1
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Zhang JB, Wan XJ, Duan WX, Dai XQ, Xia D, Fu X, Hu LF, Wang F, Liu CF. Circadian disruption promotes the neurotoxicity of oligomeric alpha-synuclein in mice. NPJ Parkinsons Dis 2024; 10:179. [PMID: 39333201 PMCID: PMC11437279 DOI: 10.1038/s41531-024-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024] Open
Abstract
Circadian disruption often arises prior to the onset of typical motor deficits in patients with Parkinson's disease (PD). It remains unclear whether such a prevalent non-motor manifestation would contribute to the progression of PD. Diffusible oligomeric alpha-synuclein (O-αSyn) is perceived as the most toxic and rapid-transmitted species in the early stages of PD. Exploring the factors that influence the spread and toxicity of O-αSyn should be helpful for developing effective interventions for the disease. The aim of this study was to explore the effects of circadian disruption on PD pathology and parkinsonism-like behaviors in a novel mouse model induced by O-αSyn. We discovered that O-αSyn could enter the brain rapidly following intranasal administration, resulting in the formation of nitrated-αSyn pathology and non-motor symptoms of the mice. Meanwhile, circadian disruption exacerbated the burden of nitrated-αSyn pathology and accelerated the loss of dopaminergic neurons in O-αSyn-treated mice. Subsequent experiments demonstrated that circadian disruption might act via promoting nitrative stress and neuroinflammation. These findings could highlight the circadian rhythms as a potential diagnostic and therapeutic target in early-stage PD.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Xiao-Jie Wan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Xue-Qin Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Dong Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China.
- Department of Neurology, Xiongan Xuanwu Hospital, 071700, Xiongan, China.
| |
Collapse
|
3
|
Adam H, Gopinath SCB, Krishnan H, Adam T, Fakhri MA, Salim ET, Shamsher A, Subramaniam S, Chen Y. Selective detection of alpha synuclein amyloid fibrils by faradaic and non-faradaic electrochemical impedance spectroscopic approaches. Bioelectrochemistry 2024; 161:108800. [PMID: 39241513 DOI: 10.1016/j.bioelechem.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
This study utilized faradaic and non-faradaic electrochemical impedance spectroscopy to detect alpha synuclein amyloid fibrils on gold interdigitated tetraelectrodes (AuIDTE), providing valuable insights into electrochemical reactions for clinical use. AuIDE was purchased, modified with zinc oxide for increased hydrophobicity. Functionalization was conducted with hexacyanidoferrate and carbonyldiimidazole. Faradaic electrochemical impedance spectroscopy has been extensively explored in clinical diagnostics and biomedical research, providing information on the performance and stability of electrochemical biosensors. This understanding can help develop more sensitive, selective, and reliable biosensing platforms for the detection of clinically relevant analytes like biomarkers, proteins, and nucleic acids. Non-faradaic electrochemical impedance spectroscopy measures the interfacial capacitance at the electrode-electrolyte interface, eliminating the need for redox-active species and simplifying experimental setups. It has practical implications in clinical settings, like real-time detection and monitoring of biomolecules and biomarkers by tracking changes in interfacial capacitance. The limit of detection (LOD) for normal alpha synuclein in faradaic mode is 2.39-fM, The LOD for aggregated alpha synuclein detection is 1.82-fM. The LOD for non-faradaic detection of normal alpha synuclein is 2.22-fM, and the LOD for nonfaradaic detection of aggregated alpha synuclein is 2.40-fM. The proposed EIS-based AuIDTEs sensor detects alpha synuclein amyloid fibrils and it is highly sensitive.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Department of Technical Sciences, Western Caspian University, Baku, AZ 1075, Azerbaijan; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh.
| | - Hemavathi Krishnan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Makram A Fakhri
- Laser and Optoelectronics Eng. Department, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Evan T Salim
- Applied Science Department, University of Technology-Iraq, Baghdad 10066, Iraq
| | - A Shamsher
- Electrical Engineering Department, Seberang Perai Polytechnic, 13500 Permatang Pauh, Penang, Malaysia
| | - Sreeramanan Subramaniam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang, Malaysia; School of Biological Sciences, Universiti Sains Malaysia, Georgetown, 11800 Penang, Malaysia
| | - Yeng Chen
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Krawczuk D, Groblewska M, Mroczko J, Winkel I, Mroczko B. The Role of α-Synuclein in Etiology of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9197. [PMID: 39273146 PMCID: PMC11395629 DOI: 10.3390/ijms25179197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
A presynaptic protein called α-synuclein plays a crucial role in synaptic function and neurotransmitter release. However, its misfolding and aggregation have been implicated in a variety of neurodegenerative diseases, particularly Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Emerging evidence suggests that α-synuclein interacts with various cellular pathways, including mitochondrial dysfunction, oxidative stress, and neuroinflammation, which contributes to neuronal cell death. Moreover, α-synuclein has been involved in the propagation of neurodegenerative processes through prion-like mechanisms, where misfolded proteins induce similar conformational changes in neighboring neurons. Understanding the multifaced roles of α-synuclein in neurodegeneration not only aids in acquiring more knowledge about the pathophysiology of these diseases but also highlights potential biomarkers and therapeutic targets for intervention in alpha-synucleinopathies. In this review, we provide a summary of the mechanisms by which α-synuclein contributes to neurodegenerative processes, focusing on its misfolding, oligomerization, and the formation of insoluble fibrils that form characteristic Lewy bodies. Furthermore, we compare the potential value of α-synuclein species in diagnosing and differentiating selected neurodegenerative diseases.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Ścinawa, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (J.M.)
