1
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
3
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
4
|
Zheng XM, Zhang XD, Tan LL, Zhang J, Wang TT, Ling Q, Wang H, Ouyang KW, Wang KW, Chang W, Li H, Zhu HL, Xiong YW, Wang H. Sirt1 m6A modification-evoked Leydig cell senescence promotes Cd-induced testosterone decline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116884. [PMID: 39153281 DOI: 10.1016/j.ecoenv.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated. This research sought to examine the impact of cellular senescence on Cd-suppressed testosterone synthesis. We also investigated the related m6A modification mechanism. The results demonstrated that Cd (100 mg/L) led to a decrease in testosterone levels, along with downregulated expression of testosterone synthase in C57BL/6 N male mice. Furthermore, Cd significantly increased β-galactosidase staining intensity, senescence-related proteins, and senescence-related secretory phenotypes in mouse testicular Leydig cells. Subsequent investigations revealed that Cd decreased the mRNA and protein levels of NAD-dependent deacetylase Sirtuin-1 (SIRT1) in Leydig cells. Mechanistically, mice treated with resveratrol (50 mg/kg), a specific SIRT1 activator, mitigated Leydig cell senescence and reversed Cd-reduced testosterone levels in mouse testes. These effects were also restored by SIRT1 overexpression in Leydig cells. Additionally, we found that Cd increased the level of methyltransferase enzyme METTL3 and Sirt1 m6A modification in Leydig cells. Mettl3 siRNA effectively restored Cd-enhanced Sirt1 m6A level and reversed Cd-downregulated Sirt1 mRNA expression in Leydig cells. Overall, our findings suggest that Cd exposure inhibits testosterone synthesis via Sirt1 m6A modification-mediated senescence in mouse testes. These results offer an experimental basis for investigating the causes and potential treatments of hypotestosteronemia induced by environmental factors.
Collapse
Affiliation(s)
- Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
5
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
6
|
Liu Y, Dou Y, Sun X, Yang Q. Mechanisms and therapeutic strategies for senescence-associated secretory phenotype in the intervertebral disc degeneration microenvironment. J Orthop Translat 2024; 45:56-65. [PMID: 38495743 PMCID: PMC10943956 DOI: 10.1016/j.jot.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
As a permanent state of cell cycle arrest, cellular senescence has become an important factor in aging and age-related diseases. As a central regulator of physiology and pathology associated with cellular senescence, the senescence associated secretory phenotype can create an inflammatory and catabolic environment through autocrine and paracrine ways, ultimately affecting tissue microstructure. As an age-related disease, the correlation between intervertebral disc degeneration and cellular senescence has been confirmed by many studies. Various pathological factors in the microenvironment of intervertebral disc degeneration promote senescent cells to produce and accumulate and express excessive senescence associated secretory phenotype. In this case, senescence associated secretory phenotype has received considerable attention as a potential target for delaying or treating disc degeneration. Therefore, we reviewed the latest research progress of senescence associated secretory phenotype, related regulatory mechanisms and intervertebral disc cell senescence treatment strategies. It is expected that further understanding of the underlying mechanism between cellular senescence pathology and intervertebral disc degeneration will help to formulate reasonable senescence regulation strategies, so as to achieve ideal therapeutic effects. The translational potential of this article Existing treatment strategies often fall short in addressing the challenge of repairing intervertebral disc Intervertebral disc degeneration(IVD) degeneration. The accumulation of senescent cells and the continuous release of senescence-associated secretory phenotype (SASP) perpetually impede disc homeostasis and hinder tissue regeneration. This impairment in repair capability presents a significant obstacle to the practical clinical implementation of strategies for intervertebral disc degeneration. As a result, we present a comprehensive overview of the latest advancements in research, the associated regulatory mechanisms, and strategies for treating SASP in IVD cells. This article aims to investigate effective interventions for delaying the onset and progression of age-related intervertebral disc degeneration. In an era where the aging population is becoming increasingly prominent, this endeavor holds paramount practical and translational significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
8
|
Yang T, Wan R, Tu W, Avvaru SN, Gao P. Aryl hydrocarbon receptor: Linking environment to aging process in elderly patients with asthma. Chin Med J (Engl) 2024; 137:382-393. [PMID: 38238253 PMCID: PMC10876263 DOI: 10.1097/cm9.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 02/12/2024] Open
Abstract
ABSTRACT Aging is a significant risk factor for various diseases, including asthma, and it often leads to poorer clinical outcomes, particularly in elderly individuals. It is recognized that age-related diseases are due to a time-dependent accumulation of cellular damage, resulting in a progressive decline in cellular and physiological functions and an increased susceptibility to chronic diseases. The effects of aging affect not only the elderly but also those of younger ages, posing significant challenges to global healthcare. Thus, understanding the molecular mechanisms associated with aging in different diseases is essential. One intriguing factor is the aryl hydrocarbon receptor (AhR), which serves as a cytoplasmic receptor and ligand-activated transcription factor and has been linked to the aging process. Here, we review the literature on several major hallmarks of aging, including mitochondrial dysfunction, cellular senescence, autophagy, mitophagy, epigenetic alterations, and microbiome disturbances. Moreover, we provide an overview of the impact of AhR on these hallmarks by mediating responses to environmental exposures, particularly in relation to the immune system. Furthermore, we explore how aging hallmarks affect clinical characteristics, inflammatory features, exacerbations, and the treatment of asthma. It is suggested that AhR signaling may potentially play a role in regulating asthma phenotypes in elderly populations as part of the aging process.
