metabolic features into the chemical classes. CCMNs were then constructed using metabolic features shared classes, which facilitated the structure- or class annotation for completely unknown metabolic features. Next, 844/713 significantly decreased and 1593/1378 increased metabolites in ESI-/ESI+ modes were defined in response to insect herbivory, respectively. Method validation on a spiked maize sample demonstrated an overall class prediction accuracy rate of 95.7%. Potential key pathways were prescreened by a hypergeometric test using both structure- and class-annotated differential metabolites. Subsequently, CCMN was used to deeply amend and uncover the pathway metabolites deeply. Finally, 8 key pathways were defined, including phenylpropanoid (C6-C3), flavonoid, octadecanoid, diterpenoid, lignan, steroid, amino acid/small peptide, and monoterpenoid. This study highlights the effectiveness of leveraging unidentified metabolic features. CCMN-based key pathway analysis reduced the bias in conventional pathway enrichment analysis. It provides valuable insights into complex biological processes.
Collapse
Affiliation(s)
- Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, P. R. China
| |
Collapse
|
25
|
Zhu A, Liu M, Tian Z, Liu W, Hu X, Ao M, Jia J, Shi T, Liu H, Li D, Mao H, Su H, Yan W, Li Q, Lan C, Fernie AR, Chen W. Chemical-tag-based semi-annotated metabolomics facilitates gene identification and specialized metabolic pathway elucidation in wheat. THE PLANT CELL 2024; 36:540-558. [PMID: 37956052 PMCID: PMC10896294 DOI: 10.1093/plcell/koad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
The importance of metabolite modification and species-specific metabolic pathways has long been recognized. However, linking the chemical structure of metabolites to gene function in order to explore the genetic and biochemical basis of metabolism has not yet been reported in wheat (Triticum aestivum). Here, we profiled metabolic fragment enrichment in wheat leaves and consequently applied chemical-tag-based semi-annotated metabolomics in a genome-wide association study in accessions of wheat. The studies revealed that all 1,483 quantified metabolites have at least one known functional group whose modification is tailored in an enzyme-catalyzed manner and eventually allows efficient candidate gene mining. A Triticeae crop-specific flavonoid pathway and its underlying metabolic gene cluster were elucidated in further functional studies. Additionally, upon overexpressing the major effect gene of the cluster TraesCS2B01G460000 (TaOMT24), the pathway was reconstructed in rice (Oryza sativa), which lacks this pathway. The reported workflow represents an efficient and unbiased approach for gene mining using forward genetics in hexaploid wheat. The resultant candidate gene list contains vast molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets and will ultimately aid in achieving wheat crop improvement.
Collapse
Affiliation(s)
- Anting Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mengmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Department of Root Biology and Symbiosis, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
26
|
Liu X, Xie Z, Xin J, Yuan S, Liu S, Sun Y, Zhang Y, Jin C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:498. [PMID: 38502046 PMCID: PMC10893026 DOI: 10.3390/plants13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
In plants exposed to ultraviolet B radiation (UV-B; 280-315 nm), metabolic responses are activated, which reduce the damage caused by UV-B. Although several metabolites responding to UV-B stress have been identified in plants, the accumulation of these metabolites at different time points under UV-B stress remains largely unclear, and the transcription factors regulating these metabolites have not been well characterized. Here, we explored the changes in metabolites in rice after UV-B treatment for 0 h, 6 h, 12 h, and 24 h and identified six patterns of metabolic change. We show that the rice transcription factor OsbZIP18 plays an important role in regulating phenylpropanoid and flavonoid biosynthesis under UV-B stress in rice. Metabolic profiling revealed that the contents of phenylpropanoid and flavonoid were significantly reduced in osbzip18 mutants compared with the wild-type plants (WT) under UV-B stress. Further analysis showed that the expression of many genes involved in the phenylpropanoid and flavonoid biosynthesis pathways was lower in osbzip18 mutants than in WT plants, including OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H. Electrophoretic mobility shift assays (EMSA) revealed that OsbZIP18 bind to the promoters of these genes, suggesting that OsbZIP18 function is an important positive regulator of phenylpropanoid and flavonoid biosynthesis under UV-B stress. In conclusion, our findings revealed that OsbZIP18 is an essential regulator for phenylpropanoid and flavonoid biosynthesis and plays a crucial role in regulating UV-B stress responses in rice.