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| |
Collapse
|
5
|
Sharma S, Deep S. Inhibition of fibril formation by polyphenols: molecular mechanisms, challenges, and prospective solutions. Chem Commun (Camb) 2024; 60:6717-6727. [PMID: 38835221 DOI: 10.1039/d4cc00822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibril formation is a key feature in neurodegenerative diseases like Alzheimer's, Parkinson's, and systemic amyloidosis. Polyphenols, found in plant-based foods, show promise in inhibiting fibril formation and disrupting disease progression. The ability of polyphenols to break the amyloid fibrils of many disease-linked proteins has been tested in numerous studies. Polyphenols have their distinctive mechanism of action. They behave differently on various events in the aggregation pathway. Their action also differs for different proteins. Some polyphenols only inhibit the formation of fibrils whereas others break the preformed fibrils. Some break the fibrils into smaller species, and some change them to other morphologies. This article delves into the intricate molecular mechanisms underlying the inhibitory effects of polyphenols on fibrillogenesis, shedding light on their interactions with amyloidogenic proteins and the disruption of fibril assembly pathways. However, addressing the challenges associated with solubility, stability, and bioavailability of polyphenols is crucial. The current strategies involve nanotechnology to improve the solubility and bioavailability, thus showing the potential to enhance the efficacy of polyphenols as therapeutics. Advancements in structural biology, computational modeling, and biophysics have provided insights into polyphenol-fibril interactions, offering hope for novel therapies for neurodegenerative diseases and amyloidosis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
6
|
Behbahanipour M, Navarro S, Bárcenas O, Garcia-Pardo J, Ventura S. Bioengineered self-assembled nanofibrils for high-affinity SARS-CoV-2 capture and neutralization. J Colloid Interface Sci 2024; 674:753-765. [PMID: 38955007 DOI: 10.1016/j.jcis.2024.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred intense research efforts to develop new materials with antiviral activity. In this study, we genetically engineered amyloid-based nanofibrils for capturing and neutralizing SARS-CoV-2. Building upon the amyloid properties of a short Sup35 yeast prion sequence, we fused it to SARS-CoV-2 receptor-binding domain (RBD) capturing proteins, LCB1 and LCB3. By tuning the reaction conditions, we achieved the spontaneous self-assembly of the Sup35-LCB1 fusion protein into a highly homogeneous and well-dispersed amyloid-like fibrillar material. These nanofibrils exhibited high affinity for the SARS-CoV-2 RBD, effectively inhibiting its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, the primary entry point for the virus into host cells. We further demonstrate that this functional nanomaterial entraps and neutralizes SARS-CoV-2 virus-like particles (VLPs), with a potency comparable to that of therapeutic antibodies. As a proof of concept, we successfully fabricated patterned surfaces that selectively capture SARS-CoV-2 RBD protein on wet environments. Collectively, these findings suggest that these protein-only nanofibrils hold promise as disinfecting coatings endowed with selective SARS-CoV-2 neutralizing properties to combat viral spread or in the development of sensitive viral sampling and diagnostic tools.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
7
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology. Nat Chem Biol 2024; 20:646-655. [PMID: 38347213 PMCID: PMC11062923 DOI: 10.1038/s41589-024-01551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.
Collapse
Affiliation(s)
- Aaron T Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Binh A Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Eldon R Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Preeti Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Santos J, Pallarès I, Ventura S. A glimpse into the structural properties of α-synuclein oligomers. Biofactors 2024; 50:439-449. [PMID: 38063360 DOI: 10.1002/biof.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 06/15/2024]
Abstract
α-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis.
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Khorsand FR, Aziziyan F, Khajeh K. Factors influencing amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:55-83. [PMID: 38811089 DOI: 10.1016/bs.pmbts.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.
Collapse
Affiliation(s)
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Stroganova I, Willenberg H, Tente T, Depraz Depland A, Bakels S, Rijs AM. Exploring the Aggregation Propensity of PHF6 Peptide Segments of the Tau Protein Using Ion Mobility Mass Spectrometry Techniques. Anal Chem 2024; 96:5115-5124. [PMID: 38517679 PMCID: PMC10993201 DOI: 10.1021/acs.analchem.3c04974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Peptide and protein aggregation involves the formation of oligomeric species, but the complex interplay between oligomers of different conformations and sizes complicates their structural elucidation. Using ion mobility mass spectrometry (IM-MS), we aim to reveal these early steps of aggregation for the Ac-PHF6-NH2 peptide segment from tau protein, thereby distinguishing between different oligomeric species and gaining an understanding of the aggregation pathway. An important factor that is often neglected, but which can alter the aggregation propensity of peptides, is the terminal capping groups. Here, we demonstrate the use of IM-MS to probe the early stages of aggregate formation of Ac-PHF6-NH2, Ac-PHF6, PHF6-NH2, and uncapped PHF6 peptide segments. The aggregation propensity of the four PHF6 segments is confirmed using thioflavin T fluorescence assays and transmission electron microscopy. A novel approach based on post-IM fragmentation and quadrupole selection on the TIMS-Qq-ToF (trapped ion mobility) spectrometer was developed to enhance oligomer assignment, especially for the higher-order aggregates. This approach pushes the limits of IM identification of isobaric species, whose signatures appear closer to each other with increasing oligomer size, and provides new insights into the interpretation of IM-MS data. In addition, TIMS collision cross section values are compared with traveling wave ion mobility (TWIMS) data to evaluate potential instrumental bias in the trapped ion mobility results. The two IM-MS instrumental platforms are based on different ion mobility principles and have different configurations, thereby providing us with valuable insight into the preservation of weakly bound biomolecular complexes such as peptide aggregates.
Collapse
Affiliation(s)
- Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Hannah Willenberg
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| | - Thaleia Tente
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| | - Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sjors Bakels
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
12
|
Smith R, Hovren H, Bowser R, Bakkar N, Garruto R, Ludolph A, Ravits J, Gaertner L, Murphy D, Lebovitz R. Misfolded alpha-synuclein in amyotrophic lateral sclerosis: Implications for diagnosis and treatment. Eur J Neurol 2024; 31:e16206. [PMID: 38270442 PMCID: PMC11235862 DOI: 10.1111/ene.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Alpha-synuclein (α-Syn) oligomers and fibrils have been shown to augment the aggregation of TAR DNA-binding Protein 43 (TDP-43) monomers in vitro, supporting the idea that TDP-43 proteinopathies such as ALS may be modulated by the presence of toxic forms of α-Syn. Recently, parkinsonian features were reported in a study of European patients and Lewy bodies have been demonstrated pathologically in a similar series of patients. Based on these and other considerations, we sought to determine whether seed-competent α-Syn can be identified in spinal fluid of patients with ALS including familial, sporadic, and Guamanian forms of the disease. METHODS Based on the finding that α-Syn has been found to be a prion-like protein, we have utilized a validated α-Synuclein seed amplification assay to determine if seed-competent α-Syn could be detected in the spinal fluid of patients with ALS. RESULTS Toxic species of α-Syn were detected in CSF in 18 of 127 ALS patients, 5 of whom were from Guam. Two out of twenty six samples from patients with C9orf72 variant ALS had positive seed-amplification assays (SAAs). No positive tests were noted in superoxide dismutase type 1 ALS subjects (n = 14). The SAA was negative in 31 control subjects. CONCLUSIONS Our findings suggest that a sub-group of ALS occurs in which self-replicating α-Syn is detectable and likely contributes to its pathogenesis. This finding may have implications for the diagnosis and treatment of this disorder.
