1
|
Cseresnyés I, Takács T, Füzy A. Detection of plant cadmium toxicity by monitoring dielectric response of intact root systems on a fine timescale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30555-30568. [PMID: 38607480 PMCID: PMC11096224 DOI: 10.1007/s11356-024-33279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
The root dielectric response was measured on a minute scale to assess its efficiency for monitoring short-term cadmium (Cd) toxicity non-destructively. Electrical capacitance (CR), dissipation factor (DR) and electrical conductance (GR) were detected during the 24 to 168 h after Cd treatment (0, 20, 50 mg Cd2+ kg-1 substrate) in potted maize, cucumber and pea. Stress was also evaluated by measuring leaf chlorophyll content, Fv/Fm and stomatal conductance (gs) in situ, and shoot and root mass and total root length after harvest. CR showed a clear diurnal pattern, reflecting the water uptake rate, and decreased significantly in response to excessive Cd due to impeded root growth, the reduced tissue permittivity caused by accelerated lignification, and root ageing. Cd exposure markedly increased DR, indicating greater conductive energy loss due to oxidative membrane damage and enhanced electrolyte leakage. GR, which was coupled with root hydraulic conductance and varied diurnally, was increased transiently by Cd toxicity due to enhanced membrane permeability, but declined thereafter owing to stress-induced leaf senescence and transpiration loss. The time series of impedance components indicated the comparatively high Cd tolerance of the applied maize and the sensitivity of pea cultivar, which was confirmed by visible shoot symptoms, repeated physiological investigations and biomass measurements. The results demonstrated the potential of single-frequency dielectric measurements to follow certain aspects of the stress response of different species on a fine timescale without plant injury. The approach can be combined with widely used plant physiological methods and could contribute to breeding crop genotypes with improved stress tolerance.
Collapse
Affiliation(s)
- Imre Cseresnyés
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó Út 15, 1022, Budapest, Hungary.
| | - Tünde Takács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó Út 15, 1022, Budapest, Hungary
| | - Anna Füzy
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó Út 15, 1022, Budapest, Hungary
| |
Collapse
|
2
|
Farooqi MQU, Moody D, Bai G, Bernardo A, St. Amand P, Diggle AJ, Rengel Z. Genetic characterization of root architectural traits in barley ( Hordeum vulgare L.) using SNP markers. FRONTIERS IN PLANT SCIENCE 2023; 14:1265925. [PMID: 37860255 PMCID: PMC10582755 DOI: 10.3389/fpls.2023.1265925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
Increasing attention is paid to providing new tools to breeders for targeted breeding for specific root traits that are beneficial in low-fertility, drying soils; however, such information is not available for barley (Hordeum vulgare L.). A panel of 191 barley accessions (originating from Australia, Europe, and Africa) was phenotyped for 26 root and shoot traits using the semi-hydroponic system and genotyped using 21 062 high-quality single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). The population structure analysis of the barley panel identified six distinct groups. We detected 1199 significant (P<0.001) marker-trait associations (MTAs) with r2 values up to 0.41. The strongest MTAs were found for root diameter in the top 20 cm and the longest root length. Based on the physical locations of these MTAs in the barley reference genome, we identified 37 putative QTLs for the root traits, and three QTLs for shoot traits, with nine QTLs located in the same physical regions. The genomic region 640-653 Mb on chromosome 7H was significant for five root length-related traits, where 440 annotated genes were located. The putative QTLs for various root traits identified in this study may be useful for genetic improvement regarding the adaptation of new barley cultivars to suboptimal environments and abiotic stresses.
Collapse
Affiliation(s)
- M. Q. U. Farooqi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | | | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Paul St. Amand
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Art J. Diggle
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Impacts of the Green Revolution on Rhizosphere Microbiology Related to Nutrient Acquisition. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Green Revolution (GR) involved selective breeding of cereals and the use of high fertilizer inputs with the goal of increasing crop yields to alleviate hunger. As a result of both greater use of inorganic fertilizers and the introduction of semi-dwarf cultivars, grain yield increased globally and hunger was alleviated in certain areas of the world. However, these changes in varietal selection and fertilization regimes have impacted soil fertility and the root-associated microbiome. Higher rates of inorganic fertilizer application resulted in reduced rhizosphere microbial diversity, while semi-dwarf varieties displayed a greater abundance of rhizosphere microbes associated with nitrogen utilization. Ultimately, selection for beneficial aboveground traits during the GR led to healthier belowground traits and nutrient uptake capabilities.
Collapse
|
4
|
Cseresnyés I, Pokovai K, Bányai J, Mikó P. Root Electrical Capacitance Can Be a Promising Plant Phenotyping Parameter in Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2975. [PMID: 36365428 PMCID: PMC9657365 DOI: 10.3390/plants11212975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
As root electrical capacitance (CR*) was assumed to depend on the stem properties, the efficiency of measuring CR* at flowering for whole-plant phenotyping was assessed in five wheat cultivars in three replicate plots over two years. Linear regression analysis was used to correlate CR* with plant-size parameters and flag-leaf traits (extension and SPAD chlorophyll content) at flowering, and with yield components at maturity. The plot-mean CR* was correlated with the plot leaf area index (LAI), the chlorophyll quantity (LAI×SPAD), and the grain yield across years. At plant scale, CR* was found to show the strongest positive regression with total chlorophyll in the flag leaf (flag leaf area × SPAD; R2: 0.65−0.74) and with grain mass (R2: 0.55−0.70) for each cultivar and year (p < 0.001). Likewise, at plot scale, the regression was strongest between CR* and the LAI×SPAD value (R2: 0.86−0.99; p < 0.01) for the cultivars. Consequently, CR* indicated the total plant nutrient and photosynthate supply at flowering, which depended on root uptake capacity, and strongly influenced the final yield. Our results suggested that the polarization of the active root membrane surfaces was the main contributor to CR*, and that the measurement could be suitable for evaluating root size and functional intensity. In conclusion, the capacitance method can be applied for nondestructive whole-plant phenotyping, with potential to estimate root and shoot traits linked to the nutrient supply, and to predict grain yield. CR* can be incorporated into allometric models of cereal development, contributing to optimal crop management and genetic improvement.
