1
|
Badii M, Klück V, Gaal O, Cabău G, Hotea I, Nica V, Mirea AM, Bojan A, Zdrenghea M, Novakovic B, Merriman TR, Liu Z, Li Y, Xu CJ, Pamfil C, Rednic S, Popp RA, Crişan TO, Joosten LAB. Regulation of SOCS3-STAT3 in urate-induced cytokine production in human myeloid cells. Joint Bone Spine 2024; 91:105698. [PMID: 38309518 DOI: 10.1016/j.jbspin.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE Hyperuricaemia is necessary for gout. High urate concentrations have been linked to inflammation in mononuclear cells. Here, we explore the role of the suppressor of cytokine signaling 3 (SOCS3) in urate-induced inflammation. METHODS Peripheral blood mononuclear cells (PBMCs) from gout patients, hyperuricemic and normouricemic individuals were cultured for 24h with varying concentrations of soluble urate, followed by 24h restimulation with lipopolysaccharides (LPS)±monosodium urate (MSU) crystals. Transcriptomic profiling was performed using RNA-Sequencing. DNA methylation was assessed using Illumina Infinium® MethylationEPIC BeadChip system (EPIC array). Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was determined by flow cytometry. Cytokine responses were also assessed in PBMCs from patients with JAK2 V617F tyrosine kinase mutation. RESULTS PBMCs pre-treated with urate produced more interleukin-1beta (IL-1β) and interleukin-6 (IL-6) and less interleukin-1 receptor anatagonist (IL-1Ra) after LPS simulation. In vitro, urate treatment enhanced SOCS3 expression in control monocytes but no DNA methylation changes were observed at the SOCS3 gene. A dose-dependent reduction in phosphorylated STAT3 concomitant with a decrease in IL-1Ra was observed with increasing concentrations of urate. PBMCs with constitutively activated STAT3 (JAK2 V617F mutation) could not be primed by urate. CONCLUSION In vitro, urate exposure increased SOCS3 expression, while urate priming, and subsequent stimulation resulted in decreased STAT3 phosphorylation and IL-1Ra production. There was no evidence that DNA methylation constitutes a regulatory mechanism of SOCS3. Elevated SOCS3 and reduced pSTAT3 could play a role in urate-induced hyperinflammation since urate priming had no effect in PBMCs from patients with constitutively activated STAT3.
Collapse
Affiliation(s)
- Medeea Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| | - Viola Klück
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| | - Orsolya Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| | - Georgiana Cabău
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Hotea
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Valentin Nica
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Andreea M Mirea
- Department of Genetics, Clinical Emergency Hospital for Children, 400535 Cluj-Napoca, Romania
| | - Anca Bojan
- Department of Haematology, The Oncology Institute, "Prof. Dr. Ion Chiricuță", 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Haematology, The Oncology Institute, "Prof. Dr. Ion Chiricuță", 400015 Cluj-Napoca, Romania
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Department of Biochemistry, University of Otago, 9016 Dunedin, New Zealand
| | - Zhaoli Liu
- Centre for Individualized Infection Medicine (CiiM), a joint venture between Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; Centre for Individualized Infection Medicine (CiiM), a joint venture between Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; Centre for Individualized Infection Medicine (CiiM), a joint venture between Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Cristina Pamfil
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Rednic
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands.
| | - Leo A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
2
|
Zhou L, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhao XX, Huang J, Gao Q, Zhu D, Jia R, Liu M, Chen S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front Immunol 2022; 13:1088690. [PMID: 36531988 PMCID: PMC9749954 DOI: 10.3389/fimmu.2022.1088690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Upon infection, the herpes viruses create a cellular environment suitable for survival, but innate immunity plays a vital role in cellular resistance to viral infection. The UL13 protein of herpesviruses is conserved among all herpesviruses and is a serine/threonine protein kinase, which plays a vital role in escaping innate immunity and promoting viral replication. On the one hand, it can target various immune signaling pathways in vivo, such as the cGAS-STING pathway and the NF-κB pathway. On the other hand, it phosphorylates regulatory many cellular and viral proteins for promoting the lytic cycle. This paper reviews the research progress of the conserved herpesvirus protein kinase UL13 in immune escape and viral replication to provide a basis for elucidating the pathogenic mechanism of herpesviruses, as well as providing insights into the potential means of immune escape and viral replication of other herpesviruses that have not yet resolved the function of it.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Mingshu Wang,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Lei L, Bai G, Wang X, Liu S, Xia J, Wu S, Huan Y, Shen Z. Histone deacetylase 3-selective inhibitor RGFP966 ameliorates impaired glucose tolerance through β-cell protection. Toxicol Appl Pharmacol 2020; 406:115189. [PMID: 32800772 DOI: 10.1016/j.taap.2020.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
Abstract
The potential therapeutic effect of histone deacetylase 3 (HDAC3) pharmacologic inhibition on diabetes has been focused recently. RGFP966, as a highly-selective HDAC3 inhibitor, its possible roles and underlying mechanism in the treatment of diabetes needs to be clarified. In this study, low-dose streptozotocin (STZ)-induced pre-diabetic mice were used to test the regulatory ability of RGFP966 in blood glucose and insulin. We isolated the islets both from normal C57BL/6 J mice and KKAy mice with spontaneous type 2 diabetes to determine the potency of RGFP966 on glucose-stimulated insulin secretion. NIT-1 pancreatic β-cells induced by sodium palmitate (PA) were applied to identify the protective effects of RGFP966 against β-cell apoptosis. The results showed that administration of RGFP966 in the pre-diabetic mice not only significantly reduced hyperglycemia, promoted phase I insulin secretion, improved morphology of islets, but also increased glucose infusion rate (GIR) during hyperglycemic clamp test. When treated in vitro, RGFP966 enhanced insulin secretion and synthesis in islets of normal C57BL/6J mice and diabetic KKAy mice. In addition, it partially attenuated PA-induced apoptosis in NIT-1 cells. Therefore, our research suggests that RGFP966, probably through selective inhibition of HDAC3, might serve as a novel potential preventive and therapeutic candidate for diabetes.