Collapse
Affiliation(s)
| | - Hanna Hovren
- Amprion Clinical LaboratorySan DiegoCaliforniaUSA
| | | | | | | | | | - John Ravits
- University of California, San DiegoLa JollaCaliforniaUSA
| | - Lia Gaertner
- Bay Area Lyme Disease FoundationPortola ValleyCaliforniaUSA
| | - Davan Murphy
- Center for Neurologic StudyLa JollaCaliforniaUSA
| | | |
Collapse
|
13
|
Saremi S, Khajeh K. Amyloid fibril cytotoxicity and associated disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:265-290. [PMID: 38811083 DOI: 10.1016/bs.pmbts.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Misfolded proteins assemble into fibril structures that are called amyloids. Unlike usually folded proteins, misfolded fibrils are insoluble and deposit extracellularly or intracellularly. Misfolded proteins interrupt the function and structure of cells and cause amyloid disease. There is increasing evidence that the most pernicious species are oligomers. Misfolded proteins disrupt cell function and cause cytotoxicity by calcium imbalance, mitochondrial dysfunction, and intracellular reactive oxygen species. Despite profound impacts on health, social, and economic factors, amyloid diseases remain untreatable. To develop new therapeutics and to understand the pathological manifestations of amyloidosis, research into the origin and pathology of amyloidosis is urgently needed. This chapter describes the basic concept of amyloid disease and the function of atypical amyloid deposits in them.
Collapse
Affiliation(s)
- Sabereh Saremi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Stepanchuk AA, Stys PK. Spectral Fluorescence Pathology of Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:898-908. [PMID: 38407017 DOI: 10.1021/acschemneuro.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Protein misfolding has been extensively studied in the context of neurodegenerative disorders and systemic amyloidoses. Due to misfolding and aggregation of proteins being highly heterogeneous and generating a variety of structures, a growing body of evidence illustrates numerous ways how the aggregates contribute to progression of diseases such as Alzheimer's disease, Parkinson's disease, and prion disorders. Different misfolded species of the same protein, commonly referred to as strains, appear to play a significant role in shaping the disease clinical phenotype and clinical progression. The distinct toxicity profiles of various misfolded proteins underscore their importance. Current diagnostics struggle to differentiate among these strains early in the disease course. This review explores the potential of spectral fluorescence approaches to illuminate the complexities of protein misfolding pathology and discusses the applications of advanced spectral methods in the detection and characterization of protein misfolding disorders. By examining spectrally variable probes, current data analysis approaches, and important considerations for the use of these techniques, this review aims to provide an overview of the progress made in this field and highlights directions for future research.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Masse M, Hutchinson RB, Morgan CE, Allaman HJ, Guan H, Yu EW, Cavagnero S. Mapping Protein-Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome-Nascent Globin Complex. ACS CENTRAL SCIENCE 2024; 10:385-401. [PMID: 38435509 PMCID: PMC10906257 DOI: 10.1021/acscentsci.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024]
Abstract
Interactions between ribosome-bound nascent chains (RNCs) and ribosomal components are critical to elucidate the mechanism of cotranslational protein folding. Nascent protein-ribosome contacts within the ribosomal exit tunnel were previously assessed mostly in the presence of C-terminal stalling sequences, yet little is known about contacts taking place in the absence of these strongly interacting motifs. Further, there is nearly no information about ribosomal proteins (r-proteins) interacting with nascent chains within the outer surface of the ribosome. Here, we combine chemical cross-linking, single-particle cryo-EM, and fluorescence anisotropy decays to determine the structural features of ribosome-bound apomyoglobin (apoMb). Within the ribosomal exit tunnel core, interactions are similar to those identified in previous reports. However, once the RNC enters the tunnel vestibule, it becomes more dynamic and interacts with ribosomal RNA (rRNA) and the L23 r-protein. Remarkably, on the outer surface of the ribosome, RNCs interact mainly with a highly conserved nonpolar patch of the L23 r-protein. RNCs also comprise a compact and dynamic N-terminal region lacking contact with the ribosome. In all, apoMb traverses the ribosome and interacts with it via its C-terminal region, while N-terminal residues sample conformational space and form a compact subdomain before the entire nascent protein sequence departs from the ribosome.
Collapse
Affiliation(s)
- Meranda
M. Masse
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Rachel B. Hutchinson
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Christopher E. Morgan
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather J. Allaman
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hongqing Guan
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Edward W. Yu
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
17
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|
19
|
Röntgen A, Toprakcioglu Z, Tomkins JE, Vendruscolo M. Modulation of α-synuclein in vitro aggregation kinetics by its alternative splice isoforms. Proc Natl Acad Sci U S A 2024; 121:e2313465121. [PMID: 38324572 PMCID: PMC10873642 DOI: 10.1073/pnas.2313465121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024] Open
Abstract
The misfolding and aggregation of α-synuclein is linked to a family of neurodegenerative disorders known as synucleinopathies, the most prominent of which is Parkinson's disease (PD). Understanding the aggregation process of α-synuclein from a mechanistic point of view is thus of key importance. SNCA, the gene encoding α-synuclein, comprises six exons and produces various isoforms through alternative splicing. The most abundant isoform is expressed as a 140-amino acid protein (αSyn-140), while three other isoforms, αSyn-126, αSyn-112, and αSyn-98, are generated by skipping exon 3, exon 5, or both exons, respectively. In this study, we performed a detailed biophysical characterization of the aggregation of these four isoforms. We found that αSyn-112 and αSyn-98 exhibit accelerated aggregation kinetics compared to αSyn-140 and form distinct aggregate morphologies, as observed by transmission electron microscopy. Moreover, we observed that the presence of relatively small amounts of αSyn-112 accelerates the aggregation of αSyn-140, significantly reducing the aggregation half-time. These results indicate a potential role of alternative splicing in the pathological aggregation of α-synuclein and provide insights into how this process could be associated with the development of synucleinopathies.
Collapse
Affiliation(s)
- Alexander Röntgen
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - James E. Tomkins
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf HamiedDepartment of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
20
|
Bayandina SV, Mukha DV. Saccharomyces cerevisiae as a Model for Studying Human Neurodegenerative Disorders: Viral Capsid Protein Expression. Int J Mol Sci 2023; 24:17213. [PMID: 38139041 PMCID: PMC10743263 DOI: 10.3390/ijms242417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this article, we briefly describe human neurodegenerative diseases (NDs) and the experimental models used to study them. The main focus is the yeast Saccharomyces cerevisiae as an experimental model used to study neurodegenerative processes. We review recent experimental data on the aggregation of human neurodegenerative disease-related proteins in yeast cells. In addition, we describe the results of studies that were designed to investigate the molecular mechanisms that underlie the aggregation of reporter proteins. The advantages and disadvantages of the experimental approaches that are currently used to study the formation of protein aggregates are described. Special attention is given to the similarity between aggregates that form as a result of protein misfolding and viral factories-special structural formations in which viral particles are formed inside virus-infected cells. A separate part of the review is devoted to our previously published study on the formation of aggregates upon expression of the insect densovirus capsid protein in yeast cells. Based on the reviewed results of studies on NDs and related protein aggregation, as well as viral protein aggregation, a new experimental model system for the study of human NDs is proposed. The core of the proposed system is a comparative transcriptomic analysis of changes in signaling pathways during the expression of viral capsid proteins in yeast cells.
