1
|
Cavo I, Fresnedo O, Mosteiro L, López JI, Larrinaga G, Fernández JA. Lipid imaging mass spectrometry: Towards a new molecular histology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159568. [PMID: 39369885 DOI: 10.1016/j.bbalip.2024.159568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Lipid research is attracting greater attention, as these molecules are key components to understand cell metabolism and the connection between genotype and phenotype. The study of lipids has also been fueled by the development of new and powerful technologies, able to identify an increasing number of species in a single run and at decreasing concentrations. One of such key developments has been the image techniques that enable the visualization of lipid distribution over a tissue with cell resolution. Thanks to the spatial information reported by such techniques, it is possible to associate a lipidome trait to individual cells, in fixed metabolic stages, which greatly facilitates understanding the metabolic changes associated to diverse pathological conditions, such as cancer. Furthermore, the image of lipids is becoming a kind of new molecular histology that has great chances to make an impact in the diagnostic units of the hospitals. Here, we examine the current state of the technology and analyze what the next steps to bring it into the diagnosis units should be. To illustrate the potential and challenges of this technology, we present a case study on clear cell renal cell carcinoma, a good model for analyzing malignant tumors due to their significant cellular and molecular heterogeneity.
Collapse
Affiliation(s)
- Ibai Cavo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Olatz Fresnedo
- Lipids&Liver, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - José I López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Gorka Larrinaga
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| |
Collapse
|
2
|
Ma Z, Huang X, Kuang J, Wang Q, Qin Y, Huang T, Liang Z, Li W, Fu Y, Li P, Fan Y, Zhai Z, Wang X, Ming J, Zhao C, Wang B, Pei D. Cpt1a Drives primed-to-naïve pluripotency transition through lipid remodeling. Commun Biol 2024; 7:1223. [PMID: 39349670 PMCID: PMC11442460 DOI: 10.1038/s42003-024-06874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.
Collapse
Affiliation(s)
- Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qiannan Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Pengli Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhai
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Chen W, Wu J, Yang C, Li S, Liu Z, An Y, Wang X, Cao J, Xu J, Duan Y, Yuan X, Zhang X, Zhou Y, Ip JPK, Fu AKY, Ip NY, Yao Z, Liu K. Lipin1 depletion coordinates neuronal signaling pathways to promote motor and sensory axon regeneration after spinal cord injury. Proc Natl Acad Sci U S A 2024; 121:e2404395121. [PMID: 39292743 PMCID: PMC11441493 DOI: 10.1073/pnas.2404395121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 09/20/2024] Open
Abstract
Adult central nervous system (CNS) neurons down-regulate growth programs after injury, leading to persistent regeneration failure. Coordinated lipids metabolism is required to synthesize membrane components during axon regeneration. However, lipids also function as cell signaling molecules. Whether lipid signaling contributes to axon regeneration remains unclear. In this study, we showed that lipin1 orchestrates mechanistic target of rapamycin (mTOR) and STAT3 signaling pathways to determine axon regeneration. We established an mTOR-lipin1-phosphatidic acid/lysophosphatidic acid-mTOR loop that acts as a positive feedback inhibitory signaling, contributing to the persistent suppression of CNS axon regeneration following injury. In addition, lipin1 knockdown (KD) enhances corticospinal tract (CST) sprouting after unilateral pyramidotomy and promotes CST regeneration following complete spinal cord injury (SCI). Furthermore, lipin1 KD enhances sensory axon regeneration after SCI. Overall, our research reveals that lipin1 functions as a central regulator to coordinate mTOR and STAT3 signaling pathways in the CNS neurons and highlights the potential of lipin1 as a promising therapeutic target for promoting the regeneration of motor and sensory axons after SCI.
Collapse
Affiliation(s)
- Weitao Chen
- Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen518036, China
| | - Junqiang Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chao Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Suying Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
- Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
| | - Zhewei Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongyan An
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jiaming Cao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiahui Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Yangyang Duan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Xue Yuan
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Xin Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Zhongping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
- Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518057, China
| | - Kai Liu
- Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen518036, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
4
|
Torra J, Campelo F, Garcia-Parajo MF. Tensing Flipper: Photosensitized Manipulation of Membrane Tension, Lipid Phase Separation, and Raft Protein Sorting in Biological Membranes. J Am Chem Soc 2024; 146:24114-24124. [PMID: 39162019 PMCID: PMC11363133 DOI: 10.1021/jacs.4c08580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The lateral organization of proteins and lipids in the plasma membrane is fundamental to regulating a wide range of cellular processes. Compartmentalized ordered membrane domains enriched with specific lipids, often termed lipid rafts, have been shown to modulate the physicochemical and mechanical properties of membranes and to drive protein sorting. Novel methods and tools enabling the visualization, characterization, and/or manipulation of membrane compartmentalization are crucial to link the properties of the membrane with cell functions. Flipper, a commercially available fluorescent membrane tension probe, has become a reference tool for quantitative membrane tension studies in living cells. Here, we report on a so far unidentified property of Flipper, namely, its ability to photosensitize singlet oxygen (1O2) under blue light when embedded into lipid membranes. This in turn results in the production of lipid hydroperoxides that increase membrane tension and trigger phase separation. In biological membranes, the photoinduced segregated domains retain the sorting ability of intact phase-separated membranes, directing raft and nonraft proteins into ordered and disordered regions, respectively, in contrast to radical-based photo-oxidation reactions that disrupt raft protein partitioning. The dual tension reporting and photosensitizing abilities of Flipper enable simultaneous visualization and manipulation of the mechanical properties and lateral organization of membranes, providing a powerful tool to optically control lipid raft formation and to explore the interplay between membrane biophysics and cell function.
Collapse
Affiliation(s)
- Joaquim Torra
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
5
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
6
|
Adam MS, Zhuang H, Ren X, Zhang Y, Zhou P. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front Endocrinol (Lausanne) 2024; 15:1393550. [PMID: 38854686 PMCID: PMC11162117 DOI: 10.3389/fendo.2024.1393550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Osteoarthritis (OA) is an intricate pathological condition that primarily affects the entire synovial joint, especially the hip, hand, and knee joints. This results in inflammation in the synovium and osteochondral injuries, ultimately causing functional limitations and joint dysfunction. The key mechanism responsible for maintaining articular cartilage function is chondrocyte metabolism, which involves energy generation through glycolysis, oxidative phosphorylation, and other metabolic pathways. Some studies have shown that chondrocytes in OA exhibit increased glycolytic activity, leading to elevated lactate production and decreased cartilage matrix synthesis. In OA cartilage, chondrocytes display alterations in mitochondrial activity, such as decreased ATP generation and increased oxidative stress, which can contribute to cartilage deterioration. Chondrocyte metabolism also involves anabolic processes for extracellular matrix substrate production and energy generation. During OA, chondrocytes undergo considerable metabolic changes in different aspects, leading to articular cartilage homeostasis deterioration. Numerous studies have been carried out to provide tangible therapies for OA by using various models in vivo and in vitro targeting chondrocyte metabolism, although there are still certain limitations. With growing evidence indicating the essential role of chondrocyte metabolism in disease etiology, this literature review explores the metabolic characteristics and changes of chondrocytes in the presence of OA, both in vivo and in vitro. To provide insight into the complex metabolic reprogramming crucial in chondrocytes during OA progression, we investigate the dynamic interaction between metabolic pathways, such as glycolysis, lipid metabolism, and mitochondrial function. In addition, this review highlights prospective future research directions for novel approaches to diagnosis and treatment. Adopting a multifaceted strategy, our review aims to offer a comprehensive understanding of the metabolic intricacies within chondrocytes in OA, with the ultimate goal of identifying therapeutic targets capable of modulating chondrocyte metabolism for the treatment of OA.
