1
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Shi R, Seiler C, Knoch D, Junker A, Altmann T. Integrated phenotyping of root and shoot growth dynamics in maize reveals specific interaction patterns in inbreds and hybrids and in response to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1233553. [PMID: 37719228 PMCID: PMC10502302 DOI: 10.3389/fpls.2023.1233553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
In recent years, various automated methods for plant phenotyping addressing roots or shoots have been developed and corresponding platforms have been established to meet the diverse requirements of plant research and breeding. However, most platforms are only either able to phenotype shoots or roots of plants but not both simultaneously. This substantially limits the opportunities offered by a joint assessment of the growth and development dynamics of both organ systems, which are highly interdependent. In order to overcome these limitations, a root phenotyping installation was integrated into an existing automated non-invasive high-throughput shoot phenotyping platform. Thus, the amended platform is now capable of conducting high-throughput phenotyping at the whole-plant level, and it was used to assess the vegetative root and shoot growth dynamics of five maize inbred lines and four hybrids thereof, as well as the responses of five inbred lines to progressive drought stress. The results showed that hybrid vigour (heterosis) occurred simultaneously in roots and shoots and was detectable as early as 4 days after transplanting (4 DAT; i.e., 8 days after seed imbibition) for estimated plant height (EPH), total root length (TRL), and total root volume (TRV). On the other hand, growth dynamics responses to progressive drought were different in roots and shoots. While TRV was significantly reduced 10 days after the onset of the water deficit treatment, the estimated shoot biovolume was significantly reduced about 6 days later, and EPH showed a significant decrease even 2 days later (8 days later than TRV) compared with the control treatment. In contrast to TRV, TRL initially increased in the water deficit period and decreased much later (not earlier than 16 days after the start of the water deficit treatment) compared with the well-watered plants. This may indicate an initial response of the plants to water deficit by forming longer but thinner roots before growth was inhibited by the overall water deficit. The magnitude and the dynamics of the responses were genotype-dependent, as well as under the influence of the water consumption, which was related to plant size.
Collapse
Affiliation(s)
- Rongli Shi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Christiane Seiler
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Quedlinburg, Germany
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
3
|
Baldauf JA, Hochholdinger F. Molecular dissection of heterosis in cereal roots and their rhizosphere. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:173. [PMID: 37474870 PMCID: PMC10359381 DOI: 10.1007/s00122-023-04419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Heterosis is already manifested early in root development. Consistent with the dominance model of heterosis, gene expression complementation is a general mechanism that contributes to phenotypic heterosis in maize hybrids. Highly heterozygous F1-hybrids outperform their parental inbred lines, a phenomenon known as heterosis. Utilization of heterosis is of paramount agricultural importance and has been widely applied to increase yield in many crop cultivars. Plant roots display heterosis for many traits and are an important target for further crop improvement. To explain the molecular basis of heterosis, several genetic hypotheses have been proposed. In recent years, high-throughput gene expression profiling techniques have been applied to investigate hybrid vigor. Consistent with the classical genetic dominance model, gene expression complementation has been demonstrated to be a general mechanism to contribute to phenotypic heterosis in diverse maize hybrids. Functional classification of these genes supported the notion that gene expression complementation can dynamically promote hybrid vigor under fluctuating environmental conditions. Hybrids tend to respond differently to available nutrients in the soil. It was hypothesized that hybrid vigor is promoted through a higher nutrient use efficiency which is linked to an improved root system performance of hybrids in comparison to their inbred parents. Recently, the interaction between soil microbes and their plant host was added as further dimension to disentangle heterosis in the belowground part of plants. Soil microbes influenced the performance of maize hybrids as illustrated in comparisons of sterile soil and soil inhabited by beneficial microorganisms.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany.
| |
Collapse
|
4
|
Pi K, Huang Y, Luo W, Zeng S, Mo Z, Duan L, Liu R. Overdominant expression of genes plays a key role in root growth of tobacco hybrids. FRONTIERS IN PLANT SCIENCE 2023; 14:1107550. [PMID: 36798711 PMCID: PMC9927235 DOI: 10.3389/fpls.2023.1107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Heterosis has greatly improved the yield and quality of crops. However, previous studies often focused on improving the yield and quality of the shoot system, while research on the root system was neglected. We determined the root numbers of 12 F1 hybrids, all of which showed strong heterosis, indicating that tobacco F1 hybrids have general heterosis. To understand its molecular mechanism, we selected two hybrids with strong heterosis, GJ (G70 × Jiucaiping No.2) and KJ (K326 × Jiucaiping No.2), and their parents for transcriptome analysis. There were 84.22% and 90.25% of the differentially expressed genes were overdominantly expressed. The enrichment analysis of these overdominantly expressed genes showed that "Plant hormone signal transduction", "Phenylpropanoid biosynthesis", "MAPK signaling pathway - plant", and "Starch and sucrose metabolism" pathways were associated with root development. We focused on the analysis of the biosynthetic pathways of auxin(AUX), cytokinins(CTK), abscisic acid(ABA), ethylene(ET), and salicylic acid(SA), suggesting that overdominant expression of these hormone signaling pathway genes may enhance root development in hybrids. In addition, Nitab4.5_0011528g0020、Nitab4.5_0003282g0020、Nitab4.5_0004384g0070 may be the genes involved in root growth. Genome-wide comparative transcriptome analysis enhanced our understanding of the regulatory network of tobacco root development and provided new ideas for studying the molecular mechanisms of tobacco root development.
Collapse
Affiliation(s)
- Kai Pi
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Ying Huang
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Wen Luo
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Shuaibo Zeng
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| |
Collapse
|
5
|
Zhan W, Guo G, Cui L, Rashid MAR, Jiang L, Sun G, Yang J, Zhang Y. Combined transcriptome and metabolome analysis reveals the effects of light quality on maize hybrids. BMC PLANT BIOLOGY 2023; 23:41. [PMID: 36653749 PMCID: PMC9847186 DOI: 10.1186/s12870-023-04059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Heterosis, or hybrid vigor, refers to the phenotypic superiority of an F1 hybrid relative to its parents in terms of growth rate, biomass production, grain yield, and stress tolerance. Light is an energy source and main environmental cue with marked impacts on heterosis in plants. Research into the production applications and mechanism of heterosis has been conducted for over a century and a half, but little is known about the effect of light on plant heterosis. RESULTS In this study, an integrated transcriptome and metabolome analysis was performed using maize (Zea mays L.) inbred parents, B73 and Mo17, and their hybrids, B73 × Mo17 (BM) and Mo17 × B73 (MB), grown in darkness or under far-red, red, or blue light. Most differentially expressed genes (73.72-92.50%) and differentially accumulated metabolites (84.74-94.32%) exhibited non-additive effects in BM and MB hybrids. Gene Ontology analysis revealed that differential genes and metabolites were involved in glutathione transfer, carbohydrate transport, terpenoid biosynthesis, and photosynthesis. The darkness, far-red, red, and blue light treatments were all associated with phenylpropanoid-flavonoid biosynthesis by Weighted Gene Co-expression Network Analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Five genes and seven metabolites related to phenylpropanoid-flavonoid biosynthesis pathway were identified as potential contributors to the interactions between maize heterosis and light conditions. Consistent with the strong mid-parent heterosis observed for metabolites, significant increases in both fresh and dry weights were found in the MB and BM hybrids compared with their inbred parents. Unexpectedly, increasing light intensity resulted in higher biomass heterosis in MB, but lower biomass heterosis in BM. CONCLUSIONS The transcriptomic and metabolomic results provide unique insights into the effects of light quality on gene expression patterns and genotype-environment interactions, and have implications for gene mining of heterotic loci to improve maize production.