Collapse
Affiliation(s)
- Imre Cseresnyés
- Institute for Soil Sciences, Centre for Agricultural Research, ELKH, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Klára Pokovai
- Institute for Soil Sciences, Centre for Agricultural Research, ELKH, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Judit Bányai
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462 Martonvásár, Hungary
| | - Péter Mikó
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462 Martonvásár, Hungary
| |
Collapse
|
5
|
Colombo M, Roumet P, Salon C, Jeudy C, Lamboeuf M, Lafarge S, Dumas AV, Dubreuil P, Ngo W, Derepas B, Beauchêne K, Allard V, Le Gouis J, Rincent R. Genetic Analysis of Platform-Phenotyped Root System Architecture of Bread and Durum Wheat in Relation to Agronomic Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:853601. [PMID: 35401645 PMCID: PMC8992431 DOI: 10.3389/fpls.2022.853601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Roots are essential for water and nutrient uptake but are rarely the direct target of breeding efforts. To characterize the genetic variability of wheat root architecture, the root and shoot traits of 200 durum and 715 bread wheat varieties were measured at a young stage on a high-throughput phenotyping platform. Heritability of platform traits ranged from 0.40 for root biomass in durum wheat to 0.82 for the number of tillers. Field phenotyping data for yield components and SNP genotyping were already available for all the genotypes. Taking differences in earliness into account, several significant correlations between root traits and field agronomic performances were found, suggesting that plants investing more resources in roots in some stressed environments favored water and nutrient uptake, with improved wheat yield. We identified 100 quantitative trait locus (QTLs) of root traits in the bread wheat panels and 34 in the durum wheat panel. Most colocalized with QTLs of traits measured in field conditions, including yield components and earliness for bread wheat, but only in a few environments. Stress and climatic indicators explained the differential effect of some platform QTLs on yield, which was positive, null, or negative depending on the environmental conditions. Modern breeding has led to deeper rooting but fewer seminal roots in bread wheat. The number of tillers has been increased in bread wheat, but decreased in durum wheat, and while the root-shoot ratio for bread wheat has remained stable, for durum wheat it has been increased. Breeding for root traits or designing ideotypes might help to maintain current yield while adapting to specific drought scenarios.
Collapse
Affiliation(s)
- Michel Colombo
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Pierre Roumet
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Christophe Salon
- Univ. Bourgogne, Agroecol Lab, Univ. Bourgogne Franche Comte, AgroSup Dijon, INRAE, Dijon, France
| | - Christian Jeudy
- Univ. Bourgogne, Agroecol Lab, Univ. Bourgogne Franche Comte, AgroSup Dijon, INRAE, Dijon, France
| | - Mickael Lamboeuf
- Univ. Bourgogne, Agroecol Lab, Univ. Bourgogne Franche Comte, AgroSup Dijon, INRAE, Dijon, France
| | | | | | | | - Wa Ngo
- INRAE-Universite Clermont-Auvergne, UMR 1095, GDEC, Clermont-Ferrand, France
| | - Brice Derepas
- INRAE-Universite Clermont-Auvergne, UMR 1095, GDEC, Clermont-Ferrand, France
| | | | - Vincent Allard
- INRAE-Universite Clermont-Auvergne, UMR 1095, GDEC, Clermont-Ferrand, France
| | - Jacques Le Gouis
- INRAE-Universite Clermont-Auvergne, UMR 1095, GDEC, Clermont-Ferrand, France
| | - Renaud Rincent
- INRAE-Universite Clermont-Auvergne, UMR 1095, GDEC, Clermont-Ferrand, France
- GQE-Le Moulon, INRAE, Univ. Paris-Sud, CNRS, AgroParisTech, Universite Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Oyiga BC, Palczak J, Wojciechowski T, Lynch JP, Naz AA, Léon J, Ballvora A. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. PLANT, CELL & ENVIRONMENT 2020; 43:692-711. [PMID: 31734943 DOI: 10.1111/pce.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 05/26/2023]
Abstract
Roots perform vital roles for adaptation and productivity under water-deficit stress, even though their specific functions are poorly understood. In this study, the genetic control of the nodal-root architectural and anatomical response to water deficit were investigated among diverse spring barley accessions. Water deficit induced substantial variations in the nodal root traits. The cortical, stele, and total root cross-sectional areas of the main-shoot nodal roots decreased under water deficit, but increased in the tiller nodal roots. Root xylem density and arrested nodal roots increased under water deficit, with the formation of root suberization/lignification and large cortical aerenchyma. Genome-wide association study implicated 11 QTL intervals in the architectural and anatomical nodal root response to water deficit. Among them, three and four QTL intervals had strong effects across seasons and on both root architectural and anatomical traits, respectively. Genome-wide epistasis analysis revealed 44 epistatically interacting SNP loci. Further analyses showed that these QTL intervals contain important candidate genes, including ZIFL2, MATE, and PPIB, whose functions are shown to be related to the root adaptive response to water deprivation in plants. These results give novel insight into the genetic architectures of barley nodal root response to soil water deficit stress in the fields, and thus offer useful resources for root-targeted marker-assisted selection.