Collapse
Affiliation(s)
| | | | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Kang X, Liu Q, Shi Y, Wang H, Zhang H, Ye T, Zhang J, He F, Zhang M. Decreased expression of ATP-binding cassette protein G1 promotes abnormal adipogenesis of condylar chondrocytes in temporomandibular joint osteoarthritis. J Oral Rehabil 2024; 51:805-816. [PMID: 38146807 DOI: 10.1111/joor.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/18/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). ATP-binding cassette protein G1 (ABCG1) is crucial in mediating the outflow of cholesterol, phosphatidylcholine and sphingomyelin and reducing intracellular lipid accumulation. OBJECTIVE This study aimed to evaluate whether ABCG1 participates in the abnormal adipogenesis of chondrocytes in osteoarthritic cartilage of temporomandibular joint. METHODS Eight-week-old female rats were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical (IHC) staining, and qRT-PCR were performed. Primary condylar chondrocytes of rats were transfected with ABCG1 shRNA or overexpression lentivirus and then stimulated with fluid flow shear stress (FFSS). Cells were collected for oil red O staining, immunofluorescence staining, and qRT-PCR analysis. RESULTS Abnormal adipogenesis, characterized by increased expression of Adiponectin, CCAAT/enhancer-binding protein α (Cebpα), fatty acid binding protein 4 (Fabp4) and Perilipin1, was enhanced in the degenerative cartilage of TMJ OA in rats with UAC, accompanied by decreased expression of ABCG1. After FFSS stimulation, we observed lipid droplets in the cytoplasm of cultured cells with increased expression of Adiponectin, Cebpα, Fabp4 and Perilipin1 and decreased expression of ABCG1. Knockdown of Abcg1 induced abnormal adipogenesis and differentiation of condylar chondrocytes. Overexpression of ABCG1 alleviated the abnormal adipogenesis and differentiation of condylar chondrocytes induced by FFSS. CONCLUSIONS Abnormal adipogenesis of chondrocytes and decreased ABCG1 expression were observed in degenerative cartilage of TMJ OA. ABCG1 overexpression effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration.
Collapse
Affiliation(s)
- Xinyu Kang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
- Nine Squadron, Three Brigade, School of Basic Medicine, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qian Liu
- Department of stomatology, Air Force Medical Center, Beijing, China
| | - Yuqian Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Helin Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Medical Rehabilitation, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Hongyun Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Tao Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Feng He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, the Third Affiliated Hospital, the Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Shields SWJ, Canez CR, Rosales CA, Roberts JA, Bourgaize H, Pallister PJ, Manthorpe JM, Smith JC. Optimized 13C-TrEnDi Enhances the Sensitivity of Plasmenyl Ether Glycerophospholipids and Demonstrates Compatibility with Other Derivatization Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:972-981. [PMID: 38551491 DOI: 10.1021/jasms.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The identification and quantitation of plasmalogen glycerophospholipids is challenging due to their isobaric overlap with plasmanyl ether-linked glycerophospholipids, susceptibility to acid degradation, and their typically low abundance in biological samples. Trimethylation enhancement using diazomethane (TrEnDi) can be used to significantly enhance the signal of glycerophospholipids through the creation of quaternary ammonium groups producing fixed positive charges using 13C-diazomethane in complex lipid extracts. Although TrEnDi requires a strong acid for complete methylation, we report an optimized protocol using 10 mM HBF4 with the subsequent addition of a buffer solution that prevents acidic hydrolysis of plasmalogen species and enables the benefits of TrEnDi to be realized for this class of lipids. These optimized conditions were applied to aliquots of bovine liver extract (BLE) to achieve permethylation of plasmalogen lipids within a complex mixture. Treating aliquots of unmodified and TrEnDi-derivatized BLE samples with 80% formic acid and comparing their liquid chromatography mass spectrometry (LCMS) results to analogous samples not treated with formic acid, enabled the identification of 29 plasmalogen species. On average, methylated plasmalogen species from BLE demonstrated 2.81-fold and 28.1-fold sensitivity gains over unmodified counterparts for phosphatidylcholine and phosphatidylethanolamine plasmalogen species, respectively. Furthermore, the compatibility of employing 13C-TrEnDi and a previously reported iodoacetalization strategy was demonstrated to effectively identify plasmenyl-ether lipids in complex biological extracts at greater levels of sensitivity. Overall, we detail an optimized 13C-TrEnDi derivatization strategy that enables the analysis of plasmalogen glycerophospholipids with no undesired cleavage of radyl groups, boosting their sensitivity in LCMS and LCMS/MS analyses.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Carlos R Canez
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Joshua A Roberts
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Hillary Bourgaize
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Peter J Pallister
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
9
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
10
|
Chaptal MC, Maraninchi M, Musto G, Mancini J, Chtioui H, Dupont-Roussel J, Marlinge M, Fromonot J, Lalevee N, Mourre F, Beliard S, Guieu R, Valero R, Mottola G. Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A 2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia. Cells 2024; 13:488. [PMID: 38534331 DOI: 10.3390/cells13060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.
Collapse
Affiliation(s)
- Marie-Charlotte Chaptal
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
| | - Marie Maraninchi
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
| | - Giorgia Musto
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Julien Mancini
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
| | - Hedi Chtioui
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France
| | - Janine Dupont-Roussel
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France
| | - Marion Marlinge
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - Julien Fromonot
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - Nathalie Lalevee
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
| | - Florian Mourre
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France
| | - Sophie Beliard
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France
| | - Régis Guieu
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - René Valero
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France
| | - Giovanna Mottola
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| |
Collapse
|
11
|
Annes K, Ferreira CR, Valente RS, Marsico TV, Tannura JH, da Silveira JC, Silva FH, Landim-Alvarenga FDC, Mesquista FS, Sudano MJ. Contribution of lipids to the organelle differential profile of in vitro-produced bovine embryos. Theriogenology 2023; 208:109-118. [PMID: 37311262 DOI: 10.1016/j.theriogenology.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Each living organism is unique because of the lipid identity of its organelles. The diverse distribution of these molecules also contributes to the role of each organelle in cellular activity. The lipid profiles of whole embryos are well documented in the literature. However, this approach can often lead to the loss of relevant information at the subcellular and consequently, metabolic levels, hindering a deeper understanding of key physiological processes during preimplantation development. Therefore, we aimed to characterize four organelles in vitro-produced bovine embryos: lipid droplets (LD), endoplasmic reticulum (ER), mitochondria (MIT), and nuclear membrane (NUC), and evaluate the contribution of the lipid species to each organelle evaluated. Expanded blastocysts were subjected to cell organelle isolation. Thereafter, lipid extraction from cell organelles and lipid analysis using the Multiple Reaction Monitoring (MRM) profiling method were performed. The LD and ER displayed a greater number of lipids (Phosphatidylcholine - PC, Ceramide - Cer, and Sphingomielin - SM) with high signal-to-noise intensities. This result is due to the high rate of biosynthesis, lipid distribution, and ability to store and recycle lipid species of these organelles. The NUC had a more distinct lipid profile than the other three organelles, with high relative intensities of PC, SM, and triacylglycerols (TG), which is consistent with its high nuclear activity. MIT had an intermediate profile that was close to that of LD and ER, which aligns with its autonomous metabolism for some classes of phospholipids (PL). Our study revealed the lipid composition of each organelle studied, and the roles of these lipids could be associated with the characteristic organellar activity. Our findings highlight the lipid species and classes that are relevant for the homeostasis and function of each associated organelle and provide tentative biomarkers for the determination of in vitro embryonic development and quality.
Collapse
Affiliation(s)
- Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil; Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Christina Ramires Ferreira
- Bindley Bioscience Center, and Center for Analytical Instrumentation Development, Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Roniele Santana Valente
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Thamiris Vieira Marsico
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | | | - Juliano Coelho da Silveira
- Department of Veterinary Medicine Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil.
| | - Flávio Henrique Silva
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Fernanda da Cruz Landim-Alvarenga
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, SP, Brazil.
| | - Fernando Silveira Mesquista
- School of Veterinary Medicine, Federal University of Pampa, BR 472 - KM 592, PO Box 118, 97501-970, Uruguaiana, RS, Brazil.
