1
|
Manikandan A, Muthusamy S, Wang ES, Ivarson E, Manickam S, Sivakami R, Narayanan MB, Zhu LH, Rajasekaran R, Kanagarajan S. Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review. FRONTIERS IN PLANT SCIENCE 2024; 15:1468675. [PMID: 39588088 PMCID: PMC11586226 DOI: 10.3389/fpls.2024.1468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Global protein consumption is increasing exponentially, which requires efficient identification of potential, healthy, and simple protein sources to fulfil the demands. The existing sources of animal proteins are high in fat and low in fiber composition, which might cause serious health risks when consumed regularly. Moreover, protein production from animal sources can negatively affect the environment, as it often requires more energy and natural resources and contributes to greenhouse gas emissions. Thus, finding alternative plant-based protein sources becomes indispensable. Rapeseed is an important oilseed crop and the world's third leading oil source. Rapeseed byproducts, such as seed cakes or meals, are considered the best alternative protein source after soybean owing to their promising protein profile (30%-60% crude protein) to supplement dietary requirements. After oil extraction, these rapeseed byproducts can be utilized as food for human consumption and animal feed. However, anti-nutritional factors (ANFs) like glucosinolates, phytic acid, tannins, and sinapines make them unsuitable for direct consumption. Techniques like microbial fermentation, advanced breeding, and genome editing can improve protein quality, reduce ANFs in rapeseed byproducts, and facilitate their usage in the food and feed industry. This review summarizes these approaches and offers the best bio-nutrition breakthroughs to develop nutrient-rich rapeseed byproducts as plant-based protein sources.
Collapse
Affiliation(s)
- Anandhavalli Manikandan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saraladevi Muthusamy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eu Sheng Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajeswari Sivakami
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manikanda Boopathi Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ravikesavan Rajasekaran
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
2
|
Weber SE, Roscher-Ehrig L, Kox T, Abbadi A, Stahl A, Snowdon RJ. Genomic prediction in Brassica napus: evaluating the benefit of imputed whole-genome sequencing data. Genome 2024; 67:210-222. [PMID: 38708850 DOI: 10.1139/gen-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Advances in sequencing technology allow whole plant genomes to be sequenced with high quality. Combining genotypic and phenotypic data in genomic prediction helps breeders to select crossing partners in partially phenotyped populations. In plant breeding programs, the cost of sequencing entire breeding populations still exceeds available genotyping budgets. Hence, the method for genotyping is still mainly single nucleotide polymorphism (SNP) arrays; however, arrays are unable to assess the entire genome- and population-wide diversity. A compromise involves genotyping the entire population using an SNP array and a subset of the population with whole-genome sequencing. Both datasets can then be used to impute markers from whole-genome sequencing onto the entire population. Here, we evaluate whether imputation of whole-genome sequencing data enhances genomic predictions, using data from a nested association mapping population of rapeseed (Brassica napus). Employing two cross-validation schemes that mimic scenarios for the prediction of close and distant relatives, we show that imputed marker data do not significantly improve prediction accuracy, likely due to redundancy in relationship estimates and imputation errors. In simulation studies, only small improvements were observed, further corroborating the findings. We conclude that SNP arrays are already equipped with the information that is added by imputation through relationship and linkage disequilibrium.
Collapse
Affiliation(s)
- Sven E Weber
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Lennard Roscher-Ehrig
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | | | | | - Andreas Stahl
- Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Knoch D, Meyer RC, Heuermann MC, Riewe D, Peleke FF, Szymański J, Abbadi A, Snowdon RJ, Altmann T. Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:713-728. [PMID: 37964699 DOI: 10.1111/tpj.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477 spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight into the complex relations during early vegetative growth and reanalysed the transcriptome data based on the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL, many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics layers and correlations between omics features allowed us to discover prime candidate genes for metabolic and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass production.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Marc C Heuermann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, 14195, Berlin, Germany
| | - Fritz F Peleke
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Institute of Bio- and Geosciences IBG-4: Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363, Holtsee, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition (iFZ), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| |
Collapse
|
4
|
Weber SE, Frisch M, Snowdon RJ, Voss-Fels KP. Haplotype blocks for genomic prediction: a comparative evaluation in multiple crop datasets. FRONTIERS IN PLANT SCIENCE 2023; 14:1217589. [PMID: 37731980 PMCID: PMC10507710 DOI: 10.3389/fpls.2023.1217589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
In modern plant breeding, genomic selection is becoming the gold standard for selection of superior genotypes. The basis for genomic prediction models is a set of phenotyped lines along with their genotypic profile. With high marker density and linkage disequilibrium (LD) between markers, genotype data in breeding populations tends to exhibit considerable redundancy. Therefore, interest is growing in the use of haplotype blocks to overcome redundancy by summarizing co-inherited features. Moreover, haplotype blocks can help to capture local epistasis caused by interacting loci. Here, we compared genomic prediction methods that either used single SNPs or haplotype blocks with regards to their prediction accuracy for important traits in crop datasets. We used four published datasets from canola, maize, wheat and soybean. Different approaches to construct haplotype blocks were compared, including blocks based on LD, physical distance, number of adjacent markers and the algorithms implemented in the software "Haploview" and "HaploBlocker". The tested prediction methods included Genomic Best Linear Unbiased Prediction (GBLUP), Extended GBLUP to account for additive by additive epistasis (EGBLUP), Bayesian LASSO and Reproducing Kernel Hilbert Space (RKHS) regression. We found improved prediction accuracy in some traits when using haplotype blocks compared to SNP-based predictions, however the magnitude of improvement was very trait- and model-specific. Especially in settings with low marker density, haplotype blocks can improve genomic prediction accuracy. In most cases, physically large haplotype blocks yielded a strong decrease in prediction accuracy. Especially when prediction accuracy varies greatly across different prediction models, prediction based on haplotype blocks can improve prediction accuracy of underperforming models. However, there is no "best" method to build haplotype blocks, since prediction accuracy varied considerably across methods and traits. Hence, criteria used to define haplotype blocks should not be viewed as fixed biological parameters, but rather as hyperparameters that need to be adjusted for every dataset.
Collapse
Affiliation(s)
- Sven E. Weber
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Matthias Frisch
- Department of Biometry and Population Genetics, Justus Liebig University, Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Kai P. Voss-Fels
- Institute for Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
5
|
Tesfaye M, Feyissa T, Hailesilassie T, Kanagarajan S, Zhu LH. Genetic Diversity and Population Structure in Ethiopian Mustard ( Brassica carinata A. Braun) as Revealed by Single Nucleotide Polymorphism Markers. Genes (Basel) 2023; 14:1757. [PMID: 37761897 PMCID: PMC10530317 DOI: 10.3390/genes14091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Ethiopian mustard (Brassica carinata A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified B. carinata germplasms are found and conserved ex situ. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of B. carinata genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina InfiniumTM SNP array for genotyping 90 B. carinata genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 B. carinata genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm > 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in B. carinata populations with an average genetic diversity value (HE = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of B. carinata.
Collapse
Affiliation(s)
- Misteru Tesfaye
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden; (M.T.); (S.K.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.F.); (T.H.)
| | - Tileye Feyissa
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.F.); (T.H.)
| | | | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden; (M.T.); (S.K.)
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden; (M.T.); (S.K.)
| |
Collapse
|
6
|
Katche E, Katche EI, Vasquez-Teuber P, Idris Z, Lo YT, Nugent D, Zou J, Batley J, Mason AS. Genome composition in Brassica interspecific hybrids affects chromosome inheritance and viability of progeny. Chromosome Res 2023; 31:22. [PMID: 37596507 PMCID: PMC10439240 DOI: 10.1007/s10577-023-09733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F1) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F1 hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F1 hybrids ~56 seeds/plant. In the second generation (S1), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S1 hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S1 hybrids averaged 1.5 seeds/plant (0-8). BBAC S1 hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Elizabeth Ihien Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez, 595, Chillán, Chile
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Katche EI, Schierholt A, Schiessl SV, He F, Lv Z, Batley J, Becker HC, Mason AS. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3 (BETHESDA, MD.) 2023; 13:jkad136. [PMID: 37313757 PMCID: PMC10411605 DOI: 10.1093/g3journal/jkad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Established allopolyploids are known to be genomically stable and fertile. However, in contrast, most newly resynthesized allopolyploids are infertile and meiotically unstable. Identifying the genetic factors responsible for genome stability in newly formed allopolyploid is key to understanding how 2 genomes come together to form a species. One hypothesis is that established allopolyploids may have inherited specific alleles from their diploid progenitors which conferred meiotic stability. Resynthesized Brassica napus lines are often unstable and infertile, unlike B. napus cultivars. We tested this hypothesis by characterizing 41 resynthesized B. napus lines produced by crosses between 8 Brassica rapa and 8 Brassica oleracea lines for copy number variation resulting from nonhomologous recombination events and fertility. We resequenced 8 B. rapa and 5 B. oleracea parent accessions and analyzed 19 resynthesized lines for allelic variation in a list of meiosis gene homologs. SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 3 individuals per line. Self-pollinated seed set and genome stability (number of copy number variants) were significantly affected by the interaction between both B. rapa and B. oleracea parental genotypes. We identified 13 putative meiosis gene candidates which were significantly associated with frequency of copy number variants and which contained putatively harmful mutations in meiosis gene haplotypes for further investigation. Our results support the hypothesis that allelic variants inherited from parental genotypes affect genome stability and fertility in resynthesized rapeseed.