Collapse
Affiliation(s)
| | | | - Tobias Wojciechowski
- Forschungszentrum Jülich, Institute for Bio- and Geosciences (Plant Sciences), Bonn, Germany
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State, State College, Pennsylvania
| | - Ali A Naz
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Schierholt A, Tietz T, Bienert GP, Gertz A, Miersch S, Becker HC. Root system size response of bzh semi-dwarf oilseed rape hybrids to different nitrogen levels in the field. ANNALS OF BOTANY 2019; 124:891-901. [PMID: 30452536 PMCID: PMC6881224 DOI: 10.1093/aob/mcy197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/05/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS In oilseed rape (Brassica napus) semi-dwarf hybrid varieties from crosses between bzh dwarf and normal-type lines are of increasing interest. They have improved nitrogen (N) uptake, N-utilization and N-use efficiency compared to normal types. This study aimed to elucidate whether these N-related effects can be explained by the bzh shoot growth-type alone or also by differences in root traits. METHODS Root system size was measured using root electrical capacitance (EC) in field trials with two N levels in two sets of genotypes segregating for the bzh-locus: (1) 108 doubled haploid (DH) test hybrids in two seasons, 2010-2012, and (2) 16 near-isogenic hybrids in the 2016-17 season. Quantitative trait loci (QTL) for root EC were estimated in DH test hybrids. Seedling root architecture parameters were monitored in vitro. KEY RESULTS In vitro root growth showed a higher root: shoot ratio in bzh semi-dwarf hybrids. Root EC in field trials was higher at high N supply than at zero N fertilization. In most trials semi-dwarf hybrids had higher EC than normal-type hybrids, but they reduced root EC in response to N limitation more than normal types. Root EC was more heritable at the end of flowering (h2 = 0.73) than at the beginning of flowering (h2 = 0.36) in near-isogenic hybrids and had a lower heritability in trials of DH test hybrids (h2 = 0.27). A QTL for root EC in the genomic region of the bzh-locus on linkage group A06 was significant at zero N fertilization. CONCLUSIONS Root EC proved to be a meaningful method in oilseed rape breeding programmes targeting root system size. The greater reduction of semi-dwarf root EC compared to the normal type under low N supply with simultaneous increase in N efficiency implies that in roots it is not a question of 'the more the merrier' and that the bzh root system reacts highly economically when N is scarce.
Collapse
Affiliation(s)
- Antje Schierholt
- Georg-August Universität Göttingen, Department of Crop Sciences, Göttingen, Germany
| | - Tina Tietz
- Georg-August Universität Göttingen, Department of Crop Sciences, Göttingen, Germany
| | - Gerd Patrick Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | - Sebastian Miersch
- Georg-August Universität Göttingen, Department of Crop Sciences, Göttingen, Germany
| | - Heiko C Becker
- Georg-August Universität Göttingen, Department of Crop Sciences, Göttingen, Germany
| |
Collapse
|
8
|
Abdel-Ghani AH, Sharma R, Wabila C, Dhanagond S, Owais SJ, Duwayri MA, Al-Dalain SA, Klukas C, Chen D, Lübberstedt T, von Wirén N, Graner A, Kilian B, Neumann K. Genome-wide association mapping in a diverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage. BMC PLANT BIOLOGY 2019; 19:216. [PMID: 31122195 PMCID: PMC6533710 DOI: 10.1186/s12870-019-1828-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits. RESULTS A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate. CONCLUSIONS This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.
Collapse
Affiliation(s)
- Adel H. Abdel-Ghani
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Rajiv Sharma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Division of Plant Science, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA UK
| | - Celestine Wabila
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Sidram Dhanagond
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Saed J. Owais
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Mahmud A. Duwayri
- Department of Horticulture and Agronomy, Faculty of Agriculture, University of Jordan, Amman, Jordan
| | - Saddam A. Al-Dalain
- Al-Shoubak University College, Al-Balqa’ Applied University, Al-, Salt, 19117 Jordan
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Digitalization in Research & Development (ROM), BASF SE, 67056 Ludwigshafen, Germany
| | - Dijun Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Thomas Lübberstedt
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011 USA
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| |
Collapse
|
9
|
Jia Z, Liu Y, Gruber BD, Neumann K, Kilian B, Graner A, von Wirén N. Genetic Dissection of Root System Architectural Traits in Spring Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:400. [PMID: 31001309 PMCID: PMC6454135 DOI: 10.3389/fpls.2019.00400] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/18/2019] [Indexed: 05/19/2023]
Abstract
Breeding new crop cultivars with efficient root systems carries great potential to enhance resource use efficiency and plant adaptation to unstable climates. Here, we evaluated the natural variation of root system architectural traits in a diverse spring barley association panel and conducted genome-wide association mapping to identify genomic regions associated with root traits. For six studied traits, root system depth, root spreading angle, seminal root number, total seminal root length, and average seminal root length 1.9- to 4.2-fold variations were recorded. Using a mixed linear model, 55 QTLs were identified cumulatively explaining between 12.1% of the phenotypic variance for seminal root number to 48.1% of the variance for root system depth. Three major QTLs controlling root system depth, root spreading angle and total seminal root length were found on Chr 2H (56.52 cM), Chr 3H (67.92 cM), and Chr 2H (76.20 cM) and explained 12.4%, 18.4%, and 22.2% of the phenotypic variation, respectively. Meta-analysis and allele combination analysis indicated that root system depth and root spreading angle are valuable candidate traits for improving grain yield by pyramiding of favorable alleles.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Benjamin D. Gruber
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Kerstin Neumann
- Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Benjamin Kilian
- Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Graner
- Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
10
|
Hajzler M, Klimešová J, Procházková P, Středa T. Genotypic Differences in Root System Size in White Mustard in Relation to Biomass Yield and Soil Nitrogen Content. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866040871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Canto CDLF, Kalogiros DI, Ptashnyk M, George TS, Waugh R, Bengough AG, Russell J, Dupuy LX. Morphological and genetic characterisation of the root system architecture of selected barley recombinant chromosome substitution lines using an integrated phenotyping approach. J Theor Biol 2018; 447:84-97. [PMID: 29559229 DOI: 10.1016/j.jtbi.2018.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/27/2022]
Abstract
Discoveries on the genetics of resource acquisition efficiency are limited by the ability to measure plant roots in sufficient number and with adequate genotypic variability. This paper presents a root phenotyping study that explores ways to combine live imaging and computer algorithms for model-based extraction of root growth parameters. The study is based on a subset of barley Recombinant Chromosome Substitution Lines (RCSLs) and a combinatorial approach was designed for fast identification of the regions of the genome that contribute the most to variations in root system architecture (RSA). Results showed there was a strong genotypic variation in root growth parameters within the set of genotypes studied. The chromosomal regions associated with primary root growth differed from the regions of the genome associated with changes in lateral root growth. The concepts presented here are discussed in the context of identifying root QTL and its potential to assist breeding for novel crops with improved root systems.