| | - Mateus José Sudano
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil; Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
12
|
Liu X, Gaihre B, Park S, Li L, Dashtdar B, Astudillo Potes MD, Terzic A, Elder BD, Lu L. 3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration. Bioact Mater 2023; 27:216-230. [PMID: 37122896 PMCID: PMC10130629 DOI: 10.1016/j.bioactmat.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Three-dimensional (3D) printing technology is driving forward the progresses of various engineering fields, including tissue engineering. However, the pristine 3D-printed scaffolds usually lack robust functions in stimulating desired activity for varied regeneration applications. In this study, we combined the two-dimensional (2D) hetero-nanostructures and immuno-regulative interleukin-4 (IL-4) cytokines for the functionalization of 3D-printed scaffolds to achieve a pro-healing immuno-microenvironment for optimized bone injury repair. The 2D hetero-nanostructure consists of graphene oxide (GO) layers, for improved cell adhesion, and black phosphorous (BP) nanosheets, for the continuous release of phosphate ions to stimulate cell growth and osteogenesis. In addition, the 2D hetero-nanolayers facilitated the adsorption of large content of immuno-regulative IL-4 cytokines, which modulated the polarization of macrophages into M2 phenotype. After in vivo implantation in rat, the immuno-functioned 3D-scaffolds achieved in vivo osteo-immunomodulation by building a pro-healing immunological microenvironment for better angiogenesis and osteogenesis in the defect area and thus facilitated bone regeneration. These results demonstrated that the immuno-functionalization of 3D-scaffolds with 2D hetero-nanostructures with secondary loading of immuno-regulative cytokines is an encouraging strategy for improving bone regeneration.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D. Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D. Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
14
|
Bartho LA, Keenan E, Walker SP, MacDonald TM, Nijagal B, Tong S, Kaitu'u-Lino TJ. Plasma lipids are dysregulated preceding diagnosis of preeclampsia or delivery of a growth restricted infant. EBioMedicine 2023; 94:104704. [PMID: 37421807 PMCID: PMC10344703 DOI: 10.1016/j.ebiom.2023.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Lipids serve as multifunctional metabolites that have important implications for the pregnant mother and developing fetus. Abnormalities in lipids have emerged as potential risk factors for pregnancy diseases, such as preeclampsia and fetal growth restriction. The aim of this study was to assess the potential of lipid metabolites for detection of late-onset preeclampsia and fetal growth restriction. METHODS We used a case-cohort of 144 maternal plasma samples at 36 weeks' gestation from patients before the diagnosis of late-onset preeclampsia (n = 22), delivery of a fetal growth restricted infant (n = 55, defined as <5th birthweight centile), gestation-matched controls (n = 72). We performed liquid chromatography-tandem mass spectrometry (LC-QQQ) -based targeted lipidomics to identify 421 lipids, and fitted logistic regression models for each lipid, correcting for maternal age, BMI, smoking, and gestational diabetes. FINDINGS Phosphatidylinositol 32:1 (AUC = 0.81) and cholesterol ester 17:1 (AUC = 0.71) best predicted the risk of developing preeclampsia or delivering a fetal growth restricted infant, respectively. Five times repeated five-fold cross validation demonstrated the lipids alone did not out-perform existing protein biomarkers, soluble tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) for the prediction of preeclampsia or fetal growth restriction. However, lipids combined with sFlt-1 and PlGF measurements improved disease prediction. INTERPRETATION This study successfully identified 421 lipids in maternal plasma collected at 36 weeks' gestation from participants who later developed preeclampsia or delivered a fetal growth restricted infant. Our results suggest the predictive capacity of lipid measurements for gestational disorders holds the potential to improve non-invasive assessment of maternal and fetal health. FUNDING This study was funded by a grant from National Health and Medical Research Council.
Collapse
Affiliation(s)
- Lucy A Bartho
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Emerson Keenan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
15
|
Zelencova-Gopejenko D, Videja M, Grandane A, Pudnika-Okinčica L, Sipola A, Vilks K, Dambrova M, Jaudzems K, Liepinsh E. Heart-Type Fatty Acid Binding Protein Binds Long-Chain Acylcarnitines and Protects against Lipotoxicity. Int J Mol Sci 2023; 24:ijms24065528. [PMID: 36982599 PMCID: PMC10058761 DOI: 10.3390/ijms24065528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Heart-type fatty-acid binding protein (FABP3) is an essential cytosolic lipid transport protein found in cardiomyocytes. FABP3 binds fatty acids (FAs) reversibly and with high affinity. Acylcarnitines (ACs) are an esterified form of FAs that play an important role in cellular energy metabolism. However, an increased concentration of ACs can exert detrimental effects on cardiac mitochondria and lead to severe cardiac damage. In the present study, we evaluated the ability of FABP3 to bind long-chain ACs (LCACs) and protect cells from their harmful effects. We characterized the novel binding mechanism between FABP3 and LCACs by a cytotoxicity assay, nuclear magnetic resonance, and isothermal titration calorimetry. Our data demonstrate that FABP3 is capable of binding both FAs and LCACs as well as decreasing the cytotoxicity of LCACs. Our findings reveal that LCACs and FAs compete for the binding site of FABP3. Thus, the protective mechanism of FABP3 is found to be concentration dependent.
Collapse
Affiliation(s)
- Diana Zelencova-Gopejenko
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
- Correspondence:
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Pharmacy, Rīga Stradinš University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Aiga Grandane
- Organic Synthesis Group, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Linda Pudnika-Okinčica
- Organic Synthesis Group, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anda Sipola
- Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Pharmacy, Rīga Stradinš University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
16
|
Morvan E, Taib-Maamar N, Grélard A, Loquet A, Dufourc EJ. Dynamic Sorting of Mobile and Rigid Molecules in Biomembranes by Magic-Angle Spinning 13C NMR. Anal Chem 2023; 95:3596-3605. [PMID: 36749686 DOI: 10.1021/acs.analchem.2c04185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the membrane dynamics of complex systems is essential to follow their function. As molecules in membranes can be in a rigid or mobile state depending on external (temperature, pressure) or internal (pH, domains, etc.) conditions, we propose an in-depth examination of NMR methods to filter highly mobile molecular parts from others that are in more restricted environments. We have thus developed a quantitative magic-angle spinning (MAS) 13C NMR approach coupled with cross-polarization (CP) and/or Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) on rigid and fluid unlabeled model membranes. We demonstrate that INEPT can detect only very mobile lipid headgroups in gel (solid-ordered) phases; the remaining rigid parts are only detected with CP. A direct correlation is established between the normalized line intensity as obtained by CP and the C-H (C-D) order parameters measured by wide-line 2H NMR or extracted from molecular dynamics: ICP/IDPeq ≈ 5|SCH|, indicating that when the order is greater than 0.2-0.3 (maximum value of 0.5 for chain CH2), only rigid parts can be filtered and detected using CP techniques. In very fluid (liquid-disordered) membranes, where there are many more active motions, both INEPT and CP detect resonances, with, however, a clear propensity of each technique to detect mobile and restricted molecular parts, respectively. Interestingly, the 13C NMR chemical shift of lipid hydrocarbon chains can be used to monitor order-disorder phase transitions and calculate the fraction of chain defects (rotamers) and the part of the transition enthalpy due to bond rotations (6-7 kJ·mol-1 for dimyristolphosphatidylcholine, DMPC). Cholesterol-containing membranes (liquid-ordered phases) can be dynamically contrasted as the rigid-body sterol is mainly detected by the CP technique, with a contact time of 1 ms, and the phospholipid by INEPT. Our work opens up a straightforward, robust, and cost-effective route for the determination of membrane dynamics by taking advantage of well-resolved conventional 13C NMR experiments without the need of isotopic labeling.
Collapse
Affiliation(s)
- Estelle Morvan
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France
| | - Nada Taib-Maamar
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| | - Axelle Grélard
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| | - Antoine Loquet
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| | - Erick J Dufourc
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France.,Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France
| |
Collapse
|
17
|
Choi JA, Lee EH, Cho H, Kim JH. High-Dose Selenium Induces Ferroptotic Cell Death in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24031918. [PMID: 36768241 PMCID: PMC9915545 DOI: 10.3390/ijms24031918] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Selenium is a promising multi-target chemotherapeutic agent with controversial clinical results. Hence, reassessing the anticancer effects of Se is necessary to clearly understand the potential of high-dose selenium in cancer treatment. Here, we observed that high-dose sodium selenite (SS) significantly decreased the proliferation and increased the death of ovarian cancer cells, mediated by an increased generation of reactive oxygen species. Notably, high-dose SS decreased the levels of glutathione peroxidase (GPx), a selenoprotein with antioxidant properties, without altering other selenoproteins. Furthermore, high-dose SS triggered lipid peroxidation and ferroptosis, a type of iron-dependent cell death, due to dysregulated GPx4 pathways. We demonstrated that intravenous high-dose SS significantly reduced the tumor growth and weight in SKOV3-bearing mice. Consistent with our in vitro results, mice with SKOV3 cells treated with high-dose SS showed decreased GPx4 expression in tumors. Therefore, we highlight the significance of high-dose SS as a potential chemotherapeutic agent for ovarian cancer. High-dose SS-mediated ferroptotic therapy integrating glutathione depletion and ROS generation is a promising strategy for cancer therapy.