Collapse
Affiliation(s)
- Tianrui Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, China
| | - Sai Nithin Avvaru
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Abstract
Keratinocyte senescence contributes to skin ageing and epidermal dysfunction. According to the existing knowledge, the transcription factor ΔNp63α plays pivotal roles in differentiation and proliferation of keratinocytes. It is traditionally accepted that ΔNp63α exerts its functions via binding to promoter regions to activate or repress gene transcription. However, accumulating evidence demonstrates that ΔNp63α can bind to elements away from promoter regions of its target genes, mediating epigenetic regulation. On the other hand, several epigenetic alterations, including DNA methylation, histone modification and variation, chromatin remodelling, as well as enhancer-promoter looping, are found to be related to cell senescence. To systematically elucidate how ΔNp63α affects keratinocyte senescence via epigenetic regulation, we comprehensively compiled the literatures on the roles of ΔNp63α in keratinocyte senescence, epigenetics in cellular senescence, and the relation between ΔNp63α-mediated epigenetic regulation and keratinocyte senescence. Based on the published data, we conclude that ΔNp63α mediates epigenetic regulation via multiple mechanisms: recruiting epigenetic enzymes to modify DNA or histones, coordinating chromatin remodelling complexes (CRCs) or regulating their expression, and mediating enhancer-promoter looping. Consequently, the expression of genes related to cell cycle is modulated, and proliferation of keratinocytes and renewal of stem cells are maintained, by ΔNp63α. During skin inflammaging, the decline of ΔNp63α may lead to epigenetic dysregulation, resultantly deteriorating keratinocyte senescence.
Collapse
Affiliation(s)
- Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Billimoria R, Bhatt P. Senescence in cancer: Advances in detection and treatment modalities. Biochem Pharmacol 2023; 215:115739. [PMID: 37562510 DOI: 10.1016/j.bcp.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Senescence is a form of irreversible cell cycle arrest. Senescence plays a dual role in cancer, as both a tumor suppressor by preventing the growth of damaged cells and a cancer promoter by creating an inflammatory milieu. Stress-induced premature senescence (SIPS) and replicative senescence are the two major sub-types of senescence. Senescence plays a dual role in cancer, depending on the context and kind of senescence involved. SIPS can cause cancer by nurturing an inflammatory environment, whereas replicative senescence may prevent cancer. Major pathways that are involved in senescence are the p53-p21, p16INK4A-Rb pathway along with mTOR, MAPK, and PI3K pathways. The lack of universal senescence markers makes it difficult to identify senescent cells in vivo. A combination of reliable detection methods of senescent cells in vivo is of utmost importance and will help in early detection and open new avenues for future treatment. New strategies that are being developed in order to tackle these shortcomings are in the field of fluorescent probes, nanoparticles, positron emission tomography probes, biosensors, and the detection of cell-free DNA from liquid biopsies. Along with detection, eradication of these senescent cells is also important to prevent cancer reoccurrence. Recently, the field of nano-senolytic and immunotherapy has also been emerging. This review provides up-to-date information on the various types of advancements made in the field of detection and treatment modalities for senescent cells that hold promise for the future treatment and prognosis of cancer, as well as their limitations and potential solutions.