Collapse
Affiliation(s)
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
21
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Posadas Y, Sánchez-López C, Quintanar L. Copper binding and protein aggregation: a journey from the brain to the human lens. RSC Chem Biol 2023; 4:974-985. [PMID: 38033729 PMCID: PMC10685798 DOI: 10.1039/d3cb00145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Metal ions have been implicated in several proteinopathies associated to degenerative and neurodegenerative diseases. While the molecular mechanisms for protein aggregation are still under investigation, recent findings from Cryo-EM point out to polymorphisms in aggregates obtained from patients, as compared to those formed in vitro, suggesting that several factors may impact aggregation in vivo. One of these factors could be the direct binding of metal ions to the proteins engaged in aggregate formation. In this opinion article, three case studies are discussed to address the question of how metal ion binding to a peptide or protein may impact its conformation, folding, and aggregation, and how this may be relevant in understanding the polymorphic nature of the aggregates related to disease. Specifically, the impact of Cu2+ ions in the amyloid aggregation of amyloid-β and amylin (or IAPP- islet amyloid polypeptide) are discussed and then contrasted to the case of Cu2+-induced non-amyloid aggregation of human lens γ-crystallin proteins. For the intrinsically disordered peptides amyloid-β and IAPP, the impact of Cu2+ ion binding is highly dependent on the relative location of the metal binding site and the hydrophobic regions involved in β-sheet folding and amyloid formation. Further structural studies of how Cu2+ binding impacts amyloid aggregation pathways and the molecular structure of the final amyloid fibril, both, in vitro and in vivo, will certainly shed light into the molecular origins of the polymorphisms observed in diseased tissue. Finally, contrasting these cases to that of Cu2+-induced non-amyloid aggregation of γ-crystallins, it is evident that, although the impact in aggregation - and the nature of the aggregate - may differ in each system, at the molecular level there is a competition between metal ion coordination and the stability of β-sheet structures. Considering the importance of the β-sheet fold in biology, it is fundamental to understand the energetics and molecular details behind such competition. This opinion article aims to highlight future research directions in the field that can help tackle the important question of how metal ion binding may impact protein folding and aggregation and how this relates to disease.
Collapse
Affiliation(s)
- Yanahi Posadas
- Center for Research in Aging, Center for Research and Advanced Studies (Cinvestav) Mexico City 14330 Mexico
| | - Carolina Sánchez-López
- Center for Research in Aging, Center for Research and Advanced Studies (Cinvestav) Mexico City 14330 Mexico
| | - Liliana Quintanar
- Center for Research in Aging, Center for Research and Advanced Studies (Cinvestav) Mexico City 14330 Mexico
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav) Mexico City 07350 Mexico
| |
Collapse
|
23
|
He KJ, Zhang JB, Liu JY, Zhao FL, Yao XY, Tang YT, Zhang JR, Cheng XY, Hu LF, Wang F, Liu CF. LRRK2 G2019S promotes astrocytic inflammation induced by oligomeric α-synuclein through NF-κB pathway. iScience 2023; 26:108130. [PMID: 37876795 PMCID: PMC10590863 DOI: 10.1016/j.isci.2023.108130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/07/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.
Collapse
Affiliation(s)
- Kai-Jie He
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affilicated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Feng-Lun Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin-Ru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830063, China
| |
Collapse
|
24
|
Bigi A, Cascella R, Cecchi C. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regen Res 2023; 18:2332-2342. [PMID: 37282450 PMCID: PMC10360081 DOI: 10.4103/1673-5374.371345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Uceda AB, Ramis R, Pauwels K, Adrover M, Mariño L, Frau J, Vilanova B. Understanding the effect of the membrane-mimetic micelles on the interplay between α-synuclein and Cu(II)/Cu(I) cations. J Inorg Biochem 2023; 247:112344. [PMID: 37542850 DOI: 10.1016/j.jinorgbio.2023.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
α-Synuclein (αS) is a presynaptic protein whose aggregates are considered as a hallmark of Parkinson's disease (PD). Although its physiological function is still under debate, it is widely accepted that its functions are always mediated by its interaction with membranes. The association of αS with phospholipid membranes occurs concomitant to its folding from its monomeric, unfolded state towards an antiparallel amphipathic α-helix. Besides this, copper ions can also bind αS and modify its aggregation propensity. The effect of Cu(II) and Cu(I) on the lipid-αS affinity and on the structure of the membrane-bound αS have not yet been studied. This knowledge is relevant to understand the molecular pathogenesis of PD. Therefore, we have here studied the affinities between Cu(II) and Cu(I) and the micelle-bound αS, as well as the effect of these cations on the structure of micelle-bound αS. Cu(II) or Cu(I) did not affect the α-helical structure of the micelle-bound αS. However, while Cu(I) binds at the same sites of αS in the presence or in the absence of micelles, the micelle-bound αS displays different Cu(II) binding sites than unbound αS. In any case, sodium docecyl sulphate -micelles reduce the stability of the αS complexes with both Cu(II) and Cu(I). Finally, we have observed that the micelle-bound αS is still able to prevent the Cu(II)-catalysed oxidation of neuronal metabolites (e.g. ascorbic acid) and the formation of reactive oxygen species, thus this binding does not impair its biological function as part of the antioxidant machinery.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Rafael Ramis
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain; Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Kris Pauwels
- Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Miquel Adrover
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Juan Frau
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Bartolomé Vilanova
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain.
| |
Collapse
|
26
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
27
|
Suthar SK, Lee SY. Truncation or proteolysis of α-synuclein in Parkinsonism. Ageing Res Rev 2023; 90:101978. [PMID: 37286088 DOI: 10.1016/j.arr.2023.101978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Posttranslational modifications of α-synuclein, such as truncation or abnormal proteolysis, are implicated in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A key focus of this article includes the proteases responsible for inducing truncation, the specific sites susceptible to truncation, and the resultant influence of these truncated species on the seeding and aggregation of endogenous α-synuclein. We also shed light on the unique structural attributes of these truncated species, and how these modifications can lead to distinctive forms of synucleinopathies. In addition, we explore the comparative toxic potentials of various α-synuclein species. An extensive analysis of available evidence of truncated α-synuclein species in human-synucleinopathy brains is also provided. Lastly, we delve into the detrimental impact of truncated species on key cellular structures such as the mitochondria and endoplasmic reticulum. Our article discusses enzymes involved in α-synuclein truncation, including 20 S proteasome, cathepsins, asparagine endopeptidase, caspase-1, calpain-1, neurosin/kallikrein-6, matrix metalloproteinase-1/-3, and plasmin. Truncation patterns impact α-synuclein aggregation - C-terminal truncation accelerates aggregation with larger truncations correlated with shortened aggregation lag times. N-terminal truncation affects aggregation differently based on the truncation location. C-terminally truncated α-synuclein forms compact, shorter fibrils compared to the full-length (FL) protein. N-terminally truncated monomers form fibrils similar in length to FL α-synuclein. Truncated forms show distinct fibril morphologies, increased β-sheet structures, and greater protease resistance. Misfolded α-synuclein can adopt various conformations, leading to unique aggregates and distinct synucleinopathies. Fibrils, with prion-like transmission, are potentially more toxic than oligomers, though this is still debated. Different α-synuclein variants with N- and C-terminal truncations, namely 5-140, 39-140, 65-140, 66-140, 68-140, 71-140, 1-139, 1-135, 1-133, 1-122, 1-119, 1-115, 1-110, and 1-103 have been found in PD, DLB, and MSA patients' brains. In Parkinsonism, excess misfolded α-synuclein overwhelms the proteasome degradation system, resulting in truncated protein production and accumulation in the mitochondria and endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, South Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea.
