1
|
Li S, Liang Q, Qing W, Fang Z, Yuan C, Pan S, Xie H, Li X, Chen M, He Y, Zhou H, Wang Q. Maternal group B Streptococcus decreases infant length and alters the early-life microbiome: a prospective cohort study. Ann Med 2025; 57:2442070. [PMID: 39693119 DOI: 10.1080/07853890.2024.2442070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Maternal colonization with Group B Streptococcus (GBS) disrupts the vaginal microbiota, potentially affecting infant microbiota assembly and growth. While the gut microbiota's importance in infant growth is recognized, the specific effects of maternal GBS on growth remain unclear. This study aimed to explore the effects of maternal vaginal GBS during pregnancy on early infant growth, microbiome, and metabolomics. METHODS We recruited and classified 453 pregnant women from southern China into GBS or healthy groups based on GBS vaginal colonization. Their infants were categorized as GBS-exposed or GBS-unexposed groups. We comprehensively analyzed infant growth, gut microbiota, and metabolites during early life, along with maternal vaginal microbiota during pregnancy, using 16S rDNA sequencing and targeted metabolomics. RESULTS GBS-exposed infants exhibited lower length-for-age z-scores (LAZ) than GBS-unexposed infants, especially at 2 months. Altered gut microbiota and metabolites in GBS-exposed infants correlated with growth, mediating the impact of maternal GBS on infant LAZ. Changes in the vaginal microbiota of the GBS group during the third trimester correlated with infant LAZ. Additionally, differences in neonatal gut microbiota, metabolites, and vaginal microbiota during pregnancy were identified between infants with overall LAZ<-1 within 8 months after birth and their counterparts, enhancing the discriminatory power of fundamental data for predicting the occurrence of LAZ<-1 during the first 8 months of life. CONCLUSIONS GBS exposure is associated with decreased infant length growth, with altered microbiota and metabolites potentially mediating the effects of maternal GBS on offspring length growth, offering potential targets for predicting and addressing growth impairment.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qijun Liang
- Department of Obstetrics and Gynecology, Boai Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Wei Qing
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhencheng Fang
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunlei Yuan
- Department of Laboratory Medicine, Boai Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Shilei Pan
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hairui Xie
- Department of Paediatrics Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaocong Li
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Guangdong, China
| | - Muxuan Chen
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan He
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wang
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Panwar D, Briggs J, Fraser ASC, Stewart WA, Brumer H. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol 2025; 91:e0175924. [PMID: 39636128 PMCID: PMC11784079 DOI: 10.1128/aem.01759-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
There is growing interest in members of the genus Segatella (family Prevotellaceae) as members of a well-balanced human gut microbiota (HGM). Segatella are particularly associated with the consumption of a diet rich in plant polysaccharides comprising dietary fiber. However, understanding of the molecular basis of complex carbohydrate utilization in Segatella species is currently incomplete. Here, we used RNA sequencing (RNA-seq) of the type strain Segatella copri DSM 18205 (previously Prevotella copri CB7) to define precisely individual polysaccharide utilization loci (PULs) and associated carbohydrate-active enzymes (CAZymes) that are implicated in the catabolism of common fruit, vegetable, and grain polysaccharides (viz. mixed-linkage β-glucans, xyloglucans, xylans, pectins, and inulin). Although many commonalities were observed, several of these systems exhibited significant compositional and organizational differences vis-à-vis homologs in the better-studied Bacteroides (sister family Bacteroidaceae), which predominate in post-industrial HGM. Growth on β-mannans, β(1, 3)-galactans, and microbial β(1, 3)-glucans was not observed, due to an apparent lack of cognate PULs. Most notably, S. copri is unable to grow on starch, due to an incomplete starch utilization system (Sus). Subsequent transcriptional profiling of bellwether Ton-B-dependent transporter-encoding genes revealed that PUL upregulation is rapid and general upon transfer from glucose to plant polysaccharides, reflective of de-repression enabling substrate sensing. Distinct from previous observations of Bacteroides species, we were unable to observe clearly delineated substrate prioritization on a polysaccharide mixture designed to mimic in vitro diverse plant cell wall digesta. Finally, co-culture experiments generally indicated stable co-existence and lack of exclusive competition between S. copri and representative HGM Bacteroides species (Bacteroides thetaiotaomicron and Bacteroides ovatus) on individual polysaccharides, except in cases where corresponding PULs were obviously lacking. IMPORTANCE There is currently a great level of interest in improving the composition and function of the human gut microbiota (HGM) to improve health. The bacterium Segatella copri is prevalent in people who eat plant-rich diets and is therefore associated with a healthy lifestyle. On one hand, our study reveals the specific molecular systems that enable S. copri to proliferate on individual plant polysaccharides. On the other, a growing body of data suggests that the inability of S. copri to grow on starch and animal glycans, which dominate in post-industrial diets, as well as host mucin, contributes strongly to its displacement from the HGM by Bacteroides species, in the absence of direct antagonism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S. C. Fraser
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William A. Stewart
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Pickles IB, Chen Y, Moroz O, Brown HA, de Boer C, Armstrong Z, McGregor NGS, Artola M, Codée JDC, Koropatkin NM, Overkleeft HS, Davies GJ. Precision Activity-Based α-Amylase Probes for Dissection and Annotation of Linear and Branched-Chain Starch-Degrading Enzymes. Angew Chem Int Ed Engl 2025; 64:e202415219. [PMID: 39601378 DOI: 10.1002/anie.202415219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
α-Amylases are the workhorse enzymes of starch degradation. They are central to human health, including as targets for anti-diabetic compounds, but are also the key enzymes in the industrial processing of starch for biofuels, corn syrups, brewing and detergents. Dissection of the activity, specificity and stability of α-amylases is crucial to understanding their biology and allowing their exploitation. Yet, functional characterization lags behind DNA sequencing and genomics; and new tools are required for rapid analysis of α-amylase function. Here, we design, synthesize and apply new branched α-amylase activity-based probes. Using both α-1,6 branched and unbranched α-1,4 maltobiose activity-based probes we were able to explore the stability and substrate specificity of both a panel of human gut microbial α-amylases and a panel of industrially relevant α-amylases. We also demonstrate how we can detect and annotate the substrate specificity of α-amylases in the complex cell lysate of both a prominent gut microbe and a diverse compost sample by in-gel fluorescence and mass spectrometry. A toolbox of starch-active activity-based probes will enable rapid functional dissection of α-amylases. We envisage activity-based probes contributing to better selection and engineering of enzymes for industrial application as well as fundamental analysis of enzymes in human health.
Collapse
Affiliation(s)
- Isabelle B Pickles
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Yurong Chen
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Olga Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Haley A Brown
- University of Michigan Medical School, 6605D Med Sci II, 1150W, Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Casper de Boer
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Zachary Armstrong
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Marta Artola
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Nicole M Koropatkin
- University of Michigan Medical School, 6605D Med Sci II, 1150W, Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| |
Collapse
|
4
|
Qu Z, Liu H, Yang J, Zheng L, Huang J, Wang Z, Xie C, Zuo W, Xia X, Sun L, Zhou Y, Xie Y, Lu J, Zhu Y, Yu L, Liu L, Zhou H, Dai L, Leung ELH. Selective utilization of medicinal polysaccharides by human gut Bacteroides and Parabacteroides species. Nat Commun 2025; 16:638. [PMID: 39809740 PMCID: PMC11733155 DOI: 10.1038/s41467-025-55845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Human gut Bacteroides and Parabacteroides species play crucial roles in human health and are known for their capacity to utilize diverse polysaccharides. Understanding how these bacteria utilize medicinal polysaccharides is foundational for developing polysaccharides-based prebiotics and drugs. Here, we systematically mapped the utilization profiles of 20 different medicinal polysaccharides by 28 human gut Bacteroides and Parabacteroides species. The growth profiles exhibited substantial variation across different bacterial species and medicinal polysaccharides. Ginseng polysaccharides promoted the growth of multiple Bacteroides and Parabacteroides species; in contrast, Dendrobium polysaccharides selectively promoted the growth of Bacteroides uniformis. This distinct utilization profile was associated with genomic variation in carbohydrate-active enzymes, rather than monosaccharides composition variation among medicinal polysaccharides. Through comparative transcriptomics and genetical manipulation, we validated that the polysaccharide utilization locus PUL34_Bu enabled Bacteroides uniformis to utilize Dendrobium polysaccharides (i.e. glucomannan). In addition, we found that the GH26 enzyme in PUL34_Bu allowed Bacteroides uniformis to utilize multiple plant-derived mannan. Overall, our results revealed the selective utilization of medicinal polysaccharide by Bacteroides and Parabacteroides species and provided insights into the use of polysaccharides in engineering the human gut microbiome.
Collapse
Affiliation(s)
- Zepeng Qu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongbin Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linggang Zheng
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiong Xia
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Sun
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingguang Lu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lili Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lihua Liu
- School of Economics and Management, Yanbian University, Yanji, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China.