Collapse
Affiliation(s)
- Weimin Zhan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Lianhua Cui
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Muhammad Abdul Rehman Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Liangliang Jiang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guanghua Sun
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yanpei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Baldauf JA, Liu M, Vedder L, Yu P, Piepho HP, Schoof H, Nettleton D, Hochholdinger F. Single-parent expression complementation contributes to phenotypic heterosis in maize hybrids. PLANT PHYSIOLOGY 2022; 189:1625-1638. [PMID: 35522211 PMCID: PMC9237695 DOI: 10.1093/plphys/kiac180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The dominance model of heterosis explains the superior performance of F1-hybrids via the complementation of deleterious alleles by beneficial alleles in many genes. Genes active in one parent but inactive in the second lead to single-parent expression (SPE) complementation in maize (Zea mays L.) hybrids. In this study, SPE complementation resulted in approximately 700 additionally active genes in different tissues of genetically diverse maize hybrids on average. We established that the number of SPE genes is significantly associated with mid-parent heterosis (MPH) for all surveyed phenotypic traits. In addition, we highlighted that maternally (SPE_B) and paternally (SPE_X) active SPE genes enriched in gene co-expression modules are highly correlated within each SPE type but separated between these two SPE types. While SPE_B-enriched co-expression modules are positively correlated with phenotypic traits, SPE_X-enriched modules displayed a negative correlation. Gene ontology term enrichment analyses indicated that SPE_B patterns are associated with growth and development, whereas SPE_X patterns are enriched in defense and stress response. In summary, these results link the degree of phenotypic MPH to the prevalence of gene expression complementation observed by SPE, supporting the notion that hybrids benefit from SPE complementation via its role in coordinating maize development in fluctuating environments.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | | | - Lucia Vedder
- Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Hans-Peter Piepho
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Heiko Schoof
- Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210, USA
| | | |
Collapse
|
7
|
Liu W, Zhang Y, He H, He G, Deng XW. From hybrid genomes to heterotic trait output: Challenges and opportunities. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102193. [PMID: 35219140 DOI: 10.1016/j.pbi.2022.102193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Heterosis (or hybrid vigor) has been widely used in crop seed breeding to improve many key economic traits. Nevertheless, the genetic and molecular basis of this important phenomenon has long remained elusive, constraining its flexible and effective exploitation. Advanced genomic approaches are efficient in characterizing the mechanism of heterosis. Here, we review how the omics approaches, including genomic, transcriptomic, and population genetics methods such as genome-wide association studies, can reveal how hybrid genomes outperform parental genomes in plants. This information opens up opportunities for genomic exploration and manipulation of heterosis in crop breeding.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Zhang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China
| | - Guangming He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China; Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China.
| |
Collapse
|
8
|
Dafna A, Halperin I, Oren E, Isaacson T, Tzuri G, Meir A, Schaffer AA, Burger J, Tadmor Y, Buckler ES, Gur A. Underground heterosis for yield improvement in melon. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6205-6218. [PMID: 0 DOI: 10.1093/jxb/erab219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 05/15/2023]
Abstract
Abstract
Heterosis, the superiority of hybrids over their parents, is a major genetic force associated with plant fitness and crop yield enhancement. We investigated root-mediated yield heterosis in melons (Cucumis melo) by characterizing a common variety grafted onto 190 hybrid rootstocks, resulting from crossing 20 diverse inbreds in a diallel-mating scheme. Hybrid rootstocks improved yield by more than 40% compared with their parents, and the best hybrid yield outperformed the reference commercial variety by 65% under both optimal and minimal irrigation treatments. To characterize the genetics of underground heterosis we conducted whole genome re-sequencing of the 20 founder lines, and showed that parental genetic distance was no predictor for the level of heterosis. Through inference of the 190 hybrid genotypes from their parental genomes, followed by genome-wide association analysis, we mapped multiple quantitative trait loci for root-mediated yield. Yield enhancement of the four best-performing hybrid rootstocks was validated in multiple experiments with four different scion varieties. Our grafting approach is complementary to the common roots genetic approach that focuses mainly on variation in root system architecture, and is a step towards discovery of candidate genes involved in root function and yield enhancement.
Collapse
Affiliation(s)
- Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilan Halperin
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Ayala Meir
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZiyyon 7507101, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Edward S Buckler
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| |
Collapse
|
9
|
Overdominance at the Gene Expression Level Plays a Critical Role in the Hybrid Root Growth of Brassica napus. Int J Mol Sci 2021; 22:ijms22179246. [PMID: 34502153 PMCID: PMC8431428 DOI: 10.3390/ijms22179246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
Despite heterosis contributing to genetic improvements in crops, root growth heterosis in rapeseed plants is poorly understood at the molecular level. The current study was performed to discover key differentially expressed genes (DEGs) related to heterosis in two hybrids with contrasting root growth performance (FO; high hybrid and FV; low hybrid) based on analysis of the root heterosis effect. Based on comparative transcriptomic analysis, we believe that the overdominance at the gene expression level plays a critical role in hybrid roots’ early biomass heterosis. Our findings imply that a considerable increase in up-regulation of gene expression underpins heterosis. In the FO hybrid, high expression of DEGs overdominant in the starch/sucrose and galactose metabolic pathways revealed a link between hybrid vigor and root growth. DEGs linked to auxin, cytokinin, brassinosteroids, ethylene, and abscisic acid were also specified, showing that these hormones may enhance mechanisms of root growth and the development in the FO hybrid. Moreover, transcription factors such as MYB, ERF, bHLH, NAC, bZIP, and WRKY are thought to control downstream genes involved in root growth. Overall, this is the first study to provide a better understanding related to the regulation of the molecular mechanism of heterosis, which assists in rapeseed growth and yield improvement.