Collapse
Affiliation(s)
- Elizabeth Ihien Katche
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Antje Schierholt
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Sarah-Veronica Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main D-60325, Germany
| | - Fei He
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
| | - Zhenling Lv
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Heiko C Becker
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
8
|
Orantes-Bonilla M, Makhoul M, Lee H, Chawla HS, Vollrath P, Langstroff A, Sedlazeck FJ, Zou J, Snowdon RJ. Frequent spontaneous structural rearrangements promote rapid genome diversification in a Brassica napus F1 generation. FRONTIERS IN PLANT SCIENCE 2022; 13:1057953. [PMID: 36466276 PMCID: PMC9716091 DOI: 10.3389/fpls.2022.1057953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 05/26/2023]
Abstract
In a cross between two homozygous Brassica napus plants of synthetic and natural origin, we demonstrate that novel structural genome variants from the synthetic parent cause immediate genome diversification among F1 offspring. Long read sequencing in twelve F1 sister plants revealed five large-scale structural rearrangements where both parents carried different homozygous alleles but the heterozygous F1 genomes were not identical heterozygotes as expected. Such spontaneous rearrangements were part of homoeologous exchanges or segmental deletions and were identified in different, individual F1 plants. The variants caused deletions, gene copy-number variations, diverging methylation patterns and other structural changes in large numbers of genes and may have been causal for unexpected phenotypic variation between individual F1 sister plants, for example strong divergence of plant height and leaf area. This example supports the hypothesis that spontaneous de novo structural rearrangements after de novo polyploidization can rapidly overcome intense allopolyploidization bottlenecks to re-expand crops genetic diversity for ecogeographical expansion and human selection. The findings imply that natural genome restructuring in allopolyploid plants from interspecific hybridization, a common approach in plant breeding, can have a considerably more drastic impact on genetic diversity in agricultural ecosystems than extremely precise, biotechnological genome modifications.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Manar Makhoul
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - HueyTyng Lee
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul Vollrath
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Anna Langstroff
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Bell JK, Mamet SD, Helgason B, Siciliano SD. Brassica napus Bacterial Assembly Processes Vary with Plant Compartment and Growth Stage but Not between Lines. Appl Environ Microbiol 2022; 88:e0027322. [PMID: 35481756 PMCID: PMC9128504 DOI: 10.1128/aem.00273-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Holobiont bacterial community assembly processes are an essential element to understanding the plant microbiome. To elucidate these processes, leaf, root, and rhizosphere samples were collected from eight lines of Brassica napus in Saskatchewan over the course of 10 weeks. We then used ecological null modeling to disentangle the community assembly processes over the growing season in each plant part. The root was primarily dominated by stochastic community assembly processes, which is inconsistent with previous studies that suggest of a highly selective root environment. Leaf assembly processes were primarily stochastic as well. In contrast, the rhizosphere was a highly selective environment. The dominant rhizosphere selection process leads to more similar communities. Assembly processes in all plant compartments were dependent on plant growth stage with little line effect on community assembly. The foundations of assembly in the leaf were due to the harsh environment, leading to dominance of stochastic effects, whereas the stochastic effects in the root interior likely arise due to competitive exclusion or priority effects. Engineering canola microbiomes should occur during periods of strong selection assuming strong selection could promote beneficial bacteria. For example, engineering the microbiome to resist pathogens, which are typically aerially born, should focus on the flowering period, whereas microbiomes to enhance yield should likely be engineered postflowering as the rhizosphere is undergoing strong selection. IMPORTANCE In order to harness the microbiome for more sustainable crop production, we must first have a better understanding of microbial community assembly processes that occurring during plant development. This study examines the bacterial community assembly processes of the leaf, root, and rhizosphere of eight different lines of Brassica napus over the growing season. The influence of growth stage and B. napus line were examined in conjunction with the assembly processes. Understanding what influences the assembly processes of crops might allow for more targeted breeding efforts by working with the plant to manipulate the microbiome when it is undergoing the strongest selection pressure.
Collapse
Affiliation(s)
- Jennifer K Bell
- Soil Science Department, College of Agriculture of Bioresources, University of Saskatchewangrid.25152.31, Saskatoon, Saskatchewan, Canada
| | - Steven D Mamet
- Soil Science Department, College of Agriculture of Bioresources, University of Saskatchewangrid.25152.31, Saskatoon, Saskatchewan, Canada
| | - Bobbi Helgason
- Soil Science Department, College of Agriculture of Bioresources, University of Saskatchewangrid.25152.31, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Soil Science Department, College of Agriculture of Bioresources, University of Saskatchewangrid.25152.31, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Danilevicz MF, Gill M, Anderson R, Batley J, Bennamoun M, Bayer PE, Edwards D. Plant Genotype to Phenotype Prediction Using Machine Learning. Front Genet 2022; 13:822173. [PMID: 35664329 PMCID: PMC9159391 DOI: 10.3389/fgene.2022.822173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genomic prediction tools support crop breeding based on statistical methods, such as the genomic best linear unbiased prediction (GBLUP). However, these tools are not designed to capture non-linear relationships within multi-dimensional datasets, or deal with high dimension datasets such as imagery collected by unmanned aerial vehicles. Machine learning (ML) algorithms have the potential to surpass the prediction accuracy of current tools used for genotype to phenotype prediction, due to their capacity to autonomously extract data features and represent their relationships at multiple levels of abstraction. This review addresses the challenges of applying statistical and machine learning methods for predicting phenotypic traits based on genetic markers, environment data, and imagery for crop breeding. We present the advantages and disadvantages of explainable model structures, discuss the potential of machine learning models for genotype to phenotype prediction in crop breeding, and the challenges, including the scarcity of high-quality datasets, inconsistent metadata annotation and the requirements of ML models.
Collapse
Affiliation(s)
- Monica F. Danilevicz
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Mitchell Gill
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Robyn Anderson
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Mohammed Bennamoun
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Philipp E. Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
- *Correspondence: David Edwards,
| |
Collapse
|
11
|
Hahn C, Howard NP, Albach DC. Different Shades of Kale-Approaches to Analyze Kale Variety Interrelations. Genes (Basel) 2022; 13:genes13020232. [PMID: 35205277 PMCID: PMC8872201 DOI: 10.3390/genes13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Brassica oleracea is a vegetable crop with an amazing morphological diversity. Among the various crops derived from B. oleracea, kale has been in the spotlight globally due to its various health-benefitting compounds and many different varieties. Knowledge of the existing genetic diversity is essential for the improved breeding of kale. Here, we analyze the interrelationships, population structures, and genetic diversity of 72 kale and cabbage varieties by extending our previous diversity analysis and evaluating the use of summed potential lengths of shared haplotypes (SPLoSH) as a new method for such analyses. To this end, we made use of the high-density Brassica 60K SNP array, analyzed SNPs included in an available Brassica genetic map, and used these resources to generate and evaluate the information from SPLoSH data. With our results we could consistently differentiate four groups of kale across all analyses: the curly kale varieties, Italian, American, and Russian varieties, as well as wild and cultivated types. The best results were achieved by using SPLoSH information, thus validating the use of this information in improving analyses of interrelations in kale. In conclusion, our definition of kale includes the curly varieties as the kales in a strict sense, regardless of their origin. These results contribute to a better understanding of the huge diversity of kale and its interrelations.
Collapse
Affiliation(s)
- Christoph Hahn
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany; (N.P.H.); (D.C.A.)
- Correspondence: ; Tel.: +49-441-798-3343
| | - Nicholas P. Howard
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany; (N.P.H.); (D.C.A.)