Collapse
Affiliation(s)
- C De La Fuente Canto
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom ; School of Life Sciences, University of Dundee, Dundee DD2 1PP, United Kingdom
| | - D I Kalogiros
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom ; School of Science and Engineering, University of Dundee, Dundee DD2 1PP, United Kingdom
| | - M Ptashnyk
- School of Science and Engineering, University of Dundee, Dundee DD2 1PP, United Kingdom
| | - T S George
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - R Waugh
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - A G Bengough
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom ; School of Science and Engineering, University of Dundee, Dundee DD2 1PP, United Kingdom
| | - J Russell
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - L X Dupuy
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom .
| |
Collapse
|
12
|
Wendt T, Holme I, Dockter C, Preuß A, Thomas W, Druka A, Waugh R, Hansson M, Braumann I. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner. PLoS One 2016; 11:e0168924. [PMID: 28005988 PMCID: PMC5179111 DOI: 10.1371/journal.pone.0168924] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv.) Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield.
Collapse
Affiliation(s)
- Toni Wendt
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Inger Holme
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | | | - Aileen Preuß
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - William Thomas
- James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Arnis Druka
- James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Robbie Waugh
- James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Division of Plant Sciences, The University of Dundee, Invergowrie, Dundee, United Kingdom
| | - Mats Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Ilka Braumann
- Carlsberg Research Laboratory, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
13
|
Mikołajczak K, Kuczyńska A, Krajewski P, Sawikowska A, Surma M, Ogrodowicz P, Adamski T, Krystkowiak K, Górny AG, Kempa M, Szarejko I, Guzy-Wróbelska J, Gudyś K. Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes. J Appl Genet 2016; 58:23-35. [PMID: 27447461 PMCID: PMC5243891 DOI: 10.1007/s13353-016-0358-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Abstract
High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to 'response to stress' were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Andrzej G Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
14
|
Hecht VL, Temperton VM, Nagel KA, Rascher U, Postma JA. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.). FRONTIERS IN PLANT SCIENCE 2016; 7:944. [PMID: 27446171 PMCID: PMC4923255 DOI: 10.3389/fpls.2016.00944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 05/21/2023]
Abstract
Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a modifier of root architecture and that root traits and their utility in breeding for greater productivity have to be understood in the context of high sowing densities.
Collapse
Affiliation(s)
- Vera L. Hecht
- Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbHJülich, Germany
| | - Vicky M. Temperton
- Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbHJülich, Germany
- Institute of Ecology, Leuphana University of LüneburgLüneburg, Germany
| | - Kerstin A. Nagel
- Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbHJülich, Germany
| | - Uwe Rascher
- Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbHJülich, Germany
| | - Johannes A. Postma
- Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbHJülich, Germany
| |
Collapse
|
15
|
Zhou Y, Dong G, Tao Y, Chen C, Yang B, Wu Y, Yang Z, Liang G, Wang B, Wang Y. Mapping Quantitative Trait Loci Associated with Toot Traits Using Sequencing-Based Genotyping Chromosome Segment Substitution Lines Derived from 9311 and Nipponbare in Rice (Oryza sativa L.). PLoS One 2016; 11:e0151796. [PMID: 27010823 PMCID: PMC4807085 DOI: 10.1371/journal.pone.0151796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 03/06/2016] [Indexed: 11/18/2022] Open
Abstract
Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing-based bin-map with a multiple linear regression analysis, QTL identification was conducted on root number (RN), total root length (TRL), root dry weight (RDW), maximum root length (MRL), root thickness (RTH), total absorption area (TAA) and root vitality (RV), using the CSSL population grown under hydroponic conditions. A total of thirty-eight QTLs were identified: six for TRL, six for RDW, eight for the MRL, four for RTH, seven for RN, two for TAA, and five for RV. Phenotypic effect variance explained by these QTLs ranged from 2.23% to 37.08%, and four single QTLs had more than 10% phenotypic explanations on three root traits. We also detected the correlations between grain yield (GY) and root traits, and found that TRL, RTH and MRL had significantly positive correlations with GY. However, TRL, RDW and MRL had significantly positive correlations with biomass yield (BY). Several QTLs identified in our population were co-localized with some loci for grain yield or biomass. This information may be immediately exploited for improving rice water and fertilizer use efficiency for molecular breeding of root system architectures.