| |
Collapse
|
28
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
29
|
Peng H, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Alpha-synuclein in skin as a high-quality biomarker for Parkinson's disease. J Neurol Sci 2023; 451:120730. [PMID: 37454572 DOI: 10.1016/j.jns.2023.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Parkinson's disease (PD), the most common neurological motor system disorder, which characterised by the irreversible loss of dopaminergic neurones in the substantia nigra pars compacta, and leads to the deficiency of dopamine in the striatum. Deposited Lewy bodies (LBs) in diseased neurones and nerve terminals are the pathological hallmark of PD, and alpha-synuclein (α-Syn) is the most prominent protein in LBs. The tight association between α-Syn and the molecular pathology of PD has generatly increaed the interest in using the α-Syn species as biomarkers to diagnose early PD. α-Syn is not confined to the central nervous system, it is also present in the peripheral tissues, such as human skin. The assessment of skin α-Syn has the potential to be a diagnostic method that not only has excellent sensitivity, specificity, and reproducibility, but also convenient and acceptable to patients. In this review, we (i) integrate the biochemical, aggregation and structural features of α-Syn; (ii) map the distribution of the α-Syn species present in the brain, biological fluids, and peripheral tissues; and (iii) present a critical and comparative analysis of previous studies that have measured α-Syn in the skin. Finally, we provide an outlook on the future of skin biopsy as a diagnostic approach for PD, and highlight its potential implications for clinical trials, clinical decision-making, treatment strategies as well as the development of new therapies.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Siyuan Chen
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Shaopu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
30
|
Hnath B, Chen J, Reynolds J, Choi E, Wang J, Zhang D, Sha CM, Dokholyan NV. Big versus small: The impact of aggregate size in disease. Protein Sci 2023; 32:e4686. [PMID: 37243896 PMCID: PMC10273386 DOI: 10.1002/pro.4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Protein aggregation results in an array of different size soluble oligomers and larger insoluble fibrils. Insoluble fibrils were originally thought to cause neuronal cell deaths in neurodegenerative diseases due to their prevalence in tissue samples and disease models. Despite recent studies demonstrating the toxicity associated with soluble oligomers, many therapeutic strategies still focus on fibrils or consider all types of aggregates as one group. Oligomers and fibrils require different modeling and therapeutic strategies, targeting the toxic species is crucial for successful study and therapeutic development. Here, we review the role of different-size aggregates in disease, and how factors contributing to aggregation (mutations, metals, post-translational modifications, and lipid interactions) may promote oligomers opposed to fibrils. We review two different computational modeling strategies (molecular dynamics and kinetic modeling) and how they are used to model both oligomers and fibrils. Finally, we outline the current therapeutic strategies targeting aggregating proteins and their strengths and weaknesses for targeting oligomers versus fibrils. Altogether, we aim to highlight the importance of distinguishing the difference between oligomers and fibrils and determining which species is toxic when modeling and creating therapeutics for protein aggregation in disease.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jiaxing Chen
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Joshua Reynolds
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Esther Choi
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jian Wang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Dongyan Zhang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Congzhou M. Sha
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Nikolay V. Dokholyan
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry & Molecular BiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of ChemistryPenn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
31
|
Lee J, Sung KW, Bae EJ, Yoon D, Kim D, Lee JS, Park DH, Park DY, Mun SR, Kwon SC, Kim HY, Min JO, Lee SJ, Suh YH, Kwon YT. Targeted degradation of ⍺-synuclein aggregates in Parkinson's disease using the AUTOTAC technology. Mol Neurodegener 2023; 18:41. [PMID: 37355598 PMCID: PMC10290391 DOI: 10.1186/s13024-023-00630-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/31/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND There are currently no disease-modifying therapeutics for Parkinson's disease (PD). Although extensive efforts were undertaken to develop therapeutic approaches to delay the symptoms of PD, untreated α-synuclein (α-syn) aggregates cause cellular toxicity and stimulate further disease progression. PROTAC (Proteolysis-Targeting Chimera) has drawn attention as a therapeutic modality to target α-syn. However, no PROTACs have yet shown to selectively degrade α-syn aggregates mainly owing to the limited capacity of the proteasome to degrade aggregates, necessitating the development of novel approaches to fundamentally eliminate α-syn aggregates. METHODS We employed AUTOTAC (Autophagy-Targeting Chimera), a macroautophagy-based targeted protein degradation (TPD) platform developed in our earlier studies. A series of AUTOTAC chemicals was synthesized as chimeras that bind both α-syn aggregates and p62/SQSTM1/Sequestosome-1, an autophagic receptor. The efficacy of Autotacs was evaluated to target α-syn aggregates to phagophores and subsequently lysosomes for hydrolysis via p62-dependent macroautophagy. The target engagement was monitored by oligomerization and localization of p62 and autophagic markers. The therapeutic efficacy to rescue PD symptoms was characterized in cultured cells and mice. The PK/PD (pharmacokinetics/pharmacodynamics) profiles were investigated to develop an oral drug for PD. RESULTS ATC161 induced selective degradation of α-syn aggregates at DC50 of ~ 100 nM. No apparent degradation was observed with monomeric α-syn. ATC161 mediated the targeting of α-syn aggregates to p62 by binding the ZZ domain and accelerating p62 self-polymerization. These p62-cargo complexes were delivered to autophagic membranes for lysosomal degradation. In PD cellular models, ATC161 exhibited therapeutic efficacy to reduce cell-to-cell transmission of α-syn and to rescue cells from the damages in DNA and mitochondria. In PD mice established by injecting α-syn preformed fibrils (PFFs) into brain striata via stereotaxic surgery, oral administration of ATC161 at 10 mg/kg induced the degradation of α-syn aggregates and reduced their propagation. ATC161 also mitigated the associated glial inflammatory response and improved muscle strength and locomotive activity. CONCLUSION AUTOTAC provides a platform to develop drugs for PD. ATC161, an oral drug with excellent PK/PD profiles, induces selective degradation of α-syn aggregates in vitro and in vivo. We suggest that ATC161 is a disease-modifying drug that degrades the pathogenic cause of PD.