- Fresh Forward Breeding & Marketing, 4024 BK Eck en Wiel, The Netherlands
| | - Dirk C. Albach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany; (N.P.H.); (D.C.A.)
| |
Collapse
|
12
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
13
|
Roslinsky V, Falk KC, Gaebelein R, Mason AS, Eynck C. Development of B. carinata with super-high erucic acid content through interspecific hybridization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3167-3181. [PMID: 34269830 PMCID: PMC8440251 DOI: 10.1007/s00122-021-03883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Disomic alien chromosome addition Brassica carinata lines with super-high erucic acid content were developed through interspecific hybridization with B. juncea and characterized using molecular, cytological and biochemical techniques. Brassica carinata [A.] Braun (BBCC, 2n = 34) is a climate-resilient oilseed. Its seed oil is high in erucic acid (> 40%), rendering it well suited for the production of biofuel and other bio-based applications. To enhance the competitiveness of B. carinata with high erucic B. napus (HEAR), lines with super-high erucic acid content were developed through interspecific hybridization. To this end, a fad2B null allele from Brassica juncea (AABB, 2n = 36) was introgressed into B. carinata, resulting in a B. carinata fad2B mutant with erucic acid levels of over 50%. Subsequently, the FAE allele from B. rapa spp. yellow sarson (AA, 2n = 20) was transferred to the fad2B B. carinata line, yielding lines with erucic acid contents of up to 57.9%. Molecular analysis using the Brassica 90 K Illumina Infinium™ SNP genotyping array identified these lines as disomic alien chromosome addition lines, with two extra A08 chromosomes containing the BrFAE gene. The alien chromosomes from B. rapa were clearly distinguished by molecular cytogenetics in one of the addition lines. Analysis of microspore-derived offspring and hybrids from crosses with a CMS B. carinata line showed that the transfer rate of the A08 chromosome into male gametes was over 98%, resulting in almost completely stable transmission of an A08 chromosome copy into the progeny. The increase in erucic acid levels was accompanied by changes in the proportions of other fatty acids depending on the genetic changes that were introduced in the interspecific hybrids, providing valuable insights into erucic acid metabolism in Brassica.
Collapse
Affiliation(s)
- Vicky Roslinsky
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Kevin C Falk
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Roman Gaebelein
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Department of Plant Breeding, INRES, University of Bonn, Bonn, Germany
| | - Christina Eynck
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
| |
Collapse
|
14
|
Aakanksha, Yadava SK, Yadav BG, Gupta V, Mukhopadhyay A, Pental D, Pradhan AK. Genetic Analysis of Heterosis for Yield Influencing Traits in Brassica juncea Using a Doubled Haploid Population and Its Backcross Progenies. FRONTIERS IN PLANT SCIENCE 2021; 12:721631. [PMID: 34603351 PMCID: PMC8481694 DOI: 10.3389/fpls.2021.721631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2024]
Abstract
The exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in Brassica juncea by using a doubled haploid (DH) mapping population derived from F1 between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions. In total, 695 additive QTL were detected for the 14 traits in the three trials using five data sets, with overdominance observed to be the predominant type of effect in determining the expression of heterotic QTL. The results indicated that the design in the present study was efficient for identifying common QTL across multiple trials and populations, which constitute a valuable resource for marker-assisted selection and further research. In addition, a total of 637 epistatic loci were identified, and it was concluded that epistasis among loci without detectable main effects plays an important role in controlling heterosis in yield of B. juncea.
Collapse
Affiliation(s)
- Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Bal Govind Yadav
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Arundhati Mukhopadhyay
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
15
|
Menendez YC, Sanchez DH, Snowdon RJ, Rondanini DP, Botto JF. Unraveling the impact on agronomic traits of the genetic architecture underlying plant-density responses in canola. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5426-5441. [PMID: 33940608 DOI: 10.1093/jxb/erab191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Plant density defines vegetative architecture and the competition for light between individuals. Brassica napus (canola, rapeseed) presents a radically different plant architecture compared to traditional crops commonly cultivated at high density, and can act as a model system of indeterminate growth. Using a panel of 152 spring-type accessions and a double-haploid population of 99 lines from a cross between the cultivars Lynx and Monty, we performed genome-wide association studies (GWAS) and quantitative trait locus (QTL) mapping for 12 growth and yield traits at two contrasting plant densities of 15 and 60 plants m-2. The most significant associations were found for time to flowering, biomass at harvest, plant height, silique and seed numbers, and seed yield. These were generally independent of plant density, but some density-dependent associations were found in low-density populations. RNA-seq transcriptomic analysis revealed distinctive latent gene-regulatory responses to simulated shade between Lynx and Monty. Having identified candidate genes within the canola QTLs, we further examined their influence on density responses in Arabidopsis lines mutated in certain homologous genes. The results suggested that TCP1 might promote growth independently of plant density, while HY5 could increase biomass and seed yield specifically at high plant density. For flowering time, the results suggested that PIN genes might accelerate flowering in plant a density-dependent manner whilst FT, HY5, and TCP1 might accelerate it in a density-independent. This work highlights the advantages of using agronomic field experiments together with genetic and transcriptomic approaches to decipher quantitative complex traits that potentially mediate improved crop productivity.
Collapse
Affiliation(s)
- Yesica C Menendez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Av. Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Deborah P Rondanini
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Av. Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Av. Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Song J, Li B, Cui Y, Zhuo C, Gu Y, Hu K, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. QTL Mapping and Diurnal Transcriptome Analysis Identify Candidate Genes Regulating Brassica napus Flowering Time. Int J Mol Sci 2021; 22:ijms22147559. [PMID: 34299178 PMCID: PMC8305928 DOI: 10.3390/ijms22147559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Timely flowering is important for seed formation and maximization of rapeseed (Brassica napus) yield. Here, we performed flowering-time quantitative trait loci (QTL) mapping using a double haploid (DH) population grown in three environments to study the genetic architecture. Brassica 60 K Illumina Infinium™ single nucleotide polymorphism (SNP) array and simple sequence repeat (SSR) markers were used for genotyping of the DH population, and a high-density genetic linkage map was constructed. QTL analysis of flowering time from the three environments revealed five consensus QTLs, including two major QTLs. A major QTL located on chromosome A03 was detected specifically in the semi-winter rapeseed growing region, and the one on chromosome C08 was detected in all environments. Ribonucleic acid sequencing (RNA-seq) was performed on the parents’ leaves at seven time-points in a day to determine differentially expressed genes (DEGs). The biological processes and pathways with significant enrichment of DEGs were obtained. The DEGs in the QTL intervals were analyzed, and four flowering time-related candidate genes were found. These results lay a foundation for the genetic regulation of rapeseed flowering time and create a rapeseed gene expression library for seven time-points in a day.
Collapse
Affiliation(s)
- Jurong Song
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Bao Li
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Yanke Cui
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Chenjian Zhuo
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Yuanguo Gu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (B.L.); (Y.C.); (C.Z.); (K.H.); (J.W.); (B.Y.); (J.S.); (C.M.); (T.F.)
- Correspondence:
| |
Collapse
|
17
|
Yang H, Mohd Saad NS, Ibrahim MI, Bayer PE, Neik TX, Severn-Ellis AA, Pradhan A, Tirnaz S, Edwards D, Batley J. Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2035-2050. [PMID: 33768283 DOI: 10.1007/s00122-021-03803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
One hundred and sixty-seven B. juncea varieties were genotyped on the 90K Brassica assay (42,914 SNPs), which led to the identification of sixteen candidate genes for Rlm6. Brassica species are at high risk of severe crop loss due to pathogens, especially Leptosphaeria maculans (the causal agent of blackleg). Brassica juncea (L.) Czern is an important germplasm resource for canola improvement, due to its good agronomic traits, such as heat and drought tolerance and high blackleg resistance. The present study is the first using genome-wide association studies to identify candidate genes for blackleg resistance in B. juncea based on genome-wide SNPs obtained from the Illumina Infinium 90 K Brassica SNP array. The verification of Rlm6 in B. juncea was performed through a cotyledon infection test. Genotyping 42,914 single nucleotide polymorphisms (SNPs) in a panel of 167 B. juncea lines revealed a total of seven SNPs significantly associated with Rlm6 on chromosomes A07 and B04 in B. juncea. Furthermore, 16 candidate Rlm6 genes were found in these regions, defined as nucleotide binding site leucine-rich-repeat (NLR), leucine-rich repeat RLK (LRR-RLK) and LRR-RLP genes. This study will give insights into the blackleg resistance in B. juncea and facilitate identification of functional blackleg resistance genes which can be used in Brassica breeding.
Collapse
Affiliation(s)
- Hua Yang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | | | | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Anita A Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Aneeta Pradhan
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
18
|
Ferreira de Carvalho J, Stoeckel S, Eber F, Lodé-Taburel M, Gilet MM, Trotoux G, Morice J, Falentin C, Chèvre AM, Rousseau-Gueutin M. Untangling structural factors driving genome stabilization in nascent Brassica napus allopolyploids. THE NEW PHYTOLOGIST 2021; 230:2072-2084. [PMID: 33638877 DOI: 10.1111/nph.17308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 05/28/2023]
Abstract
Allopolyploids have globally higher fitness than their diploid progenitors; however, by comparison, most resynthesized allopolyploids have poor fertility and highly unstable genome. Elucidating the evolutionary processes promoting genome stabilization and fertility is thus essential to comprehend allopolyploid success. Using the Brassica model, we mimicked the speciation process of a nascent allopolyploid species by resynthesizing allotetraploid Brassica napus and systematically selecting for euploid individuals over eight generations in four independent allopolyploidization events with contrasted genetic backgrounds, cytoplasmic donors, and polyploid formation type. We evaluated the evolution of meiotic behavior and fertility and identified rearrangements in S1 to S9 lineages to explore the positive consequences of euploid selection on B. napus genome stability. Recurrent selection of euploid plants for eight generations drastically reduced the percentage of aneuploid progenies as early as the fourth generation, concomitantly with a decrease in number of newly fixed homoeologous rearrangements. The consequences of homoeologous rearrangements on meiotic behavior and seed number depended strongly on the genetic background and cytoplasm donor. The combined use of both self-fertilization and recurrent euploid selection allowed identification of genomic regions associated with fertility and meiotic behavior, providing complementary evidence to explain B. napus speciation success.