- State Key Laboratory of Quality Research in Chinese Medicine, University of, Macau, Macau.
| |
Collapse
|
5
|
Brown HA, Morris AL, Pudlo NA, Hopkins AE, Martens EC, Golob JL, Koropatkin NM. Acarbose impairs gut Bacteroides growth by targeting intracellular glucosidases. mBio 2024; 15:e0150624. [PMID: 39565129 PMCID: PMC11633381 DOI: 10.1128/mbio.01506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024] Open
Abstract
Acarbose is a type 2 diabetes medicine that prevents dietary starch breakdown into glucose by inhibiting host amylase and glucosidase enzymes. Numerous gut species in the Bacteroides genus enzymatically break down starch and change in relative abundance within the gut microbiome in acarbose-treated individuals. To mechanistically explain this observation, we used two model starch-degrading Bacteroides, Bacteroides ovatus (Bo), and Bacteroides thetaiotaomicron (Bt). Bt growth on starch polysaccharides is severely impaired by acarbose, whereas Bo growth is much less affected by the drug. The Bacteroides use a starch utilization system (Sus) to grow on starch. We hypothesized that Bo and Bt Sus enzymes are differentially inhibited by acarbose. Instead, we discovered that although acarbose primarily targets the Sus periplasmic GH97 enzymes in both organisms, the drug affects starch processing at multiple other points. Acarbose competes for transport through the TonB-dependent SusC proteins and binds to the Sus transcriptional regulators. Furthermore, Bo expresses a non-Sus GH97 (BoGH97D) when grown in starch with acarbose. The Bt homolog, BtGH97H, is not expressed in the same conditions, nor can overexpression of BoGH97D complement the Bt growth inhibition in the presence of acarbose. This work informs us about unexpected complexities of Sus function and regulation in Bacteroides, including variation between related species. Furthermore, this indicates that the gut microbiome may be a source of variable response to acarbose treatment for diabetes. IMPORTANCE Acarbose is a type 2 diabetes medication that works primarily by stopping starch breakdown into glucose in the small intestine. This is accomplished by the inhibition of host enzymes, leading to better blood sugar control via reduced ability to derive glucose from dietary starches. The drug and undigested starch travel to the large intestine where acarbose interferes with the ability of some bacteria to grow on starch. However, little is known about how gut bacteria interact with acarbose, including microbes that can use starch as a carbon source. Here, we show that two gut species, Bacteroides ovatus (Bo) and Bacteroides thetaiotaomicron (Bt), respond differently to acarbose: Bt growth is inhibited by acarbose, while Bo growth is less affected. We reveal a complex set of mechanisms involving differences in starch import and sensing behind the different Bo and Bt responses. This indicates the gut microbiome may be a source of variable response to acarbose treatment for diabetes via complex mechanisms in common gut microbes.
Collapse
Affiliation(s)
- Haley A. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adeline L. Morris
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ashley E. Hopkins
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jonathan L. Golob
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Kuai Y, Chen Z, Xie K, Chen J, He J, Gao J, Yu C. Long-term exposure to polystyrene microplastics reduces macrophages and affects the microbiota-gut-brain axis in mice. Toxicology 2024; 509:153951. [PMID: 39265698 DOI: 10.1016/j.tox.2024.153951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The remarkably increase in plastic use has led to worldwide pollution involving microplastics (MPs), which have been shown to be potentially hazardous substances. Although several studies have focused on the effects of small MPs on the brain and behavior of aquatic species, their effects on the mouse brain and the underlying mechanisms remain unclear. Our study's aim was to investigate the effects of long-term oral ingestion of different sizes of MPs (0.1, 5, and 50 μm) on mouse colon tissue. Of these sizes, the smallest (0.1 μm) had the greatest effect. Pre-administration of MP promotes colitis but reduces tumor growth in a colitis-associated colorectal cancer (CAC) mouse mode. MPs can increase inflammation in mice via activation of the very late antigen 4-vascular cell adhesion molecule 1 (VLA4-VCAM1) signaling pathway in macrophages, while also inducing macrophage reduction in the late phase of inflammation. In the microbiota-gut-brain axis, polystyrene MP treatment altered bile acid and carbohydrate metabolism in the intestine, inhibited intestinal motility, reduced water reabsorption, and led to a certain degree of depression in mice. These findings suggest that small MPs can induce macrophage reduction, thereby affecting the physical and mental health by modulating the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yue Kuai
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Zhuoneng Chen
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Kai Xie
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Jiannan He
- The Department of Anesthesiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Jianguo Gao
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chaohui Yu
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
7
|
Armbruster KM, Jiang J, Sartorio MG, Scott NE, Peterson JM, Sexton JZ, Feldman MF, Koropatkin NM. Identification and characterization of the lipoprotein N-acyltransferase in Bacteroides. Proc Natl Acad Sci U S A 2024; 121:e2410909121. [PMID: 39495918 PMCID: PMC11573676 DOI: 10.1073/pnas.2410909121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 11/06/2024] Open
Abstract
Members of the Bacteroidota compose a large portion of the human gut microbiota, contributing to overall gut health via the degradation of various polysaccharides. This process is facilitated by lipoproteins, globular proteins anchored to the cell surface by a lipidated N-terminal cysteine. Despite their importance, lipoprotein synthesis by these bacteria is understudied. In Escherichia coli, the α-amino-linked lipid of lipoproteins is added by the lipoprotein N-acyltransferase Lnt. Herein, we have identified a protein distinct from Lnt responsible for the same process in Bacteroides, named lipoprotein N-acyltransferase in Bacteroides (Lnb). Deletion of Lnb yields cells that synthesize diacylated lipoproteins, with impacts on cell viability and morphology, growth on polysaccharides, and protein composition of membranes and outer membrane vesicles (OMVs). Our results not only challenge the accepted paradigms of lipoprotein biosynthesis in gram-negative bacteria but also suggest the existence of a new family of lipoprotein N-acyltransferases.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jiawen Jiang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
| | - Jenna M Peterson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
8
|
Yeh YH, Kelly VW, Rahman Pour R, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. Nat Commun 2024; 15:9741. [PMID: 39528443 PMCID: PMC11554821 DOI: 10.1038/s41467-024-53845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteroides species are abundant, prevalent, and stable members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering Bacteroides as in situ bio-factories, however, requires efficient protein secretion tools, which are currently lacking. Here, we systematically investigate methods to enable heterologous protein secretion in Bacteroides. We identify a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterize signal peptide sequence features, post-secretion extracellular fate, and the size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we develop a strong, self-contained, inducible expression circuit. Finally, we validate the functionality of our secretion carriers in vivo in a mouse model. This toolkit promises to enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| | - Vince W Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Perlumi, Berkeley, CA, USA
| | - Shannon J Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerberg Biohub, Chicago, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Basu A, Adams AND, Degnan PH, Vanderpool CK. Determinants of raffinose family oligosaccharide use in Bacteroides species. J Bacteriol 2024; 206:e0023524. [PMID: 39330254 PMCID: PMC11501099 DOI: 10.1128/jb.00235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Bacteroides species are successful colonizers of the human colon and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in polysaccharide utilization loci (PULs). While recent work has uncovered the PULs required for the use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under the control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in a subset and showed that representative strains of species with a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide. IMPORTANCE The gut microbiome is important in health and disease. The diverse and densely populated environment of the gut makes competition for resources fierce. Hence, it is important to study the strategies employed by microbes for resource usage. Raffinose family oligosaccharides are abundant in plants and are a major source of nutrition for the microbiota in the colon since they remain undigested by the host. Here, we study how the model commensal organism, Bacteroides thetaiotaomicron utilizes raffinose family oligosaccharides. This work highlights how an important member of the microbiota uses an abundant dietary resource.
Collapse
Affiliation(s)
- Anubhav Basu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Amanda N. D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Nguyen TTH, Vuong TQ, Han HL, Kim SG. Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov., marine anaerobic laminarin and xylan degraders in the phylum Bacteroidota. Sci Rep 2024; 14:24329. [PMID: 39414901 PMCID: PMC11484911 DOI: 10.1038/s41598-024-74787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
The bacterial group of the phylum Bacteroidota greatly contributes to the global carbon cycle in marine ecosystems through its specialized ability to degrade marine polysaccharides. In this study, it is proposed that two novel facultative anaerobic strains, DS1-an-13321T and DS1-an-2312T, which were isolated from a sea squirt, represent a novel genus, Halosquirtibacter, with two novel species in the family Prolixibacteraceae. The 16S rRNA sequence similarities of these two strains were 91.26% and 91.37%, respectively, against Puteibacter caeruleilacunae JC036T, which is the closest recognized neighbor. The complete genomes of strains DS1-an-13321T and DS1-an-2312T each consisted of a single circular chromosome with a size of 4.47 and 5.19 Mb, respectively. The average amino acid identity and the percentage of conserved proteins against the type species of the genera in the family Prolixibacteraceae ranged from 48.33 to 52.35% and 28.34-37.37%, respectively, which are lower than the threshold for genus demarcation. Strains DS1-an-13321T and DS1-an-2312T could grow on galactose, glucose, maltose, lactose, sucrose, laminarin, and starch, and only DS1-an-2312T could grow on xylose and xylan under fermentation conditions. These strains produced acetic acid and propionic acid as the major fermentation products. Genome mining of the genomes of the two strains revealed 27 and 34 polysaccharide utilization loci, which included 155 and 249 carbohydrate-active enzymes (CAZymes), covering 57 and 65 CAZymes families, respectively. The laminarin-degrading enzymes in both strains were cell-associated, and showed exo-hydrolytic activity releasing glucose as a major product. The xylan-degrading enzymes of strain DS1-an-2312T was also cell-associated, and had endo-hydrolytic activities, releasing xylotriose and xylotetraose as major products. The evidence from phenotypic, biochemical, chemotaxonomic, and genomic characteristics supported the proposal of a novel genus with two novel species in the family Prolixibacteraceae, for which the names Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov. are proposed. The type strain of Halosquirtibacter laminarini is DS1-an-13321T (= KCTC 25031T = DSM 115329T) and the type strain of Halosquirtibacter xylanolyticus is DS1-an-2312T (= KCTC 25032T = DSM 115328T).
