1
|
Vinokur V, Berenshtein E, Chevion M, Chevion D. A New Concept in Antidiabetic Therapeutics: A Concerted Removal of Labile Iron and Intracellular Deposition of Zinc. Diabetes Metab J 2024; 48:59-71. [PMID: 38173374 PMCID: PMC10850271 DOI: 10.4093/dmj.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/10/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND The inflammatory process is known to be an integral part of the pathophysiology of type 2 diabetes mellitus (T2DM). The "labile," redox-active iron, serving as a catalyst in Fenton reaction, producing the deleterious reactive oxygen species, triggering and maintaining inflammation, is hypothesized to play a causative role in this process. Concenter Biopharma continued the development of a new platform of iron chelators (Zygosids), first initiated at the Hebrew University of Jerusalem, Israel (HUJI), acting via the novel mechanism, based on a sequestration of the labile redox-active iron and its substitution by zinc or gallium. The mode of action of Zygosids is based on the higher affinity of the metal-binding moiety of the complex to Fe3+ in comparison to already bound ion, leading to rapid release of the ion of another metal and chelation of Fe3+. Concomitantly, zinc ion, released by the complex, is known for its antidiabetic and anti-inflammatory role. METHODS The therapeutic effect of zinc-desferrioxamine (Zygosid-50) and gallium-desferrioxamine, was tested on fat sand rat (Psammomys obesus) model of diet-induced T2DM and on Leprdb transgenic diabetic mice. RESULTS Zygosids demonstrated an ability to noticeably reduce blood glucose and insulin levels and improve the lipid profile. Moreover, an ability to mitigate insulin resistance by >90% was shown on the sand rat model. In addition, a potent anti-inflammatory effect, expressed as a diminishment of the proinflammatory cytokines in tissue levels, was demonstrated. CONCLUSION Zygosids demonstrated robust therapeutic efficacy in treatment of T2DM. Importantly, no adverse effects were detected, in all the experiments, indicating high safety profile.
Collapse
Affiliation(s)
- Vladimir Vinokur
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem (HUJI), Jerusalem, Israel
- Concenter Biopharma, Jerusalem, Israel
| | - Eduard Berenshtein
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem (HUJI), Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem (HUJI), Jerusalem, Israel
| | | |
Collapse
|
2
|
Jovanovic A, Xu B, Zhu C, Ren D, Wang H, Krause-Hauch M, Abel ED, Li J, Xiang YK. Characterizing Adrenergic Regulation of Glucose Transporter 4-Mediated Glucose Uptake and Metabolism in the Heart. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Hou H, Wang J, Wang J, Tang W, Shaikh AS, Li Y, Fu J, Lu L, Wang F, Sun F, Tan H. A Review of Bioactive Peptides: Chemical Modification, Structural Characterization and Therapeutic Applications. J Biomed Nanotechnol 2021; 16:1687-1718. [PMID: 33485398 DOI: 10.1166/jbn.2020.3001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the development and applications of protein drugs have attracted extensive attention from researchers. However, the shortcomings of protein drugs also limit their further development. Therefore, bioactive peptides isolated or simulated from protein polymers have broad application prospects in food, medicine, biotechnology, and other industries. Such peptides have a molecular weight distribution between 180 and 1000 Da. As a small molecule substance, bioactive peptide is usually degraded by various enzymes in the organism and have a short half-life. At the same time, such substances have poor stability and are difficult to produce and store. Therefore, these active peptides may be modified through phosphorylation, glycosylation, and acylation. Compared with other protein drugs, the modified active peptides are more easily absorbed by the body, have longer half-life, stronger targeting, and fewer side effects in addition to higher bioavailability. In the light of their functions, bioactive peptide can be divided into antimicrobial, anti-tumour, anti-angiogenic, antioxidant, anti-fatigue, and anti-hypertensive peptides. This article mainly focuses on the introduction of several promising biologically active peptides functioning as antimicrobial, anti-tumour, antiangiogenic, and antioxidant peptides from the three aspects modification, structural characteristics and mechanism of action.
Collapse
|
4
|
Vila-Bedmar R, Cruces-Sande M, Arcones AC, Willemen HLDM, Prieto P, Moreno-Indias I, Díaz-Rodríguez D, Francisco S, Jaén RI, Gutiérrez-Repiso C, Heijnen CJ, Boscá L, Fresno M, Kavelaars A, Mayor F, Murga C. GRK2 levels in myeloid cells modulate adipose-liver crosstalk in high fat diet-induced obesity. Cell Mol Life Sci 2020; 77:4957-4976. [PMID: 31927610 PMCID: PMC11105060 DOI: 10.1007/s00018-019-03442-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Macrophages are key effector cells in obesity-associated inflammation. G protein-coupled receptor kinase 2 (GRK2) is highly expressed in different immune cell types. Using LysM-GRK2+/- mice, we uncover that a reduction of GRK2 levels in myeloid cells prevents the development of glucose intolerance and hyperglycemia after a high fat diet (HFD) through modulation of the macrophage pro-inflammatory profile. Low levels of myeloid GRK2 confer protection against hepatic insulin resistance, steatosis and inflammation. In adipose tissue, pro-inflammatory cytokines are reduced and insulin signaling is preserved. Macrophages from LysM-GRK2+/- mice secrete less pro-inflammatory cytokines when stimulated with lipopolysaccharide (LPS) and their conditioned media has a reduced pathological influence in cultured adipocytes or naïve bone marrow-derived macrophages. Our data indicate that reducing GRK2 levels in myeloid cells, by attenuating pro-inflammatory features of macrophages, has a relevant impact in adipose-liver crosstalk, thus preventing high fat diet-induced metabolic alterations.