Collapse
Affiliation(s)
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | | | | | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, 35650, France
| | | |
Collapse
|
19
|
Werner CR, Gaynor RC, Gorjanc G, Hickey JM, Kox T, Abbadi A, Leckband G, Snowdon RJ, Stahl A. How Population Structure Impacts Genomic Selection Accuracy in Cross-Validation: Implications for Practical Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:592977. [PMID: 33391305 PMCID: PMC7772221 DOI: 10.3389/fpls.2020.592977] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/24/2020] [Indexed: 05/27/2023]
Abstract
Over the last two decades, the application of genomic selection has been extensively studied in various crop species, and it has become a common practice to report prediction accuracies using cross validation. However, genomic prediction accuracies obtained from random cross validation can be strongly inflated due to population or family structure, a characteristic shared by many breeding populations. An understanding of the effect of population and family structure on prediction accuracy is essential for the successful application of genomic selection in plant breeding programs. The objective of this study was to make this effect and its implications for practical breeding programs comprehensible for breeders and scientists with a limited background in quantitative genetics and genomic selection theory. We, therefore, compared genomic prediction accuracies obtained from different random cross validation approaches and within-family prediction in three different prediction scenarios. We used a highly structured population of 940 Brassica napus hybrids coming from 46 testcross families and two subpopulations. Our demonstrations show how genomic prediction accuracies obtained from among-family predictions in random cross validation and within-family predictions capture different measures of prediction accuracy. While among-family prediction accuracy measures prediction accuracy of both the parent average component and the Mendelian sampling term, within-family prediction only measures how accurately the Mendelian sampling term can be predicted. With this paper we aim to foster a critical approach to different measures of genomic prediction accuracy and a careful analysis of values observed in genomic selection experiments and reported in literature.
Collapse
Affiliation(s)
- Christian R. Werner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | - R. Chris Gaynor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | - John M. Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | | | | | | | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
20
|
Scheben A, Severn-Ellis AA, Patel D, Pradhan A, Rae SJ, Batley J, Edwards D. Linkage mapping and QTL analysis of flowering time using ddRAD sequencing with genotype error correction in Brassica napus. BMC PLANT BIOLOGY 2020; 20:546. [PMID: 33287721 PMCID: PMC7720618 DOI: 10.1186/s12870-020-02756-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/25/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Brassica napus is an important oilseed crop cultivated worldwide. During domestication and breeding of B. napus, flowering time has been a target of selection because of its substantial impact on yield. Here we use double digest restriction-site associated DNA sequencing (ddRAD) to investigate the genetic basis of flowering in B. napus. An F2 mapping population was derived from a cross between an early-flowering spring type and a late-flowering winter type. RESULTS Flowering time in the mapping population differed by up to 25 days between individuals. High genotype error rates persisted after initial quality controls, as suggested by a genotype discordance of ~ 12% between biological sequencing replicates. After genotype error correction, a linkage map spanning 3981.31 cM and compromising 14,630 single nucleotide polymorphisms (SNPs) was constructed. A quantitative trait locus (QTL) on chromosome C2 was detected, covering eight flowering time genes including FLC. CONCLUSIONS These findings demonstrate the effectiveness of the ddRAD approach to sample the B. napus genome. Our results also suggest that ddRAD genotype error rates can be higher than expected in F2 populations. Quality filtering and genotype correction and imputation can substantially reduce these error rates and allow effective linkage mapping and QTL analysis.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Anita A Severn-Ellis
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Dhwani Patel
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Aneeta Pradhan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Stephen J Rae
- BASF Agricultural Solutions Belgium NV, BASF Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
21
|
Ton LB, Neik TX, Batley J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars ( Brassica napus L.). Genes (Basel) 2020; 11:E1161. [PMID: 33008008 PMCID: PMC7600269 DOI: 10.3390/genes11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
Collapse
Affiliation(s)
- Linh Bao Ton
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ting Xiang Neik
- Sunway College Kuala Lumpur, No. 2, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia;
| | - Jacqueline Batley
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
22
|
Jones JC, Du ZG, Bernstein R, Meyer M, Hoppe A, Schilling E, Ableitner M, Juling K, Dick R, Strauss AS, Bienefeld K. Tool for genomic selection and breeding to evolutionary adaptation: Development of a 100K single nucleotide polymorphism array for the honey bee. Ecol Evol 2020; 10:6246-6256. [PMID: 32724511 PMCID: PMC7381592 DOI: 10.1002/ece3.6357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
High-throughput high-density genotyping arrays continue to be a fast, accurate, and cost-effective method for genotyping thousands of polymorphisms in high numbers of individuals. Here, we have developed a new high-density SNP genotyping array (103,270 SNPs) for honey bees, one of the most ecologically and economically important pollinators worldwide. SNPs were detected by conducting whole-genome resequencing of 61 honey bee drones (haploid males) from throughout Europe. Selection of SNPs for the chip was done in multiple steps using several criteria. The majority of SNPs were selected based on their location within known candidate regions or genes underlying a range of honey bee traits, including hygienic behavior against pathogens, foraging, and subspecies. Additionally, markers from a GWAS of hygienic behavior against the major honey bee parasite Varroa destructor were brought over. The chip also includes SNPs associated with each of three major breeding objectives-honey yield, gentleness, and Varroa resistance. We validated the chip and make recommendations for its use by determining error rates in repeat genotypings, examining the genotyping performance of different tissues, and by testing how well different sample types represent the queen's genotype. The latter is a key test because it is highly beneficial to be able to determine the queen's genotype by nonlethal means. The array is now publicly available and we suggest it will be a useful tool in genomic selection and honey bee breeding, as well as for GWAS of different traits, and for population genomic, adaptation, and conservation questions.
Collapse
Affiliation(s)
- Julia C. Jones
- Institute for Bee ResearchHohen NeuendorfGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Zhipei G. Du
- Institute for Bee ResearchHohen NeuendorfGermany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang X, Deng F, Wu Z, Chen SY, Shi Y, Jia X, Hu S, Wang J, Cao W, Lai SJ. A Genome-Wide Association Study Identifying Genetic Variants Associated with Growth, Carcass and Meat Quality Traits in Rabbits. Animals (Basel) 2020; 10:E1068. [PMID: 32575740 PMCID: PMC7341332 DOI: 10.3390/ani10061068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Growth, carcass characteristics and meat quality are the most important traits used in the rabbit industry. Identification of the candidate markers and genes significantly associated with these traits will be beneficial in rabbit breeding. In this study, we enrolled 465 rabbits, including 16 male Californian rabbits and 17 female Kangda5 line rabbits as the parental generation, along with their offspring (232 male and 200 female), in a genome-wide association study (GWAS) based on SLAF-seq technology. Bodyweight at 35, 42, 49, 56, 63 and 70 d was recorded for growth traits; and slaughter liveweight (84 d) and dressing out percentage were measured as carcass traits; and cooking loss and drip loss were measured as meat quality traits. A total of 5,223,720 SLAF markers were obtained by digesting the rabbit genome using RsaI + EcoRV-HF® restriction enzymes. After quality control, a subset of 317,503 annotated single-nucleotide polymorphisms (SNPs) was retained for subsequent analysis. A total of 28, 81 and 10 SNPs for growth, carcass and meat quality traits, respectively, were identified based on genome-wide significance (p < 3.16 × 10-7). Additionally, 16, 71 and 9 candidate genes were identified within 100 kb upstream or downstream of these SNPs. Further analysis is required to determine the biological roles of these candidate genes in determining rabbit growth, carcass traits and meat quality.
Collapse
Affiliation(s)
- Xue Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Feilong Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
- Special Key Laboratory of Microbial Resources and Drug Development, Research Center for Medicine and Biology, Zunyi Medical University, Zunyi 563000, China
| | - Zhoulin Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Wei Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (F.D.); (Z.W.); (S.-Y.C.); (Y.S.); (X.J.); (S.H.); (J.W.); (W.C.)
| |
Collapse
|
24
|
Manimekalai R, Suresh G, Govinda Kurup H, Athiappan S, Kandalam M. Role of NGS and SNP genotyping methods in sugarcane improvement programs. Crit Rev Biotechnol 2020; 40:865-880. [PMID: 32508157 DOI: 10.1080/07388551.2020.1765730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sugarcane (Saccharum spp.) is one of the most economically significant crops because of its high sucrose content and it is a promising biomass feedstock for biofuel production. Sugarcane genome sequencing and analysis is a difficult task due to its heterozygosity and polyploidy. Long sequence read technologies, PacBio Single-Molecule Real-Time (SMRT) sequencing, the Illumina TruSeq, and the Oxford Nanopore sequencing could solve the problem of genome assembly. On the applications side, next generation sequencing (NGS) technologies played a major role in the discovery of single nucleotide polymorphism (SNP) and the development of low to high throughput genotyping platforms. The two mainstream high throughput genotyping platforms are the SNP microarray and genotyping by sequencing (GBS). This paper reviews the NGS in sugarcane genomics, genotyping methodologies, and the choice of these methods. Array-based SNP genotyping is robust, provides consistent SNPs, and relatively easier downstream data analysis. The GBS method identifies large scale SNPs across the germplasm. A combination of targeted GBS and array-based genotyping methods should be used to increase the accuracy of genomic selection and marker-assisted breeding.