Collapse
|
18
|
Lomba-Riego L, Calvino-Sanles E, Brea RJ. In situ synthesis of artificial lipids. Curr Opin Chem Biol 2022; 71:102210. [PMID: 36116189 DOI: 10.1016/j.cbpa.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Lipids constitute one of the most enigmatic family of biological molecules. Although the importance of lipids as basic units of compartmental structure and energy storage is well-acknowledged, deciphering the biosynthesis and precise roles of specific lipid species has been challenging. To better understand the structure and function of these biomolecules, there is a burgeoning interest in developing strategies to produce noncanonical lipids in a controlled manner. This review covers recent advances in the area of in situ generation of synthetic lipids. Specifically, we report several approaches that constitute a powerful toolbox for achieving noncanonical lipid synthesis. We describe how these methodologies enable the direct construction of synthetic lipids, helping to address fundamental questions related to the cell biology of lipid biosynthesis, trafficking, and signaling. We envision that highlighting the current advances in artificial lipid synthesis will pave the way for broader interest into this emerging class of biomimetic molecules.
Collapse
Affiliation(s)
- Lucia Lomba-Riego
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Esther Calvino-Sanles
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain.
| |
Collapse
|
19
|
The Lipid Profile of the Endomyces magnusii Yeast upon the Assimilation of the Substrates of Different Types and upon Calorie Restriction. J Fungi (Basel) 2022; 8:jof8111233. [PMID: 36422054 PMCID: PMC9698397 DOI: 10.3390/jof8111233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The study analyzes the dynamics in the lipid profile of the Endomyces magnusii yeast during the long-lasting cultivation using the substrates of “enzymatic” or “oxidative” type. Moreover, we studied its changes upon calorie restriction (CR) (0.5% glucose) and glucose depletion (0.2% glucose). Di-(DAGs), triacylglycerides (TAGs) and free fatty acids (FFAs) dominate in the storage lipid fractions. The TAG level was high in all the cultures tested and reached 80% of the total lipid amount. While being cultured on 2% substrates, the level of storage lipids decreased at the four-week stage, whereas upon CR their initially low amount doubled. Phosphatidylethanolamines (PE), sterols (St) (up to 62% of total lipids), phosphatidylcholines (PC), and phosphatidic acids (PA) (more than 40% of total lipids) were dominating in the membrane lipids of E magnusii. Upon CR at the late stationary growth stages (3–4 weeks), the total level of membrane lipid was two-fold higher than those on glycerol and 2% glucose. The palmitic acid C16:0 (from 10 to 23%), the palmitoleic acid C16:1 (from 4.3 to 15.9%), the oleic acid C18:1 (from 23.4 to 59.2%), and the linoleic acid C18:2 (from 10.8 to 49.2%) were the dominant fatty acids (FAs) of phospholipids. Upon glucose depletion (0.2% glucose), the total amount of storage and membrane lipids in the cells was comparable to that in the cells both on 2% and 0.5% glucose. High levels of PC and sphingolipids (SL) at the late stationary growth stages and an increased PA level throughout the whole experiment were typical for the membrane lipids composition upon the substrate depletion. There was shown a crucial role of St, PA, and a high share of the unsaturated FAs in the membrane phospholipids upon the adaptation of the E. magnusii yeast to the long-lasting cultivation upon the substrate restriction is shown. The autophagic processes in some fractions of the cell population provide the support of high level of lipid components at the late stages of cultivation upon substrate depletion under the CR conditions. CR is supposed to play the key role in regulating the lipid synthesis and risen resistance to oxidative stress, as well as its possible biotechnological application.
Collapse
|
20
|
Kordyum EL, Artemenko OA, Hasenstein KH. Lipid Rafts and Plant Gravisensitivity. Life (Basel) 2022; 12:1809. [PMID: 36362962 PMCID: PMC9695138 DOI: 10.3390/life12111809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/24/2023] Open
Abstract
The necessity to include plants as a component of a Bioregenerative Life Support System leads to investigations to optimize plant growth facilities as well as a better understanding of the plant cell membrane and its numerous activities in the signaling, transport, and sensing of gravity, drought, and other stressors. The cell membrane participates in numerous processes, including endo- and exocytosis and cell division, and is involved in the response to external stimuli. Variable but stabilized microdomains form in membranes that include specific lipids and proteins that became known as (detergent-resistant) membrane microdomains, or lipid rafts with various subclassifications. The composition, especially the sterol-dependent recruitment of specific proteins affects endo- and exo-membrane domains as well as plasmodesmata. The enhanced saturated fatty acid content in lipid rafts after clinorotation suggests increased rigidity and reduced membrane permeability as a primary response to abiotic and mechanical stress. These results can also be obtained with lipid-sensitive stains. The linkage of the CM to the cytoskeleton via rafts is part of the complex interactions between lipid microdomains, mechanosensitive ion channels, and the organization of the cytoskeleton. These intricately linked structures and functions provide multiple future research directions to elucidate the role of lipid rafts in physiological processes.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Olga A. Artemenko
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Karl H. Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| |
Collapse
|
21
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
22
|
Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, Cui L, Li G, Zhong H, Lin S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022; 14:3984. [PMID: 36235637 PMCID: PMC9570753 DOI: 10.3390/nu14193984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.
Collapse
Affiliation(s)
- Zhanpeng Su
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Zhixian Zong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinxia Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Liao Cui
- Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical Unversity, Zhanjiang 524023, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
23
|
Douadi C, Vazeille E, Chambon C, Hébraud M, Fargeas M, Dodel M, Coban D, Pereira B, Birer A, Sauvanet P, Buisson A, Barnich N. Anti-TNF Agents Restrict Adherent-invasive Escherichia coli Replication Within Macrophages Through Modulation of Chitinase 3-like 1 in Patients with Crohn's Disease. J Crohns Colitis 2022; 16:1140-1150. [PMID: 35022663 DOI: 10.1093/ecco-jcc/jjab236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The mechanism of action of anti-tumour necrosis factor [anti-TNF] agents could implicate macrophage modulation in Crohn's disease [CD]. As CD macrophages are defective in controlling CD-associated adherent-invasive Escherichia coli [AIEC], anti-TNF agents could limit AIEC replication within macrophages. We assessed the effect of anti-TNF agents on AIEC survival within monocyte-derived macrophages [MDMs] from CD patients and attempted to identify the proteins involved. METHODS Peripheral blood MDMs were obtained from 44 CD patients [22 with and 22 without anti-TNF agents]. MDMs were infected with reference strain AIEC-LF82. Proteomic analysis was performed before and 6 h after AIEC-LF82 infection. RESULTS AIEC-LF82 survival was lower in MDMs from CD patients receiving anti-TNF agents compared to those who did not [-73%, p = 0.006]. After AIEC-LF82 infection, the levels of CD82 [p = 0.007], ILF3 [Interleukin enhancer-binding factor 3; p = 0.001], FLOT-1 [Flotillin-1; p = 0.007] and CHI3L1 [Chitinase 3-like 1; p = 0.035] proteins were different within CD-MDMs depending on anti-TNF exposure. FLOT-1 [ϱ = -0.44; p = 0.038] and CHI3L1 [ϱ = 0.57, p = 0.006] levels were inversely and positively correlated with AIEC survival within MDMs from CD patients with or without anti-TNF, respectively. We observed a dose-dependent decrease of AIEC-LF82 survival after adjunction of anti-TNF within MDMs, inducing an increase of FLOT-1 and decrease of CHI3L1 mRNA levels. Neutralization of intra-macrophagic CHI3L1 protein using anti-CHI3L1 antibodies reduced AIEC survival within macrophages 6 h after infection [p < 0.05]. CONCLUSION Anti-TNF agents are able to restrict replication of pathobionts, such as AIEC, within macrophages by modulating FLOT-1 and CHI3L1 expression in CD patients.