Collapse
Affiliation(s)
- Jihoon Lee
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Ki Woon Sung
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Eun-Jin Bae
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Dabin Yoon
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
- Department of Physical Education, Sejong University, Seoul, 05006, Republic of Korea
| | - Dasarang Kim
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Jin Saem Lee
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Daniel Youngjae Park
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Soon Chul Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hye Yeon Kim
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Joo-Ok Min
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuramedy Co. Ltd, Seoul, 04796, Republic of Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea.
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
32
|
Addabbo RM, Hutchinson RB, Allaman HJ, Dalphin MD, Mecha MF, Liu Y, Staikos A, Cavagnero S. Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System. J Phys Chem B 2023; 127:3990-4014. [PMID: 37130318 PMCID: PMC10829761 DOI: 10.1021/acs.jpcb.2c08485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins are particularly prone to aggregation immediately after release from the ribosome, and it is therefore important to elucidate the role of chaperones during these key steps of protein life. The Hsp70 and trigger factor (TF) chaperone systems interact with nascent proteins during biogenesis and immediately post-translationally. It is unclear, however, whether these chaperones can prevent formation of soluble and insoluble aggregates. Here, we address this question by monitoring the solubility and structural accuracy of globin proteins biosynthesized in an Escherichia coli cell-free system containing different concentrations of the bacterial Hsp70 and TF chaperones. We find that Hsp70 concentrations required to grant solubility to newly synthesized proteins are extremely sensitive to client-protein sequence. Importantly, Hsp70 concentrations yielding soluble client proteins are insufficient to prevent formation of soluble aggregates. In fact, for some aggregation-prone protein variants, avoidance of soluble-aggregate formation demands Hsp70 concentrations that exceed cellular levels in E. coli. In all, our data highlight the prominent role of soluble aggregates upon nascent-protein release from the ribosome and show the limitations of the Hsp70 chaperone system in the case of highly aggregation-prone proteins. These results demonstrate the need to devise better strategies to prevent soluble-aggregate formation upon release from the ribosome.
Collapse
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Rachel B. Hutchinson
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Heather J. Allaman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| |
Collapse
|
33
|
Li X, Yang Z, Chen Y, Zhang S, Wei G, Zhang L. Dissecting the Molecular Mechanisms of the Co-Aggregation of Aβ40 and Aβ42 Peptides: A REMD Simulation Study. J Phys Chem B 2023; 127:4050-4060. [PMID: 37126408 DOI: 10.1021/acs.jpcb.3c01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) into oligomers and amyloid fibrils is closely related to Alzheimer's disease (AD). Aβ40 and Aβ42, as two most prominent isoforms of Aβ peptides, can cross-interact with each other and form co-aggregates, which affect the progression of the disease. However, the molecular determinants underlying Aβ40 and Aβ42 cross-interaction and the structural details of their co-oligomers remain elusive. Herein, we performed all-atom explicit-solvent replica exchange molecular dynamics simulations on Aβ40-Aβ42 heterogeneous and Aβ40/Aβ42 homogeneous dimer systems to dissect the co-aggregation mechanisms of the two isoforms. Our results show that the interpeptide main-chain interaction of Aβ40-Aβ42 is stronger than that of Aβ40-Aβ40 and Aβ42-Aβ42. The positions of hotspot residues in heterodimers and homodimers display high similarity, implying similar molecular recognition sites for both cross-interaction and self-interaction. Contact maps of Aβ40-Aβ42 heterodimers reveal that residue pairs crucial for cross-interaction are mostly located in the C-terminal hydrophobic regions of Aβ40 and Aβ42 peptides. Conformational analysis shows that Aβ40 and Aβ42 monomers can co-assemble into β-sheet-rich heterodimers with shorter β-sheets than those in homodimers, which is decremental to monomer addition. Similar molecular recognition sites and β-sheet distribution of Aβ40 and Aβ42 peptides are observed in heterodimers and homodimers, which may provide the molecular basis for the two isoforms' co-aggregation and cross-seeding. Our work dissects the co-aggregation mechanisms of Aβ40 and Aβ42 peptides at the atomic level, which will help for in-depth understanding of the cross-talk between the two Aβ isoforms and the pathogenesis of AD.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
34
|
Majid N, Siddiqi MK, Hassan MN, Malik S, Khan S, Khan RH. Inhibition of primary and secondary nucleation alongwith disruption of amyloid fibrils and alleviation of associated cytotoxicity: A biophysical insight of a novel property of Chlorpropamide (an anti-diabetic drug). BIOMATERIALS ADVANCES 2023; 151:213450. [PMID: 37148596 DOI: 10.1016/j.bioadv.2023.213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Aggregation of physiologically synthesized soluble proteins to insoluble, cytotoxic fibrils is a pre-requisite for pathogenesis of amyloid associated disorders including Alzheimer's disease, non-systemic amyloidosis, Parkinson's disease, etc. Considerable advancement has been made to understand the mechanism behind aggregation process but till date we have no efficient cure and preventive therapy for associated diseases. Strategies to prevent protein aggregation are nevertheless many which have been proved promisingly successful in vitro. One of those is repurposing already approved drugs that saves time and money too and has been employed in this study. Here, for the first time we are reporting the effectiveness of an anti-diabetic drug chlorpropamide (CHL) under dosage conditions, a novel property to inhibit aggregation in human lysozyme (HL) in vitro. Spectroscopic (Turbidity, RLS, ThT, DLS, ANS) and microscopic (CLSM) results demonstrates that CHL has the potency to suppress aggregation in HL up to 70 %. CHL is shown to affect the elongation of fibrils with IC50 value of 88.5 μM as clear from the kinetics results, may be by interacting near/with aggregation prone regions of HL. Hemolytic assay also revealed the reduced cytotoxicity in the presence of CHL. Disruption of amyloid fibrils and inhibition of secondary nucleation in the presence of CHL was also evidenced by ThT, CD and CLSM results with reduced cytotoxicity as confirmed by hemolytic assay. We also performed preliminary studies on α-synuclein fibrillation inhibition and surprisingly found that CHL is not just inhibiting the fibrillation but also stabilizing the protein in its native state. These findings insinuate that CHL (anti-diabetic) possess multiple roles and can be a promising drug for developing therapeutic against non-systemic amyloidosis, Parkinson's disease and other amyloid associated disorders.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Khursheed Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India; Department of Pathology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Seema Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
35
|
Bigi A, Lombardo E, Cascella R, Cecchi C. The Toxicity of Protein Aggregates: New Insights into the Mechanisms. Int J Mol Sci 2023; 24:7974. [PMID: 37175681 PMCID: PMC10178715 DOI: 10.3390/ijms24097974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The aberrant aggregation of specific peptides and proteins is the common feature of a range of more than 50 human pathologies, collectively referred to as protein misfolding diseases [...].