Collapse
Affiliation(s)
- Ramaswamy Manimekalai
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Gayathri Suresh
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Hemaprabha Govinda Kurup
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Selvi Athiappan
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Mallikarjuna Kandalam
- Business Development, Asia Pacific Japan region, Thermo Fisher Scientific, Waltham, MA, USA
| |
Collapse
|
25
|
Gabur I, Chawla HS, Lopisso DT, von Tiedemann A, Snowdon RJ, Obermeier C. Gene presence-absence variation associates with quantitative Verticillium longisporum disease resistance in Brassica napus. Sci Rep 2020; 10:4131. [PMID: 32139810 PMCID: PMC7057980 DOI: 10.1038/s41598-020-61228-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Although copy number variation (CNV) and presence-absence variation (PAV) have been discovered in selected gene families in most crop species, the global prevalence of these polymorphisms in most complex genomes is still unclear and their influence on quantitatively inherited agronomic traits is still largely unknown. Here we analyze the association of gene PAV with resistance of oilseed rape (Brassica napus) against the important fungal pathogen Verticillium longisporum, as an example for a complex, quantitative disease resistance in the strongly rearranged genome of a recent allopolyploid crop species. Using Single Nucleotide absence Polymorphism (SNaP) markers to efficiently trace PAV in breeding populations, we significantly increased the resolution of loci influencing V. longisporum resistance in biparental and multi-parental mapping populations. Gene PAV, assayed by resequencing mapping parents, was observed in 23-51% of the genes within confidence intervals of quantitative trait loci (QTL) for V. longisporum resistance, and high-priority candidate genes identified within QTL were all affected by PAV. The results demonstrate the prominent role of gene PAV in determining agronomic traits, suggesting that this important class of polymorphism should be exploited more systematically in future plant breeding.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Daniel Teshome Lopisso
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Andreas von Tiedemann
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
26
|
Knoch D, Abbadi A, Grandke F, Meyer RC, Samans B, Werner CR, Snowdon RJ, Altmann T. Strong temporal dynamics of QTL action on plant growth progression revealed through high-throughput phenotyping in canola. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:68-82. [PMID: 31125482 PMCID: PMC6920335 DOI: 10.1111/pbi.13171] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 05/08/2023]
Abstract
A major challenge of plant biology is to unravel the genetic basis of complex traits. We took advantage of recent technical advances in high-throughput phenotyping in conjunction with genome-wide association studies to elucidate genotype-phenotype relationships at high temporal resolution. A diverse Brassica napus population from a commercial breeding programme was analysed by automated non-invasive phenotyping. Time-resolved data for early growth-related traits, including estimated biovolume, projected leaf area, early plant height and colour uniformity, were established and complemented by fresh and dry weight biomass. Genome-wide SNP array data provided the framework for genome-wide association analyses. Using time point data and relative growth rates, multiple robust main effect marker-trait associations for biomass and related traits were detected. Candidate genes involved in meristem development, cell wall modification and transcriptional regulation were detected. Our results demonstrate that early plant growth is a highly complex trait governed by several medium and many small effect loci, most of which act only during short phases. These observations highlight the importance of taking the temporal patterns of QTL/allele actions into account and emphasize the need for detailed time-resolved analyses to effectively unravel the complex and stage-specific contributions of genes affecting growth processes that operate at different developmental phases.
Collapse
Affiliation(s)
- Dominic Knoch
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Amine Abbadi
- Norddeutsche Pflanzenzucht Innovation GmbH (NPZi)HoltseeGermany
| | - Fabian Grandke
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
| | - Rhonda C. Meyer
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Birgit Samans
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
- Present address:
Technische Hochschule Mittelhessen (THM), University of Applied SciencesFachbereich Gesundheit35390GiessenGermany
| | - Christian R. Werner
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
- Present address:
The Roslin InstituteUniversity of EdinburghEaster Bush CampusMidlothianEH25 9RGUK
| | - Rod J. Snowdon
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
| | - Thomas Altmann
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| |
Collapse
|
27
|
Qasim MU, Zhao Q, Shahid M, Samad RA, Ahmar S, Wu J, Fan C, Zhou Y. Identification of QTLs Containing Resistance Genes for Sclerotinia Stem Rot in Brassica napus Using Comparative Transcriptomic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:776. [PMID: 32655594 PMCID: PMC7325899 DOI: 10.3389/fpls.2020.00776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 05/21/2023]
Abstract
Sclerotinia stem rot is a major disease in Brassica napus that causes yield losses of 10-20% and reaching 80% in severely infected fields. SSR not only causes yield reduction but also causes low oil quality by reducing fatty acid content. There is a need to identify resistant genetic sources with functional significance for the breeding of SSR-resistant cultivars. In this study, we identified 17 QTLs involved in SSR resistance in three different seasons using SNP markers and disease lesion development after artificial inoculation. There were no common QTLs in all 3 years, but there were three QTLs that appeared in two seasons covering all seasons with a shared QTL. The QTLs identified in the 2 years were SRA9a, SRC2a and SRC3a with phenotypic effect variances of 14.75 and 11.57% for SRA9a, 7.49 and 10.38% for SRC3a and 7.73 and 6.81% for SRC2a in their 2 years, respectively. The flowering time was also found to have a negative correlation with disease resistance, i.e., early-maturing lines were more susceptible to disease. The stem width has shown a notably weak effect on disease development, causing researchers to ignore its effect. Given that flowering time is an important factor in disease resistance, we used comparative RNA-sequencing analysis of resistant and susceptible lines with consistent performance in 3 years with almost the same flowering time to identify the resistance genes directly involved in resistance within the QTL regions. Overall, there were more genes differentially expressed in resistant lines 19,970 than in susceptible lines 3936 compared to their mock-inoculated lines, demonstrating their tendency to cope with disease. We identified 36 putative candidate genes from the resistant lines that were upregulated in resistant lines compared to resistant mock and susceptible lines that might be involved in resistance to SSR.
Collapse
Affiliation(s)
- Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rana Abdul Samad
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yongming Zhou,
| |
Collapse
|
28
|
Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan MW. Variation in Expression of the HECT E3 Ligase UPL3 Modulates LEC2 Levels, Seed Size, and Crop Yields in Brassica napus. THE PLANT CELL 2019; 31:2370-2385. [PMID: 31439805 DOI: 10.1101/334581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 05/28/2023]
Abstract
Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola (Brassica napus) accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene BnaUPL3 C03 made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of BnaUPL3 C03 expression. We defined a mechanism in which UPL3 mediated the proteasomal degradation of LEC2, a master transcriptional regulator of seed maturation. Accessions with reduced UPL3 expression had increased LEC2 protein levels, larger seeds, and prolonged expression of lipid biosynthetic genes during seed maturation. Natural variation in BnaUPL3 C03 expression appears not to have been exploited in current B napus breeding lines and could therefore be used as a new approach to maximize future yields in this important oil crop.
Collapse
Affiliation(s)
- Charlotte Miller
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Rachel Wells
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Neil McKenzie
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Martin Trick
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joshua Ball
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Abdelhak Fatihi
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Thierry Chardot
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Loic Lepiniec
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Institut National de la Recherche Agronomique Versailles, route de Saint-Cyr, 78000 Versailles, France
| | - Michael W Bevan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
29
|
Mwathi MW, Schiessl SV, Batley J, Mason AS. "Doubled-haploid" allohexaploid Brassica lines lose fertility and viability and accumulate genetic variation due to genomic instability. Chromosoma 2019; 128:521-532. [PMID: 31377850 DOI: 10.1007/s00412-019-00720-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023]
Abstract
Microspore culture stimulates immature pollen grains to develop into plants via tissue culture and is used routinely in many crop species to produce "doubled haploids": homozygous, true-breeding lines. However, microspore culture is also often used on material that does not have stable meiosis, such as interspecific hybrids. In this case, the resulting progeny may lose their "doubled haploid" homozygous status as a result of chromosome missegregation and homoeologous exchanges. However, little is known about the frequency of these effects. We assessed fertility, meiosis and genetic variability in self-pollinated progeny sets (the MDL2 population) resulting from first-generation plants (the MDL1 population) derived from microspores of a near-allohexaploid interspecific hybrid from the cross (Brassica napus × B. carinata) × B. juncea. Allelic inheritance and copy number variation were predicted using single nucleotide polymorphism marker data from the Illumina Infinium 60K Brassica array. Seed fertility and viability decreased substantially from the MDL1 to the MDL2 generation. In the MDL2 population, 87% of individuals differed genetically from their MDL1 parent. These genetic differences resulted from novel homoeologous exchanges between chromosomes, chromosome loss and gain, and segregation and instability of pre-existing karyotype abnormalities. Novel karyotype change was extremely common, with 2.2 new variants observed per MDL2 individual. Significant differences between progeny sets in the number of novel genetic variants were also observed. Meiotic instability clearly has the potential to dramatically change karyotypes (often without detectable effects on the presence or absence of alleles) in putatively homozygous, microspore-derived lines, resulting in loss of fertility and viability.