Collapse
Affiliation(s)
- Clara Douadi
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| | - Emilie Vazeille
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), Saint-Genès-Champanelle, France.,Université Clermont Auvergne, INRAE, UMR Microbiologie Environnement digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Margot Fargeas
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| | - Marie Dodel
- Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Dilek Coban
- Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistic Unit, CHU Estaing, Clermont-Ferrand, France
| | - Aurélien Birer
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Centre National de Référence de la Résisitance aux antibiotiques, service de Bactériologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Surgery and Oncology Digestive Department, CHU Estaing, Clermont-Ferrand, France
| | - Anthony Buisson
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| |
Collapse
|
24
|
Molecular basis of the anchoring and stabilization of human islet amyloid polypeptide in lipid hydroperoxidized bilayers. Biochim Biophys Acta Gen Subj 2022; 1866:130200. [PMID: 35820640 DOI: 10.1016/j.bbagen.2022.130200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/18/2023]
Abstract
The molecular structure of membrane lipids is formed by mono- or polyunsaturations on their aliphatic tails that make them susceptible to oxidation, facilitating the incorporation of hydroperoxide (R-OOH) functional groups. Such groups promote changes in both composition and complexity of the membrane significantly modifying its physicochemical properties. Human Langerhans islets amyloid polypeptide (hIAPP) is the main component of amyloid deposits found in the pancreas of patients with type-2 diabetes (T2D). hIAPP in the presence of membranes with oxidized lipid species accelerates the formation of amyloid fibrils or the formation of intermediate oligomeric structures. However, the molecular bases at the initial stage of the anchoring and stabilization of the hIAPP in a hydroperoxidized membrane are not yet well understood. To shed some light on this matter, in this contribution, three bilayer models were modeled: neutral (POPC), anionic (POPS), and oxidized (POPCOOH), and full atom Molecular Dynamics (MD) simulations were performed. Our results show that the POPCOOH bilayer increases the helicity in hIAPP when compared to POPC or POPS bilayer. The modification in the secondary structure covers the residues of the so-called amyloidogenic core of the hIAPP. Overall, the hydroperoxidation of the neutral lipids modifies both the anchoring and the stabilization of the peptide hIAPP by reducing the random conformations of the peptide and increasing of hydrogen bond population with the hydroperoxidized lipids.
Collapse
|
25
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Sepúlveda J, Cantarero SI. Phytoplankton response to a warming ocean. Science 2022; 376:1378-1379. [PMID: 35737769 DOI: 10.1126/science.abo5235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nutritional value of marine algae will decrease in a warmer world.
Collapse
Affiliation(s)
- Julio Sepúlveda
- Department of Geological Sciences and Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA.,Millennium Institute of Oceanography (IMO), University of Concepción, Concepción, Chile
| | - Sebastian I Cantarero
- Department of Geological Sciences and Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
27
|
Almeida AR, Morita VS, Matos Junior JB, Sgavioli S, Vicentini TI, Boleli IC. Long-Lasting Effects of Incubation Temperature During Fetal Development on Subcutaneous Adipose Tissue of Broilers. Front Physiol 2022; 13:913496. [PMID: 35734000 PMCID: PMC9207451 DOI: 10.3389/fphys.2022.913496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence indicates that fetal programming may cause permanent effects on offspring adipose tissue and body composition. Previous study showed reduction in newly-hatched broiler chick adiposity by manipulating incubation temperature during fetal development. The present study examined whether incubation temperature during fetal development has long-term effects on post-hatching fat deposition in broilers. Broiler breeder eggs (Cobb-500®) were incubated under constant low (36°C, LT), control (37.5°C, CT) or high (39°C, HT) temperature from day 13 onward, giving to eggshell temperature of 37.3 ± 0.08°C, 37.8 ± 0.2°C, and 38.8 ± 0.3°C, respectively. Male chicks were reared under recommended temperatures until 42 days old. LT 21 days old broilers exhibited higher blood cholesterol than CT broilers, and higher triglycerids, VLDL, and LDL, and lower HDL than CT and HT broilers. LT broilers presented higher liver cholesterol than CT broilers and lower ether extract percentage than CT broilers. Adipocyte count was lower in the abdomen than in the thigh. Until day 21 of age, feed intake was higher in LT than in HT broilers. At day 42 of age, blood cholesterol and LDL were higher in HT broilers than in CT and LT broilers. Liver cholesterol was higher in LT than in HT broilers. LT treatment reduced neck and increased thigh adipocyte size compared to CT treatment, while the HT treatment reduced abdomen and neck adipocyte size compared to other two treatments and in the thigh compared to LT treatment. In CT broilers, thigh adipocytes were smaller than abdomen and neck adipocytes. HT treatment increased adipocyte number per area in the neck compared to LT and CT treatment, and LT and HT treatments reduced adipocyte count in the thigh compared to CT treatment. CT broilers presented higher adipocyte count in the thigh than the abdomen and neck, while HT broilers presented higher adipocyte count in the neck than the abdomen and thigh. Cell proliferation was lower in the abdomen than in the thigh. The results show incubation temperature manipulation during fetal development has long-term and distinct effects on regional adiposity, and can be used to modulate broiler fat deposition.
Collapse
Affiliation(s)
- Ayla R. Almeida
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
| | - Viviane S. Morita
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
| | | | | | - Tamiris I. Vicentini
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
| | - Isabel C. Boleli
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University—UNESP, Sao Paulo, Brazil
- *Correspondence: Isabel C. Boleli,
| |
Collapse
|
28
|
Membrane Cholesterol Content and Lipid Organization Influence Melittin and Pneumolysin Pore-Forming Activity. Toxins (Basel) 2022; 14:toxins14050346. [PMID: 35622592 PMCID: PMC9147762 DOI: 10.3390/toxins14050346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Melittin, the main toxic component in the venom of the European honeybee, interacts with natural and artificial membranes due to its amphiphilic properties. Rather than interacting with a specific receptor, melittin interacts with the lipid components, disrupting the lipid bilayer and inducing ion leakage and osmotic shock. This mechanism of action is shared with pneumolysin and other members of the cholesterol-dependent cytolysin family. In this manuscript, we investigated the inverse correlation for cholesterol dependency of these two toxins. While pneumolysin-induced damage is reduced by pretreatment with the cholesterol-depleting agent methyl-β-cyclodextrin, the toxicity of melittin, after cholesterol depletion, increased. A similar response was also observed after a short incubation with lipophilic simvastatin, which alters membrane lipid organization and structure, clustering lipid rafts. Therefore, changes in toxin sensitivity can be achieved in cells by depleting cholesterol or changing the lipid bilayer organization.
Collapse
|
29
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
30
|
Sun W, Li P, Cai J, Ma J, Zhang X, Song Y, Liu Y. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Front Immunol 2022; 13:860586. [PMID: 35371016 PMCID: PMC8971568 DOI: 10.3389/fimmu.2022.860586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease characterized by the production of abnormal autoantibodies and immune complexes that can affect the organ and organ systems, particularly the kidneys and the cardiovascular system. Emerging evidence suggests that dysregulated lipid metabolism, especially in key effector cells, such as T cells, B cells, and innate immune cells, exerts complex effects on the pathogenesis and progression of SLE. Beyond their important roles as membrane components and energy storage, different lipids can also modulate different cellular processes, such as proliferation, differentiation, and survival. In this review, we summarize altered lipid metabolism and the associated mechanisms involved in the pathogenesis and progression of SLE. Furthermore, we discuss the recent progress in the role of lipid metabolism as a potential therapeutic target in SLE.