Collapse
Affiliation(s)
- Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tien Q Vuong
- Phacogen Institute of Technology, B4 building, Pham Ngoc Thach street, Kim Lien, Dong Da district, Hanoi, 10700, Vietnam
| | - Ho Le Han
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550000, Vietnam
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Rong X, Shen C, Shu Q. Interplay between traditional Chinese medicine polysaccharides and gut microbiota: The elusive "polysaccharides-bond-bacteria-enzyme" equation. Phytother Res 2024; 38:4695-4715. [PMID: 39120443 DOI: 10.1002/ptr.8284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Polysaccharides are one of the most important components of traditional Chinese medicine (TCM) and have been extensively studied for their immunomodulatory properties. The functions and effects of TCM polysaccharides are closely related to the gut microbiota, making the study of their interaction a hot topic in the field of TCM metabolism. This review follows two main inquiries: first, how the gut microbiota breaks down TCM polysaccharides to produce bioactive metabolites; and second, how TCM polysaccharides reshape the gut microbiota as a carbon source. Understanding the interaction mechanism involves a challenging equation of the structural association of TCM polysaccharides with the metabolic activities of the microbiota. This review has meticulously searched, partially organized literature spanning the past decade, that delves into the interaction mechanism between TCM polysaccharides and gut microbiota. It also gives an overview of the complex factors of the elusive "polysaccharides-bond-bacteria-enzyme" equation: the complexity of polysaccharide structures, the diversity of glycosidic bond types, the communal nature of metabolizing microbiota, the enzymes involved in functional degradation by microbiota, and the hierarchical roles of polysaccharide utilization locus and gram-positive PULs. Finally, this review aims to facilitate discussion among peers in the field of TCM microbiota and offers prospects for research in related fields, paving the way for pharmacological studies on TCM polysaccharides and gut microbiota therapeutics, and providing a reference point for further clinical research.
Collapse
Affiliation(s)
- XinQian Rong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - CanTing Shen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - QingLong Shu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
12
|
Golisch B, Cordeiro RL, Fraser ASC, Briggs J, Stewart WA, Van Petegem F, Brumer H. The molecular basis of cereal mixed-linkage β-glucan utilization by the human gut bacterium Segatella copri. J Biol Chem 2024; 300:107625. [PMID: 39122003 PMCID: PMC11418011 DOI: 10.1016/j.jbc.2024.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Mixed-linkage β(1,3)/β(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a β(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of β-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.
Collapse
Affiliation(s)
- Benedikt Golisch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosa Lorizolla Cordeiro
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S C Fraser
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - William A Stewart
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Wang C, Zheng R, Zhang T, Sun C. Polysaccharides induce deep-sea Lentisphaerae strains to release chronic bacteriophages. eLife 2024; 13:RP92345. [PMID: 39207920 PMCID: PMC11361711 DOI: 10.7554/elife.92345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Viruses are ubiquitous in nature and play key roles in various ecosystems. Notably, some viruses (e.g. bacteriophage) exhibit alternative life cycles, such as chronic infections without cell lysis. However, the impact of chronic infections and their interactions with the host organisms remains largely unknown. Here, we found for the first time that polysaccharides induced the production of multiple temperate phages infecting two deep-sea Lentisphaerae strains (WC36 and zth2). Through physiological assays, genomic analysis, and transcriptomics assays, we found these bacteriophages were released via a chronic style without host cell lysis, which might reprogram host polysaccharide metabolism through the potential auxiliary metabolic genes. The findings presented here, together with recent discoveries made on the reprogramming of host energy-generating metabolisms by chronic bacteriophages, shed light on the poorly explored marine virus-host interaction and bring us closer to understanding the potential role of chronic viruses in marine ecosystems.
Collapse
Affiliation(s)
- Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Tianhang Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Nilson R, Penumutchu S, Pagano FS, Belenky P. Metabolic changes associated with polysaccharide utilization reduce susceptibility to some β-lactams in Bacteroides thetaiotaomicron. mSphere 2024; 9:e0010324. [PMID: 39109911 PMCID: PMC11351048 DOI: 10.1128/msphere.00103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/07/2024] [Indexed: 08/29/2024] Open
Abstract
Antibiotic therapy alters bacterial abundance and metabolism in the gut microbiome, leading to dysbiosis and opportunistic infections. Bacteroides thetaiotaomicron (Bth) is both a commensal in the gut and an opportunistic pathogen in other body sites. Past work has shown that Bth responds to β-lactam treatment differently depending on the metabolic environment both in vitro and in vivo. Studies of other bacteria show that an increase in respiratory metabolism independent of growth rate promotes susceptibility to bactericidal antibiotics. We propose that Bth enters a protected state linked to an increase in polysaccharide utilization and a decrease in the use of simple sugars. Here, we apply antibiotic susceptibility testing, transcriptomic analysis, and genetic manipulation to characterize this polysaccharide-mediated tolerance (PM tolerance) phenotype. We found that a variety of mono- and disaccharides increased the susceptibility of Bth to several different β-lactams compared to polysaccharides. Transcriptomics indicated a metabolic shift from reductive to oxidative branches of the tricarboxylic acid cycle on polysaccharides. Accordingly, supplementation with intermediates of central carbon metabolism had varying effects on PM tolerance. Transcriptional analysis also showed a decrease in the expression of the electron transport chain (ETC) protein NQR and an increase in the ETC protein NUO, when given fiber versus glucose. Deletion of NQR increased Bth susceptibility while deletion of NUO and a third ETC protein NDH2 had no effect. This work confirms that carbon source utilization modulates antibiotic susceptibility in Bth and that anaerobic respiratory metabolism and the ETC play an essential role.IMPORTANCEAntibiotics are indispensable medications that revolutionized modern medicine. However, their effectiveness is challenged by a large array of resistance and tolerance mechanisms. Treatment with antibiotics also disrupts the gut microbiome which can adversely affect health. Bacteroides are prevalent in the gut microbiome and yet are frequently involved in anaerobic infections. Thus, understanding how antibiotics affect these bacteria is necessary to implement proper treatment. Recent work has investigated the role of metabolism in antibiotic susceptibility in distantly related bacteria such as Escherichia coli. Using antibiotic susceptibility testing, transcriptomics, and genetic manipulation, we demonstrate that polysaccharides reduce β-lactam susceptibility when compared to monosaccharides. This finding underscores the profound impact of metabolic adaptation on the therapeutic efficacy of antibiotics. In the long term, this work indicates that modulation of metabolism could make Bacteroides more susceptible during infections or protect them in the context of the microbiome.
Collapse
Affiliation(s)
- Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Francesco S. Pagano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Li X, Lippens G, Parrou JL, Cioci G, Esque J, Wang Z, Laville E, Potocki-Veronese G, Labourel A. Biochemical characterization of a SusD-like protein involved in β-1,3-glucan utilization by an uncultured cow rumen Bacteroides. mSphere 2024; 9:e0027824. [PMID: 39012103 PMCID: PMC11351036 DOI: 10.1128/msphere.00278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
In ruminants, the rumen is a specialized stomach that is adapted to the breakdown of plant-derived complex polysaccharides through the coordinated activities of a diverse microbial community. Bacteroidota is a major phylum in this bovine rumen microbiota. They contain several clusters of genes called polysaccharide utilization loci (PULs) that encode proteins working in concert to capture, degrade, and transport polysaccharides. Despite the critical role of SusD-like proteins for efficient substrate transport, they remain largely unexplored. Here, we present the biochemical characterization of a SusD-like protein encoded by a β-glucan utilization locus from an Escherichia coli metagenomic clone previously isolated by functional screening of the bovine rumen microbiome. In this study, we show that clone 41O1 can grow on laminaritriose, cellotriose, and a mixture of cellobiosyl-cellobiose and glucosyl-cellotriose as sole carbon sources. Based on this, we used various in vitro analyses to investigate the binding ability of 41O1_SusD-like towards these oligosaccharides and the corresponding polysaccharides. We observed a clear binding affinity for β-1,6 branched β-1,3-glucans (laminarins, yeast β-glucan) and laminaritriose. Comparison of the AlphaFold2 model of 41O1_SusD-like with its closest structural homologs highlights a similar pattern of substrate recognition. In particular, three tryptophan residues are shown to be crucial for laminarin recognition. In the context of the cow rumen, we discuss the possible substrates targeted by the 41O1_PUL, such as the (1,3;1,4)-β-d-glucans present in cereal grains or the β-1,3- and (1,3;1,6)-β-d-glucans that are components of the cell wall of ruminal yeasts.IMPORTANCEThe rumen microbiota can majorly impact overall animal health, feed efficiency, and release of harmful substances into the environment. This microbiota is involved in the fermentation of organic matter to provide the host with valuable and assimilable nutrients. Bacteroidota efficiently captures, breaks down, and imports complex polysaccharides through the concerted action of proteins encoded by polysaccharide utilization loci (PULs). Within this system, SusD-like protein has proven necessary for the active internalization of the substrate. Nevertheless, the vast majority of SusD-like proteins characterized to date originate from cultured bacteria. With regard to the diversity and importance of uncultured bacteria in the rumen, further studies are required to better understand the role of polysaccharide utilization loci in ruminal polysaccharide degradation. Our detailed characterization of the 41O1_SusD-like therefore contributes to a better understanding of the carbohydrate metabolism of an uncultured Bacteroides from the cow rumen.