Collapse
Affiliation(s)
- Xueqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyang Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiajun Xin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shiqing Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangyang Sun
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
27
|
Cao Y, Li X, Song H, Abdullah M, Manzoor MA. Editorial: Multi-omics and computational biology in horticultural plants: from genotype to phenotype, volume II. FRONTIERS IN PLANT SCIENCE 2024; 15:1368909. [PMID: 38371409 PMCID: PMC10869615 DOI: 10.3389/fpls.2024.1368909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Pereira AM, Martins AO, Batista-Silva W, Condori-Apfata JA, Silva VF, Oliveira LA, Andrade ES, Martins SCV, Medeiros DB, Nascimento VL, Fernie AR, Nunes-Nesi A, Araújo WL. Differential content of leaf and fruit pigment in tomatoes culminate in a complex metabolic reprogramming without growth impacts. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154170. [PMID: 38271894 DOI: 10.1016/j.jplph.2024.154170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Although significant efforts to produce carotenoid-enriched foods either by biotechnology or traditional breeding strategies have been carried out, our understanding of how changes in the carotenoid biosynthesis might affect overall plant performance remains limited. Here, we investigate how the metabolic machinery of well characterized tomato carotenoid mutant plants [namely crimson (old gold-og), Delta carotene (Del) and tangerine (t)] adjusts itself to varying carotenoid biosynthesis and whether these adjustments are supported by a reprogramming of photosynthetic and central metabolism in the source organs (leaves). We observed that mutations og, Del and t did not greatly affect vegetative growth, leaf anatomy and gas exchange parameters. However, an exquisite metabolic reprogramming was recorded on the leaves, with an increase in levels of amino acids and reduction of organic acids. Taken together, our results show that despite minor impacts on growth and gas exchange, carbon flux is extensively affected, leading to adjustments in tomato leaves metabolism to support changes in carotenoid biosynthesis on fruits (sinks). We discuss these data in the context of our current understanding of metabolic adjustments and carotenoid biosynthesis as well as regarding to improving human nutrition.
Collapse
Affiliation(s)
- Auderlan M Pereira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Auxiliadora O Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - William Batista-Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jorge A Condori-Apfata
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Victor F Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leonardo A Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Eduarda Santos Andrade
- Setor de Fisiologia Vegetal - Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| | - Samuel C V Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Vitor L Nascimento
- Setor de Fisiologia Vegetal - Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
29
|
Boutoub O, Jadhav S, Zheng X, El Ghadraoui L, Al Babili S, Fernie AR, Figueiredo AC, Miguel MG, Borghi M. Biochemical characterization of Euphorbia resinifera floral cyathia. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154184. [PMID: 38295538 DOI: 10.1016/j.jplph.2024.154184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Euphorbia resinifera O. Berg is a plant endemic to the Northern and Central regions of Morocco known since the ancient Roman and Greek times for secreting a poisonous latex containing resiniferatoxin. However, E. resinifera pseudo-inflorescences called cyathia are devoid of laticifers and, therefore, do not secrete latex. Instead, they exudate nectar that local honey bees collect and craft into honey. Honey and cyathium water extracts find a broad range of applications in the traditional medicine of Northern Africa as ointments and water decoctions. Moreover, E. resinifera monofloral honey has received the Protected Geographic Indication certification for its outstanding qualities. Given the relevance of E. resinifera cyathia for bee nutrition, honey production, and the health benefit of cyathium-derived products, this study aimed to screen metabolites synthesized and accumulated in its pseudo-inflorescences. Our analyses revealed that E. resinifera cyathia accumulate primary metabolites in considerable abundance, including hexoses, amino acids and vitamins that honey bees may collect from nectar and craft into honey. Cyathia also synthesize volatile organic compounds of the class of benzenoids and terpenes, which are emitted by flowers pollinated by honey bees and bumblebees. Many specialized metabolites, including carotenoids, flavonoids, and polyamines, were also detected, which, while protecting the reproductive organs against abiotic stresses, also confer antioxidant properties to water decoctions. In conclusion, our analyses revealed that E. resinifera cyathia are a great source of antioxidant molecules and a good food source for the local foraging honeybees, revealing the central role of the flowers from this species in mediating interactions with local pollinators and the conferral of medicinal properties to plant extracts.
Collapse
Affiliation(s)
- Oumaima Boutoub
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA; Faculty of Science and Technology, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Laboratory of Functional Ecology and Environment, Faculty of Science and Technology, BP 2202, University Sidi Mohamed Ben Abdallah, Fez, 20000, Morocco
| | - Sagar Jadhav
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA
| | - Xiongjie Zheng
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullahuniversity of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Lahsen El Ghadraoui
- Laboratory of Functional Ecology and Environment, Faculty of Science and Technology, BP 2202, University Sidi Mohamed Ben Abdallah, Fez, 20000, Morocco
| | - Salim Al Babili
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullahuniversity of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar Lisboa (CESAM Ciências), Faculdade de Ciências da Universidade de Lisboa, Biotecnologia Vegetal (BV), DBV, C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Graça Miguel
- Faculty of Science and Technology, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Mediterranean Institute for Agriculture, Environment and Development, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
| | - Monica Borghi
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA.