Collapse
Affiliation(s)
- Lei Lei
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guoliang Bai
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xing Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuainan Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Xia
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Song Wu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Huan
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhufang Shen
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Chen WB, Gao L, Wang J, Wang YG, Dong Z, Zhao J, Mi QS, Zhou L. Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes. Oncotarget 2018; 7:57485-57497. [PMID: 27542279 PMCID: PMC5295367 DOI: 10.18632/oncotarget.11295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate gene expression by modifying chromatin structure through removal of acetyl groups from target histones or non-histone proteins. Previous in vitro studies suggest that HDACs may be novel pharmacological targets in immune-mediated islet β-cell destruction. However, the role of specific HDAC in islet β-cell development and function remain unclear. Here, we generated a conditional islet β-cells specific HDAC3 deletion mouse model to determine the consequences of HDAC3 depletion on islet β-cell differentiation, maintenance and function. Islet morphology, insulin secretion, glucose tolerance, and multiple low-dose streptozotocin (STZ)-induced diabetes incidence were evaluated and compared between HDAC3 knockout and wild type littermate controls. Mice with β-cell-specific HDAC3 deletion displayed decreased pancreatic insulin content, disrupted glucose-stimulated insulin secretion, with intermittent spontaneous diabetes and dramatically enhanced susceptibility to STZ-induced diabetes. Furthermore, islet β-cell line, MIN6 cells with siRNA-mediated HDAC3 silence, showed decreased insulin gene transcription, which was mediated, at least partially, through the upregulation of suppressors of cytokine signaling 3 (SOCS3). These results indicate the critical role of HDAC3 in normal β-cell differentiation, maintenance and function.
Collapse
Affiliation(s)
- Wen-Bin Chen
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Ling Gao
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Gang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
5
|
McCormick SM, Gowda N, Fang JX, Heller NM. Suppressor of Cytokine Signaling (SOCS)1 Regulates Interleukin-4 (IL-4)-activated Insulin Receptor Substrate (IRS)-2 Tyrosine Phosphorylation in Monocytes and Macrophages via the Proteasome. J Biol Chem 2016; 291:20574-87. [PMID: 27507812 DOI: 10.1074/jbc.m116.746164] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
Allergic asthma is a chronic lung disease initiated and driven by Th2 cytokines IL-4/-13. In macrophages, IL-4/-13 bind IL-4 receptors, which signal through insulin receptor substrate (IRS)-2, inducing M2 macrophage differentiation. M2 macrophages correlate with disease severity and poor lung function, although the mechanisms that regulate M2 polarization are not understood. Following IL-4 exposure, suppressor of cytokine signaling (SOCS)1 is highly induced in human monocytes. We found that siRNA knockdown of SOCS1 prolonged IRS-2 tyrosine phosphorylation and enhanced M2 differentiation, although siRNA knockdown of SOCS3 did not affect either. By co-immunoprecipitation, we found that SOCS1 complexes with IRS-2 at baseline, and this association increased after IL-4 stimulation. Because SOCS1 is an E3 ubiquitin ligase, we examined the effect of proteasome inhibitors on IL-4-induced IRS-2 phosphorylation. Proteasomal inhibition prolonged IRS-2 tyrosine phosphorylation, increased ubiquitination of IRS-2, and enhanced M2 gene expression. siRNA knockdown of SOCS1 inhibited ubiquitin accumulation on IRS-2, although siRNA knockdown of SOCS3 had no effect on ubiquitination of IRS-2. Monocytes from healthy and allergic individuals revealed that SOCS1 is induced by IL-4 in healthy monocytes but not allergic cells, whereas SOCS3 is highly induced in allergic monocytes. Healthy monocytes displayed greater ubiquitination of IRS-2 and lower M2 polarization than allergic monocytes in response to IL-4 stimulation. Here, we identify SOCS1 as a key negative regulator of IL-4-induced IRS-2 signaling and M2 differentiation. Our findings provide novel insight into how dysregulated expression of SOCS increases IL-4 responses in allergic monocytes, and this may represent a new therapeutic avenue for managing allergic disease.