Collapse
Affiliation(s)
- Rezina Billimoria
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Purvi Bhatt
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India.
| |
Collapse
|
11
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Pharmacological targeting of CBP/p300 drives a redox/autophagy axis leading to senescence-induced growth arrest in non-small cell lung cancer cells. Cancer Gene Ther 2023; 30:124-136. [PMID: 36117234 PMCID: PMC9842509 DOI: 10.1038/s41417-022-00524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
p300/CBP histone acetyltransferases (HAT) are critical transcription coactivators involved in multiple cellular activities. They act at multiple levels in non-small cell lung carcinoma (NSCLC) and appear, therefore, as promising druggable targets. Herein, we investigated the biological effects of A-485, the first selective (potent) drug-like HAT catalytic inhibitor of p300/CBP, in human NSCLC cell lines. A-485 treatment specifically reduced p300/CBP-mediated histone acetylation marks and caused growth arrest of lung cancer cells via activation of the autophagic pathway. Indeed, A-485 growth-arrested cells displayed phenotypic markers of cell senescence and failed to form colonies. Notably, disruption of autophagy by genetic and pharmacological approaches triggered apoptotic cell death. Mechanistically, A-485-induced senescence occurred through the accumulation of reactive oxygen species (ROS), which in turn resulted in DNA damage and activation of the autophagic pathway. Interestingly, ROS scavengers were able to revert senescence phenotype and restore cell viability, suggesting that ROS production had a key role in upstream events leading to growth arrest commitment. Altogether, our data provide new insights into the biological effects of the A-485 and uncover the importance of the autophagic/apoptotic response to design a new combinatorial anticancer strategy.
Collapse
|
13
|
Wang X, Ma L, Pei X, Wang H, Tang X, Pei JF, Ding YN, Qu S, Wei ZY, Wang HY, Wang X, Wei GH, Liu DP, Chen HZ. Comprehensive assessment of cellular senescence in the tumor microenvironment. Brief Bioinform 2022; 23:bbac118. [PMID: 35419596 PMCID: PMC9116224 DOI: 10.1093/bib/bbac118] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.
Collapse
Affiliation(s)
- Xiaoman Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoya Pei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian-Fei Pei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang-Nan Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyao Qu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Yu Wei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center, Department of Biochemistry and Molecular Biology & Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Spinelli R, Florese P, Parrillo L, Zatterale F, Longo M, D’Esposito V, Desiderio A, Nerstedt A, Gustafson B, Formisano P, Miele C, Raciti GA, Napoli R, Smith U, Beguinot F. ZMAT3 hypomethylation contributes to early senescence of preadipocytes from healthy first-degree relatives of type 2 diabetics. Aging Cell 2022; 21:e13557. [PMID: 35146866 PMCID: PMC8920444 DOI: 10.1111/acel.13557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022] Open
Abstract
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age-related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First-degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top-ranked senescence-related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3-overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.
Collapse
Affiliation(s)
- Rosa Spinelli
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Pasqualina Florese
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Luca Parrillo
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Federica Zatterale
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Michele Longo
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Vittoria D’Esposito
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Antonella Desiderio
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Birgit Gustafson
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Pietro Formisano
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Claudia Miele
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Gregory Alexander Raciti
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Raffaele Napoli
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
| | - Ulf Smith
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Francesco Beguinot
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| |
Collapse
|
15
|
Duan JL, Ruan B, Song P, Fang ZQ, Yue ZS, Liu JJ, Dou GR, Han H, Wang L. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis. Hepatology 2022; 75:584-599. [PMID: 34687050 DOI: 10.1002/hep.32209] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The mechanisms involved in liver regeneration after partial hepatectomy (pHx) are complicated. Cellular senescence, once linked to aging, plays a pivotal role in wound repair. However, the regulatory effects of cellular senescence on liver regeneration have not been fully elucidated. APPROACH AND RESULTS Mice subjected to pHx were analyzed 14 days after surgery. The incomplete remodeling of liver sinusoids affected shear stress-induced endothelial nitric oxide synthase (eNOS) signaling on day 14, resulting in the accumulation of senescent LSECs. Removing macrophages to augment LSEC senescence led to a malfunction of the regenerating liver. A dynamic fluctuation in Notch activity accompanied senescent LSEC accumulation during liver regeneration. Endothelial Notch activation by using Cdh5-CreERT NICeCA mice triggered LSEC senescence and senescence-associated secretory phenotype, which disrupted liver regeneration. Blocking the Notch by γ-secretase inhibitor (GSI) diminished senescence and promoted LSEC expansion. Mechanically, Notch-hairy and enhancer of split 1 signaling inhibited sirtuin 1 (Sirt1) transcription by binding to its promoter region. Activation of Sirt1 by SRT1720 neutralized the up-regulation of P53, P21, and P16 caused by Notch activation and eliminated Notch-driven LSEC senescence. Finally, Sirt1 activator promoted liver regeneration by abrogating LSEC senescence and improving sinusoid remodeling. CONCLUSIONS Shear stress-induced LSEC senescence driven by Notch interferes with liver regeneration after pHx. Sirt1 inhibition accelerates liver regeneration by abrogating Notch-driven senescence, providing a potential opportunity to target senescent cells and facilitate liver repair after injury.