| |
Collapse
|
30
|
Guo Z, Wang S, Zhang F, Xiang D, Yang J, Li D, Bai B, Dai M, Luo J, Xiong L. Common and specific genetic basis of metabolite-mediated drought responses in rice. STRESS BIOLOGY 2024; 4:6. [PMID: 38253937 PMCID: PMC10803723 DOI: 10.1007/s44154-024-00150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Plants orchestrate drought responses at metabolic level but the genetic basis remains elusive in rice. In this study, 233 drought-responsive metabolites (DRMs) were quantified in a large rice population comprised of 510 diverse accessions at the reproductive stage. Large metabolic variations in drought responses were detected, and little correlation of metabolic levels between drought and normal conditions were observed. Interestingly, most of these DRMs could predict drought resistance in high accuracy. Genome-wide association study revealed 2522 significant association signals for 233 DRMs, and 98% (2471/2522) of the signals were co-localized with the association loci for drought-related phenotypic traits in the same population or the linkage-mapped QTLs for drought resistance in other populations. Totally, 10 candidate genes were efficiently identified for nine DRMs, seven of which harbored cis-eQTLs under drought condition. Based on comparative GWAS of common DRMs in rice and maize, representing irrigated and upland crops, we have identified three pairs of homologous genes associated with three DRMs between the two crops. Among the homologous genes, a transferase gene responsible for metabolic variation of N-feruloylputrescine was confirmed to confer enhanced drought resistance in rice. Our study provides not only genetic architecture of metabolic responses to drought stress in rice but also metabolic data resources to reveal the common and specific metabolite-mediated drought responses in different crops.
Collapse
Affiliation(s)
- Zilong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Feng Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Denghao Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Dong Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baowei Bai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Rezaei Cherati S, Khodakovskaya MV. Identification of Stress-Responsive Metabolites in Plants Using an Untargeted Metabolomics Approach. Methods Mol Biol 2024; 2832:171-182. [PMID: 38869795 DOI: 10.1007/978-1-0716-3973-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Stress can affect different groups of plant metabolites and multiple signaling pathways. Untargeted metabolomics enables the collection of whole-spectrum data for the entire metabolite content present in plant tissues at that point in time. We present a thorough approach for large-scale, untargeted metabolomics of plant tissues using reverse-phase liquid chromatography connected to high-resolution mass spectrometry (LC-MS) of dilute methanolic extract. MZmine is a specialized computer software that automates the alignment and baseline modification of all derived mass peaks across all samples, resulting in precise information on the relative abundance of hundreds of metabolites reflected by thousands of mass signals. Further processing with statistic and bioinformatic techniques will provide a comprehensive perspective of the variations and connections among groups of samples.
Collapse
|
32
|
Gong F, Yu W, Zeng Q, Dong J, Cao K, Xu H, Zhou X. Rhododendron chrysanthum's Primary Metabolites Are Converted to Phenolics More Quickly When Exposed to UV-B Radiation. Biomolecules 2023; 13:1700. [PMID: 38136571 PMCID: PMC10742171 DOI: 10.3390/biom13121700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
33
|
Zahed M, Bączek-Kwinta R. The Impact of Post-Fire Smoke on Plant Communities: A Global Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:3835. [PMID: 38005732 PMCID: PMC10674613 DOI: 10.3390/plants12223835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Smoke is one of the fire-related cues that can alter vegetation communities' compositions, by promoting or excluding different plant species. For over 30 years, smoke-derived compounds have been a hot topic in plant and crop physiology. Research in this field was initiated in fire-prone areas in Australia, South Africa and some countries of both Americas, mostly with Mediterranean-type climates. Then, research extended to regions with moderate climates, like Central European countries; this was sometimes determined by the fact that in those regions, extensive prescribed or illegal burning (swailing) occurs. Hence, this review updates information about the effects of smoke compounds on plant kingdoms in different regions. It also focuses on research advances in the field of the physiological effects of smoke chemicals, mostly karrikins, and attempts to gather and summarize the current state of research and opinions on the roles of such compounds in plants' lives. We finish our review by discussing major research gaps, which include issues such as why plants that occur in non-fire-prone areas respond to smoke chemicals. Have recent climate change and human activities increased the risk of wildfires, and how may these affect local plant communities through physiologically active smoke compounds? Is the response of seeds to smoke and smoke compounds an evolutionarily driven trait that allows plants to adapt to the environment? What can we learn by examining post-fire smoke on a large scale?