Collapse
Affiliation(s)
- Sarah M McCormick
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nagaraj Gowda
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Jessie X Fang
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nicola M Heller
- From the Department of Anesthesiology and Critical Care Medicine and Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Ye C, Driver JP. Suppressors of Cytokine Signaling in Sickness and in Health of Pancreatic β-Cells. Front Immunol 2016; 7:169. [PMID: 27242781 PMCID: PMC4860527 DOI: 10.3389/fimmu.2016.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) are a family of eight proteins that negatively regulate Janus kinase and signal transducers and activators of transcription signaling in cells that utilize this pathway to respond to extracellular stimuli. SOCS are best known for attenuating cytokine signaling in the immune system. However, they are also expressed in many other cell types, including pancreatic β-cells, where there is considerable interest in harnessing SOCS molecules to prevent cytokine-mediated apoptosis during diabetes and allogeneic transplantation. Apart from their potential as therapeutic targets, SOCS molecules play a central role for regulating important functions in β-cells, including growth, glucose sensing, and insulin secretion. This review will discuss SOCS proteins as central regulators for diverse cellular processes important for normal β-cell function as well as their protective anti-apoptotic effects during β-cell stress.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| | - John P Driver
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| |
Collapse
|
7
|
Pinheiro NM, Miranda CJCP, Perini A, Câmara NOS, Costa SKP, Alonso-Vale MIC, Caperuto LC, Tibério IFLC, Prado MAM, Martins MA, Prado VF, Prado CM. Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter. PLoS One 2015; 10:e0120441. [PMID: 25816137 PMCID: PMC4376856 DOI: 10.1371/journal.pone.0120441] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/22/2015] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine (ACh) plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT), a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB) in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2) was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis.
Collapse
Affiliation(s)
- Nathalia M. Pinheiro
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | - Adenir Perini
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Soraia K. P. Costa
- Department of Pharmacology Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Luciana C. Caperuto
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | | | - Marco Antônio M. Prado
- Molecular Medicine Group, Robarts Research Institute, Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Mílton A. Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Vânia F. Prado
- Molecular Medicine Group, Robarts Research Institute, Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M. Prado
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
- * E-mail:
| |
Collapse
|
8
|
Nam KW, Chae S, Song HY, Mar W, Han MD. The role of wogonin in controlling SOCS3 expression in neuronal cells. Biochem Biophys Res Commun 2014; 450:1518-24. [PMID: 25035930 DOI: 10.1016/j.bbrc.2014.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 11/16/2022]
Abstract
The mechanism underlying the wogonin-mediated increase in the expression of suppressor of cytokine signaling 3 (SOCS3) is unclear. Promoter deletion assay results revealed that wogonin-induced SOCS3 expression is dependent on the AP-1 consensus sequences and two STAT responsive elements (TTACAAGAA and TTCCAGGAA) in the 5'-flanking region of the SOCS3 gene in SH-SY5Y cells. Wogonin-induced SOCS3 expression was blocked by inhibitors of PI3K, Akt, Raf, p38, JNK, MEK, and STAT3, respectively. However, JAK2 inhibitors did not inhibit wogonin-induced SOCS3 expression. These results indicate that SOCS3-inducing effect of wogonin is caused by the activation of PI3K-mediated MAPK signaling pathways (Akt, ERK1/2, p38, and JNK), and the subsequent activation of AP-1 consensus sequences and STAT responsive elements in SH-SY5Y cells.
Collapse
Affiliation(s)
- Kung-Woo Nam
- Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Sungwook Chae
- Herbal Quality Control Center, Korea Institute of Oriental Medicine, 488 Expo, Daejeon 305-811, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 330-721, Republic of Korea
| | - Woongchon Mar
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Man-Deuk Han
- Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University, Asan 336-745, Republic of Korea.
| |
Collapse
|
9
|
|
10
|
Feng X, Tang H, Leng J, Jiang Q. Suppressors of cytokine signaling (SOCS) and type 2 diabetes. Mol Biol Rep 2014; 41:2265-74. [PMID: 24414000 DOI: 10.1007/s11033-014-3079-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 01/04/2014] [Indexed: 12/11/2022]
Abstract
The suppressors of cytokine signaling (SOCS) proteins are originally identified as negative regulators of cytokine-activated Janus kinase/signal transducers and activators of transcription signaling pathway, but increasing evidence reveals that SOCS proteins play an important role in the development of type 2 diabetes involving regulation of the insulin signaling and pancreatic β-cell function, and that SOCS are promising to be the targets for the treatment of type 2 diabetes. In this review, we focus on the emerging role for SOCS and the potential drugs targeting SOCS for type 2 diabetes.