Collapse
Affiliation(s)
- Margaret W Mwathi
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.,School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Sarah V Schiessl
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.,School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Annaliese S Mason
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
30
|
Nam JW, Yeon J, Jeong J, Cho E, Kim HB, Hur Y, Lee KR, Yi H. Overexpression of Acyl-ACP Thioesterases, CpFatB4 and CpFatB5, Induce Distinct Gene Expression Reprogramming in Developing Seeds of Brassica napus. Int J Mol Sci 2019; 20:E3334. [PMID: 31284614 PMCID: PMC6651428 DOI: 10.3390/ijms20133334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/03/2022] Open
Abstract
We examined the substrate preference of Cuphea paucipetala acyl-ACP thioesterases, CpFatB4 and CpFatB5, and gene expression changes associated with the modification of lipid composition in the seed, using Brassica napus transgenic plants overexpressing CpFatB4 or CpFatB5 under the control of a seed-specific promoter. CpFatB4 seeds contained a higher level of total saturated fatty acid (FA) content, with 4.3 times increase in 16:0 palmitic acid, whereas CpFatB5 seeds showed approximately 3% accumulation of 10:0 and 12:0 medium-chain FAs, and a small increase in other saturated FAs, resulting in higher levels of total saturated FAs. RNA-Seq analysis using entire developing pods at 8, 25, and 45 days after flowering (DAF) showed up-regulation of genes for β-ketoacyl-acyl carrier protein synthase I/II, stearoyl-ACP desaturase, oleate desaturase, and linoleate desaturase, which could increase unsaturated FAs and possibly compensate for the increase in 16:0 palmitic acid at 45 DAF in CpFatB4 transgenic plants. In CpFatB5 transgenic plants, many putative chloroplast- or mitochondria-encoded genes were identified as differentially expressed. Our results report comprehensive gene expression changes induced by alterations of seed FA composition and reveal potential targets for further genetic modifications.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Jinouk Yeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Jiseong Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Eunyoung Cho
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ho Bang Kim
- Life Sciences Research Institute, Biomedic Co., Ltd., Bucheon 14548, Korea
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea.
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Agricultural Science, RDA, Jeonju 55365, Korea.
| | - Hankuil Yi
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
31
|
Gaebelein R, Schiessl SV, Samans B, Batley J, Mason AS. Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids. THE NEW PHYTOLOGIST 2019; 223:965-978. [PMID: 30887525 DOI: 10.1111/nph.15804] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Synthetic allohexaploid Brassica hybrids (2n = AABBCC) do not exist naturally, but can be synthesized by crosses between diploid and/or allotetraploid Brassica species. Using these hybrids, we aimed to identify how novel allohexaploids restore fertility and normal meiosis after formation. Chromosome inheritance, genome structure, fertility and meiotic behaviour were assessed in three segregating allohexaploid populations derived from the cross (B. napus × B. carinata) × B. juncea using a combination of molecular marker genotyping, phenotyping and cytogenetics. Plants with unbalanced A-C translocations in one direction (where a C-genome chromosome fragment replaces an A-genome fragment) but not the other (where an A-genome fragment replaces a C-genome fragment) showed significantly reduced fertility across all populations. Genomic regions associated with fertility contained several meiosis genes with putatively causal mutations inherited from the parents (copies of SCC2 in the A genome, PAIR1/PRD3, PRD1 and ATK1/KATA/KIN14a in the B genome, and MSH2 and SMC1/TITAN8 in the C genome). Reduced seed fertility associated with the loss of chromosome fragments from only one subgenome following homoeologous exchanges could comprise a mechanism for biased genome fractionation in allopolyploids. Pre-existing meiosis gene variants present in allotetraploid parents may help to stabilize meiosis in novel allohexaploids.
Collapse
Affiliation(s)
- Roman Gaebelein
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Sarah V Schiessl
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Birgit Samans
- Faculty of Health Science, Technische Hochschule Mittelhessen, Wiesenstrasse 14, Giessen, 35390, Germany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
32
|
Malmberg MM, Spangenberg GC, Daetwyler HD, Cogan NOI. Assessment of low-coverage nanopore long read sequencing for SNP genotyping in doubled haploid canola (Brassica napus L.). Sci Rep 2019; 9:8688. [PMID: 31213642 PMCID: PMC6582154 DOI: 10.1038/s41598-019-45131-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
Despite the high accuracy of short read sequencing (SRS), there are still issues with attaining accurate single nucleotide polymorphism (SNP) genotypes at low sequencing coverage and in highly duplicated genomes due to misalignment. Long read sequencing (LRS) systems, including the Oxford Nanopore Technologies (ONT) minION, have become popular options for de novo genome assembly and structural variant characterisation. The current high error rate often requires substantial post-sequencing correction and would appear to prevent the adoption of this system for SNP genotyping, but nanopore sequencing errors are largely random. Using low coverage ONT minION sequencing for genotyping of pre-validated SNP loci was examined in 9 canola doubled haploids. The minION genotypes were compared to the Illumina sequences to determine the extent and nature of genotype discrepancies between the two systems. The significant increase in read length improved alignment to the genome and the absence of classical SRS biases results in a more even representation of the genome. Sequencing errors are present, primarily in the form of heterozygous genotypes, which can be removed in completely homozygous backgrounds but requires more advanced bioinformatics in heterozygous genomes. Developments in this technology are promising for routine genotyping in the future.
Collapse
Affiliation(s)
- M M Malmberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - G C Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - H D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - N O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
33
|
Scheben A, Verpaalen B, Lawley CT, Chan CKK, Bayer PE, Batley J, Edwards D. CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:142-152. [PMID: 30548723 DOI: 10.1111/tpj.14194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Advances in sequencing technology have led to a rapid rise in the genomic data available for plants, driving new insights into the evolution, domestication and improvement of crops. Single nucleotide polymorphisms (SNPs) are a major component of crop genomic diversity, and are invaluable as genetic markers in research and breeding programs. High-throughput SNP arrays, or 'SNP chips', can generate reproducible sets of informative SNP markers and have been broadly adopted. Although there are many public repositories for sequencing data, which are routinely uploaded, there are no formal repositories for crop SNP array data. To make SNP array data more easily accessible, we have developed CropSNPdb (http://snpdb.appliedbioinformatics.com.au), a database for SNP array data produced by the Illumina Infinium™ hexaploid bread wheat (Triticum aestivum) 90K and Brassica 60K arrays. We currently host SNPs from datasets covering 526 Brassica lines and 309 bread wheat lines, and provide search, download and upload utilities for users. CropSNPdb provides a useful repository for these data, which can be applied for a range of genomics and molecular crop-breeding activities.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brent Verpaalen
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | | | - Chon-Kit K Chan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Australian Genome Research Facility, Melbourne, Vic., 3000, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
34
|
Co-location of QTL for Sclerotinia stem rot resistance and flowering time in Brassica napus. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Gabur I, Chawla HS, Snowdon RJ, Parkin IAP. Connecting genome structural variation with complex traits in crop plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:733-750. [PMID: 30448864 DOI: 10.1007/s00122-018-3233-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/05/2023]
Abstract
Structural genome variation is a major determinant of useful trait diversity. We describe how genome analysis methods are enabling discovery of trait-associated structural variants and their potential impact on breeding. As our understanding of complex crop genomes continues to grow, there is growing evidence that structural genome variation plays a major role in determining traits important for breeding and agriculture. Identifying the extent and impact of structural variants in crop genomes is becoming increasingly feasible with ongoing advances in the sophistication of genome sequencing technologies, particularly as it becomes easier to generate accurate long sequence reads on a genome-wide scale. In this article, we discuss the origins of structural genome variation in crops from ancient and recent genome duplication and polyploidization events and review high-throughput methods to assay such variants in crop populations in order to find associations with phenotypic traits. There is increasing evidence from such studies that gene presence-absence and copy number variation resulting from segmental chromosome exchanges may be at the heart of adaptive variation of crops to counter abiotic and biotic stress factors. We present examples from major crops that demonstrate the potential of pangenomic diversity as a key resource for future plant breeding for resilience and sustainability.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N OX2, Canada
| |
Collapse
|
36
|
Shah S, Karunarathna NL, Jung C, Emrani N. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC PLANT BIOLOGY 2018; 18:380. [PMID: 30594150 PMCID: PMC6310979 DOI: 10.1186/s12870-018-1606-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Increasing the productivity of rapeseed as one of the widely cultivated oil crops in the world is of upmost importance. As flowering time and plant architecture play a key role in the regulation of rapeseed yield, understanding the genetic mechanism underlying these traits can boost the rapeseed breeding. Meristem identity genes are known to have pleiotropic effects on plant architecture and seed yield in various crops. To understand the function of one of the meristem identity genes, APETALA1 (AP1) in rapeseed, we performed phenotypic analysis of TILLING mutants under greenhouse conditions. Three stop codon mutant families carrying a mutation in Bna.AP1.A02 paralog were analyzed for different plant architecture and seed yield-related traits. RESULTS It was evident that stop codon mutation in the K domain of Bna.AP1.A02 paralog caused significant changes in flower morphology as well as plant architecture related traits like plant height, branch height, and branch number. Furthermore, yield-related traits like seed yield per plant and number of seeds per plants were also significantly altered in the same mutant family. Apart from phenotypic changes, stop codon mutation in K domain of Bna.AP1.A02 paralog also altered the expression of putative downstream target genes like Bna.TFL1 and Bna.FUL in shoot apical meristem (SAM) of rapeseed. Mutant plants carrying stop codon mutations in the COOH domain of Bna.AP1.A02 paralog did not have a significant effect on plant architecture, yield-related traits or the expression of the downstream targets. CONCLUSIONS We found that Bna.AP1.A02 paralog has pleiotropic effect on plant architecture and yield-related traits in rapeseed. The allele we found in the current study with a beneficial effect on seed yield can be incorporated into rapeseed breeding pool to develop new varieties.