Collapse
Affiliation(s)
- Xiaoqian Li
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Luc Parrou
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Gianluca Cioci
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jérémy Esque
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Zhi Wang
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | - Aurore Labourel
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
16
|
Silverio MP, Neumann T, Schaubruch K, Heermann R, Pérez-García P, Chow J, Streit WR. Metagenome-derived SusD-homologs affiliated with Bacteroidota bind to synthetic polymers. Appl Environ Microbiol 2024; 90:e0093324. [PMID: 38953372 PMCID: PMC11267923 DOI: 10.1128/aem.00933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Starch utilization system (Sus)D-homologs are well known for their carbohydrate-binding capabilities and are part of the sus operon in microorganisms affiliated with the phylum Bacteroidota. Until now, SusD-like proteins have been characterized regarding their affinity toward natural polymers. In this study, three metagenomic SusD homologs (designated SusD1, SusD38489, and SusD70111) were identified and tested with respect to binding to natural and non-natural polymers. SusD1 and SusD38489 are cellulose-binding modules, while SusD70111 preferentially binds chitin. Employing translational fusion proteins with superfolder GFP (sfGFP), pull-down assays, and surface plasmon resonance (SPR) has provided evidence for binding to polyethylene terephthalate (PET) and other synthetic polymers. Structural analysis suggested that a Trp triad might be involved in protein adsorption. Mutation of these residues to Ala resulted in an impaired adsorption to microcrystalline cellulose (MC), but not so to PET and other synthetic polymers. We believe that the characterized SusDs, alongside the methods and considerations presented in this work, will aid further research regarding bioremediation of plastics. IMPORTANCE SusD1 and SusD38489 can be considered for further applications regarding their putative adsorption toward fossil-fuel based polymers. This is the first time that SusD homologs from the polysaccharide utilization loci (PUL), largely described for the phylum Bacteroidota, are characterized as synthetic polymer-binding proteins.
Collapse
Affiliation(s)
| | - Tabea Neumann
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Kirsten Schaubruch
- Institute of Molecular Physiology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Ralf Heermann
- Institute of Molecular Physiology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Pablo Pérez-García
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Romanenko L, Bystritskaya E, Savicheva Y, Eremeev V, Otstavnykh N, Kurilenko V, Velansky P, Isaeva M. Description and Whole-Genome Sequencing of Mariniflexile litorale sp. nov., Isolated from the Shallow Sediments of the Sea of Japan. Microorganisms 2024; 12:1413. [PMID: 39065181 PMCID: PMC11278836 DOI: 10.3390/microorganisms12071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
A Gram-negative, aerobic, rod-shaped, non-motile, yellow-pigmented bacterium, KMM 9835T, was isolated from the sediment sample obtained from the Amur Bay of the Sea of Japan seashore, Russia. Phylogenetic analyses based on the 16S rRNA gene and whole genome sequences positioned the novel strain KMM 9835T in the genus Mariniflexile as a separate line sharing the highest 16S rRNA gene sequence similarities of 96.6% and 96.2% with Mariniflexile soesokkakense RSSK-9T and Mariniflexile fucanivorans SW5T, respectively, and similarity values of <96% to other recognized Mariniflexile species. The average nucleotide identity and digital DNA-DNA hybridization values between strain KMM 9835T and M. soesokkakense KCTC 32427T, Mariniflexile gromovii KCTC 12570T, M. fucanivorans DSM 18792T, and M. maritimum M5A1MT were 83.0%, 82.5%, 83.4%, and 78.3% and 30.7%, 29.6%, 29.5%, and 24.4%, respectively. The genomic DNA GC content of strain KMM 9835T was 32.5 mol%. The dominant menaquinone was MK-6, and the major fatty acids were iso-C15:0, iso-C15:1ω10c, and C15:0. The polar lipids of strain KMM 9835T consisted of phosphatidylethanolamine, two unidentified aminolipids, an unidentified phospholipid, and six unidentified lipids. A pan-genome analysis showed that the KMM 9835T genome encoded 753 singletons. The annotated singletons were more often related to transport protein systems (SusC), transcriptional regulators (AraC, LytTR, LacI), and enzymes (glycosylases). The KMM 9835T genome was highly enriched in CAZyme-encoding genes, the proportion of which reached 7.3%. Moreover, the KMM 9835T genome was characterized by a high abundance of CAZyme gene families (GH43, GH28, PL1, PL10, CE8, and CE12), indicating its potential to catabolize pectin. This may represent part of an adaptation strategy facilitating microbial consumption of plant polymeric substrates in aquatic environments near shorelines and freshwater sources. Based on the combination of phylogenetic and phenotypic characterization, the marine sediment strain KMM 9835T (=KCTC 92792T) represents a novel species of the genus Mariniflexile, for which the name Mariniflexile litorale sp. nov. is proposed.
Collapse
Affiliation(s)
- Lyudmila Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Evgeniya Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Yuliya Savicheva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Viacheslav Eremeev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Nadezhda Otstavnykh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Valeriya Kurilenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Peter Velansky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Street 17, Vladivostok 690041, Russia;
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| |
Collapse
|
18
|
Nakamura S, Kurata R, Miyazaki T. Structural insights into α-(1→6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae. FEBS J 2024; 291:3267-3282. [PMID: 38661728 DOI: 10.1111/febs.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Glycoside hydrolase family 97 (GH97) comprises enzymes like anomer-inverting α-glucoside hydrolases (i.e., glucoamylase) and anomer-retaining α-galactosidases. In a soil bacterium, Flavobacterium johnsoniae, we previously identified a GH97 enzyme (FjGH97A) within the branched dextran utilization locus. It functions as an α-glucoside hydrolase, targeting α-(1→6)-glucosidic linkages in dextran and isomaltooligosaccharides (i.e., glucodextranase). FjGH97A exhibits a preference for α-(1→6)-glucoside linkages over α-(1→4)-linkages, while Bacteroides thetaiotaomicron glucoamylase SusB (with 69% sequence identity), which is involved in the starch utilization system, exhibits the highest specificity for α-(1→4)-glucosidic linkages. Here, we examined the crystal structures of FjGH97A in complexes with glucose, panose, or isomaltotriose, and analyzed the substrate preferences of its mutants to identify the amino acid residues that determine the substrate specificity for α-(1→4)- and α-(1→6)-glucosidic linkages. The overall structure of FjGH97A resembles other GH97 enzymes, with conserved catalytic residues similar to anomer-inverting GH97 enzymes. A comparison of active sites between FjGH97A and SusB revealed differences in amino acid residues at subsites +1 and +2 (specifically Ala195 and Ile378 in FjGH97A). Among the three mutants (A195S, I378F, and A195S-I378F), A195S and A195S-I378F exhibited increased activity toward α-(1→4)-glucoside bonds compared to α-(1→6)-glucoside bonds. This suggests that Ala195, located on the Gly184-Thr203 loop (named loop-N) conserved within the GH97 subgroup, including FjGH97A and SusB, holds significance in determining linkage specificity. The conservation of alanine in the active site of the GH97 enzymes, within the same gene cluster as the putative dextranase, indicates its crucial role in determining the specificity for α-(1→6)-glucoside linkage.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
19
|
Basu A, Adams AN, Degnan PH, Vanderpool CK. Determinants of raffinose family oligosaccharide use in Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597959. [PMID: 38895307 PMCID: PMC11185731 DOI: 10.1101/2024.06.07.597959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteroides species are successful colonizers of the human gut and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in Polysaccharide Utilization Loci (PULs). While recent work has uncovered the PULs required for use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in subset and show that representative strains of species containing a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide.