Collapse
Affiliation(s)
- Mahboube Zahed
- Department of Plant Production, Faculty of Agronomy, University of Agricultural Sciences and Natural Resources in Gorgan, Basij Square, Pardis No. 2, Gorgan 49189-43464, Iran
| | - Renata Bączek-Kwinta
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, ul. Podłuzna 3, 30-239 Kraków, Poland
| |
Collapse
|
34
|
Liu Y, Ge L, Tang H, Zheng J, Hu J, Wang J, Yang X, Zhang R, Wang X, Li X, Zhang Y, Shi Q. cGMP functions as an important messenger involved in SlSAMS1-regulated salt stress tolerance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108097. [PMID: 37864930 DOI: 10.1016/j.plaphy.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Salt stress adversely affects the growth, development, and yield of tomato (Solanum lycopersicum). SAM Synthetase (SAMS), which is responsible for the biosynthesis of S-adenosylmethionine (SAM, a precursor of polyamine biosynthesis), participates in plant response to abiotic stress. However, the regulatory mechanism of SAMS-mediated salt stress tolerance remains elusive. In this study, we characterized a SAMS homologue SlSAMS1 in tomato. We found that SlSAMS1 is highly expressed in tomato roots, and its expression can be induced by salt stress. Crucially, overexpression of SlSAMS1 in tomato enhances salt stress tolerance. Through metabolomic profiling, we identified some differentially accumulated metabolites, especially, a secondary messenger guanosine 3',5'-cyclic monophosphate (cGMP) which may play a key role in SlSAMS1-regulated salt tolerance. A series of physiological and biochemical data suggest that cGMP alleviates salt stress-induced growth inhibition, and potentially acts downstream of the polyamine-nitric oxide (PA-NO) signaling pathway to trigger H2O2 signaling in response to salt stress. Taken together, the study reveals that SlSAMS1 regulates tomato salt tolerance via the PA-NO-cGMP-H2O2 signal module. Our findings elucidate the regulatory pathway of SlSAMS1-induced plant response to salt stress and indicate a pivotal role of cGMP in salt tolerance.
Collapse
Affiliation(s)
- Yue Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Lianjing Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Huimeng Tang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jinhui Zheng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jinxiang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jingru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Ruimin Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiaoyun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiuming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Yan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| |
Collapse
|
35
|
Subrahmaniam HJ, Lind Salomonsen C, Radutoiu S, Ehlers BK, Glasius M. Unraveling the secrets of plant roots: Simplified method for large scale root exudate sampling and analysis in Arabidopsis thaliana. OPEN RESEARCH EUROPE 2023; 3:12. [PMID: 37645513 PMCID: PMC10445920 DOI: 10.12688/openreseurope.15377.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 08/31/2023]
Abstract
Background Plants exude a plethora of compounds to communicate with their environment. Although much is known about above-ground plant communication, we are only beginning to fathom the complexities of below-ground chemical communication channels. Studying root-exuded compounds and their role in plant communication has been difficult due to the lack of standardized methodologies. Here, we develop an interdisciplinary workflow to explore the natural variation in root exudate chemical composition of the model plant Arabidopsis thaliana. We highlight key challenges associated with sampling strategies and develop a framework for analyzing both narrow- and broad-scale patterns of root exudate composition in a large set of natural A. thaliana accessions. Methods Our method involves cultivating individual seedlings in vitro inside a plastic mesh, followed by a short hydroponic sampling period in small quantities of ultrapure water. The mesh makes it easy to handle plants of different sizes and allows for large-scale characterization of individual plant root exudates under axenic conditions. This setup can also be easily extended for prolonged temporal exudate collection experiments. Furthermore, the short sampling time minimizes the duration of the experiment while still providing sufficient signal even with small volume of the sampling solution. We used ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) for untargeted metabolic profiling, followed by tentative compound identification using MZmine3 and SIRIUS 5 software, to capture a broad overview of root exudate composition in A. thaliana accessions. Results Based on 28 replicates of the Columbia genotype (Col-0) compared with 10 random controls, MZmine3 annotated 354 metabolites to be present only in Col-0 by negative ionization. Of these, 254 compounds could be annotated by SIRIUS 5 software. Conclusions The methodology developed in this study can be used to broadly investigate the role of root exudates as chemical signals in plant belowground interactions.