Collapse
Affiliation(s)
- Rocío Vila-Bedmar
- Departamento de ciencias básicas de la salud, área de Bioquímica y Biología Molecular, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hanneke L D M Willemen
- Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Patricia Prieto
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Isabel Moreno-Indias
- CIBER de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Endocrinología y Nutrición, Hospital Universitario Virgen de Victoria de Malaga, Universidad de Málaga, Málaga, Spain
| | - Daniel Díaz-Rodríguez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Sara Francisco
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Rafael I Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Carolina Gutiérrez-Repiso
- CIBER de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Endocrinología y Nutrición, Hospital Universitario Virgen de Victoria de Malaga, Universidad de Málaga, Málaga, Spain
| | - Cobi J Heijnen
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisardo Boscá
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Myeloid GRK2 Regulates Obesity-Induced Endothelial Dysfunction by Modulating Inflammatory Responses in Perivascular Adipose Tissue. Antioxidants (Basel) 2020; 9:antiox9100953. [PMID: 33020373 PMCID: PMC7600489 DOI: 10.3390/antiox9100953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is increasingly being regarded as an important endocrine organ that directly impacts vessel function, structure, and contractility in obesity-associated diseases. We uncover here a role for myeloid G protein-coupled receptor kinase 2 (GRK2) in the modulation of PVAT-dependent vasodilation responses. GRK2 expression positively correlates with myeloid- (CD68) and lymphoid-specific (CD3, CD4, and CD8) markers and with leptin in PVAT from patients with abdominal aortic aneurysms. Using mice hemizygous for GRK2 in the myeloid lineage (LysM-GRK2+/−), we found that GRK2 deficiency in myeloid cells allows animals to preserve the endothelium-dependent acetylcholine or insulin-induced relaxation, which is otherwise impaired by PVAT, in arteries of animals fed a high fat diet (HFD). Downregulation of GRK2 in myeloid cells attenuates HFD-dependent infiltration of macrophages and T lymphocytes in PVAT, as well as the induction of tumor necrosis factor-α (TNFα) and NADPH oxidase (Nox)1 expression, whereas blocking TNFα or Nox pathways by pharmacological means can rescue the impaired vasodilator responses to insulin in arteries with PVAT from HFD-fed animals. Our results suggest that myeloid GRK2 could be a potential therapeutic target in the development of endothelial dysfunction induced by PVAT in the context of obesity.
Collapse
|
6
|
Sex Differences in High Fat Diet-Induced Metabolic Alterations Correlate with Changes in the Modulation of GRK2 Levels. Cells 2019; 8:cells8111464. [PMID: 31752326 PMCID: PMC6912612 DOI: 10.3390/cells8111464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
A differential sex-related sensitivity has been reported in obesity and insulin resistance-related cardio-metabolic diseases, with a lower incidence of these pathologies being observed in young females when compared to age-matched males. However, such relative protection is lost with age. The mechanisms underlying such sex and age-related changes in the susceptibility to diabetes and obesity are not fully understood. Herein, we report that the relative protection that is displayed by young female mice, as compared to male littermates, against some of the metabolic alterations that are induced by feeding a high fat diet (HFD), correlates with a lower upregulation of the protein levels of G protein-coupled receptor kinase (GRK2), which is a key regulator of both insulin and G protein-coupled receptor signaling, in the liver and adipose tissue. Interestingly, when the HFD is initiated in middle-aged (32 weeks) female mice, these animals are no longer protected and display a more overt obese and insulin-resistant phenotype, along with a more evident increase in the GRK2 protein levels in metabolically relevant tissues in such conditions. Our data suggest that GRK2 dosage might be involved in the sex and age-biased sensitivity to insulin resistance-related pathologies.
Collapse
|
7
|
Cipolletta E, Gambardella J, Fiordelisi A, Del Giudice C, Di Vaia E, Ciccarelli M, Sala M, Campiglia P, Coscioni E, Trimarco B, Sorriento D, Iaccarino G. Antidiabetic and Cardioprotective Effects of Pharmacological Inhibition of GRK2 in db/db Mice. Int J Mol Sci 2019; 20:ijms20061492. [PMID: 30934608 PMCID: PMC6470575 DOI: 10.3390/ijms20061492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the availability of several therapies for the management of blood glucose in diabetic patients, most of the treatments do not show benefits on diabetic cardiomyopathy, while others even favor the progression of the disease. New pharmacological targets are needed that might help the management of diabetes and its cardiovascular complications at the same time. GRK2 appears a promising target, given its established role in insulin resistance and in systolic heart failure. Using a custom peptide inhibitor of GRK2, we assessed in vitro in L6 myoblasts the effects of GRK2 inhibition on glucose extraction and insulin signaling. Afterwards, we treated diabetic male mice (db/db) for 2 weeks. Glucose tolerance (IGTT) and insulin sensitivity (ITT) were ameliorated, as was skeletal muscle glucose uptake and insulin signaling. In the heart, at the same time, the GRK2 inhibitor ameliorated inflammatory and cytokine responses, reduced oxidative stress, and corrected patterns of fetal gene expression, typical of diabetic cardiomyopathy. GRK2 inhibition represents a promising therapeutic target for diabetes and its cardiovascular complications.
Collapse
Affiliation(s)
- Ersilia Cipolletta
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Carmine Del Giudice
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy.
| | - Marina Sala
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Enrico Coscioni
- AOU San Giovanni di Dio e Ruggi d'Aragona, 84131 Salerno, Italy.
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, 80131 Napoli, Italy.
| |
Collapse
|
8
|
Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F. G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Front Pharmacol 2019; 10:112. [PMID: 30837878 PMCID: PMC6390810 DOI: 10.3389/fphar.2019.00112] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a central signaling node involved in the modulation of many G protein-coupled receptors (GPCRs) and also displaying regulatory functions in other cell signaling routes. GRK2 levels and activity have been reported to be enhanced in patients or in preclinical models of several relevant pathological situations, such as heart failure, cardiac hypertrophy, hypertension, obesity and insulin resistance conditions, or non-alcoholic fatty liver disease (NAFLD), and to contribute to disease progression by a variety of mechanisms related to its multifunctional roles. Therefore, targeting GRK2 by different strategies emerges as a potentially relevant approach to treat cardiovascular disease, obesity, type 2 diabetes, or NAFLD, pathological conditions which are frequently interconnected and present as co-morbidities.