Collapse
Affiliation(s)
- Xiaotao Feng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Bae UJ, Song MY, Jang HY, Gim HJ, Ryu JH, Lee SM, Jeon R, Park BH. The efficacy of SPA0355 in protecting β cells in isolated pancreatic islets and in a murine experimental model of type 1 diabetes. Exp Mol Med 2013; 45:e51. [PMID: 24176948 PMCID: PMC3849566 DOI: 10.1038/emm.2013.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022] Open
Abstract
Cytokines activate several inflammatory signals that mediate β-cell destruction. We recently determined that SPA0355 is a strong anti-inflammatory compound, thus reporting its efficacy in protecting β cells from various insults. The effects of SPA0355 on β-cell survival were studied in RINm5F cells and primary islets. The protective effects of this compound on the development of type 1 diabetes were evaluated in non-obese diabetic (NOD) mice. SPA0355 completely prevented cytokine-induced nitric oxide synthase (iNOS) expression and cytotoxicity in RINm5F cells and isolated islets. The molecular mechanism of SPA0355 inhibition of iNOS expression involves the inhibition of nuclear factor κB and Janus kinase signal transducer and activator of transcription pathways. The protective effects of SPA0355 against cytokine toxicity were further demonstrated by normal insulin secretion and absence of apoptosis of cytokine-treated islets. In experiments with NOD mice, the occurrence of diabetes was efficiently reduced when the mice were treated with SPA0355. Therefore, SPA0355 might be a valuable treatment option that delays the destruction of pancreatic β cells in type 1 diabetes.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Molavi O, Wang P, Zak Z, Gelebart P, Belch A, Lai R. Gene methylation and silencing of SOCS3 in mantle cell lymphoma. Br J Haematol 2013; 161:348-56. [PMID: 23432547 DOI: 10.1111/bjh.12262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/30/2012] [Indexed: 12/31/2022]
Abstract
The significance of loss of SOCS3, a negative regulator of signalling pathways including those of STAT3 and NF-κB, was examined in mantle cell lymphoma (MCL). The protein expression and gene methylation status of SOCS3 were detected using immunohistochemistry/Western blots and methylation-specific polymerase chain reaction, respectively. To evaluate its functional importance, SOCS3 was restored in two SOCS3-negative MCL cell lines using a lentiviral vector. Loss of SOCS3 protein expression was found in 3/4 MCL cell lines and 18/33 (54.5%) tumours. SOCS3 was found consistently methylated in cell lines (3/4) and tumours (7/7) negative for SOCS3, and was unmethylated in all SOCS3-positive cell line (1/1) and tumours (5/5) examined. Treatment of all three SOCS3-negative cell lines with 2'-deoxy-5-azacytidine restored SOCS3 expression. SOCS3 is biologically important in MCL, as lentiviral transfer of SOCS3 in SOCS3-negative cell lines increased their apoptotic activity, downregulated nuclear factor (NF)-κB-p65, cyclin D1 (CCND1), BCL2 and BCL-XL (BCL2L1), and substantially dampened interleukin 10-induced STAT3 activation. In 19 patients aged ≤ 69 years at time of diagnosis, we found that those that carried SOCS3-negative tumours showed a trend toward a worse outcome (P = 0.1, log-rank).
Collapse
Affiliation(s)
- Ommoleila Molavi
- Department of Laboratory Medicine and Pathology, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Rezende LF, Santos GJ, Carneiro EM, Boschero AC. Ciliary neurotrophic factor protects mice against streptozotocin-induced type 1 diabetes through SOCS3: the role of STAT1/STAT3 ratio in β-cell death. J Biol Chem 2012; 287:41628-39. [PMID: 23038263 DOI: 10.1074/jbc.m112.358788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes is characterized by a loss of islet β-cells. Ciliary neurotrophic factor (CNTF) protects pancreatic islets against cytokine-induced apoptosis. For this reason, we assessed whether CNTF protects mice against streptozotocin-induced diabetes (a model of type 1 diabetes) and the mechanism for this protection. WT and SOCS3 knockdown C57BL6 mice were treated for 5 days with citrate buffer or 0.1 mg/kg CNTF before receiving 80 mg/kg streptozotocin. Glycemia in non-fasted mice was measured weekly from days 0-28 after streptozotocin administration. Diabetes was defined as a blood glucose > 11.2 mmol/liter. Wild-type (WT) and SOCS3 knockdown MIN6 cells were cultured with CNTF, IL1β, or both. CNTF reduced diabetes incidence and islet apoptosis in WT but not in SOCS3kd mice. Likewise, CNTF inhibited apoptosis in WT but not in SOCS3kd MIN6 cells. CNTF increased STAT3 phosphorylation in WT and SOCS3kd mice and MIN6 cells but reduced STAT1 phosphorylation only in WT mice, in contrast to streptozotocin and IL1β. Moreover, CNTF reduced NFκB activation and required down-regulation of inducible NO synthase expression to exert its protective effects. In conclusion, CNTF protects mice against streptozotocin-induced diabetes by increasing pancreatic islet survival, and this protection depends on SOCS3. In addition, SOCS3 expression and β-cell fate are dependent on STAT1/STAT3 ratio.