Collapse
Affiliation(s)
- Anubhav Basu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Amanda N.D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
20
|
Armbruster KM, Jiang J, Sartorio MG, Scott NE, Peterson JM, Sexton JZ, Feldman MF, Koropatkin NM. Identification and Characterization of the Lipoprotein N-acyltransferase in Bacteroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596883. [PMID: 38853980 PMCID: PMC11160734 DOI: 10.1101/2024.05.31.596883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Members of the Bacteroidota compose a large portion of the human gut microbiota, contributing to overall gut health via the degradation of various polysaccharides. This process is facilitated by lipoproteins, globular proteins anchored to the cell surface by a lipidated N-terminal cysteine. Despite their importance, lipoprotein synthesis by these bacteria is understudied. In E. coli, the α-amino linked lipid of lipoproteins is added by the lipoprotein N-acyltransferase Lnt. Herein, we have identified a protein distinct from Lnt responsible for the same process in Bacteroides, named lipoprotein N-acyltransferase in Bacteroides (Lnb). Deletion of Lnb yields cells that synthesize diacylated lipoproteins, with impacts on cell viability and morphology, growth on polysaccharides, and protein composition of membranes and outer membrane vesicles (OMVs). Our results not only challenge the accepted paradigms of lipoprotein biosynthesis in Gram-negative bacteria, but also support the establishment of a new family of lipoprotein N-acyltransferases.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jiawen Jiang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Jenna M Peterson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
Xu L, Zhu H, Chen P, Li Z, Yang K, Sun P, Gu F, Wu J, Cai M. In Vitro Digestion and Fermentation of Different Ethanol-Fractional Polysaccharides from Dendrobium officinale: Molecular Decomposition and Regulation on Gut Microbiota. Foods 2024; 13:1675. [PMID: 38890903 PMCID: PMC11172086 DOI: 10.3390/foods13111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Polysaccharides from Dendrobium officinale have garnered attention for their diverse and well-documented biological activities. In this study, we isolated three ethanol-fractionated polysaccharides from Dendrobium officinale (EPDO) and investigated their digestive properties and effects on gut microbiota regulation in vitro. The results indicated that after simulating digestion in saliva, gastric, and small intestinal fluids, three EPDOs, EPDO-40, EPDO-60 and EPDO-80, with molecular weights (Mw) of 442.6, 268.3 and 50.8 kDa, respectively, could reach the large intestine with a retention rate exceeding 95%. During in vitro fermentation, the EPDOs were broken down in a "melting" manner, resulting in a decrease in their Mw. EPDO-60 degraded more rapidly than EPDO-40, likely due to its moderate Mw. After 24 h, the total production of short-chain fatty acids (SCFAs) for EPDO-60 reached 51.2 ± 1.9 mmol/L, which was higher than that of EPDO-80. Additionally, there was an increase in the relative abundance of Bacteroides, which are capable of metabolizing polysaccharides. EPDO-60 also promoted the growth of specific microbiota, including Prevotella 9 and Parabacteroides, which could potentially benefit from these polysaccharides. Most notably, by comparing the gut microbiota produced by different fermentation carbon sources, we identified the eight most differential gut microbiota specialized in polysaccharide metabolism at the genus level. Functional prediction of these eight differential genera suggested roles in controlling replication and repair, regulating metabolism, and managing genetic information transmission. This provides a new reference for elucidating the specific mechanisms by which EPDOs influence the human body. These findings offer new evidence to explain how EPDOs differ in their digestive properties and contribute to the establishment of a healthy gut microbiota environment in the human body.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Peng Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Jinhua 321200, China;
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Fangting Gu
- Department of Food Science & Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jianyong Wu
- Department of Food Science & Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| |
Collapse
|
22
|
Hameleers L, Pijning T, Gray BB, Fauré R, Jurak E. Novel β-galactosidase activity and first crystal structure of Glycoside Hydrolase family 154. N Biotechnol 2024; 80:1-11. [PMID: 38163476 DOI: 10.1016/j.nbt.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Polysaccharide Utilization Loci (PULs) are physically linked gene clusters conserved in the Gram-negative phylum of Bacteroidota and are valuable sources for Carbohydrate Active enZyme (CAZyme) discovery. This study focuses on BD-β-Gal, an enzyme encoded in a metagenomic PUL and member of the Glycoside Hydrolase family 154 (GH154). BD-β-Gal showed exo-β-galactosidase activity with regiopreference for hydrolyzing β-d-(1,6) glycosidic linkages. Notably, it exhibited a preference for d-glucopyranosyl (d-Glcp) over d-galactopyranosyl (d-Galp) and d-fructofuranosyl (d-Fruf) at the reducing end of the investigated disaccharides. In addition, we determined the high resolution crystal structure of BD-β-Gal, thus providing the first structural characterization of a GH154 enzyme. Surprisingly, this revealed an (α/α)6 topology, which has not been observed before for β-galactosidases. BD-β-Gal displayed low structural homology with characterized CAZymes, but conservation analysis suggested that the active site was located in a central cavity, with conserved E73, R252, and D253 as putative catalytic residues. Interestingly, BD-β-Gal has a tetrameric structure and a flexible loop from a neighboring protomer may contribute to its reaction specificity. Finally, we showed that the founding member of GH154, BT3677 from Bacteroides thetaiotaomicron, described as β-glucuronidase, displayed exo-β-galactosidase activity like BD-β-Gal but lacked a tetrameric structure.
Collapse
Affiliation(s)
- Lisanne Hameleers
- Department of Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Tjaard Pijning
- Department of Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Brandon B Gray
- Department of Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Edita Jurak
- Department of Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
23
|
Brown HA, Morris AL, Pudlo NA, Hopkins AE, Martens EC, Golob JL, Koropatkin NM. Acarbose Impairs Gut Bacteroides Growth by Targeting Intracellular GH97 Enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595031. [PMID: 38826241 PMCID: PMC11142093 DOI: 10.1101/2024.05.20.595031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Acarbose is a type-2 diabetes medicine that inhibits dietary starch breakdown into glucose by inhibiting host amylase and glucosidase enzymes. Numerous gut species in the Bacteroides genus enzymatically break down starch and change in relative abundance within the gut microbiome in acarbose-treated individuals. To mechanistically explain this observation, we used two model starch-degrading Bacteroides, Bacteroides ovatus (Bo) and Bacteroides thetaiotaomicron (Bt). Bt growth is severely impaired by acarbose whereas Bo growth is not. The Bacteroides use a starch utilization system (Sus) to grow on starch. We hypothesized that Bo and Bt Sus enzymes are differentially inhibited by acarbose. Instead, we discovered that although acarbose primarily targets the Sus periplasmic GH97 enzymes in both organisms, the drug affects starch processing at multiple other points. Acarbose competes for transport through the Sus beta-barrel proteins and binds to the Sus transcriptional regulators. Further, Bo expresses a non-Sus GH97 (BoGH97D) when grown in starch with acarbose. The Bt homolog, BtGH97H, is not expressed in the same conditions, nor can overexpression of BoGH97D complement the Bt growth inhibition in the presence of acarbose. This work informs us about unexpected complexities of Sus function and regulation in Bacteroides, including variation between related species. Further, this indicates that the gut microbiome may be a source of variable response to acarbose treatment for diabetes.
Collapse
Affiliation(s)
- Haley A. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Adeline L. Morris
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ashley E. Hopkins
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan L. Golob
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Yan Y, Zheng X, Liu G, Shi G, Li C, Chen H, He X, Lin K, Deng Z, Zhang H, Li WG, Chen H, Tong X, Zhu Z. Gut microbiota-derived cholic acid mediates neonatal brain immaturity and white matter injury under chronic hypoxia. iScience 2024; 27:109633. [PMID: 38638560 PMCID: PMC11025012 DOI: 10.1016/j.isci.2024.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic hypoxia, common in neonates, disrupts gut microbiota balance, which is crucial for brain development. This study utilized cyanotic congenital heart disease (CCHD) patients and a neonatal hypoxic rat model to explore the association. Both hypoxic rats and CCHD infants exhibited brain immaturity, white matter injury (WMI), brain inflammation, and motor/learning deficits. Through 16s rRNA sequencing and metabolomic analysis, a reduction in B. thetaiotaomicron and P. distasonis was identified, leading to cholic acid accumulation. This accumulation triggered M1 microglial activation and inflammation-induced WMI. Administration of these bacteria rescued cholic acid-induced WMI in hypoxic rats. These findings suggest that gut microbiota-derived cholic acid mediates neonatal WMI and brain inflammation, contributing to brain immaturity under chronic hypoxia. Therapeutic targeting of these bacteria provides a non-invasive intervention for chronic hypoxia patients.
Collapse
Affiliation(s)
- Yichen Yan
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Zheng
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtong Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Deng
- Department of Gastroenterology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Carbonaro M, Mazurkewich S, Fiorentino G, Lo Leggio L, Larsbrink J. Exploration of three Dyadobacter fermentans enzymes uncovers molecular activity determinants in CE15. Appl Microbiol Biotechnol 2024; 108:335. [PMID: 38747981 PMCID: PMC11096219 DOI: 10.1007/s00253-024-13175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
26
|
Beidler I, Steinke N, Schulze T, Sidhu C, Bartosik D, Zühlke MK, Martin LT, Krull J, Dutschei T, Ferrero-Bordera B, Rielicke J, Kale V, Sura T, Trautwein-Schult A, Kirstein IV, Wiltshire KH, Teeling H, Becher D, Bengtsson MM, Hehemann JH, Bornscheuer UT, Amann RI, Schweder T. Alpha-glucans from bacterial necromass indicate an intra-population loop within the marine carbon cycle. Nat Commun 2024; 15:4048. [PMID: 38744821 PMCID: PMC11093988 DOI: 10.1038/s41467-024-48301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.
Collapse
Affiliation(s)
- Irena Beidler
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Nicola Steinke
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Tim Schulze
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Daniel Bartosik
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Laura Torres Martin
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
| | - Joris Krull
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Theresa Dutschei
- Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Borja Ferrero-Bordera
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Julia Rielicke
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Vaikhari Kale
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Thomas Sura
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Inga V Kirstein
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany
| | - Karen H Wiltshire
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Mia Maria Bengtsson
- Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany
| | - Uwe T Bornscheuer
- Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany.
- Institute of Marine Biotechnology, 17489, Greifswald, Germany.
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27483, Helgoland, Germany.
| |
Collapse
|
27
|
Macdonald JFH, Pérez-García P, Schneider YKH, Blümke P, Indenbirken D, Andersen JH, Krohn I, Streit WR. Community dynamics and metagenomic analyses reveal Bacteroidota's role in widespread enzymatic Fucus vesiculosus cell wall degradation. Sci Rep 2024; 14:10237. [PMID: 38702505 PMCID: PMC11068906 DOI: 10.1038/s41598-024-60978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.
Collapse
Affiliation(s)
- Jascha F H Macdonald
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Pablo Pérez-García
- Institute for General Microbiology, Molecular Microbiology, Kiel University, Kiel, Germany
| | - Yannik K-H Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Patrick Blümke
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Hamburg, Germany
| | - Jeanette H Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| |
Collapse
|
28
|
Zhao S, Lau R, Chen MH. Influence of chain length on the colonic fermentation of xylooligosaccharides. Carbohydr Polym 2024; 331:121869. [PMID: 38388037 DOI: 10.1016/j.carbpol.2024.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Xylooligosaccharides (XOS) have been employed as prebiotics containing oligomers of varying sizes or molecular ratios. XOS with a low degree of polymerization (DP) has been demonstrated to have high prebiotic potential. However, there is limited information regarding the specific chain length of XOS required to elicit distinct responses in the gut microbiota. In this study, we aimed to explore whether variations in XOS DP could alter the fate of colonic fermentation. Five XOS fractions (BWXFs) with DP ranges of >40, 20-40, 10-20, 5-10, and 2-4 were prepared by beechwood xylan autohydrolysis and tested on human gut microbiota. Extracellular XOS degradation was observed for molecules with a DP exceeding 5. BWXF treatments altered the microbial community structures, and substrate size-dependent effects on the microbial composition and metabolic outputs were observed. Bacteroidaceae were specifically enriched by xylan. Lachnospiraceae were particularly stimulated by XOS with a DP of 20-40 and 2-4. Bifidobacteriaceae were notably enriched by XOS with a DP of 5-20. High butyrate yields were obtained from cultures containing long-chain BWXFs. Microbiota responses differed with XOS DP composition changes, and microbial competition with XOS with a DP of 2-4 requires further exploration.