Collapse
|
10
|
Li Z, Zhou P, Della Coletta R, Zhang T, Brohammer AB, H O'Connor C, Vaillancourt B, Lipzen A, Daum C, Barry K, de Leon N, Hirsch CD, Buell CR, Kaeppler SM, Springer NM, Hirsch CN. Single-parent expression drives dynamic gene expression complementation in maize hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:93-107. [PMID: 33098691 DOI: 10.1111/tpj.15042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Single-parent expression (SPE) is defined as gene expression in only one of the two parents. SPE can arise from differential expression between parental alleles, termed non-presence/absence (non-PAV) SPE, or from the physical absence of a gene in one parent, termed PAV SPE. We used transcriptome data of diverse Zea mays (maize) inbreds and hybrids, including 401 samples from five different tissues, to test for differences between these types of SPE genes. Although commonly observed, SPE is highly genotype and tissue specific. A positive correlation was observed between the genetic distance of the two inbred parents and the number of SPE genes identified. Regulatory analysis showed that PAV SPE and non-PAV SPE genes are mainly regulated by cis effects, with a small fraction under trans regulation. Polymorphic transposable element insertions in promoter sequences contributed to the high level of cis regulation for PAV SPE and non-PAV SPE genes. PAV SPE genes were more frequently expressed in hybrids than non-PAV SPE genes. The expression of parentally silent alleles in hybrids of non-PAV SPE genes was relatively rare but occurred in most hybrids. Non-PAV SPE genes with expression of the silent allele in hybrids are more likely to exhibit above high parent expression level than hybrids that do not express the silent allele, leading to non-additive expression. This study provides a comprehensive understanding of the nature of non-PAV SPE and PAV SPE genes and their roles in gene expression complementation in maize hybrids.
Collapse
Affiliation(s)
- Zhi Li
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Tifu Zhang
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
11
|
Zhang X, Qi Y. Single-Parent Expression of Anti-sense RNA Contributes to Transcriptome Complementation in Maize Hybrid. FRONTIERS IN PLANT SCIENCE 2020; 11:577274. [PMID: 33343593 PMCID: PMC7744309 DOI: 10.3389/fpls.2020.577274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Anti-sense transcription is increasingly being recognized as an important regulator of gene expression. But the transcriptome complementation of anti-sense RNA in hybrid relative to their inbred parents was largely unknown. In this study, we profiled strand-specific RNA sequencing (RNA-seq) in a maize hybrid and its inbred parents (B73 and Mo17) in two tissues. More anti-sense transcripts were present in the hybrid compared with the parental lines. We detected 293 and 242 single-parent expression of anti-sense (SPEA) transcripts in maize immature ear and leaf tissues, respectively. There was little overlap of the SPEA transcripts between the two maize tissues. These results suggested that SPEA is a general mechanism that drives extensive complementation in maize hybrids. More importantly, extremely high-level expression of anti-sense transcripts was associated with low-level expression of the cognate sense transcript by reducing the level of histone H3 lysine 36 methylation (H3K36me3). In summary, these SPEA transcripts increased our knowledge about the transcriptomic complementation in hybrid.
Collapse
|
12
|
Li Z, Zhu A, Song Q, Chen HY, Harmon FG, Chen ZJ. Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis. THE PLANT CELL 2020; 32:3706-3722. [PMID: 33004616 PMCID: PMC7721322 DOI: 10.1105/tpc.20.00320] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Heterosis or hybrid vigor is widespread in plants and animals. Although the molecular basis for heterosis has been extensively studied, metabolic and proteomic contributions to heterosis remain elusive. Here we report an integrative analysis of time-series metabolome and proteome data in maize (Zea mays) hybrids and their inbred parents. Many maize metabolites and proteins are diurnally regulated, and many of these show nonadditive abundance in the hybrids, including key enzymes and metabolites involved in carbon assimilation. Compared with robust trait heterosis, metabolic heterosis is relatively mild. Interestingly, most amino acids display negative mid-parent heterosis (MPH), i.e., having lower values than the average of the parents, while sugars, alcohols, and nucleoside metabolites show positive MPH. From the network perspective, metabolites in the photosynthetic pathway show positive MPH, whereas metabolites in the photorespiratory pathway show negative MPH, which corresponds to nonadditive protein abundance and enzyme activities of key enzymes in the respective pathways in the hybrids. Moreover, diurnally expressed proteins that are upregulated in the hybrids are enriched in photosynthesis-related gene-ontology terms. Hybrids may more effectively remove toxic metabolites generated during photorespiration, and thus maintain higher photosynthetic efficiency. These metabolic and proteomic resources provide unique insight into heterosis and its utilization for high yielding maize and other crop plants.
Collapse
Affiliation(s)
- Zhi Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Andan Zhu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Helen Y Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Frank G Harmon
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
13
|
Hou G, Dong Y, Zhu F, Zhao Q, Li T, Dou D, Ma X, Wu L, Ku L, Chen Y. MicroRNA transcriptomic analysis of the sixth leaf of maize (Zea mays L.) revealed a regulatory mechanism of jointing stage heterosis. BMC PLANT BIOLOGY 2020; 20:541. [PMID: 33256592 PMCID: PMC7708177 DOI: 10.1186/s12870-020-02751-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/22/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Zhengdan 958 (Zheng 58 × Chang 7-2), a commercial hybrid that is produced in a large area in China, is the result of the successful use of the heterotic pattern of Reid × Tang-SPT. The jointing stage of maize is the key period from vegetative to reproductive growth, which determines development at later stages and heterosis to a certain degree. MicroRNAs (miRNAs) play vital roles in the regulation of plant development, but how they function in the sixth leaf at the six-leaf (V6) stage to influence jointing stage heterosis is still unclear. RESULT Our objective was to study miRNAs in four hybrid combinations developed in accordance with the Reid × Tang-SPT pattern, Zhengdan 958, Anyu 5 (Ye 478 × Chang 7-2), Ye 478 × Huangzaosi, Zheng 58 × Huangzaosi, and their parental inbred lines to explore the mechanism related to heterosis. A total of 234 miRNAs were identified in the sixth leaf at the V6 stage, and 85 miRNAs were differentially expressed between the hybrid combinations and their parental inbred lines. Most of the differentially expressed miRNAs were non-additively expressed, which indicates that miRNAs may participate in heterosis at the jointing stage. miR164, miR1432 and miR528 families were repressed in the four hybrid combinations, and some miRNAs, such as miR156, miR399, and miR395 families, exhibited different expression trends in different hybrid combinations, which may result in varying effects on the heterosis regulatory mechanism. CONCLUSIONS The potential targets of the identified miRNAs are related to photosynthesis, the response to plant hormones, and nutrient use. Different hybrid combinations employ different mature miRNAs of the same miRNA family and exhibit different expression trends that may result in enhanced or repressed gene expression to regulate heterosis. Taken together, our results reveal a miRNA-mediated network that plays a key role in jointing stage heterosis via posttranscriptional regulation.