Collapse
Affiliation(s)
- Luiz F Rezende
- Department of Structural and Functional Biology Institute of Biology State University of Campinas (UNICAMP), P.O. Box 6109, Campinas, Sao Paulo 13083-865, Brazil.
| | | | | | | |
Collapse
|
14
|
Wu H, Gao M, Ha T, Kelley J, Young A, Breuel K. Prunella vulgaris aqueous extract attenuates IL-1β-induced apoptosis and NF-κB activation in INS-1 cells. Exp Ther Med 2012; 3:919-924. [PMID: 22969993 DOI: 10.3892/etm.2012.524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/06/2012] [Indexed: 12/13/2022] Open
Abstract
We previously reported that Prunella vulgaris aqueous extract (PVAE) promotes hepatic glycogen synthesis and decreases postprandial hyperglycemia in ICR mice. Inflammatory cytokines play a critical role in the pathogenesis of diabetes. This study was designed to examine whether PVAE has a protective effect on IL-1β-induced apoptosis in INS-1 cells. INS-1 pancreatic β cells were plated at 2×10(6)/ml and treated with PVAE (100 µg/ml) 30 min before the cells were challenged with IL-1β (10 ng/ml). Untreated INS-1 cells served as control. INS-1 cell cytotoxicity was examined by MTT and lactate dehydrogenase (LDH) activity assays. Caspase-3 activity and activation of the apoptotic signaling pathway were analyzed by western blotting. NF-κB binding activity was examined by EMSA. The levels of inflammatory cytokines in the supernatant were measured by ELISA. IL-1β treatment significantly induced INS-1 cell death by 49.2%, increased LDH activity by 1.5-fold and caspase-3 activity by 7.6-fold, respectively, compared with control cells. However, PVAE administration significantly prevented IL-1β-increased INS-1 cell death and LDH activity and attenuated IL-1β-increased caspase-3 activity. Western blot data showed that PVAE also significantly attenuated IL-1β-increased Fas, FasL and phospho-JNK levels in the INS-1 cells. In addition, PVAE treatment significantly attenuated IL-1β-increased NF-κB binding activity and prevented IL-1β-increased TNF-α and IL-6 expression in INS-1 cells. Our data suggest that PVAE has a protective effect on IL-1β-induced INS-1 cell apoptosis. PVAE also attenuates IL-1β-increased NF-κB binding activity and inflammatory cytokine expression in INS-1 cells. PVAE may have a benefit for type I diabetic patients.
Collapse
Affiliation(s)
- Huiping Wu
- Department of Biochemistry, Pre-Clinical College, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | | | | | | | | | | |
Collapse
|
15
|
Kerr D, Burke N, Ford G, Connor T, Harhen B, Egan L, Finn D, Roche M. Pharmacological inhibition of endocannabinoid degradation modulates the expression of inflammatory mediators in the hypothalamus following an immunological stressor. Neuroscience 2012; 204:53-63. [DOI: 10.1016/j.neuroscience.2011.09.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
|
16
|
The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS One 2012; 7:e31062. [PMID: 22347430 PMCID: PMC3275575 DOI: 10.1371/journal.pone.0031062] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/01/2012] [Indexed: 12/31/2022] Open
Abstract
In the course of Type 1 diabetes pro-inflammatory cytokines (e.g., IL-1β, IFN-γ and TNF-α) produced by islet-infiltrating immune cells modify expression of key gene networks in β-cells, leading to local inflammation and β-cell apoptosis. Most known cytokine-induced transcription factors have pro-apoptotic effects, and little is known regarding “protective” transcription factors. To this end, we presently evaluated the role of the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) on β-cell apoptosis and production of inflammatory mediators in the rat insulinoma INS-1E cells, in purified primary rat β-cells and in human islets. C/EBPδ is expressed and up-regulated in response to the cytokines IL-1β and IFN-γ in rat β-cells and human islets. Small interfering RNA-mediated C/EBPδ silencing exacerbated IL-1β+IFN-γ-induced caspase 9 and 3 cleavage and apoptosis in these cells. C/EBPδ deficiency increased the up-regulation of the transcription factor CHOP in response to cytokines, enhancing expression of the pro-apoptotic Bcl-2 family member BIM. Interfering with C/EBPδ and CHOP or C/EBPδ and BIM in double knockdown approaches abrogated the exacerbating effects of C/EBPδ deficiency on cytokine-induced β-cell apoptosis, while C/EBPδ overexpression inhibited BIM expression and partially protected β-cells against IL-1β+IFN-γ-induced apoptosis. Furthermore, C/EBPδ silencing boosted cytokine-induced production of the chemokines CXCL1, 9, 10 and CCL20 in β-cells by hampering IRF-1 up-regulation and increasing STAT1 activation in response to cytokines. These observations identify a novel function of C/EBPδ as a modulatory transcription factor that inhibits the pro-apoptotic and pro-inflammatory gene networks activated by cytokines in pancreatic β-cells.