Collapse
Affiliation(s)
- Harihar Jaishree Subrahmaniam
- Department of Ecoscience, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics - Plant Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics - Plant Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Bodil K. Ehlers
- Department of Ecoscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Marianne Glasius
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Segarra-Medina C, Alseekh S, Fernie AR, Rambla JL, Pérez-Clemente RM, Gómez-Cádenas A, Zandalinas SI. Abscisic acid promotes plant acclimation to the combination of salinity and high light stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108008. [PMID: 37690143 DOI: 10.1016/j.plaphy.2023.108008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Plants encounter combinations of different abiotic stresses such as salinity (S) and high light (HL). These environmental conditions have a detrimental effect on plant growth and development, posing a threat to agricultural production. Metabolic changes play a crucial role in enabling plants to adapt to fluctuations in their environment. Furthermore, hormones such as abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) have been previously identified as regulators of plant responses to different abiotic stresses. Here we studied the response of Arabidopsis wild type (Col and Ler) plants and mutants impaired in hormone biosynthesis (aba2-11 and aba1-1 in ABA, aos in JA and sid2 in SA) to the combination of S and HL (S + HL). Our findings showed that aba2-11 plants displayed reduced growth, impaired photosystem II (PSII) function, increased leaf damage, and decreased survival compared to Col when subjected to stress combination. However, aos and sid2 mutants did not display significant changes in response to S + HL compared to Col, indicating a key role for ABA in promoting plant tolerance to S + HL and suggesting a marginal role for JA and SA in this process. In addition, we revealed differences in the metabolic response of plants to S + HL compared to S or HL. The analysis of altered metabolic pathways under S + HL suggested that the accumulation of flavonoids is ABA-dependent, whereas the accumulation of branched-chain amino acids (BCAAs) and proline is ABA-independent. Therefore, our study uncovered a key function for ABA in regulating the accumulation of different flavonoids in plants during S + HL.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - José L Rambla
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Rosa M Pérez-Clemente
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Aurelio Gómez-Cádenas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
37
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
38
|
Luo C, Qiu J, Zhang Y, Li M, Liu P. Jasmonates Coordinate Secondary with Primary Metabolism. Metabolites 2023; 13:1008. [PMID: 37755288 PMCID: PMC10648981 DOI: 10.3390/metabo13091008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Jasmonates (JAs), including jasmonic acid (JA), its precursor 12-oxo-phytodienoic acid (OPDA) and its derivatives jasmonoyl-isoleucine (JA-Ile), methyl jasmonate (MeJA), cis-jasmone (CJ) and other oxylipins, are important in the regulation of a range of ecological interactions of plants with their abiotic and particularly their biotic environments. Plant secondary/specialized metabolites play critical roles in implementing these ecological functions of JAs. Pathway and transcriptional regulation analyses have established a central role of JA-Ile-mediated core signaling in promoting the biosynthesis of a great diversity of secondary metabolites. Here, we summarized the advances in JAs-induced secondary metabolites, particularly in secondary metabolites induced by OPDA and volatile organic compounds (VOCs) induced by CJ through signaling independent of JA-Ile. The roles of JAs in integrating and coordinating the primary and secondary metabolism, thereby orchestrating plant growth-defense tradeoffs, were highlighted and discussed. Finally, we provided perspectives on the improvement of the adaptability and resilience of plants to changing environments and the production of valuable phytochemicals by exploiting JAs-regulated secondary metabolites.
Collapse
Affiliation(s)
- Chen Luo
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Qiu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Zhang Y, Jaime SM, Bulut M, Graf A, Fernie AR. The conditional mitochondrial protein complexome in the Arabidopsis thaliana root and shoot. PLANT COMMUNICATIONS 2023; 4:100635. [PMID: 37291828 PMCID: PMC10504587 DOI: 10.1016/j.xplc.2023.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Protein complexes are important for almost all biological processes. Hence, to fully understand how cells work, it is also necessary to characterize protein complexes and their dynamics in response to various cellular cues. Moreover, the dynamics of protein interaction play crucial roles in regulating the (dis)association of protein complexes and, in turn, regulating biological processes such as metabolism. Here, mitochondrial protein complexes were investigated by blue native PAGE and size-exclusion chromatography under conditions of oxidative stress in order to monitor their dynamic (dis)associations. Rearrangements of enzyme interactions and changes in protein complex abundance were observed in response to oxidative stress induced by menadione treatment. These included changes in enzymatic protein complexes involving γ-amino butyric acid transaminase (GABA-T), Δ-ornithine aminotransferase (Δ-OAT), or proline dehydrogenase 1 (POX1) that are expected to affect proline metabolism. Menadione treatment also affected interactions between several enzymes of the tricarboxylic acid (TCA) cycle and the abundance of complexes of the oxidative phosphorylation pathway. In addition, we compared the mitochondrial complexes of roots and shoots. Considerable differences between the two tissues were observed in the mitochondrial import/export apparatus, the formation of super-complexes in the oxidative phosphorylation pathway, and specific interactions between enzymes of the TCA cycle that we postulate may be related to the metabolic/energetic requirements of roots and shoots.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Silvia Martínez Jaime
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mustafa Bulut
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
40
|
Unel NM, Baloglu MC, Altunoglu YÇ. Comprehensive investigation of cucumber heat shock proteins under abiotic stress conditions: A multi-omics survey. J Biotechnol 2023; 374:49-69. [PMID: 37517677 DOI: 10.1016/j.jbiotec.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Heat-shock proteins (Hsps) are a family of proteins essential in preserving the vitality and functionality of proteins under stress conditions. Cucumber (Cucumis sativus) is a widely grown plant with high nutritional value and is used as a model organism in many studies. This study employed a genomics, transcriptomics, and metabolomics approach to investigate cucumbers' Hsps against abiotic stress conditions. Bioinformatics methods were used to identify six Hsp families in the cucumber genome and to characterize family members. Transcriptomics data from the Sequence Read Archive (SRA) database was also conducted to select CsHsp genes for further study. Real-time PCR was used to evaluate gene expression levels under different stress conditions, revealing that CssHsp-08 was a vital gene for resistance to stress conditions; including drought, salinity, cold, heat stresses, and ABA application. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of plant extracts revealed that amino acids accumulate in leaves under high temperatures and roots under drought, while sucrose accumulates in both tissues under applied most stress factors. The study provides valuable insights into the structure, organization, evolution, and expression profiles of the Hsp family and contributes to a better understanding of plant stress mechanisms. These findings have important implications for developing crops that can withstand environmental stress conditions better.