Collapse
Affiliation(s)
- Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yajun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Bin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yue Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Baohe Wang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis. Chromosome Res 2016; 24:231-42. [DOI: 10.1007/s10577-016-9518-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
|
17
|
Barboza-Barquero L, Nagel KA, Jansen M, Klasen JR, Kastenholz B, Braun S, Bleise B, Brehm T, Koornneef M, Fiorani F. Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles. ANNALS OF BOTANY 2015; 116:321-31. [PMID: 26162399 PMCID: PMC4549960 DOI: 10.1093/aob/mcv099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The occurrence of Arabidopsis thaliana semi-dwarf accessions carrying inactive alleles at the gibberellin (GA) biosynthesis GA5 locus has raised the question whether there are pleiotropic effects on other traits at the root level, such as rooting depth. In addition, it is unknown whether semi-dwarfism in arabidopsis confers a growth advantage under water-limiting conditions compared with wild-type plants. The aim of this research was therefore to investigate whether semi-dwarfism has a pleiotropic effect in the root system and also whether semi-dwarfs might be more tolerant of water-limiting conditions. METHODS The root systems of different arabidopsis semi-dwarfs and GA biosynthesis mutants were phenotyped in vitro using the GROWSCREEN-ROOT image-based software. Semi-dwarfs were phenotyped together with tall, near-related accessions. In addition, root phenotypes were investigated in soil-filled rhizotrons. Rosette growth trajectories were analysed with the GROWSCREEN-FLUORO setup based on non-invasive imaging. KEY RESULTS Mutations in the early steps of the GA biosynthesis pathway led to a reduction in shoot as well as root size. Depending on the genetic background, mutations at the GA5 locus yielded phenotypes characterized by decreased root length in comparison with related wild-type ones. The semi-dwarf accession Pak-3 showed the deepest root system both in vitro and in soil cultivation experiments; this comparatively deep root system, however, was independent of the ga5 loss-of-function allele, as shown by co-segregation analysis. When the accessions were grown under water-limiting conditions, semi-dwarf accessions with high growth rates were identified. CONCLUSIONS The observed diversity in root system growth and architecture occurs independently of semi-dwarf phenotypes, and is probably linked to a genetic background effect. The results show that there are no clear advantages of semi-dwarfism at low water availability in arabidopsis.
Collapse
Affiliation(s)
- Luis Barboza-Barquero
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany, CIGRAS, Universidad de Costa Rica, San José, Costa Rica and
| | - Kerstin A Nagel
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marcus Jansen
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jonas R Klasen
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bernd Kastenholz
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Silvia Braun
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Birgit Bleise
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thorsten Brehm
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Maarten Koornneef
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fabio Fiorani
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
18
|
Melišová L, Hronková M, Holková L, Klemš M, Smutná P. Use of ABA Treatment for the Activation of Drought Protective Mechanisms in Barley Under Non-stress Conditions. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2015. [DOI: 10.11118/actaun201563010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Türkösi E, Farkas A, Aranyi NR, Hoffmann B, Tóth V, Molnár-Láng M. Improvement of the agronomic traits of a wheat-barley centric fusion by introgressing the 3HS.3BL translocation into a modern wheat cultivar. Genome 2015; 57:601-7. [PMID: 25806585 DOI: 10.1139/gen-2014-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3HS.3BL spontaneous Robertsonian translocation obtained from the progenies of wheat-barley (Chinese Spring × Betzes) hybrids backcrossed with wheat line Mv9kr1 was transferred into the modern Martonvásár wheat cultivar Mv Bodri. The translocation was identified with molecular cytogenetic methods. The inheritance of the translocation was traced using genomic in situ hybridization. Fluorescence in situ hybridization using barley subtelomeric (HvT01) and centromere-specific [(AGGGAG)4] repetitive DNA probes confirmed that the complete barley chromosome arm was involved in the Robertsonian translocation. The wheat-specific repetitive DNA probes identified the presence of the whole wheat genome, except the short arm of the 3B chromosome. Genotypes homozygous for the centric fusion were selected, after which morphological analysis was performed on the plants and the yield components were measured in the field during two consecutive vegetative seasons. The introgression of the 3HS.3BL translocation into the modern wheat cultivar Mv Bodri significantly reduced the plant height due to the incorporation of the dwarfing allele RhtD1b. The presence of the 3HS.3BL translocation in the Mv9kr1 and Mv Bodri wheat background improved tillering and seeds per plant productivity in field experiments carried out in Martonvásár and Keszthely, Hungary.
Collapse
Affiliation(s)
- Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | | | | | | | | | | |
Collapse
|
20
|
Walter A, Liebisch F, Hund A. Plant phenotyping: from bean weighing to image analysis. PLANT METHODS 2015; 11:14. [PMID: 25767559 PMCID: PMC4357161 DOI: 10.1186/s13007-015-0056-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/12/2015] [Indexed: 05/18/2023]
Abstract
Plant phenotyping refers to a quantitative description of the plant's anatomical, ontogenetical, physiological and biochemical properties. Today, rapid developments are taking place in the field of non-destructive, image-analysis -based phenotyping that allow for a characterization of plant traits in high-throughput. During the last decade, 'the field of image-based phenotyping has broadened its focus from the initial characterization of single-plant traits in controlled conditions towards 'real-life' applications of robust field techniques in plant plots and canopies. An important component of successful phenotyping approaches is the holistic characterization of plant performance that can be achieved with several methodologies, ranging from multispectral image analyses via thermographical analyses to growth measurements, also taking root phenotypes into account.
Collapse
Affiliation(s)
- Achim Walter
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Frank Liebisch
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Andreas Hund
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
21
|
Gaudin ACM, McClymont SA, Soliman SSM, Raizada MN. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize. BMC Genet 2014; 15:23. [PMID: 24524734 PMCID: PMC3930895 DOI: 10.1186/1471-2156-15-23] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. RESULTS An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. CONCLUSION We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole plant coordination of biomass accumulation and maize domestication.
Collapse
Affiliation(s)
| | | | | | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
22
|
Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 24204374 DOI: 10.3389/fenvs.2014.00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less "leaky" and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding.
Collapse
Affiliation(s)
- Louise H Comas
- Water Management Research, United States Department of Agriculture-Agricultural Research Service Fort Collins, CO, USA
| | | | | | | | | |
Collapse
|
23
|
Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. FRONTIERS IN PLANT SCIENCE 2013; 4:442. [PMID: 24204374 PMCID: PMC3817922 DOI: 10.3389/fpls.2013.00442] [Citation(s) in RCA: 476] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/15/2013] [Indexed: 05/17/2023]
Abstract
Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less "leaky" and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding.