Collapse
Affiliation(s)
- Sainan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Raymond Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Ming-Hsu Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore; Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
29
|
Yin X, Zhao Y, Wang S, Feng H, He X, Li X, Liu X, Lu H, Wen D, Shi Y, Shi H. Postweaning stress affects behavior, brain and gut microbiota of adolescent mice in a sex-dependent manner. Neuropharmacology 2024; 248:109869. [PMID: 38354850 DOI: 10.1016/j.neuropharm.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Aggression is an instinctive behavior that has been reported to be influenced by early-life stress. However, the potential effects of acute stress during the postweaning period, a key stage for brain development, on defensive aggression and the associated mechanism remain poorly understood. In the present study, aggressive behaviors were evaluated in adolescent mice exposed to postweaning stress. Serum corticosterone and testosterone levels, neural dendritic spine density, and gut microbiota composition were determined to identify the underlying mechanism. Behavioral analysis showed that postweaning stress reduced locomotor activity in mice and decreased defensive aggression in male mice. ELISA results showed that postweaning stress reduced serum testosterone levels in female mice. Golgi staining analysis demonstrated that postweaning stress decreased neural dendritic spine density in the medial prefrontal cortex of male mice. 16S rRNA sequencing results indicated that postweaning stress altered the composition of the gut microbiota in male mice. Combined, these results suggested that postweaning stress alters defensive aggression in male mice, which may be due to changes in neuronal structure as well as gut microbiota composition. Our findings highlight the long-lasting and sex-dependent effects of early-life experience on behaviors.
Collapse
Affiliation(s)
- Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xincheng Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoyu Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hengtai Lu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang, 050017, China; Nursing School, Hebei Medical University, Shijiazhuang, 050031, China.
| |
Collapse
|
30
|
Narrowe AB, Lemons JMS, Mahalak KK, Firrman J, den Abbeele PV, Baudot A, Deyaert S, Li Y, Yu L(L, Liu L. Targeted remodeling of the human gut microbiome using Juemingzi ( Senna seed extracts). Front Cell Infect Microbiol 2024; 14:1296619. [PMID: 38638830 PMCID: PMC11024242 DOI: 10.3389/fcimb.2024.1296619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.
Collapse
Affiliation(s)
- Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Johanna M. S. Lemons
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | | | | | | | - Yanfang Li
- Department of Nutrition and Food Science, The University of Maryland, College, Park, MD, United States
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science, The University of Maryland, College, Park, MD, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
31
|
Li S, Chen M, Wang Z, Abudourexiti W, Zhang L, Ding C, Ding L, Gong J. Ant may well destroy a whole dam: glycans of colonic mucus barrier disintegrated by gut bacteria. Microbiol Res 2024; 281:127599. [PMID: 38219635 DOI: 10.1016/j.micres.2023.127599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.
Collapse
Affiliation(s)
- Song Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Mingfei Chen
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zhongyuan Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Waresi Abudourexiti
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jianfeng Gong
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
32
|
Tannock GW. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol Mol Biol Rev 2024; 88:e0012722. [PMID: 38126754 PMCID: PMC10966955 DOI: 10.1128/mmbr.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Wong JPH, Chillier N, Fischer-Stettler M, Zeeman SC, Battin TJ, Persat A. Bacteroides thetaiotaomicron metabolic activity decreases with polysaccharide molecular weight. mBio 2024; 15:e0259923. [PMID: 38376161 PMCID: PMC10936149 DOI: 10.1128/mbio.02599-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.
Collapse
Affiliation(s)
- Jeremy P. H. Wong
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Noémie Chillier
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Tom J. Battin
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
35
|
Mascelli GM, Garcia CA, Gardner JG. Genetic and enzymatic characterization of Amy13E from Cellvibrio japonicus reclassifies it as a cyclodextrinase also capable of α-diglucoside degradation. Appl Environ Microbiol 2024; 90:e0152123. [PMID: 38084944 PMCID: PMC10807414 DOI: 10.1128/aem.01521-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024] Open
Abstract
Cyclodextrinases are carbohydrate-active enzymes involved in the linearization of circular amylose oligosaccharides. Primarily thought to function as part of starch metabolism, there have been previous reports of bacterial cyclodextrinases also having additional enzymatic activities on linear malto-oligosaccharides. This substrate class also includes environmentally rare α-diglucosides such as kojibiose (α-1,2), nigerose (α-1,3), and isomaltose (α-1,6), all of which have valuable properties as prebiotics or low-glycemic index sweeteners. Previous genome sequencing of three Cellvibrio japonicus strains adapted to utilize these α-diglucosides identified multiple, but uncharacterized, mutations in each strain. One of the mutations identified was in the amy13E gene, which was annotated to encode a neopullulanase. In this report, we functionally characterized this gene and determined that it in fact encodes a cyclodextrinase with additional activities on α-diglucosides. Deletion analysis of amy13E found that this gene was essential for kojibiose and isomaltose metabolism in C. japonicus. Interestingly, a Δamy13E mutant was not deficient for cyclodextrin or pullulan utilization in C. japonicus; however, heterologous expression of the gene in E. coli was sufficient for cyclodextrin-dependent growth. Biochemical analyses found that CjAmy13E cleaved multiple substrates but preferred cyclodextrins and maltose, but had no activity on pullulan. Our characterization of the CjAmy13E cyclodextrinase is useful for refining functional enzyme predictions in related bacteria and for engineering enzymes for biotechnology or biomedical applications.IMPORTANCEUnderstanding the bacterial metabolism of cyclodextrins and rare α-diglucosides is increasingly important, as these sugars are becoming prevalent in the foods, supplements, and medicines humans consume that subsequently feed the human gut microbiome. Our analysis of a cyclomaltodextrinase with an expanded substrate range is significant because it broadens the potential applications of the GH13 family of carbohydrate active enzymes (CAZymes) in biotechnology and biomedicine. Specifically, this study provides a workflow for the discovery and characterization of novel activities in bacteria that possess a high number of CAZymes that otherwise would be missed due to complications with functional redundancy. Furthermore, this study provides a model from which predictions can be made why certain bacteria in crowded niches are able to robustly utilize rare carbon sources, possibly to gain a competitive growth advantage.
Collapse
Affiliation(s)
- Giulia M. Mascelli
- Department of Biological Sciences, University of Maryland, Baltimore, USA
| | - Cecelia A. Garcia
- Department of Biological Sciences, University of Maryland, Baltimore, USA
| | - Jeffrey G. Gardner
- Department of Biological Sciences, University of Maryland, Baltimore, USA
| |
Collapse
|
36
|
Seveso A, Mazurkewich S, Banerjee S, Poulsen JCN, Lo Leggio L, Larsbrink J. Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds. Appl Environ Microbiol 2024; 90:e0176823. [PMID: 38179933 PMCID: PMC10807430 DOI: 10.1128/aem.01768-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Lignocellulose is a renewable but complex material exhibiting high recalcitrance to enzymatic hydrolysis, which is attributed, in part, to the presence of covalent linkages between lignin and polysaccharides in the plant cell wall. Glucuronoyl esterases from carbohydrate esterase family 15 (CE15) have been proposed as an aid in reducing this recalcitrance by cleaving ester bonds found between lignin and glucuronoxylan. In the Bacteroidota phylum, some species organize genes related to carbohydrate metabolism in polysaccharide utilization loci (PULs) which encode all necessary proteins to bind, deconstruct, and respond to a target glycan. Bioinformatic analyses identified CE15 members in some PULs that appear to not target the expected glucuronoxylan. Here, five CE15 members from such PULs were investigated with the aim of gaining insights on their biological roles. The selected targets were characterized using glucuronoyl esterase model substrates and with a new synthetic molecule mimicking a putative ester linkage between pectin and lignin. The CE15 enzyme from Phocaeicola vulgatus was structurally determined by X-ray crystallography both with and without carbohydrate ligands with galacturonate binding in a distinct conformation than that of glucuronate. We further explored whether these CE15 enzymes could act akin to pectin methylesterases on pectin-rich biomass but did not find evidence to support the proposed activity. Based on the evidence gathered, the CE15 enzymes in the PULs expected to degrade pectin could be involved in cleavage of uronic acid esters in rhamnogalacturonans.IMPORTANCEThe plant cell wall is a highly complex matrix, and while most of its polymers interact non-covalently, there are also covalent bonds between lignin and carbohydrates. Bonds between xylan and lignin are known, such as the glucuronoyl ester bonds that are cleavable by CE15 enzymes. Our work here indicates that enzymes from CE15 may also have other activities, as we have discovered enzymes in PULs proposed to target other polysaccharides, including pectin. Our study represents the first investigation of such enzymes. Our first hypothesis that the enzymes would act as pectin methylesterases was shown to be false, and we instead propose that they may cleave other esters on complex pectins such as rhamnogalacturonan II. The work presents both the characterization of five novel enzymes and can also provide indirect information about the components of the cell wall itself, which is a highly challenging material to chemically analyze in fine detail.