Collapse
Affiliation(s)
- Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Sheng Yue
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants (Basel) 2022; 11:antiox11030480. [PMID: 35326131 PMCID: PMC8944605 DOI: 10.3390/antiox11030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Cell senescence is critical in diverse aspects of organism life. It is involved in tissue development and homeostasis, as well as in tumor suppression. Consequently, it is tightly integrated with basic physiological processes during life. On the other hand, senescence is gradually being considered as a major contributor of organismal aging and age-related diseases. Increased oxidative stress is one of the main risk factors for cellular damages, and thus a driver of senescence. In fact, there is an intimate link between cell senescence and response to different types of cellular stress. Oxidative stress occurs when the production of reactive oxygen species/reactive nitrogen species (ROS/RNS) is not adequately detoxified by the antioxidant defense systems. Non-coding RNAs are endogenous transcripts that govern gene regulatory networks, thus impacting both physiological and pathological events. Among these molecules, microRNAs, long non-coding RNAs, and more recently circular RNAs are considered crucial mediators of almost all cellular processes, including those implicated in oxidative stress responses. Here, we will describe recent data on the link between ROS/RNS-induced senescence and the current knowledge on the role of non-coding RNAs in the senescence program.
Collapse
|
17
|
Sahabi S, Jafari-Gharabaghlou D, Zarghami N. A new insight into cell biological and biochemical changes through aging. Acta Histochem 2022; 124:151841. [PMID: 34995929 DOI: 10.1016/j.acthis.2021.151841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
After several years of extensive research, the main cause of aging is yet elusive. There are some theories about aging, such as stem cell aging, senescent cells accumulation, and neuro-endocrine theories. None of them is able to explain all changes that happen in cells and body through aging. By finding out the main cause of aging, it will be much easier to control, prevent and even reverse the aging process. Our cells, regardless of their replicative capacity, get old through aging and they have almost the same epigenetic age. Different cell signaling pathways contribute to aging. The most important one is mTORC1 that becomes hyperactive in cells that undergo aging. Other significant changes with age are lysosome accumulation, impaired autophagy, and mitophagy. Immune system undergoes gradual changes through aging including a shift from lymphoid to myeloid lineage production as well as increased IL-6 and TNF-α which lead to age-related weight loss and meta-inflammation. Additionally, our endocrine system also experiences some changes that should be taken into consideration when looking for the main cause of aging in the human body. In this review, we planned to summarize some of the changes that happen in cells and the body through aging.
Collapse
|
18
|
Lynch SM, Guo G, Gibson DS, Bjourson AJ, Rai TS. Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells 2021; 10:3367. [PMID: 34943875 PMCID: PMC8699414 DOI: 10.3390/cells10123367] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic associated with substantial morbidity and mortality worldwide, with particular risk for severe disease and mortality in the elderly population. SARS-CoV-2 infection is driven by a pathological hyperinflammatory response which results in a dysregulated immune response. Current advancements in aging research indicates that aging pathways have fundamental roles in dictating healthspan in addition to lifespan. Our review discusses the aging immune system and highlights that senescence and aging together, play a central role in COVID-19 pathogenesis. In our review, we primarily focus on the immune system response to SARS-CoV-2 infection, the interconnection between severe COVID-19, immunosenescence, aging, vaccination, and the emerging problem of Long-COVID. We hope to highlight the importance of identifying specific senescent endotypes (or "sendotypes"), which can used as determinants of COVID-19 severity and mortality. Indeed, identified sendotypes could be therapeutically exploited for therapeutic intervention. We highlight that senolytics, which eliminate senescent cells, can target aging-associated pathways and therefore are proving attractive as potential therapeutic options to alleviate symptoms, prevent severe infection, and reduce mortality burden in COVID-19 and thus ultimately enhance healthspan.