Collapse
|
17
|
Cytokine-induced human islet cell death in vitro correlates with a persistently high phosphorylation of STAT-1, but not with NF-κB activation. Biochem Biophys Res Commun 2012; 418:845-50. [DOI: 10.1016/j.bbrc.2012.01.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 11/24/2022]
|
18
|
Mokhtari D, Li T, Lu T, Welsh N. Effects of Imatinib Mesylate (Gleevec) on human islet NF-kappaB activation and chemokine production in vitro. PLoS One 2011; 6:e24831. [PMID: 21935477 PMCID: PMC3173488 DOI: 10.1371/journal.pone.0024831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/22/2011] [Indexed: 12/20/2022] Open
Abstract
Purpose Imatinib Mesylate (Gleevec) is a drug that potently counteracts diabetes both in humans and in animal models for human diabetes. We have previously reported that this compound in human pancreatic islets stimulates NF-κB signaling and islet cell survival. The aim of this study was to investigate control of NF-κB post-translational modifications exerted by Imatinib and whether any such effects are associated with altered islet gene expression and chemokine production in vitro. Procedures Human islets were either left untreated or treated with Imatinib for different timepoints. IκB-α and NF-κB p65 phosphorylation and methylation were assessed by immunoblot analysis. Islet gene expression was assessed using a commercial Pathway Finder microarray kit and RT-PCR. Islet chemokine production was determined by flow cytometric bead array analysis. Findings Human islet IκB-α and Ser276-p65 phosphorylation were increased by a 20 minute Imatinib exposure. Methylation of p65 at position Lys221 was increased after 60 min of Imatinib exposure and persisted for 3 hours. Microarray analysis of islets exposed to Imatinib for 4 hours revealed increased expression of the inflammatory genes IL-4R, TCF5, DR5, I-TRAF, I-CAM, HSP27 and IL-8. The islet release of IL-8 was augmented in islets cultured over night in the presence of Imatinib. Following 30 hours of Imatinib exposure, the cytokine-induced IκB-α and STAT1 phosphorylation was abolished and diminished, respectively. The cytokine-induced release of the chemokines MIG and IP10 was lower in islets exposed to Imatinib for 30 hours. Conclusion Imatinib by itself promotes a modest activation of NF-κB. However, a prolonged exposure of human islets to Imatinib is associated with a dampened response to cytokines. It is possible that Imatinib induces NF-κB preconditioning of islet cells leading to lowered cytokine sensitivity and a mitigated islet inflammation.
Collapse
Affiliation(s)
- Dariush Mokhtari
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
19
|
Li P, Xu X, Zheng Z, Zhu B, Shi Y, Liu K. Protective Effects of Rosiglitazone on Retinal Neuronal Damage in Diabetic Rats. Curr Eye Res 2011; 36:673-9. [DOI: 10.3109/02713683.2011.572220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011; 351:197-205. [PMID: 21249428 DOI: 10.1007/s11010-011-0727-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes patients exhibit subclinical inflammation but the regulatory mechanisms are poorly understood. We sought to evaluate the role of miR-146a expression along with its downstream proinflammatory signals in relation to glycemic control and insulin resistance. Study subjects (n = 20 each) comprised of clinically well characterized Type 2 diabetes patients and control non-diabetic subjects. miRNA and mRNA expression levels were probed in peripheral blood mononuclear cells (PBMC) by Real-time RT-PCR and plasma levels of TNFα and IL-6 were measured by ELISA. The miR-146a expression levels were significantly decreased in PBMCs from patients with Type 2 diabetes compared to control subjects. Among the target genes of miR-146a, TRAF-6 mRNA expression was significantly increased in patients with Type 2 diabetes while there was no significant difference in the mRNA levels of IRAK1 in the study groups. In contrast, there were significantly increased levels of NFκB expression in patients with Type 2 diabetes. There was an increased trend in the levels of TNFα and IL-6 mRNA in patients with type 2 diabetes. While SOCS-3 mRNA levels increased, plasma TNFα and IL-6 levels were also significantly higher in patients with type 2 diabetes. miR-146a expression was negatively correlated to glycated hemoglobin, insulin resistance, TRAF6, and NFκB mRNA levels and circulatory levels of TNFα and IL-6. Reduced miR-146a levels are associated with insulin resistance, poor glycemic control, and several proinflammatory cytokine genes and circulatory levels of TNFα and IL-6 in Asian Indian Type 2 diabetic patients.
Collapse
|
21
|
Börjesson A, Rønn SG, Karlsen AE, Billestrup N, Sandler S. β-cell specific overexpression of suppressor of cytokine signalling-3 does not protect against multiple low dose streptozotocin induced type 1 diabetes in mice. Immunol Lett 2011; 136:74-9. [PMID: 21237203 DOI: 10.1016/j.imlet.2010.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/27/2010] [Accepted: 12/21/2010] [Indexed: 12/21/2022]
Abstract
We investigated the impact of β-cell specific overexpression of suppressor of cytokine signalling-3 (SOCS-3) on the development of multiple low dose streptozotocin (MLDSTZ) induced Type 1 diabetes and the possible mechanisms involved. MLDSTZ treatment was administered to RIP-SOCS-3 transgenic and wild-type (wt) mice and progression of hyperglycemia monitored. Isolated islets from both strains were exposed to human IL-1β (25U/ml) or a combination of human IL-1β (25U/ml) and murine IFN-γ (1000U/ml) for 24h or 48h and we investigated the expression of IL-1 receptor antagonist (IL-1Ra) mRNA in islet cells and secretion of IL-1Ra into culture medium. MLDSTZ treatment caused gradual hyperglycemia both in the wt mice and in the transgenic mice with the latter tending to be more sensitive. In vitro experiments on wt and transgenic islets did not reveal any differences in sensitivity to damaging effects of STZ. Exposure of wt islets to IL-1β or IL-1β+IFN-γ seemed to lead to a failing IL-1Ra response from SOCS-3 transgenic islets. It could be that an increased expression of a possible protective molecule against β-cell destruction may lead to a dampered response of another putative protective molecule. This may have counteracted a protective effect against MLDSTZ in SOCS-3 transgenic mice.