Collapse
Affiliation(s)
- Cristina Murga
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ana M Briones
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mercedes Salaices
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
9
|
Lieu M, Koch WJ. GRK2 and GRK5 as therapeutic targets and their role in maladaptive and pathological cardiac hypertrophy. Expert Opin Ther Targets 2019; 23:201-214. [PMID: 30701991 DOI: 10.1080/14728222.2019.1575363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION One in every four deaths in the United States is attributed to cardiovascular disease, hence the development and employment of novel and effective therapeutics are necessary to improve the quality of life and survival of affected patient. Pathological hypertrophy is a maladaptive response by the heart to relieve wall stress that could result from cardiovascular disease. Maladaptive hypertrophy can lead to further disease progression and complications such as heart failure; hence, efforts to target hypertrophy to prevent and treat further morbidity and mortality are necessary. Areas covered: This review summarizes the compelling literature that describes the mechanistic role of GRK2 and GRK5 in maladaptive cardiac hypertrophy; it examines the approaches to inhibit these kinases in hypertrophic animal models and furthermore, it assesses the potential of GRK2 and GRK5 as therapeutic targets for hypertrophy. Expert opinion: GRK2 and GRK5 are novel therapeutic targets for pathological hypertrophy and may have added benefits of ameliorating morbidity and mortality. Despite the lesser researched role of GRK2 in cardiac hypertrophy, it may be the advantageous strategy for treating cardiac hypertrophy because of its role in other maladaptive pathways. Anti-GRK2 therapy optimization and the discovery and development of specific GRK2 and GRK5 small-molecule inhibitors is necessary for the eventual application of successful, effective therapeutics.
Collapse
Affiliation(s)
- Melissa Lieu
- a Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Walter J Koch
- a Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| |
Collapse
|
10
|
Mangmool S, Parichatikanond W, Kurose H. Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Front Pharmacol 2018; 9:1336. [PMID: 30538631 PMCID: PMC6277550 DOI: 10.3389/fphar.2018.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) is a heart disease that is classified into two main types: HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Both types of HF lead to significant risk of mortality and morbidity. Pharmacological treatment with β-adrenergic receptor (βAR) antagonists (also called β-blockers) has been shown to reduce the overall hospitalization and mortality rates and improve the clinical outcomes in HF patients with HFrEF but not HFpEF. Although, the survival rate of patients suffering from HF continues to drop, the management of HF still faces several limitations and discrepancies highlighting the need to develop new treatment strategies. Overstimulation of the sympathetic nervous system is an adaptive neurohormonal response to acute myocardial injury and heart damage, whereas prolonged exposure to catecholamines causes defects in βAR regulation, including a reduction in the amount of βARs and an increase in βAR desensitization due to the upregulation of G protein-coupled receptor kinases (GRKs) in the heart, contributing in turn to the progression of HF. Several studies show that myocardial GRK2 activity and expression are raised in the failing heart. Furthermore, β-arrestins play a pivotal role in βAR desensitization and, interestingly, can mediate their own signal transduction without any G protein-dependent pathway involved. In this review, we provide new insight into the role of GRKs and β-arrestins on how they affect βAR signaling regarding the molecular and cellular pathophysiology of HF. Additionally, we discuss the therapeutic potential of targeting GRKs and β-arrestins for the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Marya, Khan H, Nabavi SM, Habtemariam S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci 2017; 193:153-158. [PMID: 29055800 DOI: 10.1016/j.lfs.2017.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic disorder in which the glucose level in blood exceeds beyond the normal level. Persistent hyperglycemia leads to diabetes late complication and obviously account for a large number of morbidity and mortality worldwide. Numerous therapeutic options are available for the treatment of diabetes including insulin for type I and oral tablets for type II, but its effective management is still a dream. To date, several options are under investigation in various research laboratories for efficacious and safer agents. Of them, peptides are currently amongst the most widely investigated potential therapeutic agents whose design and optimal uses are under development. A number of natural and synthetic peptides have so far been found with outstanding antidiabetic effect mediated through diverse mechanisms. The applications of new emerging techniques and drug delivery systems further offer opportunities to achieve the desired target outcomes. Some outstanding peptides in preclinical and clinical studies with better efficacy and safety profile have already been identified. Further detail studies on these peptides may therefore lead to significant clinically useful antidiabetic agents.
Collapse
Affiliation(s)
- Marya
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
12
|
Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Sci Rep 2017; 7:8436. [PMID: 28814745 PMCID: PMC5559446 DOI: 10.1038/s41598-017-08998-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/04/2023] Open
Abstract
Despite the associations between diabetic complications and vascular endothelial dysfunction, a direct therapeutic method targeting endothelial dysfunction remains poorly characterized. We have previously shown that chemical inhibition of G-protein-coupled receptor kinase 2 (GRK2) slightly enhances insulin sensitivity and reduces endothelial dysfunction in type 2 diabetic mice. In this study, we identified GRK2 as a novel therapeutic target of diabetic endothelial dysfunction and investigated the effect on diabetic endothelial dysfunction through the systemic administration of GRK2 siRNA using a hydrodynamic-based procedure, resulting in suppression of increased GRK2 protein levels in the liver. Suppressed GRK2 levels in the liver markedly improved glucose homeostasis, as well as improved the impaired endothelial Akt/eNOS-dependent signal activation (insulin-stimulated phosphorylation of Akt and eNOS) and vascular responses (clonidine-induced and insulin-induced endothelial-dependent relaxation response and phenylephrine-induced contractile response) in type 2 diabetic aortas. Interestingly, insulin-stimulated Akt/eNOS signaling was increased only by normalizing the glucose concentration in human umbilical vein endothelial cells (HUVECs) with GRK2 overexpression, suggesting of an important role of hepatic GRK2. Our results clarified the relationship among hepatic GRK2, glucose homeostasis, and vascular endothelial function. Liver-targeting GRK2 siRNA delivery represents a novel therapeutic tool to restore glucose homeostasis and reduce endothelial dysfunction.