Collapse
Affiliation(s)
- Gege Hou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yahui Dong
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Fangfang Zhu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Qiannan Zhao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Tianyi Li
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Dandan Dou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xingli Ma
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Liancheng Wu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lixia Ku
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yanhui Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
14
|
O’Neill KC, Lee YJ. Visualizing Genotypic and Developmental Differences of Free Amino Acids in Maize Roots With Mass Spectrometry Imaging. FRONTIERS IN PLANT SCIENCE 2020; 11:639. [PMID: 32523598 PMCID: PMC7261921 DOI: 10.3389/fpls.2020.00639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 05/08/2023]
Abstract
Amino acids are essential biological compounds in plants as they store nitrogen, an essential nutrient, and are the building blocks for proteins that drive biological activity. Amino acids have been studied using a wide variety of analytical techniques in different plant systems, however, mass spectrometry imaging (MSI) is a particularly useful technique as it allows for the simultaneous collection of both chemical and spatial information. In this work, matrix-assisted laser desorption/ionization (MALDI)-MSI is used to study the different localization of free amino acids in the roots of maize inbred lines B73 and Mo17 and their reciprocal hybrids. Because amino acids are difficult to detect in mass spectrometry, especially directly on tissues, a chemical derivatization protocol is utilized to increase the ionization efficiency and improve their detection. We report differences in both abundance and localization of amino acids in B73 and Mo17 maize roots and suggest the hybrids show evidence of inheriting characteristics from both parents. Most genotypic differences are found in the cross-sections near the seed (∼2 cm away) at a later stage of development (10-11 cm in length). Here, B73 has lower amino acid abundance localized primarily to the center of the roots for most amino acids, while Mo17 has much higher abundance localized mainly to the root cortex. This difference in localization is minimized when grown in ammonium ion rich conditions. Roots grown in the presence of 15N-ammonium ions provided additional insight about the amino acid synthesis. The localization of some amino acids, particularly leucine/isoleucine and glutamine, is not affected by the addition of nitrogen and is consistent regardless of the nitrogen source, either from the seeds (14N-labeled) or environment (15N-labeled). Nitrogen uptake from the environment is confined to glutamine, asparagine, and alanine, consistent with their roles in amino acid storage and transportation.
Collapse
|
15
|
Vidotti MS, Lyra DH, Morosini JS, Granato ÍSC, Quecine MC, de Azevedo JL, Fritsche-Neto R. Additive and heterozygous (dis)advantage GWAS models reveal candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense. PLoS One 2019; 14:e0222788. [PMID: 31536609 PMCID: PMC6752820 DOI: 10.1371/journal.pone.0222788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
Maize genotypes can show different responsiveness to inoculation with Azospirillum brasilense and an intriguing issue is which genes of the plant are involved in the recognition and growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advantage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N stress plus A. brasilense. A total of 52,215 Single Nucleotide Polymorphism (SNP) markers were used for GWAS analyses. For the six root traits with significant inoculation effect, the GWAS analyses revealed 25 significant SNPs for the N stress plus A. brasilense treatment, in which only two were overlapped with the 22 found for N stress only. Most were found by the heterozygous (dis)advantage model and were more related to exclusive gene ontology terms. Interestingly, the candidate genes around the significant SNPs found for the maize-A. brasilense association were involved in different functions previously described for PGPB in plants (e.g. signaling pathways of the plant's defense system and phytohormone biosynthesis). Our findings are a benchmark in the understanding of the genetic variation among maize hybrids for the association with A. brasilense and reveal the potential for further enhancement of maize through this association.
Collapse
Affiliation(s)
- Miriam Suzane Vidotti
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Júlia Silva Morosini
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Maria Carolina Quecine
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Lúcio de Azevedo
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Roberto Fritsche-Neto
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
16
|
Li Z, Coffey L, Garfin J, Miller ND, White MR, Spalding EP, de Leon N, Kaeppler SM, Schnable PS, Springer NM, Hirsch CN. Genotype-by-environment interactions affecting heterosis in maize. PLoS One 2018; 13:e0191321. [PMID: 29342221 PMCID: PMC5771596 DOI: 10.1371/journal.pone.0191321] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
The environment can influence heterosis, the phenomena in which the offspring of two inbred parents exhibits phenotypic performance beyond the inbred parents for specific traits. In this study we measured 25 traits in a set of 47 maize hybrids and their inbred parents grown in 16 different environments with varying levels of average productivity. By quantifying 25 vegetative and reproductive traits across the life cycle we were able to analyze interactions between the environment and multiple distinct instances of heterosis. The magnitude and rank among hybrids for better-parent heterosis (BPH) varied for the different traits and environments. Across the traits, a higher within plot variance was observed for inbred lines compared to hybrids. However, for most traits, variance across environments was not significantly different for inbred lines compared to hybrids. Further, for many traits the correlations of BPH to hybrid performance and BPH to better parent performance were of comparable magnitude. These results indicate that inbred lines and hybrids show similar trends in environmental response and both are contributing to observed genotype-by-environment interactions for heterosis. This study highlights the degree of heterosis is not an inherent trait of a specific hybrid, but varies depending on the trait measured and the environment where that trait is measured. Studies that attempt to correlate molecular processes with heterosis are hindered by the fact that heterosis is not a consistent attribute of a specific hybrid.
Collapse
Affiliation(s)
- Zhi Li
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Lisa Coffey
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Jacob Garfin
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Nathan D. Miller
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael R. White
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Patrick S. Schnable
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
17
|
The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS One 2017; 12:e0176121. [PMID: 28419152 PMCID: PMC5395237 DOI: 10.1371/journal.pone.0176121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions.
Collapse
|
18
|
Liu Z, Gao K, Shan S, Gu R, Wang Z, Craft EJ, Mi G, Yuan L, Chen F. Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System. FRONTIERS IN PLANT SCIENCE 2017; 8:436. [PMID: 28424719 PMCID: PMC5371678 DOI: 10.3389/fpls.2017.00436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/14/2017] [Indexed: 05/22/2023]
Abstract
Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection methods for evaluating root traits of young seedlings in the lab which can then be related to high nutrient efficiency of adult plants in the field. Here, a maize recombination inbred line (RILs) population was used to compare the genetic relationship between RSA and nitrogen and phosphorous efficiency traits. The phenotypes of eight RSA-related traits were evaluated in young seedlings using three different growth systems (i.e., paper roll, hydroponics and vermiculite), and then subjected to correlation analysis with N efficiency and P efficiency related traits measured under field conditions. Quantitative trait loci (QTL) of RSA were determined and QTL co-localizations across different growth systems were further analyzed. Phenotypic associations were observed for most of RSA traits among all three culture systems. RSA-related traits in hydroponics and vermiculite weakly correlated with Nitrogen (NupE) uptake efficiency (r = 0.17-0.31) and Phosphorus (PupE) uptake efficiency (r = 0.22-0.34). This correlation was not found in the paper roll growth system. A total of 14 QTLs for RSA were identified in paper rolls, 18 in hydroponics, and 14 in vermiculite. Co-localization of QTLs for RSA traits were identified in six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05, and 5.04/5.05. The results suggest the problem of using the phenotype from one growth system to predict those in another growth system. Assessing RSA traits at the seedling stage using either hydroponics or a vermiculite system appears better suited than the paper roll system as an important index to accelerate the selection of high N and P efficient genotypes for maize breeding programs.