Collapse
Affiliation(s)
- A Börjesson
- Department of Medical Cell Biology, Uppsala University, SE-751 23, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Puff R, Dames P, Weise M, Göke B, Parhofer KG, Lechner A. No non-redundant function of suppressor of cytokine signaling 2 in insulin producing β-cells. Islets 2010; 2:252-7. [PMID: 21099320 PMCID: PMC3322539 DOI: 10.4161/isl.2.4.12556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The members of the Suppressor of Cytokine Signaling (SOCS) protein family mainly modulate the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. SOCS-1 and SOCS-3 have already been shown to influence growth and apoptosis of pancreatic beta cells. We hypothesized that SOCS-2, which is expressed in pancreatic islets, also contributes to β-cell physiology. We tested this hypothesis in vivo in SOCS-2-/- knockout mice and in vitro in Ins-1E rat insulinoma cells. We found that SOCS-2-/- mice have normal islet insulin secretion and unchanged glucose and insulin tolerance compared to wildtype controls. SOCS-2-/- are bigger than wildtype mice but body weight-corrected β-cell mass and islet morphology were normal. Growth hormone-induced proliferation of Ins-1E cells was not affected by either siRNA-mediated SOCS-2 knockdown or stable SOCS-2 overexpression. Interleukin-1β mediated cell death in vitro was unchanged after SOCS-2 knockdown. Similarly, autoimmune destruction of beta cells in vivo after multiple low-dose injections of streptozotocin (STZ) was not altered in SOCS-2-/- mice. In summary, SOCS-2-/- knockout mice have a normal function of insulin-producing pancreatic β-cells, a fully adapted beta cell mass and a normal morphology of the endocrine islets. Based on in vitro evidence, the increased β-cell mass in the mutants is likely due to indirect adaptive mechanisms and not the result of altered growth hormone signaling within the β-cells. Immune mediated β-cell destruction is also not affected by SOCS-2 ablation in vitro and in vivo.
Collapse
|
23
|
Bruun C, Heding PE, Rønn SG, Frobøse H, Rhodes CJ, Mandrup-Poulsen T, Billestrup N. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells. Mol Cell Endocrinol 2009; 311:32-8. [PMID: 19643162 DOI: 10.1016/j.mce.2009.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/19/2009] [Accepted: 07/20/2009] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction of the pancreatic insulin-producing beta cells. Suppressor of cytokine signalling-3 (SOCS-3) proteins regulate signalling induced by a number of cytokines including growth hormone, IFNgamma and IL-1beta which signals via very distinctive pathways. The objective of this study was to investigate the effect of SOCS-3 on TNFalpha-induced signalling in beta cells. We found that apoptosis induced by TNFalpha alone or in combination with IL-1beta was suppressed by expression of SOCS-3 in the beta cell line INSr3#2. SOCS-3 inhibited TNFalpha-induced phosphorylation of the mitogen activated protein kinases ERK1/2, p38 and JNK in INSr3#2 cells and in primary rat islets. Furthermore, SOCS-3 repressed TNFalpha-induced degradation of IkappaB, NFkappaB DNA binding and transcription of the NFkappaB-dependent MnSOD promoter. Finally, expression of Socs-3 mRNA was induced by TNFalpha in rat islets in a transient manner with maximum expression after 1-2h. The ability of SOCS-3 to regulate signalling induced by the three major pro-inflammatory cytokines involved in the pathogenesis of T1DM makes SOCS-3 an interesting therapeutic candidate for protection of the beta cell mass.