Collapse
Affiliation(s)
- Wei Sun
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Pengchong Li
- Department of Rheumatology and Clinical Immunology, The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Beijing, China
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| |
Collapse
|
31
|
dos Santos Petry F, Hoppe JB, Klein CP, dos Santos BG, Hözer RM, Salbego CG, Trindade VMT. Genistein prevents the decrease in ganglioside levels induced by amyloid-beta in the frontal cortex of rats. Neurol Res 2022; 44:598-604. [DOI: 10.1080/01616412.2021.2024731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fernanda dos Santos Petry
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Bender Hoppe
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Peres Klein
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bernardo Gindri dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Régis Mateus Hözer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christianne Gazzana Salbego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Maria Treis Trindade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
33
|
Ugur MR, Guerreiro DD, Moura AA, Memili E. Identification of biomarkers for bull fertility using functional genomics. Anim Reprod 2022; 19:e20220004. [PMID: 35573862 PMCID: PMC9083437 DOI: 10.1590/1984-3143-ar2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 09/21/2023] Open
Abstract
Prediction of bull fertility is critical for the sustainability of both dairy and beef cattle production. Even though bulls produce ample amounts of sperm with normal parameters, some bulls may still suffer from subpar fertility. This causes major economic losses in the cattle industry because using artificial insemination, semen from one single bull can be used to inseminate hundreds of thousands of cows. Although there are several traditional methods to estimate bull fertility, such methods are not sufficient to explain and accurately predict the subfertility of individual bulls. Since fertility is a complex trait influenced by a number of factors including genetics, epigenetics, and environment, there is an urgent need for a comprehensive methodological approach to clarify uncertainty in male subfertility. The present review focuses on molecular and functional signatures of bull sperm associated with fertility. Potential roles of functional genomics (proteome, small noncoding RNAs, lipidome, metabolome) on determining male fertility and its potential as a fertility biomarker are discussed. This review provides a better understanding of the molecular signatures of viable and fertile sperm cells and their potential to be used as fertility biomarkers. This information will help uncover the underlying reasons for idiopathic subfertility.
Collapse
Affiliation(s)
| | | | - Arlindo A. Moura
- Universidade Federal do Ceará, Brasil; Universidade Federal do Ceará, Brasil
| | - Erdogan Memili
- Mississippi State University, USA; Prairie View A&M University, USA
| |
Collapse
|
34
|
Liu D, Wang H, Liang M, Nie Y, Liu Y, Yin M, Qiao X. Polymerized phosphonium ionic liquid functionalized silica microspheres as mixed-mode stationary phase for liquid chromatographic separation of phospholipids. J Chromatogr A 2021; 1660:462676. [PMID: 34814089 DOI: 10.1016/j.chroma.2021.462676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
There is a large and growing demand for the vigorous development of new high performance liquid chromatography stationary phases in order to solve complex phospholipids separation. Herein, phosphonium-based ionic liquid trioctyl(allyl)phosphonium bromide ([P888Allyl]Br) was first synthesized with trioctylphosphine and allyl bromide. With [P888Allyl]Br as the polymerizable monomer, polymerized phosphonium ionic liquid functionalized silica microsphere (PIL@SiO2) was further synthetized via click chemistry reaction. Significantly, based on the inherent amphiphilic nature of the introduced [P888Allyl]Br, the packed PIL@SiO2 column displayed hydrophilic/hydrophobic mixed-mode retention mechanisms. The PIL@SiO2 column can achieve separation of nucleic acid bases and nucleosides, sulfonamides, amides and anilines with excellent selectivity in a shorter separation time. The column efficiency reached 109,700 N/m for 2-iodoacetamide. One of the important characteristics of the PIL@SiO2 column is that both phospholipid classes and species can be efficiently separated via the same column, outperforming that of the commercial amino column. Furthermore, the application potential of the PIL@SiO2 column was further verified via separation of phospholipids extracted from soy lecithin. The proposed PIL@SiO2 column provides a promising candidate for separation of complex phospholipid samples.
Collapse
Affiliation(s)
- Delu Liu
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Haiyan Wang
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Mengying Liang
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Yangyang Nie
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Mingyuan Yin
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
35
|
Liu H, Cao J, Balluff B, Jongen AC, Gijbels MJ, Melenhorst J, Heeren RM, Bouvy ND. Examination of lipid profiles in abdominal fascial healing using MALDI-TOF to identify potential therapeutic targets. J Mass Spectrom Adv Clin Lab 2021; 20:35-41. [PMID: 34820669 PMCID: PMC8600998 DOI: 10.1016/j.jmsacl.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
Lipids change overtime in normal fascial healing in the early post-surgery period. Specific lipid species are correlated with the changes of inflammation cells and fibroblasts. Lipid species in the present study are considered as predictive markers for the formation of incisional hernia.
Background Failure of fascial healing in the abdominal wall can result in incisional hernia, which is one of the most common complications after laparotomy. Understanding the molecular healing process of abdominal fascia may provide lipid markers of incisional hernia or therapeutic targets that allow prevention or treatment of incisional hernias. Purpose This study aims to investigate temporal and in situ changes of lipids during the normal healing process of abdominal fascia in the first postoperative week. Methods Open hemicolectomy was performed in a total of 35 Wistar rats. The midline fascia was closed identically for all rats using a single continuous suturing technique. These animals were sacrificed with equal numbers (n = 5) at each of 7-time points (6, 12, 24, 48, 72, 120, and 168 h. The local and temporal changes of lipids were examined with mass spectrometry imaging and correlated to histologically scored changes during healing using hematoxylin and eosin staining. Results Two phosphatidylcholine lipid species (PC O-38:5 and PC 38:4) and one phosphatidylethanolamine lipid (PE O-16:1_20:4) were found to significantly correlate with temporal changes of inflammation. A phosphatidylcholine (PC 32:0) and a monosialodihexosylganglioside (GM3 34:1;2) were found to correlate with fibroblast cell growth. Conclusion Glycerophospholipids and gangliosides are strongly involved in the normal healing process of abdominal fascia and their locally fluctuating concentrations are considered as potential lipid markers and therapeutic targets of fascial healing.
Collapse
Key Words
- AA, Arachidonic acid
- CL, Cardiolipin
- CerPE, Ceramide phosphorylethanolamine
- Fascia
- GM3, Monosialodihexosylganglioside
- Incisional hernia
- LPA, Lysophosphatidic acid
- LPC, Lysophosphatidylcholine
- Lipids
- MMPE, Monomethyl-phosphatidylethanolamine
- Mass spectrometry imaging
- PA, Phosphatidic acid
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PI, Phosphatidylinositol
- SM, Sphingomyelin
- Wound healing
Collapse
Affiliation(s)
- Hong Liu
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Corresponding author at: Department of General Surgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Jianhua Cao
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Audrey C.H.M. Jongen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Marion J. Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jarno Melenhorst
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
36
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
37
|
Role of ERLINs in the Control of Cell Fate through Lipid Rafts. Cells 2021; 10:cells10092408. [PMID: 34572057 PMCID: PMC8470593 DOI: 10.3390/cells10092408] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
ER lipid raft-associated protein 1 (ERLIN1) and 2 (ERLIN2) are 40 kDa transmembrane glycoproteins belonging to the family of prohibitins, containing a PHB domain. They are generally localized in the endoplasmic reticulum (ER), where ERLIN1 forms a heteroligomeric complex with its closely related ERLIN2. Well-defined functions of ERLINS are promotion of ER-associated protein degradation, mediation of inositol 1,4,5-trisphosphate (IP3) receptors, processing and regulation of lipid metabolism. Until now, ERLINs have been exclusively considered protein markers of ER lipid raft-like microdomains. However, under pathophysiological conditions, they have been described within mitochondria-associated endoplasmic reticulum membranes (MAMs), tethering sites between ER and mitochondria, characterized by the presence of specialized raft-like subdomains enriched in cholesterol and gangliosides, which play a key role in the membrane scrambling and function. In this context, it is emerging that ER lipid raft-like microdomains proteins, i.e., ERLINs, may drive mitochondria-ER crosstalk under both physiological and pathological conditions by association with MAMs, regulating the two main processes underlined, survival and death. In this review, we describe the role of ERLINs in determining cell fate by controlling the “interchange” between apoptosis and autophagy pathways, considering that their alteration has a significant impact on the pathogenesis of several human diseases.
Collapse
|
38
|
Bhattarai A, Likos EM, Weyman CM, Shukla GC. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 2021; 173:108878. [PMID: 34174291 DOI: 10.1016/j.steroids.2021.108878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Cellular disruption of lipid and cholesterol metabolism results in pathological processes linked to metabolic and cardiovascular diseases. Classically, at the transcription stages, the Cholesterol levels are controlled by two cellular pathways. First, the SREBP transcription factor family controls Cholesterol biosynthesis via transcriptional regulation of critical rate-limiting cholesterogenic and lipogenic proteins. Secondly, The LXR/RXR transcription factor family controls cholesterol shuttling via transcriptional regulation of cholesterol transport proteins. In addition, the posttranscriptional control of gene expression of various enzymes and proteins of cholesterol biosynthesis pathways is mediated by small non-coding microRNAs. Regulatory noncoding miRNAs are critical regulators of biological processes, including developmental and metabolic functions. miRNAs function to fine-tune lipid and cholesterol metabolism pathways by controlling the mRNA levels and translation of critical molecules in each pathway. This review discusses the regulatory roles of miRNAs in cholesterol and lipid metabolism via direct and indirect effects on their target genes, including SREBP, LXR, HDL, LDL, and ABCA transporters. We also discuss the therapeutic implications of miRNA functions and their purported role in the potentiation of small molecule therapies.