Collapse
Affiliation(s)
- Louise H. Comas
- Water Management Research, United States Department of Agriculture-Agricultural Research ServiceFort Collins, CO, USA
| | - Steven R. Becker
- Department of Soil and Crop Sciences, Colorado State UniversityFort Collins, CO, USA
| | - Von Mark V. Cruz
- National Center for Genetic Resources Preservation, United States Department of Agriculture-Agricultural Research ServiceFort Collins, CO, USA
- Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| | - Patrick F. Byrne
- Department of Soil and Crop Sciences, Colorado State UniversityFort Collins, CO, USA
| | - David A. Dierig
- National Center for Genetic Resources Preservation, United States Department of Agriculture-Agricultural Research ServiceFort Collins, CO, USA
| |
Collapse
|
24
|
Al-Mosanif E, Vejražka K, Jůzl M, Drápal K. Root system size of alfalfa varieties under different plant densities. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2013. [DOI: 10.11118/actaun201260010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Postma JA, Schurr U, Fiorani F. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. Biotechnol Adv 2013; 32:53-65. [PMID: 24012600 DOI: 10.1016/j.biotechadv.2013.08.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/28/2022]
Abstract
In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.
Collapse
Affiliation(s)
- Johannes A Postma
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| | - Ulrich Schurr
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| |
Collapse
|
26
|
Kuczyńska A, Surma M, Adamski T, Mikołajczak K, Krystkowiak K, Ogrodowicz P. Effects of the semi-dwarfing sdw1/denso gene in barley. J Appl Genet 2013; 54:381-90. [PMID: 23975516 PMCID: PMC3825292 DOI: 10.1007/s13353-013-0165-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/01/2023]
Abstract
Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of those genes that are associated with the key agronomical traits. Presently, use of a dwarfing gene in breeding process is crucial for the development of modern cultivars. In barley, more than 30 types of dwarfs or semi-dwarfs have been hitherto described. However, only a few of them have been successfully used in barley breeding programs. Both breeding and molecular mapping experiments were undertaken to enhance and evaluate the performance of semi-dwarf barley lines. The semi-dwarfing cultivars had improved lodging resistance and a higher harvest index. There have been a lot of investigations that have contributed new information to our basic understanding of the mechanisms underlying growth regulations in barley. This paper reviews semi-dwarfing genes in barley in general and special attention is paid to mapping of the sdw1/denso locus, changes in protein abundance and associations of the semi-dwarfness with gibberellins.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland,
| | | | | | | | | | | |
Collapse
|
27
|
Maeght JL, Rewald B, Pierret A. How to study deep roots-and why it matters. FRONTIERS IN PLANT SCIENCE 2013; 4:299. [PMID: 23964281 PMCID: PMC3741475 DOI: 10.3389/fpls.2013.00299] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/20/2013] [Indexed: 05/17/2023]
Abstract
The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of "deep roots" is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques.
Collapse
Affiliation(s)
- Jean-Luc Maeght
- Joint Research Unit Biogéochimie et Ecologie des Milieux Continentaux, IRDVientiane, Laos
| | - Boris Rewald
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life ScienceVienna, Austria
| | - Alain Pierret
- Joint Research Unit Biogéochimie et Ecologie des Milieux Continentaux, IRDVientiane, Laos
| |
Collapse
|
28
|
White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM. Matching roots to their environment. ANNALS OF BOTANY 2013; 112:207-22. [PMID: 23821619 PMCID: PMC3698393 DOI: 10.1093/aob/mct123] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. SCOPE This article provides the context for a Special Issue of Annals of Botany on 'Matching Roots to Their Environment'. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future.
Collapse
|
29
|
Hoffmann A, Maurer A, Pillen K. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system. BMC Genet 2012; 13:88. [PMID: 23083378 PMCID: PMC3584942 DOI: 10.1186/1471-2156-13-88] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent 'Scarlett'. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. RESULTS The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P < 0.01) effects for at least one trait. Forty-three, 41 and 42 S42ILs revealed effects across both N treatments, under low N and under high N treatment, respectively. Due to overlapping or flanking wild barley introgressions of the S42ILs, these associations were summarised to 58 QTL. In total, 12 QTL of the hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. CONCLUSION Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field experiments. Due to this finding, screening of plants in early developmental stages grown in a hydroponic system may be a fast and cost effective method for early QTL detection and marker-assisted allelic selection, potentially speeding up elite barley breeding programs.
Collapse
Affiliation(s)
- Astrid Hoffmann
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, Halle, 06120, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, Halle, 06120, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, Halle, 06120, Germany
| |
Collapse
|
30
|
Kuczyńska A, Kosmala A, Surma M, Adamski T. Identification of tillering node proteins differentially accumulated in barley recombinant inbred lines with different juvenile growth habits. Int J Mol Sci 2012; 13:10410-10423. [PMID: 22949870 PMCID: PMC3431868 DOI: 10.3390/ijms130810410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/03/2022] Open
Abstract
Barley (Hordeum vulgare L.) is an important cereal crop grown for both the feed and malting industries. The allelic dwarfing gene sdw1/denso has been used throughout the world to develop commercial barley varieties. Proteomic analysis offers a new approach to identify a broad spectrum of genes that are expressed in the living system. Two-dimensional electrophoresis and mass spectrometry were applied to investigate changes in protein abundance associated with different juvenile growth habit as effect of the denso locus in barley homozygous lines derived from a Maresi × Pomo cross combination. A total of 31 protein spots were revealed that demonstrate quantitative differences in protein abundance between the analyzed plants with different juvenile growth habit, and these protein spots were selected to be identified by mass spectrometry. Identification was successful for 27 spots, and functional annotations of proteins revealed that most of them are involved in metabolism and disease/defense-related processes. Functions of the identified proteins and their probable influence on the growth habit in barley are discussed.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-61-65-50-224; Fax: +48-61-65-50-301
| | | | | | | |
Collapse
|
31
|
Kell DB. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. ANNALS OF BOTANY 2011; 108:407-18. [PMID: 21813565 PMCID: PMC3158691 DOI: 10.1093/aob/mcr175] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/03/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from 'root crops') mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. SCOPE Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO(2). This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
32
|
The effect of plant defense response to drought on selected yield parameters in barley. KVASNY PRUMYSL 2011. [DOI: 10.18832/kp2011017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Karley AJ, Valentine TA, Squire GR. Dwarf alleles differentially affect barley root traits influencing nitrogen acquisition under low nutrient supply. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3917-27. [PMID: 21464160 PMCID: PMC3134348 DOI: 10.1093/jxb/err089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sustainable food production depends critically on the development of crop genotypes that exhibit high yield under reduced nutrient inputs. Rooting traits have been widely advocated as being able to influence optimal plant performance, while breeding-based improvements in yield of spring barley suggest that this species is a good model crop. To date, however, molecular genetics knowledge has not delivered realistic plant ideotypes, while agronomic trials have been unable to identify superior traits. This study explores an intermediate experimental system in which root traits and their effect on plant performance can be quantified. As a test case, four modern semi-dwarf barley varieties, which possess either the ari-e.GP or the sdw1 dwarf allele, were compared with the long-stemmed old variety Kenia under two levels of nutrient supply. The two semi-dwarf types differed from Kenia, exhibiting smaller stem mass and total plant nitrogen (N), and improved partitioning of mass and N to grain. Amongst the semi-dwarfs, the two ari-e.GP genotypes performed better than the two sdw1 genotypes under standard and reduced nutrient supply, particularly in root mass, root investment efficiency, N acquisition, and remobilization of N and mass to grain. However, lack of between-genotype variation in yield and N use efficiency indicated limited potential for exploiting genetic variation in existing varieties to improve barley performance under reduced nutrient inputs. Experimental approaches to test the expression of desirable root and shoot traits are scrutinized, and the potential evaluated for developing a spring barley ideotype for low nutrient conditions.