Collapse
|
36
|
Mazzotta GM, Ceccato N, Conte C. Synucleinopathies Take Their Toll: Are TLRs a Way to Go? Cells 2023; 12:cells12091231. [PMID: 37174631 PMCID: PMC10177040 DOI: 10.3390/cells12091231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nadia Ceccato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
37
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
38
|
Ferrari E, Salvadè M, Zianni E, Brumana M, DiLuca M, Gardoni F. Detrimental effects of soluble α-synuclein oligomers at excitatory glutamatergic synapses. Front Aging Neurosci 2023; 15:1152065. [PMID: 37009450 PMCID: PMC10060538 DOI: 10.3389/fnagi.2023.1152065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Oligomeric and fibrillar species of the synaptic protein α-synuclein are established key players in the pathophysiology of Parkinson's disease and other synucleinopathies. Increasing evidence in the literature points to prefibrillar oligomers as the main cytotoxic species driving dysfunction in diverse neurotransmitter systems even at early disease stages. Of note, soluble oligomers have recently been shown to alter synaptic plasticity mechanisms at the glutamatergic cortico-striatal synapse. However, the molecular and morphological detrimental events triggered by soluble α-synuclein aggregates that ultimately lead to excitatory synaptic failure remain mostly elusive. Methods In the present study, we aimed to clarify the effects of soluble α-synuclein oligomers (sOligo) in the pathophysiology of synucleinopathies at cortico-striatal and hippocampal excitatory synapses. To investigate early defects of the striatal synapse in vivo, sOligo were inoculated in the dorsolateral striatum of 2-month-old wild-type C57BL/6J mice, and molecular and morphological analyses were conducted 42 and 84 days post-injection. In parallel, primary cultures of rat hippocampal neurons were exposed to sOligo, and molecular and morphological analyses were performed after 7 days of treatment. Results In vivo sOligo injection impaired the post-synaptic retention of striatal ionotropic glutamate receptors and decreased the levels of phosphorylated ERK at 84 days post-injection. These events were not correlated with morphological alterations at dendritic spines. Conversely, chronic in vitro administration of sOligo caused a significant decrease in ERK phosphorylation but did not significantly alter post-synaptic levels of ionotropic glutamate receptors or spine density in primary hippocampal neurons. Conclusion Overall, our data indicate that sOligo are involved in pathogenic molecular changes at the striatal glutamatergic synapse, confirming the detrimental effect of these species in an in vivo synucleinopathy model. Moreover, sOligo affects the ERK signaling pathway similarly in hippocampal and striatal neurons, possibly representing an early mechanism that anticipates synaptic loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
40
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc modification forces the formation of an α-Synuclein amyloid-strain with notably diminished seeding activity and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531573. [PMID: 36945566 PMCID: PMC10028859 DOI: 10.1101/2023.03.07.531573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strains, that exhibit distinct structures, toxic properties, seeding activities, and pathology spreading patterns in the brain. Therefore, understanding the molecular and structural determinants contributing to the formation of different amyloid strains or their distinct features could open new avenues for developing disease-specific diagnostics and therapies. In this work, we report that O-GlcNAc modification of α-Synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by Cryo-EM, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-Synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that post-translational modifications, such as O-GlcNAc modification, of α-Synuclein are key determinants of α-Synuclein amyloid strains and pathogenicity. These findings have significant implications for how we investigate and target amyloids in the brain and could possibly explain the lack of correlation between amyloid burden and neurodegeneration or cognitive decline in some subtypes of NDDs.
Collapse
Affiliation(s)
- Aaron T. Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Binh A Nguyen
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Eldon R. Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Preeti Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Shumaila Afrin
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Rose Pedretti
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virender Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virginia M.-Y. Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C. Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
41
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
42
|
Indolylazine Derivative Induces Chaperone Expression in Aged Neural Cells and Prevents the Progression of Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248950. [PMID: 36558082 PMCID: PMC9785687 DOI: 10.3390/molecules27248950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The risk of progression of most sporadic neurodegenerative diseases, including Alzheimer's disease, increases with age. Traditionally, this is associated with a decrease in the efficiency of cell protection systems, in particular, molecular chaperones. Thus, the development of small molecules able to induce the synthesis of chaperones is a promising therapeutic approach to prevent neural diseases associated with ageing. Here, we describe a new compound IA-50, belonging to the class of indolylazines and featured by a low size of topological polar surface area, the property related to substances with potentially high membrane-penetrating activity. We also estimated the absorption, distribution, metabolism and excretion characteristics of IA-50 and found the substance to fit the effective drug criteria. The new compound was found to induce the synthesis and accumulation of Hsp70 in normal and aged neurons and in the hippocampi of young and old mice. The transgenic model of Alzheimer's disease, based on 5xFAD mice, confirmed that the injection of IA-50 prevented the formation of β-amyloid aggregates, loss of hippocampal neurons and the development of memory impairment. These data indicate that this novel substance may induce the expression of chaperones in neural cells and brain tissues, suggesting its possible application in the therapy of ageing-associated disorders.
Collapse
|
43
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
44
|
Di Scala C, Armstrong N, Chahinian H, Chabrière E, Fantini J, Yahi N. AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery. Int J Mol Sci 2022; 23:ijms232113383. [PMID: 36362170 PMCID: PMC9654333 DOI: 10.3390/ijms232113383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.
Collapse
Affiliation(s)
- Coralie Di Scala
- Neuroscience Center—HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicholas Armstrong
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
- Correspondence:
| |
Collapse
|
45
|
Rahmani Z, Surabhi S, Rojo-Cortés F, Dulac A, Jenny A, Birman S. Lamp1 Deficiency Enhances Sensitivity to α-Synuclein and Oxidative Stress in Drosophila Models of Parkinson Disease. Int J Mol Sci 2022; 23:13078. [PMID: 36361864 PMCID: PMC9657416 DOI: 10.3390/ijms232113078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2023] Open
Abstract
Parkinson disease (PD) is a common neurodegenerative condition affecting people predominantly at old age that is characterized by a progressive loss of midbrain dopaminergic neurons and by the accumulation of α-synuclein-containing intraneuronal inclusions known as Lewy bodies. Defects in cellular degradation processes such as the autophagy-lysosomal pathway are suspected to be involved in PD progression. The mammalian Lysosomal-associated membrane proteins LAMP1 and LAMP2 are transmembrane glycoproteins localized in lysosomes and late endosomes that are involved in autophagosome/lysosome maturation and function. Here, we show that the lack of Drosophila Lamp1, the homolog of LAMP1 and LAMP2, severely increased fly susceptibility to paraquat, a pro-oxidant compound known as a potential PD inducer in humans. Moreover, the loss of Lamp1 also exacerbated the progressive locomotor defects induced by the expression of PD-associated mutant α-synuclein A30P (α-synA30P) in dopaminergic neurons. Remarkably, the ubiquitous re-expression of Lamp1 in a mutant context fully suppressed all these defects and conferred significant resistance towards both PD factors above that of wild-type flies. Immunostaining analysis showed that the brain levels of α-synA30P were unexpectedly decreased in young adult Lamp1-deficient flies expressing this protein in comparison to non-mutant controls. This suggests that Lamp1 could neutralize α-synuclein toxicity by promoting the formation of non-pathogenic aggregates in neurons. Overall, our findings reveal a novel role for Drosophila Lamp1 in protecting against oxidative stress and α-synuclein neurotoxicity in PD models, thus furthering our understanding of the function of its mammalian homologs.