Collapse
|
13
|
Mangmool S, Denkaew T, Parichatikanond W, Kurose H. β-Adrenergic Receptor and Insulin Resistance in the Heart. Biomol Ther (Seoul) 2017; 25:44-56. [PMID: 28035081 PMCID: PMC5207462 DOI: 10.4062/biomolther.2016.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.,Center of Excellence for Innovation in Drug Design and Discovery, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Tananat Denkaew
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Sorriento D, Ciccarelli M, Cipolletta E, Trimarco B, Iaccarino G. "Freeze, Don't Move": How to Arrest a Suspect in Heart Failure - A Review on Available GRK2 Inhibitors. Front Cardiovasc Med 2016; 3:48. [PMID: 27999776 PMCID: PMC5138235 DOI: 10.3389/fcvm.2016.00048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/21/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease and heart failure (HF) still collect the largest toll of death in western societies and all over the world. A growing number of molecular mechanisms represent possible targets for new therapeutic strategies, which can counteract the metabolic and structural changes observed in the failing heart. G protein-coupled receptor kinase 2 (GRK2) is one of such targets for which experimental and clinical evidence are established. Indeed, several strategies have been carried out in place to interface with the known GRK2 mechanisms of action in the failing heart. This review deals with results from basic and preclinical studies. It shows different strategies to inhibit GRK2 in HF in vivo (βARK-ct gene therapy, treatment with gallein, and treatment with paroxetine) and in vitro (RNA aptamer, RKIP, and peptide-based inhibitors). These strategies are based either on the inhibition of the catalytic activity of the kinase (“Freeze!”) or the prevention of its shuttling within the cell (“Don’t Move!”). Here, we review the peculiarity of each strategy with regard to the ability to interact with the multiple tasks of GRK2 and the perspective development of eventual clinical use.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno , Baronissi, SA , Italy
| | - Ersilia Cipolletta
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno , Baronissi, SA , Italy
| |
Collapse
|
15
|
Guccione M, Ettari R, Taliani S, Da Settimo F, Zappalà M, Grasso S. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. J Med Chem 2016; 59:9277-9294. [PMID: 27362616 DOI: 10.1021/acs.jmedchem.5b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.
Collapse
Affiliation(s)
- Manuela Guccione
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Roberta Ettari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Zappalà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
16
|
Taguchi K, Matsumoto T, Kobayashi T. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms. J Smooth Muscle Res 2016; 51:37-49. [PMID: 26447102 PMCID: PMC5137304 DOI: 10.1540/jsmr.51.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood
vessels. The principal function of vascular SMC in the body is to regulate blood flow and
pressure through contraction and relaxation. The endothelium performs a crucial role in
maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the
production of factors associated with vasoconstriction or vasorelaxation. In this review,
we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The
extent of NO production represents a key marker in vascular health. A decrease in NO is
capable of inducing pathological conditions associated with endothelial dysfunction, such
as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have
strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the
progression of cardiovascular disease. Vasculature which is affected by insulin resistance
and type 2 diabetes expresses high levels of GRK2, which may induce endothelial
dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the
subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In
this review, we describe the pathophysiological mechanisms of insulin resistance and
diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2,
providing novel insights into the potential field of translational investigation in the
treatment of diabetic complications.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | |
Collapse
|
17
|
Gomez-Monterrey I, Carotenuto A, Cipolletta E, Sala M, Vernieri E, Limatola A, Bertamino A, Musella S, Grieco P, Trimarco B, Novellino E, Iaccarino G, Campiglia P. SAR study and conformational analysis of a series of novel peptide G protein-coupled receptor kinase 2 inhibitors. Biopolymers 2016; 101:121-8. [PMID: 23733420 DOI: 10.1002/bip.22295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) plays a central role in the cellular transduction network. In particular, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. Thereby, its inhibition offers a potential therapeutic solution to several pathological conditions. In the present study, we performed a SAR study and a NMR conformational analysis of peptides derived from HJ loop of GRK2 and able to selectively inhibit GRK2. From Ala-scan and D-Ala point replacement, we found that Arg residues don't affect the inhibitory properties, while a D-amino acid at position 5 is key to the activity. Conformational analysis identified two β-turns that involve N-terminal residues, followed by a short extended region. These information can help the design of peptides and peptido-mimetics with enhanced GRK2 inhibition properties.
Collapse
|
18
|
Vila-Bedmar R, Cruces-Sande M, Lucas E, Willemen HLDM, Heijnen CJ, Kavelaars A, Mayor F, Murga C. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal 2015. [PMID: 26198359 DOI: 10.1126/scisignal.aaa4374] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity.
Collapse
Affiliation(s)
- Rocio Vila-Bedmar
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Marta Cruces-Sande
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Elisa Lucas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain
| | - Hanneke L D M Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands. Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht 3584 EA, Netherlands. Laboratory of Neuroimmunology, Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Federico Mayor
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain.
| | - Cristina Murga
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain. Instituto de Investigación Sanitaria La Princesa, Madrid 28006, Spain.
| |
Collapse
|
19
|
Lucas E, Cruces-Sande M, Briones AM, Salaices M, Mayor F, Murga C, Vila-Bedmar R. Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch Physiol Biochem 2015; 121:163-77. [PMID: 26643283 DOI: 10.3109/13813455.2015.1107589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a worldwide problem that has reached epidemic proportions both in developed and developing countries. The excessive accumulation of fat poses a risk to health since it favours the development of metabolic alterations including insulin resistance and tissue inflammation, which further contribute to the progress of the complex pathological scenario observed in the obese. In this review we put together the different outcomes of fat accumulation and insulin resistance in the main insulin-responsive tissues, and discuss the role of some of the key molecular routes that control disease progression both in an organ-specific and also in a more systemic manner. In particular, we focus on the importance of studying the integrated regulation of different organs and pathways that contribute to the global pathophysiology of this condition with a specific emphasis on the role of emerging key molecular nodes such as the G protein-coupled receptor kinase 2 (GRK2) signalling hub.