Collapse
Affiliation(s)
| | | | | | | | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK; (S.M.L.); (G.G.); (D.S.G.); (A.J.B.)
| |
Collapse
|
19
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
20
|
Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:243. [PMID: 34325734 PMCID: PMC8323321 DOI: 10.1186/s13046-021-02035-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a complex physiological state whose main feature is proliferative arrest. Cellular senescence can be considered the reverse of cell immortalization and continuous tumor growth. However, cellular senescence has many physiological functions beyond being a putative tumor suppressive trait. It remains unknown whether low levels of oxygen or hypoxia, which is a feature of every tissue in the organism, modulate cellular senescence, altering its capacity to suppress the limitation of proliferation. It has been observed that the lifespan of mammalian primary cells is increased under low oxygen conditions. Additionally, hypoxia promotes self-renewal and pluripotency maintenance in adult and embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (CSCs). In this study, we discuss the role of hypoxia facilitating senescence bypass during malignant transformation and acquisition of stemness properties, which all contribute to tumor development and cancer disease aggressiveness.
Collapse
Affiliation(s)
- Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
21
|
Mehta IS, Riyahi K, Pereira RT, Meaburn KJ, Figgitt M, Kill IR, Eskiw CH, Bridger JM. Interphase Chromosomes in Replicative Senescence: Chromosome Positioning as a Senescence Biomarker and the Lack of Nuclear Motor-Driven Chromosome Repositioning in Senescent Cells. Front Cell Dev Biol 2021; 9:640200. [PMID: 34113611 PMCID: PMC8185894 DOI: 10.3389/fcell.2021.640200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1β (NM1β). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1β (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1β within senescent HDFs.
Collapse
Affiliation(s)
- Ishita S Mehta
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Tata Institute of Fundamental Research, Mumbai, India
| | - Kumars Riyahi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Rita Torres Pereira
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Karen J Meaburn
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Martin Figgitt
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Department of Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ian R Kill
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joanna M Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
22
|
Desbats MA, Zumerle S, Alimonti A. Epiregulation of the SASP makes good neighbors. NATURE AGING 2021; 1:420-421. [PMID: 37118016 DOI: 10.1038/s43587-021-00068-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
| | - Sara Zumerle
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Alimonti
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
- Department of Medicine, University of Padova, Padova, Italy.
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
23
|
Meijnikman AS, Herrema H, Scheithauer TPM, Kroon J, Nieuwdorp M, Groen AK. Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Rep 2021; 3:100301. [PMID: 34113839 PMCID: PMC8170167 DOI: 10.1016/j.jhepr.2021.100301] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that has important physiological functions. However, cellular senescence is also a hallmark of ageing and has been associated with several pathological conditions. A wide range of factors including genotoxic stress, mitogens and inflammatory cytokines can induce senescence. Phenotypically, senescent cells are characterised by short telomeres, an enlarged nuclear area and damaged genomic and mitochondrial DNA. Secretion of proinflammatory proteins, also known as the senescence-associated secretory phenotype, is a characteristic of senescent cells that is thought to be the main contributor to their disease-inducing properties. In the past decade, the role of cellular senescence in the development of non-alcoholic fatty liver disease (NAFLD) and its progression towards non-alcoholic steatohepatitis (NASH) has garnered significant interest. Until recently, it was suggested that hepatocyte cellular senescence is a mere consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver disease. However, recent work in rodents has suggested that senescence may be a causal factor in NAFLD development. Although causality is yet to be established in humans, current evidence suggests that targeting senescent cells has therapeutic potential for NAFLD. We aim to provide insights into the quality of the evidence supporting a causal role of cellular senescence in the development of NAFLD in rodents and humans. We will elaborate on key cellular and molecular features of senescence and discuss the efficacy and safety of novel senolytic drugs for the treatment or prevention of NAFLD.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- C/EBPα, CCAAT- enhancer-binding protein
- CDK, cyclin dependent kinase
- DDR, DNA damage response
- FFAs, free fatty acids
- HCC, hepatocellular carcinoma
- IL-, interleukin
- KC, Kupffer cell
- LSEC, liver sinusoidal endothelial cell
- MCP1/CCL2, monocyte chemoattractant protein-1
- MiDAS, mitochondrial dysfunction-associated senescence
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- ROS, reactive oxygen species
- Rb, retinoblastoma factor
- SA-β gal, senescence-associated beta-galactosidase
- SASP, senescence-associated secretory phenotype
- SCAP, senescence-associated antiapoptotic pathways
- TGFβ, transforming growth factor-β
- TNFα, tumour necrosis factor-α
- cellular senescence
- non-alcoholic fatty liver disease
- non-alcoholic steatohepatitis
- obesity
- qPCR, quantitative PCR
- senolytics
Collapse
Affiliation(s)