Collapse
Affiliation(s)
- Zohra Rahmani
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| | - Satya Surabhi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Francisca Rojo-Cortés
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, UMR 8249, CNRS, ESPCI Paris, PSL University, 75005 Paris, France
| |
Collapse
|
46
|
Horsley JR, Jovcevski B, Pukala TL, Abell AD. Designer D-peptides targeting the N-terminal region of α-synuclein to prevent parkinsonian-associated fibrilization and cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140826. [PMID: 35926717 DOI: 10.1016/j.bbapap.2022.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The deposition of α-synuclein (αS) aggregates in the gut and the brain is ever present in cases of Parkinson's disease. While the central non-amyloidogenic-component (NAC) region of αS plays a critical role in fibrilization, recent studies have identified a specific sequence from within the N-terminal region (NTR, residues 36-42) as a key modulator of αS fibrilization. Due to the lack of effective therapeutics which specifically target αS aggregates, we have developed a strategy to prevent the aggregation and subsequent toxicity attributed to αS fibrilization utilizing NTR targeting peptides. In this study, L- and D-isoforms of a hexa- (VAQKTV-Aib, 77-82 NAC) and heptapeptide (GVLYVGS-Aib, 36-42 NTR) containing a self-recognition component unique to αS, as well as a C-terminal disruption element, were synthesized to target primary sequence regions of αS that modulate fibrilization. The D-peptide that targets the NTR (NTR-TP-D) was shown by ThT fluorescence assays and TEM to be the most effective at preventing fibril formation and elongation, as well as increasing the abundance of soluble monomeric αS. In addition, NTR-TP-D alters the conformation of destabilised monomers into a less aggregation-prone state and reduces the hydrophobicity of αS fibrils via fibril remodelling. Furthermore, both NTR-TP isoforms alleviate the cytotoxic effects of αS aggregates in both Neuro-2a and Caco-2 cells. Together, this study highlights how targeting the NTR of αS using D-isoform peptide inhibitors may effectively combat the deleterious effects of αS fibrilization and paves the way for future drug design to utilise such an approach to treat Parkinson's disease.
Collapse
Affiliation(s)
- John R Horsley
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia.
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Department of Food Science, School of Agriculture, Food & Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Tara L Pukala
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
47
|
Bigi A, Cascella R, Chiti F, Cecchi C. Amyloid fibrils act as a reservoir of soluble oligomers, the main culprits in protein deposition diseases. Bioessays 2022; 44:e2200086. [DOI: 10.1002/bies.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2021] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| |
Collapse
|
48
|
Forloni G, La Vitola P, Balducci C. Oligomeropathies, inflammation and prion protein binding. Front Neurosci 2022; 16:822420. [PMID: 36081661 PMCID: PMC9445368 DOI: 10.3389/fnins.2022.822420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The central role of oligomers, small soluble aggregates of misfolded proteins, in the pathogenesis of neurodegenerative disorders is recognized in numerous experimental conditions and is compatible with clinical evidence. To underline this concept, some years ago we coined the term oligomeropathies to define the common mechanism of action of protein misfolding diseases like Alzheimer, Parkinson or prion diseases. Using simple experimental conditions, with direct application of synthetic β amyloid or α-synuclein oligomers intraventricularly at micromolar concentrations, we could detect differences and similarities in the biological consequences. The two oligomer species affected cognitive behavior, neuronal dysfunction and cerebral inflammatory reactions with distinct mechanisms. In these experimental conditions the proposed mediatory role of cellular prion protein in oligomer activities was not confirmed. Together with oligomers, inflammation at different levels can be important early in neurodegenerative disorders; both β amyloid and α-synuclein oligomers induce inflammation and its control strongly affects neuronal dysfunction. This review summarizes our studies with β-amyloid or α-synuclein oligomers, also considering the potential curative role of doxycycline, a well-known antibiotic with anti-amyloidogenic and anti-inflammatory activities. These actions are analyzed in terms of the therapeutic prospects.
Collapse
|
49
|
Brunori M, Gianni S. An Outlook on the Complexity of Protein Morphogenesis in Health and Disease. Front Mol Biosci 2022; 9:909567. [PMID: 35769915 PMCID: PMC9234464 DOI: 10.3389/fmolb.2022.909567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The study of the mechanisms whereby proteins achieve their native functionally competent conformation has been a key issue in molecular biosciences over the last 6 decades. Nevertheless, there are several debated issues and open problems concerning some aspects of this fundamental problem. By considering the emerging complexity of the so-called “native state,” we attempt hereby to propose a personal account on some of the key topics in the field, ranging from the relationships between misfolding and diseases to the significance of protein disorder. Finally, we briefly describe the recent and exciting advances in predicting protein structures from their amino acid sequence.
Collapse
Affiliation(s)
- Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università, Rome, Italy
- Accademia Nazionale dei Lincei, Rome, Italy
- *Correspondence: Maurizio Brunori,
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università, Rome, Italy
| |
Collapse
|
50
|
Ling L, Wang F, Yu D. Beyond neurodegenerative diseases: α-synuclein in erythropoiesis. Hematology 2022; 27:629-635. [PMID: 35621991 DOI: 10.1080/16078454.2022.2078041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
α-synuclein (α-syn) is a highly conserved and thermostable protein that is widely distributed in human brain. An intracellular aggregation of α-syn in dopaminergic neurons is the hallmark of a group of neurodegenerative diseases including Parkinson's disease. Interestingly, α-syn is also highly expressed in red blood cells and is considered as one of the most abundant proteins in red blood cells. Moreover, α-syn is thought to play a regulatory role during normal erythropoiesis. However, whether α-syn participates in the pathogenesis of erythroid diseases has not been reported. In this review, we discuss the protein structure of α-syn and the importance of α-syn in erythropoiesis.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China
| | - Fangfang Wang
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China.,Department of Hematology, Yangzhou University, Clinical Medical College, Yangzhou, People's Republic of China
| | - Duonan Yu
- Institute of Translational Medicine, Yangzhou University, Medical College, Yangzhou, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|