Collapse
Affiliation(s)
- A J Karley
- James Hutton Institute Dundee, Invergowrie, Dundee, DD2 5DA, UK.
| | | | | |
Collapse
|
34
|
Malosetti M, van Eeuwijk FA, Boer MP, Casas AM, Elía M, Moralejo M, Bhat PR, Ramsay L, Molina-Cano JL. Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1605-16. [PMID: 21373796 PMCID: PMC3082036 DOI: 10.1007/s00122-011-1558-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 02/16/2011] [Indexed: 05/18/2023]
Abstract
Quantitative trait locus (QTL) detection is commonly performed by analysis of designed segregating populations derived from two inbred parental lines, where absence of selection, mutation and genetic drift is assumed. Even for designed populations, selection cannot always be avoided, with as consequence varying correlation between genotypes instead of uniform correlation. Akin to linkage disequilibrium mapping, ignoring this type of genetic relatedness will increase the rate of false-positives. In this paper, we advocate using mixed models including genetic relatedness, or 'kinship' information for QTL detection in populations where selection forces operated. We demonstrate our case with a three-way barley cross, designed to segregate for dwarfing, vernalization and spike morphology genes, in which selection occurred. The population of 161 inbred lines was screened with 1,536 single nucleotide polymorphisms (SNPs), and used for gene and QTL detection. The coefficient of coancestry matrix was estimated based on the SNPs and imposed to structure the distribution of random genotypic effects. The model incorporating kinship, coancestry, information was consistently superior to the one without kinship (according to the Akaike information criterion). We show, for three traits, that ignoring the coancestry information results in an unrealistically high number of marker-trait associations, without providing clear conclusions about QTL locations. We used a number of widely recognized dwarfing and vernalization genes known to segregate in the studied population as landmarks or references to assess the agreement of the mapping results with a priori candidate gene expectations. Additional QTLs to the major genes were detected for all traits as well.
Collapse
Affiliation(s)
- Marcos Malosetti
- Biometris-Applied Statistics, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Obara M, Tamura W, Ebitani T, Yano M, Sato T, Yamaya T. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4(+) concentrations in hydroponic conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:535-47. [PMID: 20390245 PMCID: PMC2903690 DOI: 10.1007/s00122-010-1328-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/17/2010] [Indexed: 05/18/2023]
Abstract
Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4(+) as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between 'Koshihikari', a japonica variety, and 'Kasalath', an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 microM NH4(+). Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a 'Kasalath' segment of SL-218, which was localized to the long-arm of chromosome 6. The 'Kasalath' allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4(+) concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5-21.1% longer than that of 'Koshihikari' under different NH4(+) concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the 'Nipponbare' genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and 'Koshihikari'.
Collapse
Affiliation(s)
- Mitsuhiro Obara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami Iwate, 024-0003, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WBTB, Wojciechowski T, Young IM. Root phenomics of crops: opportunities and challenges. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:922-929. [PMID: 32688703 DOI: 10.1071/fp09150] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/08/2009] [Indexed: 05/26/2023]
Abstract
Reliable techniques for screening large numbers of plants for root traits are still being developed, but include aeroponic, hydroponic and agar plate systems. Coupled with digital cameras and image analysis software, these systems permit the rapid measurement of root numbers, length and diameter in moderate (typically <1000) numbers of plants. Usually such systems are employed with relatively small seedlings, and information is recorded in 2D. Recent developments in X-ray microtomography have facilitated 3D non-invasive measurement of small root systems grown in solid media, allowing angular distributions to be obtained in addition to numbers and length. However, because of the time taken to scan samples, only a small number can be screened (typically <10 per day, not including analysis time of the large spatial datasets generated) and, depending on sample size, limited resolution may mean that fine roots remain unresolved. Although agar plates allow differences between lines and genotypes to be discerned in young seedlings, the rank order may not be the same when the same materials are grown in solid media. For example, root length of dwarfing wheat (Triticum aestivum L.) lines grown on agar plates was increased by ~40% relative to wild-type and semi-dwarfing lines, but in a sandy loam soil under well watered conditions it was decreased by 24-33%. Such differences in ranking suggest that significant soil environment-genotype interactions are occurring. Developments in instruments and software mean that a combination of high-throughput simple screens and more in-depth examination of root-soil interactions is becoming viable.