Collapse
Affiliation(s)
- Asmita Bhattarai
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Eviania M Likos
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Crystal M Weyman
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Girish C Shukla
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| |
Collapse
|
39
|
Ferraz L, Sauer M, Sousa MJ, Branduardi P. The Plasma Membrane at the Cornerstone Between Flexibility and Adaptability: Implications for Saccharomyces cerevisiae as a Cell Factory. Front Microbiol 2021; 12:715891. [PMID: 34434179 PMCID: PMC8381377 DOI: 10.3389/fmicb.2021.715891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
In the last decade, microbial-based biotechnological processes are paving the way toward sustainability as they implemented the use of renewable feedstocks. Nonetheless, the viability and competitiveness of these processes are often limited due to harsh conditions such as: the presence of feedstock-derived inhibitors including weak acids, non-uniform nature of the substrates, osmotic pressure, high temperature, extreme pH. These factors are detrimental for microbial cell factories as a whole, but more specifically the impact on the cell’s membrane is often overlooked. The plasma membrane is a complex system involved in major biological processes, including establishing and maintaining transmembrane gradients, controlling uptake and secretion, intercellular and intracellular communication, cell to cell recognition and cell’s physical protection. Therefore, when designing strategies for the development of versatile, robust and efficient cell factories ready to tackle the harshness of industrial processes while delivering high values of yield, titer and productivity, the plasma membrane has to be considered. Plasma membrane composition comprises diverse macromolecules and it is not constant, as cells adapt it according to the surrounding environment. Remarkably, membrane-specific traits are emerging properties of the system and therefore it is not trivial to predict which membrane composition is advantageous under certain conditions. This review includes an overview of membrane engineering strategies applied to Saccharomyces cerevisiae to enhance its fitness under industrially relevant conditions as well as strategies to increase microbial production of the metabolites of interest.
Collapse
Affiliation(s)
- Luís Ferraz
- Center of Molecular and Environmental Biology, University of Minho, Braga, Portugal.,Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
40
|
Moroz LL, Romanova DY. Selective Advantages of Synapses in Evolution. Front Cell Dev Biol 2021; 9:726563. [PMID: 34490275 PMCID: PMC8417881 DOI: 10.3389/fcell.2021.726563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Lab of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Fiorelli S, Anesi A, Porro B, Cosentino N, Werba JP, Di Minno A, Manega CM, Barbieri S, Colombo GI, Marenzi G, Cavalca V, Tremoli E, Eligini S. Lipidomics analysis of monocytes from patients with acute myocardial infarction reveals lactosylceramide as a new player in monocyte migration. FASEB J 2021; 35:e21494. [PMID: 33856696 DOI: 10.1096/fj.202001872rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/11/2022]
Abstract
Monocyte recruitment after vascular injury and their migration through the vessel wall represent crucial events in the initiation, progression, and destabilization of atherosclerotic plaque. Circulating monocytes are exposed to stimuli that alter their physiological state, and among them, lipids play a key role. Several studies investigated the mechanisms by which lipids affect monocyte functions promoting coronary atherosclerotic plaque initiation, but information on the relationship between lipid composition and function of monocyte is scant. We aimed at studying the migration of circulating monocytes isolated from patients with acute myocardial infarction (AMI) at hospital presentation and investigating its correlation with cellular lipid profile. The migration of monocytes was tested using both fetal bovine serum (FBS) and autologous serum as chemoattractant stimuli. Monocyte lipid profile was evaluated through an untargeted lipidomics approach, using a liquid chromatography/time-of-flight mass spectrometry platform. We observed that AMI patients' monocytes showed a significant increase in FBS and autologous serum-mediated migration compared to controls. Moreover, a different monocyte lipidomic profile between the two study groups was detected. In particular, AMI patients' monocytes showed an altered composition in ceramides, with an increase in lactosylceramide and in phospholipids (ie, phosphatidylethanolamine and lisophosphatidylethanolamine). Of note, a positive correlation between lactosylceramide levels and monocyte migration was observed. Furthermore, the lactosylceramide synthase inhibition significantly reduced FBS-induced monocyte migration. Our results highlight the influence of lactosylceramide on the monocyte migration capacity, pointing out a new possible mechanism of lipids in the onset of atherothrombosis and, hence, in AMI.
Collapse
Affiliation(s)
| | - Andrea Anesi
- Centro Cardiologico Monzino I.R.C.C.S, Milan, Italy
| | | | | | - José P Werba
- Centro Cardiologico Monzino I.R.C.C.S, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nakatsu F, Kawasaki A. Functions of Oxysterol-Binding Proteins at Membrane Contact Sites and Their Control by Phosphoinositide Metabolism. Front Cell Dev Biol 2021; 9:664788. [PMID: 34249917 PMCID: PMC8264513 DOI: 10.3389/fcell.2021.664788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
Lipids must be correctly transported within the cell to the right place at the right time in order to be fully functional. Non-vesicular lipid transport is mediated by so-called lipid transfer proteins (LTPs), which contain a hydrophobic cavity that sequesters lipid molecules. Oxysterol-binding protein (OSBP)-related proteins (ORPs) are a family of LTPs known to harbor lipid ligands, such as cholesterol and phospholipids. ORPs act as a sensor or transporter of those lipid ligands at membrane contact sites (MCSs) where two different cellular membranes are closely apposed. In particular, a characteristic functional property of ORPs is their role as a lipid exchanger. ORPs mediate counter-directional transport of two different lipid ligands at MCSs. Several, but not all, ORPs transport their lipid ligand from the endoplasmic reticulum (ER) in exchange for phosphatidylinositol 4-phosphate (PI4P), the other ligand, on apposed membranes. This ORP-mediated lipid “countertransport” is driven by the concentration gradient of PI4P between membranes, which is generated by its kinases and phosphatases. In this review, we will discuss how ORP function is tightly coupled to metabolism of phosphoinositides such as PI4P. Recent progress on the role of ORP-mediated lipid transport/countertransport at multiple MCSs in cellular functions will be also discussed.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
43
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
44
|
Yuan X, Hu S, Li L, Han C, Liu H, He H, Xia L, Hu J, Hu B, Ran M, Liu Y, Wang J. Lipidomics profiling of goose granulosa cell model of stearoyl-CoA desaturase function identifies a pattern of lipid droplets associated with follicle development. Cell Biosci 2021; 11:95. [PMID: 34022953 PMCID: PMC8141238 DOI: 10.1186/s13578-021-00604-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Despite their important functions and nearly ubiquitous presence in cells, an understanding of the biology of intracellular lipid droplets (LDs) in goose follicle development remains limited. An integrated study of lipidomic and transcriptomic analyses was performed in a cellular model of stearoyl-CoA desaturase (SCD) function, to determine the effects of intracellular LDs on follicle development in geese. Results Numerous internalized LDs, which were generally spherical in shape, were dispersed throughout the cytoplasm of granulosa cells (GCs), as determined using confocal microscopy analysis, with altered SCD expression affecting LD content. GC lipidomic profiling showed that the majority of the differentially abundant lipid classes were glycerophospholipids, including PA, PC, PE, PG, PI, and PS, and glycerolipids, including DG and TG, which enriched glycerophospholipid, sphingolipid, and glycerolipid metabolisms. Furthermore, transcriptomics identified differentially expressed genes (DEGs), some of which were assigned to lipid-related Gene Ontology slim terms. More DEGs were assigned in the SCD-knockdown group than in the SCD-overexpression group. Integration of the significant differentially expressed genes and lipids based on pathway enrichment analysis identified potentially targetable pathways related to glycerolipid/glycerophospholipid metabolism. Conclusions This study demonstrated the importance of lipids in understanding follicle development, thus providing a potential foundation to decipher the underlying mechanisms of lipid-mediated follicle development. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00604-6.