Collapse
Affiliation(s)
- Necdet Mehmet Unel
- Research and Application Center, Kastamonu University, Kastamonu, Turkey; Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey; Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Turkey.
| | - Yasemin Çelik Altunoglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
41
|
Peng M, He H, Jiang M, Wang Z, Li G, Zhuang L. Morphological, physiological and metabolomic analysis to unravel the adaptive relationship between root growth of ephemeral plants and different soil habitats. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107986. [PMID: 37651954 DOI: 10.1016/j.plaphy.2023.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
To gain insights into the adaptive characteristics of ephemeral plants and enrich their potential for resource exploitation, the adaptive changes in two highly dominant species (Malcolmia scorpioides and Isatis violascens) to soil habitats (aeolian soil, AS; grey desert soil, GS) were investigated from the aspects of root morphology, physiology, and metabolism in this study. The results revealed that changes in root morphology and enzyme activity were affected by soil habitat. Total root length (TRL), root volume (RV) and root surface area (RSA) were higher in GS than in AS. The levels of proline (Pro), glutathione (GSH), soluble sugar (SS), and lysine (Lys) were higher in GS than in AS. Untargeted LC-MS metabolomics indicates that root metabolites of both species differed among the two soil habitats. Root responses to different soil habitats mainly affected some metabolic pathways. A total of 780 metabolites were identified, common differential metabolites (DMs) in both species included amino acids, fatty acids, organic acids, carbohydrates, benzene and derivatives, and flavonoids, which were mainly involved in carbohydrate metabolism, amino acid metabolism, flavonoid biosynthesis and fatty acid metabolism, and their abundance varied among different habitats and species. Some key DMs were significantly related to root morphology and enzyme activity, and indole, malonate, quercetin, uridine, tetrahydroharmine, and gluconolactone were important metabolites associated with root growth. Therefore, the response changes in root growth and metabolite of ephemeral plants in response to soil habitats reflect their ecological adaptation, and lay a foundation for the exploitation of plant resources in various habitats.
Collapse
Affiliation(s)
- Mengwen Peng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Hao He
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Meng Jiang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Zhongke Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Guifang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| |
Collapse
|
42
|
Bao J, Liu Z, Ding Z, Yisilam G, Wang Q, Tian X. Metabolomic analysis reveals key metabolites and metabolic pathways in Suaeda salsa under salt and drought stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:701-711. [PMID: 37531972 DOI: 10.1071/fp23049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Suaeda salsa is an important salt- and drought-tolerant plant with important ecological restoration roles. However, little is known about its underlying molecular regulatory mechanisms. Therefore, understanding the response mechanisms of plants to salt and drought stress is of great importance. In this study, metabolomics analysis was performed to evaluate the effects of salt and drought stress on S. salsa . The experiment consisted of three treatments: (1) control (CK); (2) salt stress (Ps); and (3) drought stress (Pd). The results showed that compared with the control group, S. salsa showed significant differences in phenotypes under salt and drought stress conditions. First, a total of 207 and 292 differential metabolites were identified in the Ps/CK and Pd/CK groups, respectively. Second, some soluble sugars and amino acids, such as raffinose, maltopentoses, D -altro-beptulose, D -proline, valine-proline, proline, tryptophan and glycine-L -leucine, showed increased activity under salt and drought stress conditions, suggesting that these metabolites may be responsible for salt and drought resistance in S. salsa . Third, the flavonoid biosynthetic and phenylalanine metabolic pathways were significantly enriched under both salt and drought stress conditions, indicating that these two metabolic pathways play important roles in salt and drought stress resistance in S. salsa . The findings of this study provide new insights into the salt and drought tolerance mechanisms of S. salsa .
Collapse
Affiliation(s)
- Jinbo Bao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Zhiyou Liu
- City Management and Service Centre of Tiemenguan, Xinjiang, China
| | - Zhijie Ding
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin 541004, China; and Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Gulbar Yisilam
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin 541004, China; and Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Qiuyan Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Xinmin Tian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin 541004, China; and Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
43
|
Segarra-Medina C, Pascual LS, Alseekh S, Fernie AR, Rambla JL, Gómez-Cadenas A, Zandalinas SI. Comparison of metabolomic reconfiguration between Columbia and Landsberg ecotypes subjected to the combination of high salinity and increased irradiance. BMC PLANT BIOLOGY 2023; 23:406. [PMID: 37620776 PMCID: PMC10463500 DOI: 10.1186/s12870-023-04404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions. RESULTS Here we studied the metabolomic response of two Arabidopsis ecotypes (Columbia-0 [Col] and Landsberg erecta-0 [Ler]), widely used as genetic background for Arabidopsis mutant collections, subjected to the combination of high salinity and increased irradiance. Our findings demonstrate that this stress combination results in a specific metabolic response, different than that of the individual stresses. Although both ecotypes displayed reduced growth and quantum yield of photosystem II, as well as increased foliar damage and malondialdehyde accumulation, different mechanisms to tolerate the stress combination were observed. These included a relocation of amino acids and sugars to act as potential osmoprotectants, and the accumulation of different stress-protective compounds such as polyamines or secondary metabolites. CONCLUSIONS Our findings reflect an initial identification of metabolic pathways that differentially change under stress combination that could be considered in studies of stress combination of Arabidopsis mutants that include Col or Ler as genetic backgrounds.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Lidia S Pascual
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José L Rambla
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| |
Collapse
|
44
|
Kumar R, Adhikary A, Saini R, Khan SA, Yadav M, Kumar S. Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107840. [PMID: 37379659 DOI: 10.1016/j.plaphy.2023.107840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
In wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50-55% field capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 °C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield.