Collapse
Affiliation(s)
- Peter J Gregory
- SCRI (Scottish Crop Research Institute), Invergowrie, Dundee DD2 5DA, UK
| | - A Glyn Bengough
- SCRI (Scottish Crop Research Institute), Invergowrie, Dundee DD2 5DA, UK
| | - Dmitri Grinev
- SIMBIOS, University of Abertay, Bell Street, Dundee DD1 1HG, UK
| | - Sonja Schmidt
- SCRI (Scottish Crop Research Institute), Invergowrie, Dundee DD2 5DA, UK
| | - W Bill T B Thomas
- SCRI (Scottish Crop Research Institute), Invergowrie, Dundee DD2 5DA, UK
| | | | - Iain M Young
- SIMBIOS, University of Abertay, Bell Street, Dundee DD1 1HG, UK
| |
Collapse
|
38
|
Sakai K, Nasuda S, Sato K, Endo TR. Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes Genet Syst 2009; 84:25-34. [PMID: 19420798 DOI: 10.1266/ggs.84.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We used the gametocidal system to dissect a barley chromosome 3H added to common wheat. The gametocidal system induced chromosomal structural changes in the 3H addition line of common wheat, and we cytologically screened for rearranged chromosomes involving the 3H chromosome by in situ hybridization (FISH/GISH). We established 50 common wheat lines carrying single rearranged (or dissected) 3H chromosomes of independent origin. The dissected 3H chromosomes were either deletions or translocations with wheat chromosomes, and their breakpoints were in the centromere/the long arm/the short arm in a rough ratio of 1:2:2. We used these so-called 3H dissection lines to map 36 EST markers that were polymorphic between euploid common wheat and the 3H addition line and that had been used for the construction of a 3H genetic map. We conducted PCR analysis to detect the EST markers in the dissection lines. The results of the PCR analysis, which mostly corresponded to the retained or lost segments of the dissected 3H chromosomes, allowed us to place the 36 EST markers into 20 chromosomal regions flanked by the breakpoints of the dissected chromosomes. We compared this physical map constructed in this study with a 3H genetic map constructed using the same EST markers. The order of all EST markers was consistent between the two maps. We briefly discuss on the advantage of the physical mapping using dissection lines over genetic mapping.
Collapse
Affiliation(s)
- Kazuhiko Sakai
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
39
|
Khowaja FS, Norton GJ, Courtois B, Price AH. Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 2009; 10:276. [PMID: 19545420 PMCID: PMC2708188 DOI: 10.1186/1471-2164-10-276] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 06/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background Meta-analysis of QTLs combines the results of several QTL detection studies and provides narrow confidence intervals for meta-QTLs, permitting easier positional candidate gene identification. It is usually applied to multiple mapping populations, but can be applied to one. Here, a meta-analysis of drought related QTLs in the Bala × Azucena mapping population compiles data from 13 experiments and 25 independent screens providing 1,650 individual QTLs separated into 5 trait categories; drought avoidance, plant height, plant biomass, leaf morphology and root traits. A heat map of the overlapping 1 LOD confidence intervals provides an overview of the distribution of QTLs. The programme BioMercator is then used to conduct a formal meta-analysis at example QTL clusters to illustrate the value of meta-analysis of QTLs in this population. Results The heat map graphically illustrates the genetic complexity of drought related traits in rice. QTLs can be linked to their physical position on the rice genome using Additional file 1 provided. Formal meta-analysis on chromosome 1, where clusters of QTLs for all trait categories appear close, established that the sd1 semi-dwarfing gene coincided with a plant height meta-QTL, that the drought avoidance meta-QTL was not likely to be associated with this gene, and that this meta-QTL was not pleiotropic with close meta-QTLs for leaf morphology and root traits. On chromosome 5, evidence suggests that a drought avoidance meta-QTL was pleiotropic with leaf morphology and plant biomass meta-QTLs, but not with meta-QTLs for root traits and plant height 10 cM lower down. A region of dense root QTL activity graphically visible on chromosome 9 was dissected into three meta-QTLs within a space of 35 cM. The confidence intervals for meta-QTLs obtained ranged from 5.1 to 14.5 cM with an average of 9.4 cM, which is approximately 180 genes in rice. Conclusion The meta-analysis is valuable in providing improved ability to dissect the complex genetic structure of traits, and distinguish between pleiotropy and close linkage. It also provides relatively small target regions for the identification of positional candidate genes.
Collapse
Affiliation(s)
- Farkhanda S Khowaja
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.
| | | | | | | |
Collapse
|
40
|
de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. Root system architecture: opportunities and constraints for genetic improvement of crops. TRENDS IN PLANT SCIENCE 2007; 12:474-81. [PMID: 17822944 DOI: 10.1016/j.tplants.2007.08.012] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 07/12/2007] [Accepted: 08/20/2007] [Indexed: 05/17/2023]
Abstract
Abiotic stresses increasingly curtail crop yield as a result of global climate change and scarcity of water and nutrients. One way to minimize the negative impact of these factors on yield is to manipulate root system architecture (RSA) towards a distribution of roots in the soil that optimizes water and nutrient uptake. It is now established that most of the genetic variation for RSA is driven by a suite of quantitative trait loci. As we discuss here, marker-assisted selection and quantitative trait loci cloning for RSA are underway, exploiting genomic resources, candidate genes and the knowledge gained from Arabidopsis, rice and other crops. Nonetheless, efficient and accurate phenotyping, modelling and collaboration with breeders remain important challenges, particularly when defining ideal RSA for different crops and target environments.
Collapse
Affiliation(s)
- Sophie de Dorlodot
- Unité d'Ecophysiologie et d'Amélioration végétale, Université catholique de Louvain, Croix du Sud 2-11, B-1348 Louvain la Neuve, Belgium
| | | | | | | | | | | |
Collapse
|