Collapse
Affiliation(s)
- Elisa Lucas
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Marta Cruces-Sande
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Ana M Briones
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Mercedes Salaices
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Federico Mayor
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Cristina Murga
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Rocio Vila-Bedmar
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| |
Collapse
|
20
|
Identification and characterization of amlexanox as a G protein-coupled receptor kinase 5 inhibitor. Molecules 2014; 19:16937-49. [PMID: 25340299 PMCID: PMC4621012 DOI: 10.3390/molecules191016937] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) have been implicated in human diseases ranging from heart failure to diabetes. Previous studies have identified several compounds that selectively inhibit GRK2, such as paroxetine and balanol. Far fewer selective inhibitors have been reported for GRK5, a target for the treatment of cardiac hypertrophy, and the mechanism of action of reported compounds is unknown. To identify novel scaffolds that selectively inhibit GRK5, a differential scanning fluorometry screen was used to probe a library of 4480 compounds. The best hit was amlexanox, an FDA-approved anti-inflammatory, anti-allergic immunomodulator. The crystal structure of amlexanox in complex with GRK1 demonstrates that its tricyclic aromatic ring system forms ATP-like interactions with the hinge of the kinase domain, which is likely similar to how this drug binds to IκB kinase ε (IKKε), another kinase known to be inhibited by this compound. Amlexanox was also able to inhibit myocyte enhancer factor 2 transcriptional activity in neonatal rat ventricular myocytes in a manner consistent with GRK5 inhibition. The GRK1 amlexanox structure thus serves as a springboard for the rational design of inhibitors with improved potency and selectivity for GRK5 and IKKε.
Collapse
|
21
|
Woodall MC, Ciccarelli M, Woodall BP, Koch WJ. G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 2014; 114:1661-70. [PMID: 24812353 DOI: 10.1161/circresaha.114.300513] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) causes a tremendous burden on the worldwide healthcare system, affecting >23 million people. There are many cardiovascular disorders that contribute to the development of HF and multiple risk factors that accelerate its occurrence, but regardless of its underlying cause, HF is characterized by a marked decrease in myocardial contractility and loss of pump function. One biomarker molecule consistently shown to be upregulated in human HF and several animal models is G protein-coupled receptor kinase-2 (GRK2), a kinase originally discovered to be involved in G protein-coupled receptor desensitization, especially β-adrenergic receptors. Higher levels of GRK2 can impair β-adrenergic receptor-mediated inotropic reserve and its inhibition, or molecular reduction has shown to improve pump function in several animal models including a preclinical pig model of HF. Recently, nonclassical roles for GRK2 in cardiovascular disease have been described, including negative regulation of insulin signaling, a role in myocyte cell survival and apoptotic signaling, and it has been shown to be localized in/on mitochondria. These new roles of GRK2 suggest that GRK2 may be a nodal link in the myocyte, influencing both cardiac contractile function and cell metabolism and survival and contributing to HF independent of its canonical role in G protein-coupled receptor desensitization. In this review, classical and nonclassical roles for GRK2 will be discussed, focusing on recently discovered roles for GRK2 in cardiomyocyte metabolism and the effects that these roles may have on myocardial contractile function and HF development.
Collapse
Affiliation(s)
- Meryl C Woodall
- From the Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., W.J.K.); and Department of Medicine and Surgery, University of Salerno, Salerno, Italy (M.C.)
| | | | | | | |
Collapse
|
22
|
Carotenuto A, Cipolletta E, Gomez-Monterrey I, Sala M, Vernieri E, Limatola A, Bertamino A, Musella S, Sorriento D, Grieco P, Trimarco B, Novellino E, Iaccarino G, Campiglia P. Design, synthesis and efficacy of novel G protein-coupled receptor kinase 2 inhibitors. Eur J Med Chem 2013; 69:384-92. [PMID: 24077529 DOI: 10.1016/j.ejmech.2013.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a relevant signaling node of the cellular transduction network, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Emerging evidence suggests that GRK2 is up regulated in pathological situations such as heart failure, hypertrophy and hypertension, and its inhibition offers a potential therapeutic solution to these diseases. We explored the GRK2 inhibitory activity of a library of cyclic peptides derived from the HJ loop of G protein-coupled receptor kinases 2 (GRK2). The design of these cyclic compounds was based on the conformation of the HJ loop within the X-ray structure of GRK2. One of these compounds, the cyclic peptide 7, inhibited potently and selectively the GRK2 activity, being more active than its linear precursor. In a cellular system, this peptide confirms the beneficial signaling properties of a potent GRK2 inhibitor. Preferred conformations of the most potent analog were investigated by NMR spectroscopy.
Collapse
|
23
|
Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55:2565-2582. [PMID: 22869320 PMCID: PMC4011499 DOI: 10.1007/s00125-012-2644-8] [Citation(s) in RCA: 702] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
The insulin receptor substrate proteins IRS1 and IRS2 are key targets of the insulin receptor tyrosine kinase and are required for hormonal control of metabolism. Tissues from insulin-resistant and diabetic humans exhibit defects in IRS-dependent signalling, implicating their dysregulation in the initiation and progression of metabolic disease. However, IRS1 and IRS2 are regulated through a complex mechanism involving phosphorylation of >50 serine/threonine residues (S/T) within their long, unstructured tail regions. In cultured cells, insulin-stimulated kinases (including atypical PKC, AKT, SIK2, mTOR, S6K1, ERK1/2 and ROCK1) mediate feedback (autologous) S/T phosphorylation of IRS, with both positive and negative effects on insulin sensitivity. Additionally, insulin-independent (heterologous) kinases can phosphorylate IRS1/2 under basal conditions (AMPK, GSK3) or in response to sympathetic activation and lipid/inflammatory mediators, which are present at elevated levels in metabolic disease (GRK2, novel and conventional PKCs, JNK, IKKβ, mPLK). An emerging view is that the positive/negative regulation of IRS by autologous pathways is subverted/co-opted in disease by increased basal and other temporally inappropriate S/T phosphorylation. Compensatory hyperinsulinaemia may contribute strongly to this dysregulation. Here, we examine the links between altered patterns of IRS S/T phosphorylation and the emergence of insulin resistance and diabetes.