Collapse
Affiliation(s)
- Xin Yuan
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Shenqiang Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Liang Li
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Chunchun Han
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Hehe Liu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Hua He
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lu Xia
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiwei Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bo Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Mingxia Ran
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yali Liu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiwen Wang
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
45
|
Moreno MJ, Teles Martins PA, Bernardino EF, Abel B, Ambudkar SV. Characterization of the Lipidome and Biophysical Properties of Membranes from High Five Insect Cells Expressing Mouse P-Glycoprotein. Biomolecules 2021; 11:biom11030426. [PMID: 33799403 PMCID: PMC8001469 DOI: 10.3390/biom11030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
The lipid composition of biomembranes influences the properties of the lipid bilayer and that of the proteins. In this study, the lipidome and the lipid/protein ratio of membranes from High Five™ insect cells overexpressing mouse P-glycoprotein was characterized. This provides a better understanding of the lipid environment in which P-glycoprotein is embedded, and thus of its functional and structural properties. The relative abundance of the distinct phospholipid classes and their acyl chain composition was characterized. A mass ratio of 0.57 ± 0.11 phospholipids to protein was obtained. Phosphatidylethanolamines are the most abundant phospholipids, followed by phosphatidylcholines. Membranes are also enriched in negatively charged lipids (phosphatidylserines, phosphatidylinositols and phosphatidylglycerols), and contain small amounts of sphingomyelins, ceramides and monoglycosilatedceramides. The most abundant acyl chains are monounsaturated, with significant amounts of saturated chains. The characterization of the phospholipids by HPLC-MS allowed identification of the combination of acyl chains, with palmitoyl-oleoyl being the most representative for all major phospholipid classes except for phosphatidylserines, which are mostly saturated. A mixture of POPE:POPC:POPS in the ratio 45:35:20 is proposed for the preparation of simple representative model membranes. The adequacy of the model membranes was further evaluated by characterizing their surface potential and fluidity.
Collapse
Affiliation(s)
- Maria João Moreno
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | | | - Eva F. Bernardino
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
| | - Biebele Abel
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| |
Collapse
|
46
|
Nagano T, Iwasaki T, Onishi K, Awai Y, Terachi A, Kuwaba S, Asano S, Katasho R, Nagai K, Nakashima A, Kikkawa U, Kamada S. LY6D-induced macropinocytosis as a survival mechanism of senescent cells. J Biol Chem 2021; 296:100049. [PMID: 33168631 PMCID: PMC7948989 DOI: 10.1074/jbc.ra120.013500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol-anchored cell-surface protein whose function remains unknown. Here, we analyzed the functional relationship between LY6D and the senescence processes. We found that overexpression of LY6D induced vacuole formation and knockdown of LY6D suppressed the senescence-associated vacuole formation. The LY6D-induced vacuoles were derived from macropinocytosis, a distinct form of endocytosis. Furthermore, Src family kinases and Ras were found to be recruited to membrane lipid rafts in an LY6D-dependent manner, and inhibition of their activity impaired the LY6D-induced macropinocytosis. Finally, reduction of senescent-cell survival induced by glutamine deprivation was recovered by albumin supplementation to the culture media in an LY6D-dependent manner. Because macropinocytosis acts as an amino acid supply route, these results suggest that LY6D-mediated macropinocytosis contributes to senescent-cell survival through the incorporation of extracellular nutrients.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Tetsushi Iwasaki
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan; Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Kengo Onishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yuto Awai
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Anju Terachi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shione Kuwaba
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Shota Asano
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ryoko Katasho
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kiyoko Nagai
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan; Department of Biology, Faculty of Science, Kobe University, Kobe, Japan.
| |
Collapse
|
47
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
48
|
Penkauskas T, Zentelyte A, Ganpule S, Valincius G, Preta G. Pleiotropic effects of statins via interaction with the lipid bilayer: A combined approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183306. [DOI: 10.1016/j.bbamem.2020.183306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022]
|
49
|
Eldad S, Hertz R, Vainer G, Saada A, Bar-Tana J. Treatment of ErbB2 breast cancer by mitochondrial targeting. Cancer Metab 2020; 8:17. [PMID: 32695336 PMCID: PMC7362624 DOI: 10.1186/s40170-020-00223-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background ErbB2 breast cancer still remains an unmet need due to primary and/or acquired resistance to current treatment strategies. MEDICA compounds consist of synthetic long-chain α,ω-dicarboxylic acids previously reported to suppress breast cancer in PyMT transgenic mice. Methods MEDICA efficacy and mode of action in the ErbB2 context was studied in ErbB2 transgenic mice and human breast cancer cells. Results MEDICA treatment is shown here to suppress ErbB2 breast tumors and lung metastasis in ErbB2/neu MMTV transgenic mice, to suppress ErbB2/neu xenografts in nod/scid mice, and to suppress survival of AU565 and BT474 human ErbB2 breast cancer cells. Suppression of ErbB2 breast tumors by MEDICA is due to lipid raft disruption with loss of ErbB family members, including EGFR, ErbB2, and ErbB3. In addition, MEDICA inhibits mTORC1 activity, independently of abrogating the ErbB receptors and their signaling cascades. The double hit of MEDICA in abrogating ErbB and mTORC1 is partly accounted for by targeting mitochondria complex I. Conclusions Mitochondrial targeting by MEDICA suppresses ErbB2 breast tumors and metastasis due to lipid raft disruption and inhibition of mTORC1 activity. Inhibition of mTORC1 activity by MEDICA avoids the resistance acquired by canonical mTORC1 inhibitors like rapalogs or mTOR kinase inhibitors.
Collapse
Affiliation(s)
- Sophia Eldad
- Dept of Human Nutrition and Metabolism, Hebrew University Medical School, 91120 Jerusalem, Israel
| | - Rachel Hertz
- Dept of Human Nutrition and Metabolism, Hebrew University Medical School, 91120 Jerusalem, Israel
| | - Gilad Vainer
- Dept of Pathology, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Ann Saada
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Jacob Bar-Tana
- Dept of Human Nutrition and Metabolism, Hebrew University Medical School, 91120 Jerusalem, Israel
| |
Collapse
|
50
|
Bernabò N, Valbonetti L, Raspa M, Fontana A, Palestini P, Botto L, Paoletti R, Fray M, Allen S, Machado-Simoes J, Ramal-Sanchez M, Pilato S, Scavizzi F, Barboni B. Graphene Oxide Improves in vitro Fertilization in Mice With No Impact on Embryo Development and Preserves the Membrane Microdomains Architecture. Front Bioeng Biotechnol 2020; 8:629. [PMID: 32612987 PMCID: PMC7308453 DOI: 10.3389/fbioe.2020.00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/22/2020] [Indexed: 12/04/2022] Open
Abstract
During the latest years, human infertility worsened all over the world and is nowadays reputed as a global public health issue. As a consequence, the adoption of Assisted Reproductive Technologies (ARTs) such as In Vitro Fertilization (IVF) is undergoing an impressive increase. In this context, one of the most promising strategies is the innovative adoption of extra-physiological materials for advanced sperm preparation methods. Here, by using a murine model, the addition of Graphene Oxide (GO) at a specific concentration has demonstrated to increase the spermatozoa fertilizing ability in an IVF assay, finding that 0.5 μg/ml GO addition to sperm suspensions before IVF is able to increase both the number of fertilized oocytes and embryos created with a healthy offspring given by Embryo Transplantation (ET). In addition, GO treatment has been found more effective than that carried out with methyl-β-cyclodextrin, which represents the gold standard in promoting in vitro fertility of mice spermatozoa. Subsequent biochemical characterization of its interaction with male gametes has been additionally performed. As a result, it was found that GO exerts its positive effect by extracting cholesterol from membranes, without affecting the integrity of microdomains and thus preserving the sperm functions. In conclusion, GO improves IVF outcomes in vitro and in vivo, defining new perspectives for innovative strategies in the treatment of human infertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Marcello Raspa
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Antonella Fontana
- Department of Pharmacy, D’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | | | - Juliana Machado-Simoes
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Pilato
- Department of Pharmacy, D’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Ferdinando Scavizzi
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|