Collapse
Affiliation(s)
- Rashpal Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Arindam Adhikary
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Rashmi Saini
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shahied Ahmed Khan
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Manisha Yadav
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sanjeev Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India; Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
45
|
Andrade-Marcial M, Ruíz-May E, Elizalde-Contreras JM, Pacheco N, Herrera-Pool E, De-la-Peña C. Proteome of Agave angustifolia Haw.: Uncovering metabolic alterations, over-accumulation of amino acids, and compensatory pathways in chloroplast-deficient albino plantlets. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107902. [PMID: 37506650 DOI: 10.1016/j.plaphy.2023.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Amino acids (AA) are essential molecules for plant physiology, acting as precursor molecules for proteins and other organic compounds. Chloroplasts play a vital role in AA metabolism, yet little is known about the impact on AA metabolism of albino plants' lack of chloroplasts. In this study, we conducted a quantitative proteome analysis on albino and variegated somaclonal variants of Agave angustifolia Haw. to investigate metabolic alterations in chloroplast-deficient plants, with a focus on AA metabolic pathways. We identified 82 enzymes involved in AA metabolism, with 32 showing differential accumulation between the somaclonal variants. AaCM, AaALS, AaBCAT, AaIPMS1, AaSHMT, AaAST, AaCGS, and AaMS enzymes were particularly relevant in chloroplast-deficient Agave plantlets. Both variegated and albino phenotypes exhibited excessive synthesis of AA typically associated with chloroplasts (aromatic AAs, BCAAs, Asp, Lys, Pro and Met). Consistent trends were observed for AaBCAT and AaCM at mRNA and protein levels in albino plantlets. These findings highlight the critical activation and reprogramming of AA metabolic pathways in plants lacking chloroplasts. This study contributes to unraveling the intricate relationship between AA metabolism and chloroplast absence, offering insights into survival mechanisms of albino plants.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - E Ruíz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, 91070, Xalapa, Veracruz, México
| | - J M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, 91070, Xalapa, Veracruz, México
| | - N Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Unidad Sureste, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, CP, 97302, Mérida, Yucatán, México
| | - E Herrera-Pool
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Unidad Sureste, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, CP, 97302, Mérida, Yucatán, México
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
46
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Reshi ZA, Ahmad W, Lukatkin AS, Javed SB. From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites 2023; 13:895. [PMID: 37623839 PMCID: PMC10456650 DOI: 10.3390/metabo13080895] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Secondary metabolites are gaining an increasing importance in various industries, such as pharmaceuticals, dyes, and food, as is the need for reliable and efficient methods of procuring these compounds. To develop sustainable and cost-effective approaches, a comprehensive understanding of the biosynthetic pathways and the factors influencing secondary metabolite production is essential. These compounds are a unique type of natural product which recognizes the oxidative damage caused by stresses, thereby activating the defence mechanism in plants. Various methods have been developed to enhance the production of secondary metabolites in plants. The elicitor-induced in vitro culture technique is considered an efficient tool for studying and improving the production of secondary metabolites in plants. In the present review, we have documented various biosynthetic pathways and the role of secondary metabolites under diverse environmental stresses. Furthermore, a practical strategy for obtaining consistent and abundant secondary metabolite production via various elicitation agents used in culturing techniques is also mentioned. By elucidating the intricate interplay of regulatory factors, this review paves the way for future advancements in sustainable and efficient production methods for high-value secondary metabolites.