Collapse
Affiliation(s)
- K D Copps
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - M F White
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Vila-Bedmar R, Garcia-Guerra L, Nieto-Vazquez I, Mayor F, Lorenzo M, Murga C, Fernández-Veledo S. GRK2 contribution to the regulation of energy expenditure and brown fat function. FASEB J 2012; 26:3503-14. [PMID: 22516294 DOI: 10.1096/fj.11-202267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a major health problem and an important risk factor for the development of multiple disorders. Previous studies in our laboratory have revealed that down-regulation of GRK2 decreases age-related adiposity, but the physiological and molecular mechanisms underlying this outcome remain unclear. We evaluate whether the lean phenotype results from a direct effect of GRK2 on energy homeostasis. The study of white adipose tissue (WAT) in wild-type (WT) and GRK2(+/-) littermates showed a reduced expression of lipogenic enzymes and enhanced lipolytic rate in adult GRK2(+/-) mice. Moreover, hemizygous mice display higher energy expenditure and lower respiratory exchange ratio. Analysis of brown adipose tissue (BAT) from adult GRK2(+/-) mice showed a less deteriorated morphology associated with age compared to WT, which is correlated with a higher basal core temperature. BAT from young GRK2(+/-) mice showed an increase in gene expression of thermogenesis-related genes. Accordingly, hemizygous mice displayed better thermogenic capacity and exhibited a more oxidative phenotype in both BAT and WAT than WT littermates. Overexpression of GRK2 in brown adipocytes corroborated the negative effect of this kinase in BAT function and differentiation. Collectively, our data point to GRK2 inhibition as a potential tool for the enhancement of brown fat activity, which may have important therapeutic implications for the treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Rocio Vila-Bedmar
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Krilov L, Nguyen A, Miyazaki T, Unson CG, Williams R, Lee NH, Ceryak S, Bouscarel B. Dual mode of glucagon receptor internalization: role of PKCα, GRKs and β-arrestins. Exp Cell Res 2011; 317:2981-94. [PMID: 22001118 DOI: 10.1016/j.yexcr.2011.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 10/17/2022]
Abstract
Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and β-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25-40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both β-arrestin1 and β-arrestin2 from the cytosol to the perimembrane region, and overexpression of β-arrestin1 and β-arrestin2 increased GR internalization. Furthermore, both β-arrestin1 and β-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.
Collapse
Affiliation(s)
- Lada Krilov
- Gastroenterology Research Laboratory, Digestive Diseases Center, Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are responsible for regulating a wide variety of physiological processes. This is accomplished via ligand binding to GPCRs, activating associated heterotrimeric G proteins and intracellular signaling pathways. G protein-coupled receptor kinases (GRKs), in concert with β-arrestins, classically desensitize receptor signal transduction, thus preventing hyperactivation of GPCR second-messenger cascades. As changes in GRK expression have featured prominently in many cardiovascular pathologies, including heart failure, myocardial infarction, hypertension, and cardiac hypertrophy, GRKs have been intensively studied as potential diagnostic or therapeutic targets. Herein, we review our evolving understanding of the role of GRKs in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
28
|
Mayor F, Lucas E, Jurado-Pueyo M, Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Fernández-Veledo S, Murga C. G Protein-coupled receptor kinase 2 (GRK2): A novel modulator of insulin resistance. Arch Physiol Biochem 2011; 117:125-30. [PMID: 21615207 DOI: 10.3109/13813455.2011.584693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is emerging as a key, integrative node in many signalling pathways. Besides its canonical role in the modulation of the signalling mediated by many G protein-coupled receptors (GPCR), this protein can display a very complex network of functional interactions with a variety of signal transduction partners, in a stimulus, cell type, or context-specific way. We review herein recent data showing that GRK2 can regulate insulin-triggered transduction cascades at different levels and that this protein plays a relevant role in insulin resistance and obesity in vivo, what uncovers GRK2 as a potential therapeutic target in the treatment of these disorders.
Collapse
Affiliation(s)
- Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Penela P, Murga C, Ribas C, Lafarga V, Mayor F. The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br J Pharmacol 2010; 160:821-32. [PMID: 20590581 DOI: 10.1111/j.1476-5381.2010.00727.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
GRK2 is a ubiquitous member of the G protein-coupled receptor kinase (GRK) family that appears to play a central, integrative role in signal transduction cascades. GRKs participate together with arrestins in the regulation of G protein-coupled receptors (GPCR), a family of hundreds of membrane proteins of key physiological and pharmacological importance, by triggering receptor desensitization from G proteins and GPCR internalization, and also by helping assemble macromolecular signalosomes in the receptor environment acting as agonist-regulated adaptor scaffolds, thus contributing to signal propagation. In addition, emerging evidence indicates that GRK2 can phosphorylate a growing number of non-GPCR substrates and associate with a variety of proteins related to signal transduction, thus suggesting that this kinase could also have diverse 'effector' functions. We discuss herein the increasing complexity of such GRK2 'interactome', with emphasis on the recently reported roles of this kinase in cell migration and cell cycle progression and on the functional impact of the altered GRK2 levels observed in several relevant cardiovascular, inflammatory or tumour pathologies. Deciphering how the different networks of potential GRK2 functional interactions are orchestrated in a stimulus, cell type or context-specific way is critical to unveil the contribution of GRK2 to basic cellular processes, to understand how alterations in GRK2 levels or functionality may participate in the onset or development of several cardiovascular, tumour or inflammatory diseases, and to assess the feasibility of new therapeutic strategies based on the modulation of the activity, levels or specific interactions of GRK2.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Jurado-Pueyo M, Zalba G, Díez J, Murga C, Fernández-Veledo S, Mayor F, Lorenzo M. G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 2010; 59:2407-17. [PMID: 20627936 PMCID: PMC3279564 DOI: 10.2337/db10-0771] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Insulin resistance is associated with the pathogenesis of metabolic disorders as type 2 diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein-coupled receptor kinase 2 (GRK2), first identified as a G protein-coupled receptor regulator, could have as a modulator of insulin responses. RESEARCH DESIGN AND METHODS We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, as well as in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: tumor necrosis factor-α (TNF-α) infusion, aging, and high-fat diet (HFD). Glucose transport, whole-body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed. RESULTS Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by ∼2-fold in muscle and adipose tissue in the animal models tested, as well as in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNF-α, aging, or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity. CONCLUSIONS Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, which uncovers this protein as a potential therapeutic target in the treatment of these disorders.