Collapse
Affiliation(s)
- Andrea Seveso
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
37
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol Spectr 2024; 12:e0357623. [PMID: 38018975 PMCID: PMC10783122 DOI: 10.1128/spectrum.03576-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Department of Biological Sciences, Genetics Program, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
38
|
Yeh YH, Kelly VW, Pour RR, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571725. [PMID: 38168418 PMCID: PMC10760143 DOI: 10.1101/2023.12.14.571725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteroides species are abundant and prevalent stably colonizing members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering these bacteria as on-site production and delivery vehicles for biologic drugs or diagnostics, however, requires efficient heterologous protein secretion tools, which are currently lacking. To address this limitation, we systematically investigated methods to enable heterologous protein secretion in Bacteroides using both endogenous and exogenous secretion systems. Here, we report a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterized signal peptide sequence features as well as post-secretion extracellular fate and cargo size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we developed a strong, self-contained, inducible expression circuit. Finally, we validated the functionality of our secretion carriers in vivo in a mouse model. This toolkit should enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Vince W. Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Perlumi, Berkeley, CA 94704, USA
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead Contact
| |
Collapse
|
39
|
Bonfim IM, Paixão DA, Andrade MDO, Junior JM, Persinoti GF, de Giuseppe PO, Murakami MT. Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr 2023; 11:e0228023. [PMID: 37855631 PMCID: PMC10714752 DOI: 10.1128/spectrum.02280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Xanthomonas bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood. Here, we reveal that structural and storage β-glucans from the plant cell function as spatial markers, providing distinct chemical stimuli that modulate the transition between higher and lower motility states in Xanthomonas citri, a key virulence trait for many bacterial pathogens.
Collapse
Affiliation(s)
- Isabela Mendes Bonfim
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Douglas Alvarez Paixão
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Joaquim Martins Junior
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Mário Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| |
Collapse
|
40
|
Amir SE, Naeem M, Boocock D, Coveney C, O'Neill HM, Bedford MR, Burton EJ. Xylo-oligosaccharide-based prebiotics upregulate the proteins of the Sus-like system in caecal Bacteroidetes of the chicken: evidence of stimbiotic mechanism. Poult Sci 2023; 102:103113. [PMID: 37856910 PMCID: PMC10590740 DOI: 10.1016/j.psj.2023.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
The present study was conducted to investigate the stimbiotic mechanism of xylo-oligosaccharide (XOS) in degrading the complex polysaccharides by the caecal bacteria of the chicken, by applying a proteomic approach. A total of 800 as-hatched Ross 308 broiler chicks were equally divided into 4 experimental pens (200 chicks per pen) at a commercial poultry barn, allocating 2 pens per treatment. Birds were fed ad libitum with 2 dietary treatments; CON (without XOS) and XOS (with 0.1g XOS/kg diet) from d 0 to 35. From each pen, 60 Individual birds were weighed weekly whereas caecal content was obtained from 5 birds cervically dislocated on d 35. The caecal bacteria were lysed and their proteins were quantified using label-free quantitative proteomic mass spectrometry. The results showed that XOS significantly increased (P < 0.05) bird weight on d 7, 14, 21, and 28, and body weight gain on d 7, 14, 21, and 35 compared to CON. However, no difference (P > 0.05) in body weight gain was observed from d 0 to 35 between CON and XOS. The proteomic analysis of caecal bacteria revealed that 29 proteins were expressed differently between the CON and the XOS group. Out of 29, 20 proteins were significantly increased in the XOS group compared to CON and 9 of those proteins belonged to the starch-utilizing system (Sus)-like system of the gram-negative Bacteroidetes. Bacteroides thetaiotaomicron (Bt) is a significant constituent of the human gut microbiota, known for its remarkable ability to hydrolyze most glycosidic bonds of polysaccharides. This microorganism possesses a 5-protein complex in its outer membrane, named the starch utilization system (Sus), responsible for adhering to, breaking down, and transporting starch into the cell. Sus serves as an exemplar system for numerous polysaccharide utilization loci that target glycans found in Bt and other members of the Bacteroidetes phylum. The proteins of the Sus-like system are involved in the degradation of complex polysaccharides and transportation of the oligosaccharides into the periplasm of the caecal bacteria where they are further broken down into smaller units. These smaller units are then transported into the cytoplasm of the cell where they are utilized in metabolic pathways leading to potential generation of short-chain fatty acids, thus improving the nutritive value of residual feed. In conclusion, XOS supplementation upregulates the expression of the proteins of the Sus-like system indicating its role as a stimbiotic.
Collapse
Affiliation(s)
- Saba E Amir
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, NG25 0QF, United Kingdom
| | - M Naeem
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, NG25 0QF, United Kingdom.
| | - David Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NF, United Kingdom
| | - Clare Coveney
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NF, United Kingdom
| | - H M O'Neill
- AB Vista, Marlborough, SN8 4AN, United Kingdom
| | - M R Bedford
- AB Vista, Marlborough, SN8 4AN, United Kingdom
| | - E J Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, NG25 0QF, United Kingdom
| |
Collapse
|
41
|
Jin Y, Chen L, Yu Y, Hussain M, Zhong H. Bioactive Components in Fruit Interact with Gut Microbes. BIOLOGY 2023; 12:1333. [PMID: 37887043 PMCID: PMC10604038 DOI: 10.3390/biology12101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Fruits contain many bioactive compounds, including polysaccharides, oligosaccharides, polyphenols, anthocyanins, and flavonoids. All of these bioactives in fruit have potentially beneficial effects on gut microbiota and host health. On the one hand, fruit rich in active ingredients can act as substrates to interact with microorganisms and produce metabolites to regulate the gut microbiota. On the other hand, gut microbes could promote health effects in the host by balancing dysbiosis of gut microbiota. We have extensively analyzed significant information on bioactive components in fruits based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Although the deep mechanism of action of bioactive components in fruits on gut microbiota needs further study, these results also provide supportive information on fruits as a source of dietary active ingredients to provide support for the adjunctive role of fruits in disease prevention and treatment.
Collapse
Affiliation(s)
- Yuanyuan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Ling Chen
- Sanya Branch of Hainan Food and Drug Inspection Institute, Sanya 572011, China;
| | - Yufen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| |
Collapse
|
42
|
Kwain S, Dominy BN, Whitehead KJ, Miller BA, Whitehead DC. Exploring the interactive mechanism of acarbose with the amylase SusG in the starch utilization system of the human gut symbiont Bacteroides thetaiotaomicron through molecular modeling. Chem Biol Drug Des 2023; 102:486-499. [PMID: 37062591 DOI: 10.1111/cbdd.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The α-amylase, SusG, is a principal component of the Bacteroides thetaiotaomicron (Bt) starch utilization system (Sus) used to metabolize complex starch molecules in the human gastrointestinal (GI) tract. We previously reported the non-microbicidal growth inhibition of Bt by the acarbose-mediated arrest of the Sus as a potential therapeutic strategy. Herein, we report a computational approach using density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation to explore the interactive mechanism between acarbose and SusG at the atomic level in an effort to understand how acarbose shuts down the Bt Sus. The docking analysis reveals that acarbose binds orthosterically to SusG with a binding affinity of -8.3 kcal/mol. The MD simulation provides evidence of conformational variability of acarbose at the active site of SusG and also suggests that acarbose interacts with the main catalytic residues via a general acid-base double-displacement catalytic mechanism. These results suggest that small molecule competitive inhibition against the SusG protein could impact the entire Bt Sus and eliminate or reduce the system's ability to metabolize starch. This computational strategy could serve as a potential avenue for structure-based drug design to discover other small molecules capable of inhibiting the Sus of Bt with high potency, thus providing a holistic approach for selective modulation of the GI microbiota.
Collapse
Affiliation(s)
- Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Brian N Dominy
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Kristi J Whitehead
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Brock A Miller
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
43
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
44
|
Xu L, Yu Q, Ma L, Su T, Zhang D, Yao D, Li Z. In vitro simulated fecal fermentation of mixed grains on short-chain fatty acid generation and its metabolized mechanism. Food Res Int 2023; 170:112949. [PMID: 37316043 DOI: 10.1016/j.foodres.2023.112949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023]
Abstract
In vitro simulated digestion and fecal fermentation were performed to investigate the influence of mixed grains on gut microbes. In addition, the key metabolic pathways and enzymes associated with short-chain fatty acids (SCFAs) were explored. The mixed grains exhibited an observable regulatory effect on the composition and metabolism of intestinal microorganisms, especially in probiotics, such as Bifidobacterium spp., Lactobacillus spp., and Faecalibacterium spp. WR (wheat + rye), WB (wheat + highland barley) and WO (wheat + oats) tended to generate lactate and acetate, which are related to Sutterella, Staphylococcus, etc. WQ (wheat + quinoa) induced high propionate and butyrate accumulation by consuming lactate and acetate, mainly through Roseburia inulinivorans, Coprococcus catus and Anaerostipes sp., etc. Moreover, bacteria enriched in different mixed grain groups regulated the expression of pivotal enzymes in metabolic pathways and then affected the generation of SCFAs. These results provide new knowledge on the characteristics of intestinal microbial metabolism in different mixed grain substrates.