Collapse
Affiliation(s)
- Smit Shah
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Nirosha L. Karunarathna
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|
37
|
Gabur I, Chawla HS, Liu X, Kumar V, Faure S, von Tiedemann A, Jestin C, Dryzska E, Volkmann S, Breuer F, Delourme R, Snowdon R, Obermeier C. Finding invisible quantitative trait loci with missing data. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2102-2112. [PMID: 29729219 PMCID: PMC6230954 DOI: 10.1111/pbi.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 05/21/2023]
Abstract
Evolutionary processes during plant polyploidization and speciation have led to extensive presence-absence variation (PAV) in crop genomes, and there is increasing evidence that PAV associates with important traits. Today, high-resolution genetic analysis in major crops frequently implements simple, cost-effective, high-throughput genotyping from single nucleotide polymorphism (SNP) hybridization arrays; however, these are normally not designed to distinguish PAV from failed SNP calls caused by hybridization artefacts. Here, we describe a strategy to recover valuable information from single nucleotide absence polymorphisms (SNaPs) by population-based quality filtering of SNP hybridization data to distinguish patterns associated with genuine deletions from those caused by technical failures. We reveal that including SNaPs in genetic analyses elucidate segregation of small to large-scale structural variants in nested association mapping populations of oilseed rape (Brassica napus), a recent polyploid crop with widespread structural variation. Including SNaP markers in genomewide association studies identified numerous quantitative trait loci, invisible using SNP markers alone, for resistance to two major fungal diseases of oilseed rape, Sclerotinia stem rot and blackleg disease. Our results indicate that PAV has a strong influence on quantitative disease resistance in B. napus and that SNaP analysis using cost-effective SNP array data can provide extensive added value from 'missing data'. This strategy might also be applicable for improving the precision of genetic mapping in many important crop species.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | | | - Xiwei Liu
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | - Vinod Kumar
- IGEPP, INRA, AGROCAMPUS OUESTUniv RennesLe RheuFrance
| | | | - Andreas von Tiedemann
- Section of General Plant Pathology and Crop ProtectionGeorg August UniversityGöttingenGermany
| | | | | | | | | | | | - Rod Snowdon
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | | |
Collapse
|
38
|
Higgins EE, Clarke WE, Howell EC, Armstrong SJ, Parkin IAP. Detecting de Novo Homoeologous Recombination Events in Cultivated Brassica napus Using a Genome-Wide SNP Array. G3 (BETHESDA, MD.) 2018; 8:2673-2683. [PMID: 29907649 PMCID: PMC6071606 DOI: 10.1534/g3.118.200118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022]
Abstract
The heavy selection pressure due to intensive breeding of Brassica napus has created a narrow gene pool, limiting the ability to produce improved varieties through crosses between B. napus cultivars. One mechanism that has contributed to the adaptation of important agronomic traits in the allotetraploid B. napus has been chromosomal rearrangements resulting from homoeologous recombination between the constituent A and C diploid genomes. Determining the rate and distribution of such events in natural B. napus will assist efforts to understand and potentially manipulate this phenomenon. The Brassica high-density 60K SNP array, which provides genome-wide coverage for assessment of recombination events, was used to assay 254 individuals derived from 11 diverse cultivated spring type B. napus These analyses identified reciprocal allele gain and loss between the A and C genomes and allowed visualization of de novo homoeologous recombination events across the B. napus genome. The events ranged from loss/gain of 0.09 Mb to entire chromosomes, with almost 5% aneuploidy observed across all gametes. There was a bias toward sub-telomeric exchanges leading to genome homogenization at chromosome termini. The A genome replaced the C genome in 66% of events, and also featured more dominantly in gain of whole chromosomes. These analyses indicate de novo homoeologous recombination is a continuous source of variation in established Brassica napus and the rate of observed events appears to vary with genetic background. The Brassica 60K SNP array will be a useful tool in further study and manipulation of this phenomenon.
Collapse
Affiliation(s)
- Erin E Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Elaine C Howell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
39
|
Bourke PM, Voorrips RE, Visser RGF, Maliepaard C. Tools for Genetic Studies in Experimental Populations of Polyploids. FRONTIERS IN PLANT SCIENCE 2018; 9:513. [PMID: 29720992 PMCID: PMC5915555 DOI: 10.3389/fpls.2018.00513] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations), facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1) polyploid genotyping; (2) genetic and physical mapping; and (3) quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition), establishing chromosome-scale linkage phase among marker alleles, constructing (short-range) haplotypes, generating linkage maps, performing genome-wide association studies (GWAS) and quantitative trait locus (QTL) analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids) or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids) are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such technologies also offer the promise of understanding polyploid genomes at a level which hitherto has remained elusive.
Collapse
Affiliation(s)
| | | | | | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
40
|
Hatzig S, Breuer F, Nesi N, Ducournau S, Wagner MH, Leckband G, Abbadi A, Snowdon RJ. Hidden Effects of Seed Quality Breeding on Germination in Oilseed Rape ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2018; 9:419. [PMID: 29666629 PMCID: PMC5891602 DOI: 10.3389/fpls.2018.00419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 05/19/2023]
Abstract
Intense selection for specific seed qualities in winter oilseed rape breeding has had an inadvertent negative influence on seed germination performance. In a panel of 215 diverse winter oilseed rape varieties spanning over 50 years of breeding progress in winter-type rapeseed, we found that low seed erucic acid content and reduced seed glucosinolate content were significantly related with prolonged germination time. Genome-wide association mapping revealed that this relationship is caused by linkage drag between important loci for seed quality and germination traits. One QTL for mean germination time on chromosome A09 co-localized with significant but minor QTL for both seed erucic acid and seed glucosinolate content. This suggested either potential pleiotropy or close linkage of minor factors influencing all three traits. Therefore, a reduction in germination performance may be due to inadvertent co-selection of genetic variants associated with 00 seed quality that have a negative influence on germination. Our results suggest that marker-assisted selection of positive alleles for mean germination time within the modern quality pool can help breeders to maintain maximal germination capacity in new 00-quality oilseed rape cultivars.
Collapse
Affiliation(s)
- Sarah Hatzig
- Department of Plant Breeding, Justus-Liebig University of Giessen, Giessen, Germany
| | | | - Nathalie Nesi
- Institute for Genetics, Environment and Plant Protection, Le Rheu, France
| | - Sylvie Ducournau
- Groupe d’Etude et de Contrôle des Variétés et des Semences, Beaucouzé, France
| | - Marie-Helene Wagner
- Groupe d’Etude et de Contrôle des Variétés et des Semences, Beaucouzé, France
| | | | | | - Rod J. Snowdon
- Department of Plant Breeding, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
41
|
Braatz J, Harloff HJ, Emrani N, Elisha C, Heepe L, Gorb SN, Jung C. The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:959-971. [PMID: 29340752 DOI: 10.1007/s00122-018-3051-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 05/24/2023]
Abstract
This study elucidates the influence of indehiscent mutations on rapeseed silique shatter resistance. A phenotype with enlarged replum-valve joint area and altered cell dimensions in the dehiscence zone is described. Silique shattering is a major factor reducing the yield stability of oilseed rape (Brassica napus). Attempts to improve shatter resistance often include the use of mutations in target genes identified from Arabidopsis (Arabidopsis thaliana). A variety of phenotyping methods assessing the level of shatter resistance were previously described. However, a comparative and comprehensive evaluation of the methods has not yet been undertaken. We verified the increase of shatter resistance in indehiscent double knock-down mutants obtained by TILLING with a systematic approach comparing three independent phenotyping methods. A positive correlation of silique length and shatter resistance was observed and accounted for in the analyses. Microscopic studies ruled out the influence of different lignification patterns. Instead, we propose a model to explain increased shattering resistance of indehiscent rapeseed mutants by altered cell shapes and sizes within the contact surfaces of replum and valves.