Collapse
Affiliation(s)
- Lucia Garcia-Guerra
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Iria Nieto-Vazquez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Rocio Vila-Bedmar
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - María Jurado-Pueyo
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Javier Díez
- Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Corresponding authors: Cristina Murga, , and Sonia Fernández-Veledo,
| | - Sonia Fernández-Veledo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
- Corresponding authors: Cristina Murga, , and Sonia Fernández-Veledo,
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Margarita Lorenzo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| |
Collapse
|
31
|
Murga C, Penela P, Ribas C, Mayor F. G protein-coupled receptor kinases: Specific phosphorylation of 7TM receptors and beyond. DRUG DISCOVERY TODAY. TECHNOLOGIES 2010; 7:e1-e94. [PMID: 24103684 DOI: 10.1016/j.ddtec.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Campanile A, Iaccarino G. G-protein-coupled receptor kinases in cardiovascular conditions: focus on G-protein-coupled receptor kinase 2, a gain in translational medicine. Biomark Med 2009; 3:525-40. [DOI: 10.2217/bmm.09.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With increasing knowledge of the regulatory mechanisms of G-protein-coupled receptor signaling in heart physiology, many studies have focused on the role of this system in cardiovascular disease. In recent years, scientists have moved their attention from the receptors to their regulatory proteins: the G-protein-coupled receptor kinases. This class of protein is indispensable for terminating signaling of G-protein-coupled receptors through receptor desensitization and downregulation. This article attempts to assemble the currently available information regarding G-protein-coupled receptor kinases and their role in cardiovascular disease and, in particular, the potential employment of G-protein-coupled receptor kinase 2 as biomarker of cardiac dysfunction.
Collapse
Affiliation(s)
- Alfonso Campanile
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Federico II University, Via Sergio Pansini 5, Edificio 2, 80131 Napoli, Italy
| | - Guido Iaccarino
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Federico II University, Via Sergio Pansini 5, Edificio 2, 80131 Napoli, Italy
| |
Collapse
|
33
|
Cipolletta E, Campanile A, Santulli G, Sanzari E, Leosco D, Campiglia P, Trimarco B, Iaccarino G. The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc Res 2009; 84:407-15. [PMID: 19620130 DOI: 10.1093/cvr/cvp252] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Insulin (Ins) resistance (IRES) associates to increased cardiovascular risk as observed in metabolic syndrome. Chronic stimulation of beta-adrenergic receptors (betaAR) due to exaggerated sympathetic nervous system activity is involved in the pathogenesis of IRES. The cellular levels of G protein coupled receptor kinase 2 (GRK2) increase during chronic betaAR stimulation, leading to betaAR desensitization. We tested the hypothesis that GRK2 plays a role in betaAR-induced IRES. METHODS AND RESULTS We evaluated Ins-induced glucose uptake and signalling responses in vitro in cell overexpressing the beta(2)AR, the GRK2, or the catalytically dead mutant GRK2-DN. In a model of increased adrenergic activity, IRES and elevated cellular GRK2 levels, the spontaneously hypertensive rats (SHR) we performed the intravenous glucose tolerance test load. To inhibit GRK2, we synthesized a peptide based on the catalytical sequence of GRK2 conjugated with the antennapedia internalization sequence (Ant-124). Ins in human kidney embryonic (HEK-293) cells causes rapid accumulation of GRK2, tyrosine phosphorylation of Ins receptor substrate 1 (IRS1) and induces glucose uptake. In the same cell type, transgenic beta(2)AR overexpression causes GRK2 accumulation associated with significant deficit of IRS1 activation and glucose uptake by Ins. Similarly, transgenic GRK2 overexpression prevents Ins-induced tyrosine phosphorylation of IRS1 and glucose uptake, whereas GRK2-DN ameliorates glucose extraction. By immunoprecipitation, GRK2 binds IRS1 but not the Ins receptor in an Ins-dependent fashion, which is lost in HEK-GRK2 cells. Ant-124 improves Ins-induced glucose uptake in HEK-293 and HEK-GRK2 cells, but does not prevent GRK2/IRS1 interaction. In SHR, Ant-124 infusion for 30 days ameliorates IRES and IRS1 tyrosine phosphorylation. CONCLUSION Our results suggest that GRK2 mediates adrenergic IRES and that inhibition of GRK2 activity leads to increased Ins sensitivity both in cells and in animal model of IRES.