- Abraham Stijn Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | | | - Jeffrey Kroon
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Albert Kornelis Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
- Corresponding author. Address: Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Meibergdreef 9 room G-146, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
24
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 729] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
25
|
Si Z, Sun L, Wang X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother 2021; 137:111327. [PMID: 33545662 DOI: 10.1016/j.biopha.2021.111327] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancies have significantly increased the number of individuals suffering from geriatric neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The financial cost for current and future patients with these diseases is overwhelming, resulting in substantial economic and societal costs. Unfortunately, most recent high-profile clinical trials for neurodegenerative diseases have failed to obtain efficacious results, indicating that novel approaches are desperately needed to treat these pathologies. Cell senescence, characterized by permanent cell cycle arrest, resistance to apoptosis, mitochondrial alterations, and secretion of senescence-associated secretory phenotype (SASP) components, has been extensively studied in mitotic cells such as fibroblasts, which is considered a hallmark of aging. Furthermore, multiple cell types in the senescent state in the brain, including neurons, microglia, astrocytes, and neural stem cells, have recently been observed in the context of neurodegenerative diseases, suggesting that these senescent cells may play an essential role in the pathological processes of neurodegenerative diseases. Therefore, this review begins by outlining key aspects of cell senescence constitution followed by examining the evidence implicating senescent cells in neurodegenerative diseases. In the final section, we review how cell senescence may be targeted as novel therapeutics to treat pathologies associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, PR China
| | - Linlin Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
26
|
Tang D, Gallusci P, Lang Z. Fruit development and epigenetic modifications. THE NEW PHYTOLOGIST 2020; 228:839-844. [PMID: 32506476 DOI: 10.1111/nph.16724] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/01/2020] [Indexed: 05/26/2023]
Abstract
Fruit development is a complex process that is regulated not only by plant hormones and transcription factors, but also requires epigenetic modifications. Epigenetic modifications include DNA methylation, histone post-translational modifications, chromatin remodeling and noncoding RNAs. Together, these epigenetic modifications, which are controlled during development and in response to the environment, determine the chromatin state of genes and contribute to the transcriptomes of an organism. Recent studies have demonstrated that epigenetic regulation plays an important role in fleshy fruit ripening. Dysfunction of a DNA demethylase delayed ripening in tomato, and the application of a DNA methylation inhibitor altered ripening process in the fruits of several species. These studies indicated that manipulating the epigenome of fruit crops could open new ways for breeding in the future. In this review, we highlight recent progress and address remaining questions and challenges concerning the epigenetic regulation of fruit development and ripening.
Collapse
Affiliation(s)
- Dengguo Tang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Philippe Gallusci
- Laboratory of Grape Ecophysiology and Functional Biology, Bordeaux University, INRAE, Bordeaux Science Agro, Villenave d'Ormon, 33140, France
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
27
|
Spinelli R, Parrillo L, Longo M, Florese P, Desiderio A, Zatterale F, Miele C, Raciti GA, Beguinot F. Molecular basis of ageing in chronic metabolic diseases. J Endocrinol Invest 2020; 43:1373-1389. [PMID: 32358737 PMCID: PMC7481162 DOI: 10.1007/s40618-020-01255-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
AIM Over the last decades, the shift in age distribution towards older ages and the progressive ageing which has occurred in most populations have been paralleled by a global epidemic of obesity and its related metabolic disorders, primarily, type 2 diabetes (T2D). Dysfunction of the adipose tissue (AT) is widely recognized as a significant hallmark of the ageing process that, in turn, results in systemic metabolic alterations. These include insulin resistance, accumulation of ectopic lipids and chronic inflammation, which are responsible for an elevated risk of obesity and T2D onset associated to ageing. On the other hand, obesity and T2D, the paradigms of AT dysfunction, share many physiological characteristics with the ageing process, such as an increased burden of senescent cells and epigenetic alterations. Thus, these chronic metabolic disorders may represent a state of accelerated ageing. MATERIALS AND METHODS A more precise explanation of the fundamental ageing mechanisms that occur in AT and a deeper understanding of their role in the interplay between accelerated ageing and AT dysfunction can be a fundamental leap towards novel therapies that address the causes, not just the symptoms, of obesity and T2D, utilizing strategies that target either senescent cells or DNA methylation. RESULTS In this review, we summarize the current knowledge of the pathways that lead to AT dysfunction in the chronological ageing process as well as the pathophysiology of obesity and T2D, emphasizing the critical role of cellular senescence and DNA methylation. CONCLUSION Finally, we highlight the need for further research focused on targeting these mechanisms.