Collapse
Affiliation(s)
- Zhigang Liu
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Kun Gao
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Shengchen Shan
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Riling Gu
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Zhangkui Wang
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Eric J. Craft
- Robert Holley Center for Agriculture and Health, USDA-ARSIthaca, NY, USA
| | - Guohua Mi
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Lixing Yuan
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Fanjun Chen
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
- *Correspondence: Fanjun Chen
| |
Collapse
|
19
|
Wang H, Zhang X, Yang H, Liu X, Li H, Yuan L, Li W, Fu Z, Tang J, Kang D. Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize. Sci Rep 2016; 6:38205. [PMID: 27917917 PMCID: PMC5137037 DOI: 10.1038/srep38205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
Heterosis has widely been used to increase grain yield and quality. In this study, the genetic basis of heterosis on grain yield and its main components in maize were examined over 2 years in two locations in two test populations constructed from a set of 184 chromosome segment substitution lines (CSSLs) and two inbred lines (Zheng58 and Xun9058). Of the 169 heterotic loci (HL) associated with grain yield and its five components identified in CSSL × Zheng58 and CSSL × Xun9058 test populations, only 25 HL were detected in both populations. The comparison of quantitative trait loci (QTLs) detected in the CSSL population with HL detected in the two test populations revealed that only 15.46% and 17.35% of the HL in the given populations respectively, shared the same chromosomal regions as that of the corresponding QTLs and showed dominant effects as well as pleiotropism with additive and dominant effects. In addition, most of the HL (74.23% and 74.49%) had overdominant effects. These results suggest that overdominance is the main contributor to the effects of heterosis on grain yield and its components in maize, and different HL are associated with heterosis for different traits in different hybrids.
Collapse
Affiliation(s)
- Hongqiu Wang
- College of Agriculture and Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangge Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huili Yang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyang Liu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huimin Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liang Yuan
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434023, China
| | - Dingming Kang
- College of Agriculture and Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
20
|
Hochholdinger F. Untapping root system architecture for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4431-3. [PMID: 27493225 PMCID: PMC4973748 DOI: 10.1093/jxb/erw262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Frank Hochholdinger
- Institute for Crop Science and Resource Conservation (INRES), Faculty of Agriculture, University of Bonn, 53177 Bonn, Germany
| |
Collapse
|
21
|
Wang T, Sui Z, Liu X, Li Y, Li H, Xing J, Song F, Zhang Y, Sun Q, Ni Z. Ectopic expression of a maize hybrid up-regulated gene, ErbB-3 binding Protein 1 (ZmEBP1), increases organ size by promoting cell proliferation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:23-34. [PMID: 26795148 DOI: 10.1016/j.plantsci.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 05/21/2023]
Abstract
The alteration of gene expression in hybrids may be an important factor promoting phenotypic variation and plasticity. To provide insight into the underlying molecular basis of maize heterosis in terms of the kernel number per ear, we established DGE profiles for the immature ears of maize hybrid Zong3/87-1 and its parental lines at the floral organ differentiation stage. Among 4,337 identified differentially expressed genes, 4,021 (92%) exhibited nonadditive expression patterns in the hybrid. Notably, the maize homolog of Arabidopsis EBP1, designated ZmEBP1, displayed an overdominant expression pattern in the Zong3/87-1 hybrid. Moreover, the results of qRT-PCR revealed that the ZmEBP1 gene was upregulated in the immature ears of the reciprocal hybrids Zong3/87-1 and 87-1/Zong3 at different developmental stages. Additionally, ectopic expression of ZmEBP1 in Arabidopsis increased organ size, which was mainly attributed to an increase in cell numbers, rather than cell size. Considering all of these findings together, we speculate that upregulation of ZmEBP1 in maize hybrids may accelerate cell proliferation and promote ear development.
Collapse
Affiliation(s)
- Tianya Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Zhipeng Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Yangyang Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Hongjian Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Fangwei Song
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Yirong Zhang
- National Maize Improvement Centre of China, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| |
Collapse
|
22
|
Proteomic patterns associated with heterosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:908-15. [PMID: 26721744 DOI: 10.1016/j.bbapap.2015.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/29/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
Abstract
Heterosis is characterized by higher seed yields, plant biomass or other traits in heterozygotes or hybrids compared with their genetically divergent parents, which are often homozygous. Despite extensive investigation of heterosis and its wide application in crops such as maize, rice, wheat and sorghum, its molecular basis is still enigmatic. In the past century, some pioneers have proposed multigene models referring to the complementation of allelic and gene expression variation, which is likely to be an important contributor to heterosis. In addition, there are potential interactions of epigenetic variation involved in heterosis via novel mechanisms. At the level of gene expression, many recent studies have revealed that the heterosis phenomenon can be deciphered not only at the transcriptional level but also at the proteomic level. This review presents an update on the information supporting the involvement of proteomic patterns in heterosis and a possible future direction of the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
|
23
|
Yu P, Hochholdinger F, Li C. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays). ANNALS OF BOTANY 2015; 116:751-62. [PMID: 26346717 PMCID: PMC4590331 DOI: 10.1093/aob/mcv127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. METHODS Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. KEY RESULTS In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. CONCLUSIONS Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China and Institute of Crop Science and Resource Conservation, Division of Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Division of Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Chunjian Li
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China and
| |
Collapse
|
24
|
Yu P, White PJ, Li C. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types. PLANT SIGNALING & BEHAVIOR 2015; 10:e1013795. [PMID: 26443081 PMCID: PMC4883913 DOI: 10.1080/15592324.2015.1013795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition; China Agricultural University; Beijing, People's Republic of China
| | - Philip J White
- Ecological Sciences; The James Hutton Institute; Invergowrie, UK
- College of Science; King Saud University; Riyadh, Kingdom of Saudi Arabia
| | - Chunjian Li
- Department of Plant Nutrition; China Agricultural University; Beijing, People's Republic of China
- Correspondence to: Chunjian Li;
| |
Collapse
|
25
|
Investigating the molecular genetic basis of heterosis for internode expansion in maize by microRNA transcriptomic deep sequencing. Funct Integr Genomics 2014; 15:261-70. [PMID: 25394807 DOI: 10.1007/s10142-014-0411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/17/2023]
Abstract
Heterosis has been used widely in the breeding of maize and other crops and plays an important role in increasing yield, improving quality, and enhancing stress resistance, but its molecular mechanism is far from clear. To determine whether microRNA (miRNA)-dependent gene regulation is responsible for heterosis of elongating internodes below the ear and ear height in maize, a deep-sequencing strategy was applied to the elite hybrid Xundan20, which is currently cultivated widely in China, and its two parents. RNA was extracted from the eighth internode because it shows clear internode length heterosis. A total of 99 conserved maize miRNAs were detected in both the hybrid and parental lines. Most of these miRNAs were expressed nonadditively in the hybrid compared with its parental lines. These results indicated that miRNAs might participate in heterosis during internode expansion in maize and exert an influence on ear and plant height via the repression of their target genes. In total, eight novel miRNAs belonging to four miRNA families were predicted in the expanding internode. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid shows longer internodes and taller seedlings compared with its parental lines.