Collapse
Affiliation(s)
- Lei Xu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Qiaoru Yu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lixue Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tingting Su
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, Heilongjiang, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Di Yao
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
45
|
Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. BoGH13A Sus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci 2023; 80:232. [PMID: 37500984 PMCID: PMC10540511 DOI: 10.1007/s00018-023-04812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/29/2023]
Abstract
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Matthieu Boulinguiez
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | | | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Lemont, IL, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
46
|
Tang K, Tao L, Wang Y, Wang Q, Fu C, Chen B, Zhang Z, Fu Y. Temporal Variations in the Gut Microbiota of the Globally Endangered Sichuan Partridge (Arborophila rufipectus): Implications for Adaptation to Seasonal Dietary Change and Conservation. Appl Environ Microbiol 2023; 89:e0074723. [PMID: 37272815 PMCID: PMC10305732 DOI: 10.1128/aem.00747-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Host-associated microbiotas are known to influence host health by aiding digestion, metabolism, nutrition, physiology, immune function, and pathogen resistance. Although an increasing number of studies have investigated the avian microbiome, there is a lack of research on the gut microbiotas of wild birds, especially endangered pheasants. Owing to the difficulty of characterizing the dynamics of dietary composition, especially in omnivores, how the gut microbiotas of birds respond to seasonal dietary changes remains poorly understood. The Sichuan partridge (Arborophila rufipectus) is an endangered pheasant species with a small population endemic to the mountains of southwest China. Here, 16S rRNA sequencing and Tax4Fun were used to characterize and compare community structure and functions of the gut microbiota in the Sichuan partridges across three critical periods of their annual life cycle (breeding, postbreeding wandering, and overwintering). We found that the microbial communities were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Cyanobacteria throughout the year. Diversity of the gut microbiotas was highest during postbreeding wandering and lowest during the overwintering periods. Seasonal dietary changes and reassembly of the gut microbial community occurred consistently. Composition, diversity, and functions of the gut microbiota exhibited diet-associated variations, which might facilitate host adaptation to diverse diets in response to environmental shifts. Moreover, 28 potential pathogenic genera were detected, and their composition differed significantly between the three periods. Investigation of the wild bird gut microbiota dynamics has enhanced our understanding of diet-microbiota associations over the annual life cycle of birds, aiding in the integrative conservation of this endangered bird. IMPORTANCE Characterizing the gut microbiotas of wild birds across seasons will shed light on their annual life cycle. Due to sampling difficulties and the lack of detailed dietary information, studies on how the gut microbiota adapts to seasonal dietary changes of wild birds are scarce. Based on more detailed dietary composition, we found a seasonal reshaping pattern of the gut microbiota of Sichuan partridges corresponding to their seasonal dietary changes. The variation in diet and gut microbiota potentially facilitated the diversity of dietary niches of this endangered pheasant, revealing a seasonal diet-microbiota association across the three periods of the annual cycle. In addition, identifying a variety of potentially pathogenic bacterial genera aids in managing the health and improving survival of Sichuan partridges. Incorporation of microbiome research in the conservation of endangered species contributes to our comprehensive understanding the diet-host-microbiota relationship in wild birds and refinement of conservation practices.
Collapse
Affiliation(s)
- Keyi Tang
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Ling Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yufeng Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Qiong Wang
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Changkun Fu
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Benping Chen
- Laojunshan National Nature Reserve Administration, Pingshan, Sichuan, China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yiqiang Fu
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
47
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid altering enzymes impact bacterial fitness and the global metabolic transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546749. [PMID: 37425690 PMCID: PMC10327073 DOI: 10.1101/2023.06.27.546749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Bacteroides thetaiotaomicron (B. theta) is a Gram-negative gut bacterium that encodes enzymes that alter the bile acid pool in the gut. Primary bile acids are synthesized by the host liver and are modified by gut bacteria. B. theta encodes two bile salt hydrolases (BSHs), as well as a hydroxysteroid dehydrogenase (HSDH). We hypothesize that B. theta modifies the bile acid pool in the gut to provide a fitness advantage for itself. To investigate each gene's role, different combinations of genes encoding bile acid altering enzymes (bshA, bshB, and hsdhA) were knocked out by allelic exchange, including a triple KO. Bacterial growth and membrane integrity assays were done in the presence and absence of bile acids. To explore if B. theta's response to nutrient limitation changes due to the presence of bile acid altering enzymes, RNASeq analysis of WT and triple KO strains in the presence and absence of bile acids was done. WT B. theta is more sensitive to deconjugated bile acids (CA, CDCA, and DCA) compared to the triple KO, which also decreased membrane integrity. The presence of bshB is detrimental to growth in conjugated forms of CDCA and DCA. RNA-Seq analysis also showed bile acid exposure impacts multiple metabolic pathways in B. theta, but DCA significantly increases expression of many genes in carbohydrate metabolism, specifically those in polysaccharide utilization loci or PULs, in nutrient limited conditions. This study suggests that bile acids B. theta encounters in the gut may signal the bacteria to increase or decrease its utilization of carbohydrates. Further study looking at the interactions between bacteria, bile acids, and the host may inform rationally designed probiotics and diets to ameliorate inflammation and disease. Importance Recent work on BSHs in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it is not well understood. In this study we set out to define if and how B. theta uses its BSHs and HSDH to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci (PULs). This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut. This work will aid in our understanding of how to rationally manipulate the bile acid pool and the microbiota to exploit carbohydrate metabolism in the context of inflammation and other GI diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew H. Foley
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
48
|
Nakamura S, Kurata R, Tonozuka T, Funane K, Park EY, Miyazaki T. Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. J Biol Chem 2023:104885. [PMID: 37269952 PMCID: PMC10316084 DOI: 10.1016/j.jbc.2023.104885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Dextran is an α-(1→6)-glucan that is synthesized by some lactic acid bacteria, and branched dextran with α-(1→2)-, α-(1→3)-, and α-(1→4)-linkages are often produced. Although many dextranases are known to act on the α-(1→6)-linkage of dextran, few studies have functionally analyzed the proteins involved in degrading branched dextran. The mechanism by which bacteria utilize branched dextran is unknown. Earlier, we identified dextranase (FjDex31A) and kojibiose hydrolase (FjGH65A) in the dextran utilization locus (FjDexUL) of a soil Bacteroidota Flavobacterium johnsoniae and hypothesized that FjDexUL is involved in the degradation of α-(1→2)-branched dextran. In this study, we demonstrate that FjDexUL proteins recognize and degrade α-(1→2)- and α-(1→3)-branched dextrans produced by Leuconostoc citreum S-32 (S-32 α-glucan). The FjDexUL gene was significantly upregulated when S-32 α-glucan was the carbon source compared with α-glucooligosaccharides and α-glucans, such as linear dextran and branched α-glucan from L. citreum S-64. FjDexUL GHs synergistically degraded S-32 α-glucan. The crystal structure of FjGH66 shows that some sugar-binding subsites can accommodate α-(1→2)- and α-(1→3)-branches. The structure of FjGH65A in complex with isomaltose supports that FjGH65A acts on α-(1→2)-glucosyl isomaltooligosaccharides. Furthermore, two cell surface sugar-binding proteins (FjDusD and FjDusE) were characterized, and FjDusD showed affinity for isomaltooligosaccharides and FjDusE for dextran, including linear and branched dextrans. Collectively, FjDexUL proteins are suggested to be involved in the degradation of α-(1→2)- and α-(1→3)-branched dextrans. Our results will be helpful in understanding the bacterial nutrient requirements and symbiotic relationships between bacteria at the molecular level.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazumi Funane
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37, Takeda-cho, Kofu, Yamanashi, 400-8510, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
49
|
Nguyen TTH, Vuong TQ, Han HL, Li Z, Lee YJ, Ko J, Nedashkovskaya OI, Kim SG. Three marine species of the genus Fulvivirga, rich sources of carbohydrate-active enzymes degrading alginate, chitin, laminarin, starch, and xylan. Sci Rep 2023; 13:6301. [PMID: 37072506 PMCID: PMC10113389 DOI: 10.1038/s41598-023-33408-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Bacteroidota is a group of marine polysaccharide degraders, which play a crucial role in the carbon cycle in the marine ecosystems. In this study, three novel gliding strains, designated as SS9-22T, W9P-11T, and SW1-E11T, isolated from algae and decaying wood were proposed to represent three novel species of the genus Fulvivirga. We identified a large number of genes encoding for carbohydrate-active enzymes, which potentially participate in polysaccharide degradation, based on whole genome sequencing. The 16S rRNA sequence similarities among them were 94.4-97.2%, and against existing species in the genus Fulvivirga 93.1-99.8%. The complete genomes of strains SS9-22T, W9P-11T, and SW1-E11T comprised one circular chromosome with size of 6.98, 6.52, and 6.39 Mb, respectively; the GC contents were 41.9%, 39.0%, and 38.1%, respectively. The average nucleotide identity and the digital DNA-DNA hybridization values with members in the genus Fulvivirga including the isolates were in a range of 68.9-85.4% and 17.1-29.7%, respectively, which are low for the proposal of novel species. Genomic mining in three genomes identified hundreds of carbohydrate-active enzymes (CAZymes) covering up to 93 CAZyme families and 58-70 CAZyme gene clusters, exceeding the numbers of genes present in the other species of the genus Fulvivirga. Polysaccharides of alginate, chitin, laminarin, starch, and xylan were degraded in vitro, highlighting that the three strains are rich sources of CAZymes of polysaccharide degraders for biotechnological applications. The phenotypic, biochemical, chemotaxonomic, and genomic characteristics supported the proposal of three novel species in the genus Fulvivirga, for which the names Fulvivirga ulvae sp. nov. (SS9-22T = KCTC 82072T = GDMCC 1.2804T), Fulvivirga ligni sp. nov. (W9P-11T = KCTC 72992T = GDMCC 1.2803T), and Fulvivirga maritima sp. nov. (SW1-E11T = KCTC 72832T = GDMCC 1.2802T) are proposed.
Collapse
Affiliation(s)
- Tra T H Nguyen
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tien Q Vuong
- Hanoi University of Science, Vietnam National University, Hanoi, 10000, Vietnam
| | - Ho Le Han
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550000, Vietnam
| | - Zhun Li
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yong-Jae Lee
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jaeho Ko
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Olga I Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690022
| | - Song-Gun Kim
- Biological Resource Center, Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
50
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|