Collapse
Affiliation(s)
- R Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - L Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - M Longo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - P Florese
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - A Desiderio
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Zatterale
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - C Miele
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - G Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy.
| |
Collapse
|
28
|
Cell Senescence: A Nonnegligible Cell State under Survival Stress in Pathology of Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9503562. [PMID: 32934764 PMCID: PMC7479476 DOI: 10.1155/2020/9503562] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
The intervertebral disc degeneration (IDD) with increasing aging mainly manifests as low back pain (LBP) accompanied with a loss of physical ability. These pathological processes can be preliminarily interpreted as a series of changes at cellular level. In addition to cell death, disc cells enter into the stagnation with dysfunction and deteriorate tissue microenvironment in degenerative discs, which is recognized as cell senescence. During aging, many intrinsic and extrinsic factors have been proved to have strong connections with these cellular senescence phenomena. Growing evidences of these connections require us to gather up critical cues from potential risk factors to pathogenesis and relative interventions for retarding cell senescence and attenuating degenerative changes. In this paper, we try to clarify another important cell state apart from cell death in IDD and discuss senescence-associated changes in cells and extracellular microenvironment. Then, we emphasize the role of oxidative stress and epigenomic perturbations in linking risk factors to cell senescence in the onset of IDD. Further, we summarize the current interventions targeting senescent cells that may exert the benefits of antidegeneration in IDD.
Collapse
|
29
|
Jeong Lee H, Bang M, Young Shin C, Kim YC, Han SY. Effects of LDD-2269 on the Senescence of Glioblastoma Cells. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.562.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
31
|
Insights from In Vivo Studies of Cellular Senescence. Cells 2020; 9:cells9040954. [PMID: 32295081 PMCID: PMC7226957 DOI: 10.3390/cells9040954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is the dynamic process of durable cell-cycle arrest. Senescent cells remain metabolically active and often acquire a distinctive bioactive secretory phenotype. Much of our molecular understanding in senescent cell biology comes from studies using mammalian cell lines exposed to stress or extended culture periods. While less well understood mechanistically, senescence in vivo is becoming appreciated for its numerous biological implications, both in the context of beneficial processes, such as development, tumor suppression, and wound healing, and in detrimental conditions, where senescent cell accumulation has been shown to contribute to aging and age-related diseases. Importantly, clearance of senescent cells, through either genetic or pharmacological means, has been shown to not only extend the healthspan of prematurely and naturally aged mice but also attenuate pathology in mouse models of chronic disease. These observations have prompted an investigation of how and why senescent cells accumulate with aging and have renewed exploration into the characteristics of cellular senescence in vivo. Here, we highlight our molecular understanding of the dynamics that lead to a cellular arrest and how various effectors may explain the consequences of senescence in tissues. Lastly, we discuss how exploitation of strategies to eliminate senescent cells or their effects may have clinical utility.
Collapse
|
32
|
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M. Cellular Senescence: Defining a Path Forward. Cell 2019; 179:813-827. [PMID: 31675495 DOI: 10.1016/j.cell.2019.10.005] [Citation(s) in RCA: 1687] [Impact Index Per Article: 281.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.
Collapse
Affiliation(s)
- Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK; CRUK Beatson Institute, Glasgow G61 1BD, UK; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Switzerland; Department of Medicine, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Oliver Bischof
- Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Inserm U993, Institute Pasteur, Paris, France
| | - Cleo Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, UK
| | | | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), Santiago de Compostela, Spain
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerardo Ferbeyre
- Faculty of Medicine, Department of Biochemistry, Université de Montréal and CRCHUM, Montreal, QC, Canada
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Andrea B Maier
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands; Department of Medicine and Aged Care, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, MN, USA
| | - João F Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, MN, USA
| | - Clemens A Schmitt
- Charité - University Medical Center, Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Kepler University Hospital, Department of Hematology and Oncology, Johannes Kepler University, Linz, Austria
| | - John Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, and Center for the Biology of Aging, Brown University, Providence, RI, USA
| | | | - Thomas von Zglinicki
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Manuel Serrano
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Marco Demaria
- University of Groningen (RUG), European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
33
|