Collapse
|
26
|
Ding H, Qin C, Luo X, Li L, Chen Z, Liu H, Gao J, Lin H, Shen Y, Zhao M, Lübberstedt T, Zhang Z, Pan G. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid. Int J Mol Sci 2014; 15:13892-915. [PMID: 25116687 PMCID: PMC4159830 DOI: 10.3390/ijms150813892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022] Open
Abstract
Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in different tissues or developmental stages, different global expression patterns prevail, which might nevertheless be related to heterosis. Our results support the hypotheses that multiple molecular mechanisms (dominance and overdominance modes) contribute to heterosis.
Collapse
Affiliation(s)
- Haiping Ding
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Cheng Qin
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
- Zunyi Academy of Agricultural Sciences, Zunyi 563102, China; E-Mail:
| | - Xirong Luo
- Zunyi Academy of Agricultural Sciences, Zunyi 563102, China; E-Mail:
| | - Lujiang Li
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Zhe Chen
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Hongjun Liu
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Jian Gao
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Haijian Lin
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Yaou Shen
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Maojun Zhao
- Life Science College, Sichuan Agricultural University, Ya’an 625014, China; E-Mail:
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; E-Mail:
| | - Zhiming Zhang
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Z.); (G.P.); Tel.: +86-28-8629-0917 (G.P.); Fax: +86-28-8629-0916 (G.P.)
| | - Guangtang Pan
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Z.); (G.P.); Tel.: +86-28-8629-0917 (G.P.); Fax: +86-28-8629-0916 (G.P.)
| |
Collapse
|
27
|
Villordon AQ, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. TRENDS IN PLANT SCIENCE 2014; 19:419-25. [PMID: 24630073 DOI: 10.1016/j.tplants.2014.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 05/03/2023]
Abstract
It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.
Collapse
Affiliation(s)
- Arthur Q Villordon
- Louisiana State University Agricultural Center Sweet Potato Research Station, Chase, LA 71324, USA.
| | - Idit Ginzberg
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, PO Box 6, Bet Dagan, 50250, Israel
| | - Nurit Firon
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, PO Box 6, Bet Dagan, 50250, Israel
| |
Collapse
|
28
|
Gao M, Huang Q, Chu Y, Ding C, Zhang B, Su X. Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides. BMC Genet 2014; 15 Suppl 1:S8. [PMID: 25080097 PMCID: PMC4118634 DOI: 10.1186/1471-2156-15-s1-s8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Plants with heterosis/hybrid vigor perform better than their parents in many traits. However, the biological mechanisms underlying heterosis remain unclear. To investigate the significance of DNA methylation to heterosis, a comprehensive analysis of whole-genome DNA methylome profiles of Populus deltoides cl.'55/65' and '10/17' parental lines and their intraspecific F1 hybrids lines was performed using methylated DNA immunoprecipitation (MeDIP) and high-throughput sequencing. Results Here, a total of 486.27 million reads were mapped to the reference genome of Populus trichocarpa, with an average unique mapping rate of 57.8%. The parents with similar genetic background had distinct DNA methylation levels. F1 hybrids with hybrid vigor possessed non-additive DNA methylation level (their levels were higher than mid-parent values). The DNA methylation levels in promoter and repetitive sequences and transposable element of better-parent F1 hybrids and parents and lower-parent F1 hybrids were different. Compared with the maternal parent, better-parent F1 hybrids had fewer hypermethylated genes and more hypomethylated ones. Compared with the paternal parent and lower-parent L1, better-parent F1 hybrids had more hypermethylated genes and fewer hypomethylated ones. The differentially methylated genes between better-parent F1 hybrids, the parents and lower-parent F1 hybrids were enriched in the categories metabolic processes, response to stress, binding, and catalytic activity, development, and involved in hormone biosynthesis, signaling pathway. Conclusions The methylation patterns of the parents both partially and dynamically passed onto their hybrids, and F1 hybrids has a non-additive mathylation level. A multidimensional process is involved in the formation of heterosis.
Collapse
|
29
|
Li C, Wang C, Meng L, Xing J, Wang T, Yang H, Yao Y, Peng H, Hu Z, Sun Q, Ni Z. Ectopic expression of a maize hybrid down-regulated gene ZmARF25 decreases organ size by affecting cellular proliferation in Arabidopsis. PLoS One 2014; 9:e94830. [PMID: 24756087 PMCID: PMC3995674 DOI: 10.1371/journal.pone.0094830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/19/2014] [Indexed: 11/29/2022] Open
Abstract
Heterosis is associated with differential gene expression between hybrids and their parental lines, and the genes involved in cell proliferation played important roles. AtARF2 is a general cell proliferation repressor in Arabidopsis. In our previous study, two homologues (ZmARF10 and ZmARF25) of AtARF2 were identified in maize, but their relationship with heterosis was not elucidated. Here, the expression patterns of ZmARF10 and ZmARF25 in seedling leaves of maize hybrids and their parental lines were analyzed. The results of qRT-PCR exhibited that ZmARF25 was down-regulated in leaf basal region of hybrids. Moreover, overexpression of ZmARF25 led to reduced organ size in Arabidopsis, which was mainly due to the decrease in cell number, not cell size. In addition, the cell proliferation related genes AtANT, AtGIF1 and AtGRF5 were down-regulated in 35S::ZmARF25 transgenic lines. Collectively, we proposed that the down-regulation of ZmARF25 in maize hybrid may accelerate cell proliferation and promote leaf development, which, in turn, contributes to the observed leaf size heterosis in maize.
Collapse
Affiliation(s)
- Chuan Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Cheng Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Lingxue Meng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Tianya Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Hua Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Feher K, Lisec J, Römisch-Margl L, Selbig J, Gierl A, Piepho HP, Nikoloski Z, Willmitzer L. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach. PLoS One 2014; 9:e85435. [PMID: 24409329 PMCID: PMC3883692 DOI: 10.1371/journal.pone.0085435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/26/2013] [Indexed: 01/04/2023] Open
Abstract
Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL). Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass), but also molecular phenotype (metabolite profiles). Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.