Collapse
Affiliation(s)
- Janina Braatz
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Chirlon Elisha
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Lars Heepe
- Zoological Institute, Functional Morphology and Biomechanics, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Stanislav N Gorb
- Zoological Institute, Functional Morphology and Biomechanics, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany.
| |
Collapse
|
42
|
Werner CR, Qian L, Voss-Fels KP, Abbadi A, Leckband G, Frisch M, Snowdon RJ. Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:299-317. [PMID: 29080901 DOI: 10.1007/s00122-017-3002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/09/2017] [Indexed: 05/02/2023]
Abstract
Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model. In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.
Collapse
Affiliation(s)
- Christian R Werner
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Lunwen Qian
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Kai P Voss-Fels
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
| | | | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus Liebig University, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
43
|
Malmberg MM, Shi F, Spangenberg GC, Daetwyler HD, Cogan NOI. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing. FRONTIERS IN PLANT SCIENCE 2018; 9:508. [PMID: 29725344 PMCID: PMC5917405 DOI: 10.3389/fpls.2018.00508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 05/21/2023]
Abstract
Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD). Complexity reduction genotyping-by-sequencing (GBS) methods, including GBS-transcriptomics (GBS-t), enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR) delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs), and identify structural variants (SVs). Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.
Collapse
Affiliation(s)
- M. Michelle Malmberg
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Fan Shi
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, Australia
| | - German C. Spangenberg
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Hans D. Daetwyler
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Noel O. I. Cogan
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- *Correspondence: Noel O. I. Cogan,
| |
Collapse
|
44
|
You Q, Yang X, Peng Z, Xu L, Wang J. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. FRONTIERS IN PLANT SCIENCE 2018; 9:104. [PMID: 29467780 PMCID: PMC5808122 DOI: 10.3389/fpls.2018.00104] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 05/18/2023]
Abstract
Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP) array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1) discussed the pros and cons of SNP array in general for high throughput genotyping, (2) presented the challenges of and solutions to SNP calling in polyploid species, (3) summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4) illustrated SNP array applications in several different polyploid crop species, then (5) discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6) provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.
Collapse
Affiliation(s)
- Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liping Xu
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, United States
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Jianping Wang
| |
Collapse
|
45
|
|
46
|
Shen Y, Yang Y, Xu E, Ge X, Xiang Y, Li Z. Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:67-78. [PMID: 28942459 DOI: 10.1007/s00122-017-2986-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/01/2017] [Indexed: 05/28/2023]
Abstract
A high-density SNP map was constructed and several novel QTL for branch angle across six environments in Brassica napus were identified. Branch angle is a major determinant for the ideotype of a plant, while the mechanisms underlying this trait in Brassica napus remain elusive. Herein, we developed one doubled haploid population from a cross involving one Capsella bursa-pastoris derived B. napus intertribal introgression line with the compressed branches and wooden stems, and constructed a high-density SNP map covering the genetic distance of 2242.14 cM, with an average marker interval of 0.73 cM. After phenotypic measurements across six environments, the inclusive composite interval mapping algorithm was conducted to analyze the QTL associated with branch angle. In single-environment analysis, a total of 17 QTL were detected and mainly distributed on chromosomes A01, A03, A09 and C03. Of these, three major QTL, qBA.A03-2, qBA.C03-3 and qBA.C03-4 were steadily expressed, each explaining more than 10% of the phenotypic variation in at least two environments. Compared with other results on rapeseed branch angle, these major QTL were newly detected. In QTL by environment interactions (QEI) mapping, 10 QTL were identified, and the QTL average effect and QEI effect were estimated. Of these, 7 QTL were detected in both single-environment analysis and QEI mapping. Based on the physical positions of SNPs and the functional annotation of the Arabidopsis thaliana genome, 27 genes within the QTL regions were selected as candidate genes, including early auxin-responsive genes, small auxin-up RNA, auxin/indoleacetic acid and gretchenhagen-3. These results may pave the way for deciphering the genetic control of branch angle in B. napus.
Collapse
Affiliation(s)
- Yusen Shen
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yi Yang
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ensheng Xu
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550008, People's Republic of China.
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
47
|
Stein A, Coriton O, Rousseau‐Gueutin M, Samans B, Schiessl SV, Obermeier C, Parkin IA, Chèvre A, Snowdon RJ. Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1478-1489. [PMID: 28370938 PMCID: PMC5633767 DOI: 10.1111/pbi.12732] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 05/20/2023]
Abstract
Genomic rearrangements arising during polyploidization are an important source of genetic and phenotypic variation in the recent allopolyploid crop Brassica napus. Exchanges among homoeologous chromosomes, due to interhomoeologue pairing, and deletions without compensating homoeologous duplications are observed in both natural B. napus and synthetic B. napus. Rearrangements of large or small chromosome segments induce gene copy number variation (CNV) and can potentially cause phenotypic changes. Unfortunately, complex genome restructuring is difficult to deal with in linkage mapping studies. Here, we demonstrate how high-density genetic mapping with codominant, physically anchored SNP markers can detect segmental homoeologous exchanges (HE) as well as deletions and accurately link these to QTL. We validated rearrangements detected in genetic mapping data by whole-genome resequencing of parental lines along with cytogenetic analysis using fluorescence in situ hybridization with bacterial artificial chromosome probes (BAC-FISH) coupled with PCR using primers specific to the rearranged region. Using a well-known QTL region influencing seed quality traits as an example, we confirmed that HE underlies the trait variation in a DH population involving a synthetic B. napus trait donor, and succeeded in narrowing the QTL to a small defined interval that enables delineation of key candidate genes.
Collapse
Affiliation(s)
- Anna Stein
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Olivier Coriton
- IGEPPINRAAgrocampus OuestUniversité de Rennes 1Le RheuFrance
| | | | - Birgit Samans
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Sarah V. Schiessl
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Christian Obermeier
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | | | | | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
48
|
Werner CR, Qian L, Voss-Fels KP, Abbadi A, Leckband G, Frisch M, Snowdon RJ. Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017. [PMID: 29080901 DOI: 10.1007/s00122‐017‐3002‐5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KEY MESSAGE Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model. In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.
Collapse
Affiliation(s)
- Christian R Werner
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Lunwen Qian
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany.,Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Kai P Voss-Fels
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
| | | | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus Liebig University, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
49
|
Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, Waugh R. Development and Evaluation of a Barley 50k iSelect SNP Array. FRONTIERS IN PLANT SCIENCE 2017; 8:1792. [PMID: 29089957 PMCID: PMC5651081 DOI: 10.3389/fpls.2017.01792] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
High-throughput genotyping arrays continue to be an attractive, cost-effective alternative to sequencing based approaches. We have developed a new 50k Illumina Infinium iSelect genotyping array for barley, a cereal crop species of major international importance. The majority of SNPs on the array have been extracted from variants called in exome capture data of a wide range of European barley germplasm. We used the recently published barley pseudomolecule assembly to map the exome capture data, which allowed us to generate markers with accurate physical positions and detailed gene annotation. Markers from an existing and widely used barley 9k Infinium iSelect array were carried over onto the 50k chip for backward compatibility. The array design featured 49,267 SNP markers that converted into 44,040 working assays, of which 43,461 were scorable in GenomeStudio. Of the working assays, 6,251 are from the 9k iSelect platform. We validated the SNPs by comparing the genotype calls from the new array to legacy datasets. Rates of agreement averaged 98.1 and 93.9% respectively for the legacy 9k iSelect SNP set (Comadran et al., 2012) and the exome capture SNPs. To test the utility of the 50k chip for genetic mapping, we genotyped a segregating population derived from a Golden Promise × Morex cross (Liu et al., 2014) and mapped over 14,000 SNPs to genetic positions which showed a near exact correspondence to their known physical positions. Manual adjustment of the cluster files used by the interpreting software for genotype scoring improved results substantially, but migration of cluster files between sites led to a deterioration of results, suggesting that local adjustment of cluster files is required on a site-per-site basis. Information relating to the markers on the chip is available online at https://ics.hutton.ac.uk/50k.
Collapse
Affiliation(s)
- Micha M. Bayer
- The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Micha M. Bayer
| | | | | | | | | | | | - Luke Ramsay
- The James Hutton Institute, Dundee, United Kingdom
| | | | - Paul D. Shaw
- The James Hutton Institute, Dundee, United Kingdom
| | | | - Robbie Waugh
- The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|