Wang LL, Zong ZH, Liu Y, Guan X, Chen S, Zhao Y. CircRhoC promotes tumorigenicity and progression in ovarian cancer by functioning as a miR-302e sponge to positively regulate VEGFA. J Cell Mol Med 2019; 23:8472-8481. [PMID: 31639291 PMCID: PMC6850961 DOI: 10.1111/jcmm.14736] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a leading cause of deaths due to gynaecological malignancy. While endogenous non‐coding circular RNAs (circRNAs) in cancer have attracted attention, their roles in ovarian cancer are not known. We used qRT‐PCR to quantify expression of circRhoC in ovarian cancer tissues and normal tissues. The effects of overexpressing or destruction of circRhoC on the phenotype of ovarian cancer cells were assessed both in vitro and in vivo. Dual‐luciferase reporter assay assesses the microRNA sponge function of circRhoC. Western blotting was used to confirm the effects of circRhoC and microRNA on target gene expression. Our results showed that circRhoC was significantly up‐regulated in ovarian cancer tissues compared to normal ovarian tissues. Overexpression of circRhoC in CAOV3 ovarian cancer cell increased cell viability, migration and invasion ability; destroying circRhoC in A2780 had the opposite effects and inhibited ovarian tumour cell A2780 dissemination in the peritoneum in vivo. We confirmed circRhoC functions as a sponge for miR‐302e to positively regulate VEGFA; FISH experiments showed that circRhoC could co‐focal with miR‐302e; besides, overexpression of miR‐302e reversed the ability of circRhoC to positively regulate VEGFA, and what's more, RIP assay showed that circRhoC could directly bind with VEGFA; besides, VEGFA expression level in ovarian cancer tissues was positively associated with circRhoC expression. In conclusion, the oncogenic effect of RhoC in ovarian cancer is at least in part due to circRhoC, which functions not only as a miR‐302e sponge to positively regulate VEGFA protein expression, but may also directly bind and modulate VEGFA expression.
Collapse
Affiliation(s)
- Li-Li Wang
- Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, China
| | - Zhi-Hong Zong
- Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, China
| | - Yao Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Guan
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Chen
- Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, China
| | - Yang Zhao
- Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, China
| |
Collapse
|
34
|
Bertschmann J, Thalappilly S, Riabowol K. The ING1a model of rapid cell senescence. Mech Ageing Dev 2019; 177:109-117. [DOI: 10.1016/j.mad.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022]
|
35
|
Ávalos Y, Kerr B, Maliqueo M, Dorfman M. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol 2018; 30:e12598. [PMID: 29645315 DOI: 10.1111/jne.12598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types, as well as cell and molecular mechanisms, that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Subsequent to the discovery that high-fat diet and saturated fatty acids increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, in addition to the role of inflammation in the pathogenesis of obesity. Recent studies have proposed that the inhibition of pro-inflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches.
Collapse
Affiliation(s)
- Y Ávalos
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B Kerr
- Centro de Estudios Científicos, Valdivia, Chile
| | - M Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile, Santiago, Chile
| | - M Dorfman
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Zhou H, Wang B, Sun H, Xu X, Wang Y. Epigenetic Regulations in Neural Stem Cells and Neurological Diseases. Stem Cells Int 2018; 2018:6087143. [PMID: 29743892 PMCID: PMC5878882 DOI: 10.1155/2018/6087143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Among the regulatory mechanisms of the renewal and differentiation of neural stem cells, recent evidences support that epigenetic modifications such as DNA methylation, histone modification, and noncoding RNAs play critical roles in the regulation on the proliferation and differentiation of neural stem cells. In this review, we discussed recent advances of DNA modifications on the regulative mechanisms of neural stem cells. Among these epigenetic modifications, DNA 5-hydroxymethylcytosine (5hmC) modification is emerging as an important modulator on the proliferation and differentiation of neural stem cells. At the same time, Ten-eleven translocation (Tet) methylcytosine dioxygenases, the rate-limiting enzyme for the 5-hydroxymethylation reaction from 5-methylcytosine to 5-hydroxymethylcytosine, play a critical role in the tumorigenesis and the proliferation and differentiation of stem cells. The functions of 5hmC and TET proteins on neural stem cells and their roles in neurological diseases are discussed.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Sun
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
37
|
Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:55-75. [PMID: 30232752 DOI: 10.1007/978-981-13-1117-8_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular aging refers to the structural and functional defects that occur in the aorta during the aging process and is characterized by increased vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Vascular aging is a major risk factor for vascular diseases. However, the current understanding of the biological process of vascular aging and age-related diseases is insufficient. Epigenetic regulation can influence gene expression independently of the gene sequence and mainly includes DNA methylation, histone modifications, and RNA-based gene regulation. Epigenetic regulation plays important roles in many physiological and pathophysiological processes and may explain some gaps in our knowledge regarding the interaction between genes and diseases. In this review, we summarize recent advances in the understanding of the epigenetic regulation of vascular aging and age-related diseases in terms of vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Moreover, the possibility of targeting epigenetic regulation to delay vascular aging and treat age-related vascular diseases is also discussed.
Collapse
|