Collapse
Affiliation(s)
- Kristen Feher
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jan Lisec
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lilla Römisch-Margl
- Department of Plants Genetics, Technical University München, Freising, Germany
| | - Joachim Selbig
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alfons Gierl
- Department of Plants Genetics, Technical University München, Freising, Germany
| | - Hans-Peter Piepho
- Institute for Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Zoran Nikoloski
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
31
|
He G, Chen B, Wang X, Li X, Li J, He H, Yang M, Lu L, Qi Y, Wang X, Deng XW. Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol 2013; 14:R57. [PMID: 23758703 PMCID: PMC3707063 DOI: 10.1186/gb-2013-14-6-r57] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/12/2013] [Indexed: 11/29/2022] Open
Abstract
Background Recent genome-wide studies suggested that in addition to genetic variations, epigenetic variations may also be associated with differential gene expression and growth vigor in plant hybrids. Maize is an ideal model system for the study of epigenetic variations in hybrids given the significant heterotic performance, the well-known complexity of the genome, and the rich history in epigenetic studies. However, integrated comparative transcriptomic and epigenomic analyses in different organs of maize hybrids remain largely unexplored. Results Here, we generated integrated maps of transcriptomes and epigenomes of shoots and roots of two maize inbred lines and their reciprocal hybrids, and globally surveyed the epigenetic variations and their relationships with transcriptional divergence between different organs and genotypes. We observed that whereas histone modifications vary both between organs and between genotypes, DNA methylation patterns are more distinguishable between genotypes than between organs. Histone modifications were associated with transcriptomic divergence between organs and between hybrids and parents. Further, we show that genes up-regulated in both shoots and roots of hybrids were significantly enriched in the nucleosome assembly pathway. Interestingly, 22- and 24-nt siRNAs were shown to be derived from distinct transposable elements, and for different transposable elements in both shoots and roots, the differences in siRNA activity between hybrids and patents were primarily driven by different siRNA species. Conclusions These results suggest that despite variations in specific genes or genomic loci, similar mechanisms may account for the genome-wide epigenetic regulation of gene activity and transposon stability in different organs of maize hybrids.
Collapse
|
32
|
Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, Zhang Y, Chen D, Dai G, Yang Z, Cao L, Cheng S. Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics 2013; 14:19. [PMID: 23324257 PMCID: PMC3556317 DOI: 10.1186/1471-2164-14-19] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/03/2013] [Indexed: 12/16/2022] Open
Abstract
Background Heterosis is a phenomenon in which hybrids exhibit superior performance relative to parental phenotypes. In addition to the heterosis of above-ground agronomic traits on which most existing studies have focused, root heterosis is also an indispensable component of heterosis in the entire plant and of major importance to plant breeding. Consequently, systematic investigations of root heterosis, particularly in reproductive-stage rice, are needed. The recent advent of RNA sequencing technology (RNA-Seq) provides an opportunity to conduct in-depth transcript profiling for heterosis studies. Results Using the Illumina HiSeq 2000 platform, the root transcriptomes of the super-hybrid rice variety Xieyou 9308 and its parents were analyzed at tillering and heading stages. Approximately 391 million high-quality paired-end reads (100-bp in size) were generated and aligned against the Nipponbare reference genome. We found that 38,872 of 42,081 (92.4%) annotated transcripts were represented by at least one sequence read. A total of 829 and 4186 transcripts that were differentially expressed between the hybrid and its parents (DGHP) were identified at tillering and heading stages, respectively. Out of the DGHP, 66.59% were down-regulated at the tillering stage and 64.41% were up-regulated at the heading stage. At the heading stage, the DGHP were significantly enriched in pathways related to processes such as carbohydrate metabolism and plant hormone signal transduction, with most of the key genes that are involved in the two pathways being up-regulated in the hybrid. Several significant DGHP that could be mapped to quantitative trait loci (QTLs) for yield and root traits are also involved in carbohydrate metabolism and plant hormone signal transduction pathways. Conclusions An extensive transcriptome dataset was obtained by RNA-Seq, giving a comprehensive overview of the root transcriptomes at tillering and heading stages in a heterotic rice cross and providing a useful resource for the rice research community. Using comparative transcriptome analysis, we detected DGHP and identified a group of potential candidate transcripts. The changes in the expression of the candidate transcripts may lay a foundation for future studies on molecular mechanisms underlying root heterosis.
Collapse
Affiliation(s)
- Rongrong Zhai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kaeppler S. Heterosis: Many Genes, Many Mechanisms—End the Search for an Undiscovered Unifying Theory. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/682824] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heterosis is the increase in vigor that is observed in progenies of matings of diverse individuals from different species, isolated populations, or selected strains within species or populations. Heterosis has been of immense economic value in agriculture and has important implications regarding the fitness and fecundity of individuals in natural populations. Genetic models based on complementation of deleterious alleles, especially in the context of linkage and epistasis, are consistent with many observed manifestations of heterosis. The search for the genes and alleles that underlie heterosis, as well as for broader allele-independent, genomewide mechanisms, has encompassed many species and systems. Common themes across these studies indicate that sequence diversity is necessary but not sufficient to produce heterotic phenotypes, and that the molecular pathways that produce heterosis involve chromatin modification, transcriptional control, translation and protein processing, and interactions between and within developmental and biochemical pathways. Taken together, there are many and diverse molecular mechanisms that translate DNA into phenotype, and it is the combination of all these mechanisms across many genes that produce heterosis in complex traits.
Collapse
Affiliation(s)
- Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
34
|
Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, Ossowski S, Lanz C, Nettleton D, Schnable PS, Hochholdinger F. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res 2012; 22:2445-54. [PMID: 23086286 PMCID: PMC3514674 DOI: 10.1101/gr.138461.112] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Typically, F1-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%–55% of expressed genes were differentially expressed between one of the parents and one of the hybrids. In both hybrids, ∼10% of expressed genes exhibited nonadditive gene expression. Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of complementation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were activated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids, ∼14% of expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred expression ratios, providing further evidence for interactions of regulatory factors from one parental genome with target genes from the other parental genome.
Collapse
Affiliation(s)
- Anja Paschold
- Institute of Crop Science and Resource Conservation, Division of Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kell DB. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. ANNALS OF BOTANY 2011; 108:407-18. [PMID: 21813565 PMCID: PMC3158691 DOI: 10.1093/aob/mcr175] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/03/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from 'root crops') mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. SCOPE Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO(2). This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
36
|
Fu Z, Jin X, Ding D, Li Y, Fu Z, Tang J. Proteomic analysis of heterosis during maize seed germination. Proteomics 2011; 11:1462-72. [DOI: 10.1002/pmic.201000481] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/21/2010] [Accepted: 01/18/2011] [Indexed: 12/29/2022]
|
37
|
Marcon C, Schützenmeister A, Schütz W, Madlung J, Piepho HP, Hochholdinger F. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development. J Proteome Res 2010; 9:6511-22. [PMID: 20973536 DOI: 10.1021/pr100718d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heterosis describes the superior performance of heterozygous F(1)-hybrid plants compared to their homozygous parental inbred lines. In the present study, heterosis was detected for length, weight, and the time point of seminal root primordia initiation in maize (Zea mays L.) embryos of the reciprocal F(1)-hybrids UH005xUH250 and UH250xUH005. A two-dimensional gel electrophoresis (2-DE) proteome survey of the most abundant proteins of the reciprocal hybrids and their parental inbred lines 25 and 35 days after pollination revealed that 141 of 597 detected proteins (24%) exhibited nonadditive accumulation in at least one hybrid. Approximately 44% of all nonadditively accumulated proteins displayed an expression pattern that was not distinguishable from the low parent value. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analyses and subsequent functional classification of the 141 proteins revealed that development, protein metabolism, redox-regulation, glycolysis, and amino acid metabolism were the most prominent functional classes among nonadditively accumulated proteins. In 35-day-old embryos of the hybrid UH250xUH005, a significant up-regulation of enzymes related to glucose metabolism which often exceeded the best parent values was observed. A comparison of nonadditive protein accumulation between rice and maize embryo data sets revealed a significant overlap of nonadditively accumulated proteins suggesting conserved organ- or tissue-specific regulatory mechanisms in monocots related to heterosis.