Collapse
Affiliation(s)
- Ersilia Cipolletta
- Dipartimento di Medicina Clinica, Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Università Federico II, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mack E, Ziv E, Reuveni H, Kalman R, Niv MY, Jörns A, Lenzen S, Shafrir E. Prevention of insulin resistance and beta-cell loss by abrogating PKCepsilon-induced serine phosphorylation of muscle IRS-1 in Psammomys obesus. Diabetes Metab Res Rev 2008; 24:577-84. [PMID: 18613220 DOI: 10.1002/dmrr.881] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Psammomys obesus gerbil exhibits PKCepsilon over-expression on high-energy (HE) diet. Muscle insulin receptor (IR) signalling and tyrosine kinase activity are inhibited eliciting insulin resistance. We aimed at preventing diabetes by inhibiting PKCepsilon-induced serine phosphorylation of IRS-1 with novel PKCepsilon abrogating peptides. RESEARCH DESIGN PKCepsilon abrogating peptides were copied from catalytic domain of PKC molecule (PCT patent IL2006/000755). Psammomys fed a diabetogenic HE diet received i.p. peptides KCe-12 and KCe-16 (18 mg/kg) on days 0, 7 and 14 controls received peptide solvent. RESULTS Food consumption and animal weight remained unchanged. On day 16, non-fasting blood glucose levels returned to normal (90 +/- 5 versus 347 +/- 16 mg/dL in untreated controls). Hyperinsulinemia fell from 584 +/- 55 to 180 +/- 22 mU/L. Western blot analysis showed that the increased phosphoserine(636, 639) content on IRS-1 in gastrocnemius muscle of diabetic animals was reduced three fold, the PKB/AKT activity increased two fold and muscle GLUT4 tended to increase, compared with controls. Likewise, administration of KCe-12 prior to placing the HE diet prevented the onset of diabetes. KCe-12 treatment did not reduce muscle PKCepsilon level. Damage and loss of insulin in pancreatic beta cells on HE diet were prevented by KCe-12, as shown in micrographs of islet hematoxylin-eosin staining and insulin immunostaining. The preserved secretory function enabled Psammomys to normalize glucose homeostasis. CONCLUSIONS KCe-16 and KCe-12 peptides derived from PKCepsilon substrate-binding region prevented the nutritional diabetes and protected muscle IRS-1 from PKCepsilon-induced serine phosphorylation, abrogating the insulin-signalling impediment in the Psammomys model of type 2 diabetes. Anti-diabetic peptides may lead to novel modalities preventing human overnutrition-induced insulin resistance and diabetes.
Collapse
Affiliation(s)
- Esther Mack
- Diabetes Center, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kaidanovich-Beilin O, Eldar-Finkelman H. Peptides targeting protein kinases: strategies and implications. Physiology (Bethesda) 2007; 21:411-8. [PMID: 17119154 DOI: 10.1152/physiol.00022.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinases are important key regulators in most, if not all, biological processes and are linked with many human diseases. Protein kinases thus became attractive targets for drug design. Intracellularly active peptides that selectively interfere with kinase function and or kinase-mediated signaling pathways are potential drug compounds with therapeutic implications.
Collapse
Affiliation(s)
- Oksana Kaidanovich-Beilin
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
36
|
Abstract
Phosphorylation of the agonist-activated form of G-protein-coupled receptors (GPCRs) by a protein kinase from the G-protein-coupled receptor kinase (GRK) family initiates, with arrestin proteins, a negative feedback process known as desensitization. Because these receptors are involved in so many vital functions, it seems likely that disorders affecting GRK- or arrestin-mediated regulation of GPCRs would contribute to, if not engender, disease. Traditionally, it is believed that the desensitization process protects the cell against an overstimulation; however, in certain situations, this process is maladjusted and participes in disease progression. For example, in Oguchi disease, excessive rhodopsin stimulation due to a functional loss of GRK1 or arrestin 1 leads to light sensitization and stationary night blindness. Also, transgenic mice with vascular smooth muscle-targeted overexpression of GRK2 showed an elevated resting blood pressure, suggesting that increase in GRK2 level in humans is involved in hypertension associated with a decreased effect of beta-adrenergic receptor-mediated vasorelaxation. The restoration of normal GPCR function in modulating the desensitization process has been successfully demonstrated in animal models of heart failure, which indicates that targeting GRKs or arrestins may open a novel therapeutic strategy in human diseases with GPCR dysregulation. However, the few effective pharmacological compounds in this domain currently preclude human clinical tests.
Collapse
Affiliation(s)
- Thierry Métayé
- Laboratoire de Biophysique, Groupe de Recherche en Endocrinologie Expérimentale et Clinique, CHU de Poitiers, BP577, 86021 Poitiers Cedex, France.
| | | | | |
Collapse
|
37
|
Hefetz S, Ziv E, Jörns A, Lenzen S, Shafrir E. Prevention of nutritionally induced diabetes by rosiglitazone in the gerbil Psammomys obesus. Diabetes Metab Res Rev 2006; 22:139-45. [PMID: 16088969 DOI: 10.1002/dmrr.583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Psammomys obesus is a desert gerbil developing hyperglycaemia, hyperinsulinaemia and insulin resistance when placed for 2 weeks on a high-energy (HE) diet. The mechanism underlying the antidiabetic effect of rosiglitazone (RG) treatment (20 mg/kg per day for 2 weeks) was studied. METHODS The antidiabetogenic effect of RG treatment on serum insulin and metabolic parameters in serum and target tissues of insulin action was investigated in vivo and compared with the pancreatic beta cell protective effects of RG. RESULTS Almost all RG-treated animals remained normoglycaemic compared to controls, but, at the same time, they were hyperinsulinaemic. RG had no effect on serum free fatty acid and serum and muscle triglyceride concentrations and did not appreciably affect body weight and fat depots. RG prevented a HE diet-induced reduction of GLUT 4 glucose transporter content in epididymal adipose tissue, but not in gastrocnemius muscle. The normoglycaemic effect was not associated with a suppression of liver PEPCK activity. Muscle PKCepsilon expression, known to be elevated in diabetic Psammomys and to inhibit insulin signalling, was only marginally decreased. However, RG treatment prevented the marked decrease in insulin immunostaining as well as the vacuolization of the beta cells and accelerated beta cell proliferation. CONCLUSIONS These data indicate that the skeletal muscle is not the primary target of RG action, whereas the preservation of the insulin secretory capacity and the prevention of degenerative beta cell vacuolization in spite of persisting insulin resistance appear to be the basis for the anti-hyperglycaemic effect of RG in Psammomys.
Collapse
Affiliation(s)
- Simona Hefetz
- Diabetes Center, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
38
|
Wexler ID, Niv MY, Reuveni H. Sequence-based protein kinase inhibition: applications for drug development. Biotechniques 2005; 39:S575-6. [DOI: 10.2144/000112045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Current literature in diabetes. Diabetes Metab Res Rev 2005; 21:297-308. [PMID: 15858786 DOI: 10.1002/dmrr.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|