Collapse
Affiliation(s)
- Zubair Altaf Reshi
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| | - Waquar Ahmad
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| | - Alexander S. Lukatkin
- Department of General Biology and Ecology, N.P. Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Saad Bin Javed
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| |
Collapse
|
48
|
Xu X, Qiu H, Van Gestel CAM, Gong B, He E. Impact of nanopesticide CuO-NPs and nanofertilizer CeO 2-NPs on wheat Triticum aestivum under global warming scenarios. CHEMOSPHERE 2023; 328:138576. [PMID: 37019396 DOI: 10.1016/j.chemosphere.2023.138576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Concurrent effect of nanomaterials (NMs) and warming on plant performance remains largely unexplored. In this study, the effects of nanopesticide CuO and nanofertilizer CeO2 on wheat (Triticum aestivum) under optimal (22 °C) and suboptimal (30 °C) temperatures were evaluated. CuO-NPs exerted a stronger negative effect on plant root systems than CeO2-NPs at tested exposure levels. The toxicity of both NMs could be attributed to altered nutrient uptake, induced membrane damage, and raised disturbance of antioxidative related biological pathways. Warming significantly inhibited root growth, which was mainly linked to the disturbance of energy metabolism relevant biological pathways. The toxicity of NMs was enhanced upon warming, with a stronger inhibition of root growth and Fe and Mn uptake. Increasing temperature increased the accumulation of Ce upon CeO2-NP exposure, while the accumulation of Cu was not affected. The relative contribution of NMs and warming to their combined effects was evaluated by comparing disturbed biological pathways under single and multiple stressors. CuO-NPs was the dominant factor inducing toxic effects, while both CeO2-NPs and warming contributed to the mixed effect. Our study revealed the importance of carefully considering global warming as a factor in risk assessment of agricultural applications of NMs.
Collapse
Affiliation(s)
- Xueqing Xu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Bing Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
49
|
Li L, Tian Z, Chen J, Tan Z, Zhang Y, Zhao H, Wu X, Yao X, Wen W, Chen W, Guo L. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biol 2023; 24:141. [PMID: 37337206 DOI: 10.1186/s13059-023-02984-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Seed oil content is an important agronomic trait of Brassica napus (B. napus), and metabolites are considered as the bridge between genotype and phenotype for physical traits. RESULTS Using a widely targeted metabolomics analysis in a natural population of 388 B. napus inbred lines, we quantify 2172 metabolites in mature seeds by liquid chromatography mass spectrometry, in which 131 marker metabolites are identified to be correlated with seed oil content. These metabolites are then selected for further metabolite genome-wide association study and metabolite transcriptome-wide association study. Combined with weighted correlation network analysis, we construct a triple relationship network, which includes 21,000 edges and 4384 nodes among metabolites, metabolite quantitative trait loci, genes, and co-expression modules. We validate the function of BnaA03.TT4, BnaC02.TT4, and BnaC05.UK, three candidate genes predicted by multi-omics analysis, which show significant impacts on seed oil content through regulating flavonoid metabolism in B. napus. CONCLUSIONS This study demonstrates the advantage of utilizing marker metabolites integrated with multi-omics analysis to dissect the genetic basis of agronomic traits in crops.
Collapse
Affiliation(s)
- Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaowei Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
50
|
Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses. Genes (Basel) 2023; 14:1281. [PMID: 37372461 PMCID: PMC10298225 DOI: 10.3390/genes14061281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The present day's ongoing global warming and climate change adversely affect plants through imposing environmental (abiotic) stresses and disease pressure. The major abiotic factors such as drought, heat, cold, salinity, etc., hamper a plant's innate growth and development, resulting in reduced yield and quality, with the possibility of undesired traits. In the 21st century, the advent of high-throughput sequencing tools, state-of-the-art biotechnological techniques and bioinformatic analyzing pipelines led to the easy characterization of plant traits for abiotic stress response and tolerance mechanisms by applying the 'omics' toolbox. Panomics pipeline including genomics, transcriptomics, proteomics, metabolomics, epigenomics, proteogenomics, interactomics, ionomics, phenomics, etc., have become very handy nowadays. This is important to produce climate-smart future crops with a proper understanding of the molecular mechanisms of abiotic stress responses by the plant's genes, transcripts, proteins, epigenome, cellular metabolic circuits and resultant phenotype. Instead of mono-omics, two or more (hence 'multi-omics') integrated-omics approaches can decipher the plant's abiotic stress tolerance response very well. Multi-omics-characterized plants can be used as potent genetic resources to incorporate into the future breeding program. For the practical utility of crop improvement, multi-omics approaches for particular abiotic stress tolerance can be combined with genome-assisted breeding (GAB) by being pyramided with improved crop yield, food quality and associated agronomic traits and can open a new era of omics-assisted breeding. Thus, multi-omics pipelines together are able to decipher molecular processes, biomarkers, targets for genetic engineering, regulatory networks and precision agriculture solutions for a crop's variable abiotic stress tolerance to ensure food security under changing environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Soumya Prakash Das
- School of Bioscience, Seacom Skills University, Bolpur 731236, West Bengal, India
| | - Amber Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Parul Parihar
- Department of Biotechnology and Bioscience, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kottakota Chandrasekhar
- Department of Plant Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur 522034, Andhra Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ajay Kumar
- Department of Botany, Maharshi Vishwamitra (M.V.) College, Buxar 802102, Bihar, India
| | - Devade Pandurang Ramrao
- Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl 796001, Mizoram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| |
Collapse
|