Collapse
Affiliation(s)
- Caroline Marcon
- Department of General Genetics, University of Tuebingen, ZMBP, Center for Plant Molecular Biology, 72076 Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Araus JL, Sánchez C, Cabrera-Bosquet L. Is heterosis in maize mediated through better water use? THE NEW PHYTOLOGIST 2010; 187:392-406. [PMID: 20456048 DOI: 10.1111/j.1469-8137.2010.03276.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
*Heterosis increases yield potential and improves adaptation to stress in maize (Zea mays); however, the underlying mechanisms remain elusive. *A set of tropical inbred lines and their hybrids were grown in the field for 2 yr under three different water regimes. First-year plant water use was evaluated by measuring instantaneous traits (stomatal conductance (g(s)) and steady-state chlorophyll fluorescence (F(s))) in individual leaves together with time-integrative traits, which included mineral accumulation in the whole leaves of plants and oxygen isotope enrichment above source water (Delta(18)O) and carbon isotope discrimination (Delta(13)C) in the same pooled leaves and in mature kernels. Second-year water use was evaluated by measuring leaf temperature, g(s) and relative water content (RWC). *Within each growing condition, hybrids showed higher F(s), mineral accumulation, RWC, and lower leaf temperature, Delta(18)O and Delta(13)C than inbred lines. Therefore, hybrids had a better water status than inbred lines, regardless of the water conditions. Differences in grain yield across growing conditions were explained by differences in water-use traits, with hybrids and inbred lines following a common pattern. Within each growing condition, most variations in grain yield, between hybrids and inbred lines, were also explained by differences in plant water-use traits. *Heterosis in tropical maize seems to be mediated by improved water use, irrespective of the water conditions during growth.
Collapse
Affiliation(s)
- José Luis Araus
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ciro Sánchez
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico
| | - Llorenç Cabrera-Bosquet
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Melchinger AE, Dhillon BS, Mi X. Variation of the parental genome contribution in segregating populations derived from biparental crosses and its relationship with heterosis of their Design III progenies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:311-319. [PMID: 19911161 DOI: 10.1007/s00122-009-1193-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/20/2009] [Indexed: 05/28/2023]
Abstract
The variation of the parental genome contribution (PGC) and its relationship with the genetic architecture of heterosis have received little attention. Our objectives were to (1) derive formulas for the variance of PGC in selfing, backcross (BC) or intermated generations produced from biparental crosses of homozygous parents, (2) investigate the correlation [Formula: see text] of the PGC [Formula: see text] estimated by a set M of markers, with Z (2) (half the trait difference between each pair of BC progenies) in the Design III, and (3) interpret experimental results on this correlation with regard to the genetic basis of heterosis. Under all mating systems, the variance of PGC is smaller in species with a larger number and more uniform length of chromosomes. It decreases with intermating and backcrossing but increases under selfing. The ratio of variances of PGC in F(1)DH (double haploids), F(2) and BC(1) populations is 4:2:1, but it is smaller in advanced selfing generations than expected for quantitative traits. Thus, altering the PGC by marker-assisted selection for the genetic background is more promising (i) in species with a smaller number and/or shorter chromosomes and (ii) in F(2) than in progenies of later selfing generations. The correlation [Formula: see text] depends on the linkage relationships between M and the QTL influencing Z(2) as well as the augmented dominance effects [Formula: see text] of the QTL, which include dominance and additive x additive effects with the genetic background, and sum up to mid-parent heterosis. From estimates of [Formula: see text] as well as QTL studies, we conclude that heterosis for grain yield in maize is caused by the action of numerous QTL distributed across the entire genome with positive [Formula: see text] effects.
Collapse
Affiliation(s)
- Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany.
| | | | | |
Collapse
|
40
|
Fiévet JB, Dillmann C, de Vienne D. Systemic properties of metabolic networks lead to an epistasis-based model for heterosis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:463-73. [PMID: 19916003 PMCID: PMC2793392 DOI: 10.1007/s00122-009-1203-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/22/2009] [Indexed: 05/10/2023]
Abstract
The genetic and molecular approaches to heterosis usually do not rely on any model of the genotype-phenotype relationship. From the generalization of Kacser and Burns' biochemical model for dominance and epistasis to networks with several variable enzymes, we hypothesized that metabolic heterosis could be observed because the response of the flux towards enzyme activities and/or concentrations follows a multi-dimensional hyperbolic-like relationship. To corroborate this, we used the values of systemic parameters accounting for the kinetic behaviour of four enzymes of the upstream part of glycolysis, and simulated genetic variability by varying in silico enzyme concentrations. Then we "crossed" virtual parents to get 1,000 hybrids, and showed that best-parent heterosis was frequently observed. The decomposition of the flux value into genetic effects, with the help of a novel multilocus epistasis index, revealed that antagonistic additive-by-additive epistasis effects play the major role in this framework of the genotype-phenotype relationship. This result is consistent with various observations in quantitative and evolutionary genetics, and provides a model unifying the genetic effects underlying heterosis.
Collapse
Affiliation(s)
- Julie B. Fiévet
- AgroParisTech, UMR 0320/UMR 8120 Génétique Végétale, 91190 Gif-sur-Yvette, France
| | - Christine Dillmann
- Univ Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, 91190 Gif-sur-Yvette, France
| | - Dominique de Vienne
- UMR de Génétique Végétale, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
41
|
Schützenmeister A, Piepho HP. Background correction of two-colour cDNA microarray data using spatial smoothing methods. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:475-490. [PMID: 19916001 DOI: 10.1007/s00122-009-1210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/22/2009] [Indexed: 05/28/2023]
Abstract
The analysis of two-colour cDNA microarray data usually involves subtracting background values from foreground values prior to normalization and further analysis. This approach has the advantage of reducing bias and the disadvantage of blowing up the variance of lower abundant spots. Whenever background subtraction is considered, it implicitly assumes locally constant background values. In practice, this assumption is often not met, which casts doubts on the usefulness of simple background subtraction. In order to improve background correction, we propose local background smoothing within the pre-processing pipeline of cDNA microarray data prior to background correction. For this purpose, we employ a geostatistical framework with ordinary kriging using both isotropic and anisotropic models of spatial correlation and 2-D locally weighted regression. We show that application of local background smoothing prior to background correction is beneficial in comparison to using raw background estimates. This is done using data of a self-versus-self experiment in Arabidopsis where subsets of differentially expressed genes were simulated. Using locally smoothed background values in conjunction with existing background correction methods increases the power, increases the accuracy and decreases the number of false positive results.
Collapse
Affiliation(s)
- André Schützenmeister
- Bioinformatics Unit, Institute for Crop Production and Grassland Research, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany.
| | | |
Collapse
|