Collapse
Affiliation(s)
- Christine Bruun
- Hagedorn Research Institute, Niels Steensens Vej 6, NSK2.02, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
24
|
Neuwirt H, Puhr M, Santer FR, Susani M, Doppler W, Marcias G, Rauch V, Brugger M, Hobisch A, Kenner L, Culig Z. Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1921-30. [PMID: 19342366 DOI: 10.2353/ajpath.2009.080751] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins play a pivotal role in the development and progression of various cancers. We have previously shown that SOCS-3 is expressed in prostate cancer, and its expression is inversely correlated with activation of signal transducer and activator of transcription factor 3. We hypothesized that SOCS-1, if expressed in prostate cancer cells, has a growth-regulatory role in this malignancy. The presence of both SOCS-1 mRNA and protein was detected in all tested cell lines. To assess SOCS-1 expression levels in vivo, we analyzed tissue microarrays and found a high percentage of positive cells in both prostate intraepithelial neoplasias and cancers. SOCS-1 expression levels decreased in samples taken from patients undergoing hormonal therapy but increased in specimens from patients who failed therapy. In LNCaP-interleukin-6- prostate cancer cells, SOCS-1 was up-regulated by interleukin-6 and in PC3-AR cells by androgens; such up-regulation was also found to significantly impair cell proliferation. To corroborate these findings, we used a specific small interfering RNA against SOCS-1 and blocked expression of the protein. Down-regulation of SOCS-1 expression caused a potent growth stimulation of PC3, DU-145, and LNCaP-interleukin-6- cells that was associated with the increased expression levels of cyclins D1 and E as well as cyclin-dependent kinases 2 and 4. In summary, we show that SOCS-1 is expressed in prostate cancer both in vitro and in vivo and acts as a negative growth regulator.
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Urology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rezende LF, Vieira AS, Negro A, Langone F, Boschero AC. Ciliary neurotrophic factor (CNTF) signals through STAT3-SOCS3 pathway and protects rat pancreatic islets from cytokine-induced apoptosis. Cytokine 2009; 46:65-71. [PMID: 19272793 DOI: 10.1016/j.cyto.2008.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/10/2008] [Accepted: 12/24/2008] [Indexed: 01/11/2023]
Abstract
CNTF is a cytokine that promotes survival and/or differentiation in many cell types, including rat pancreatic islets. In this work, we studied the mechanism of CNTF signal in neonatal rats pancreatic islets isolated by the collagenase method and cultured for 3 days in RPMI medium without (CTL) or with 1 nM of CNTF. The medium contained, when necessary, specific inhibitors of the PI3K, MAPK and JAK/STAT3 pathways. mRNA expression (RT-PCR) and protein phosphorylation (Western blot) of Akt, ERK1/2 and STAT3, and SOCS-3 (RT-PCR and Western blot), as well as glucose-stimulated insulin secretion (GSIS) (Radioimmunoassay), were analyzed. Our results showed that Akt, ERK1 and STAT3 mRNA expression, as well as phosphorylated Akt and ERK1/2, was not affected by CNTF treatment. CNTF increased cytoplasmatic and nuclear phosphorylated STAT3, and the SOCS3 mRNA and protein expression. In addition, CNTF lowered apoptosis and impaired GSIS. These effects were blocked by the JAK inhibitor, AG490 and by the STAT3 inhibitor Curcumin, but not by the MAPK inhibitor, PD98059, nor by the PI3K inhibitor, Wortmannin. In conclusion, CNTF signals through the JAK2/STAT3 cascade, increases SOCS3 expression, impairs GSIS and protects neonatal pancreatic rat islets from cytokine-induced apoptosis. These findings indicate that CNTF may be a potential therapeutic tool against Type 1 and/or Type 2 diabetes.
Collapse
Affiliation(s)
- Luiz F Rezende
- Department of Physiology and Biophysics, State University of Campinas, Brazil
| | | | | | | | | |
Collapse
|
26
|
Jacobsen MLB, Rønn SG, Bruun C, Larsen CM, Eizirik DL, Mandrup-Poulsen T, Billestrup N. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells. Diabetologia 2009; 52:281-8. [PMID: 19002429 DOI: 10.1007/s00125-008-1199-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine-induced Fas and chemokine expression in beta cells. METHODS Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas mRNA expression. The ability of SOCS-3 to influence the activity of cytokine-responsive Fas and Mcp-1 (also known as Ccl2) promoters was measured by reporter analysis. RESULTS IL-1beta induced a time-dependent increase in Mcp-1 and Mip-2 (also known as Cxcl2) mRNA expression after 6 h of stimulation in insulinoma (INS)-1 and neonatal rat islet cells. This induction was inhibited when Socs3 was expressed in the cells. In INS-1 cells, IL-1beta + IFN-gamma induced a tenfold and eightfold increase of Fas mRNA expression after 6 and 24 h, respectively. This induction was inhibited at both time-points when expression of Socs3 was induced. In promoter studies SOCS-3 significantly inhibited the cytokine-induced activity of Mcp-1 and Fas promoter constructs. CONCLUSIONS/INTERPRETATION SOCS-3 inhibits the expression of cytokine-induced chemokine and death-receptor Fas mRNA.
Collapse
Affiliation(s)
- M L B Jacobsen
- Steno Diabetes Centre, Niels Steensens Vej 6, NSK2.02, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
IFNgamma (interferon gamma), a cytokine typically secreted by infiltrating immune cells in insulitis in Type 1 diabetes, is by itself not detrimental to beta-cells, but, together with other cytokines, such as IL-1beta (interleukin 1beta) and TNFalpha (tumour necrosis factor alpha), or dsRNA (double-stranded RNA), it induces beta-cell apoptosis. The complex gene and protein networks that are altered by the combination of cytokines clearly point towards synergisms between these agents. IFNgamma acts mostly via JAK (Janus kinase) activation, with the transcription factors STAT-1 (signal transducer and activator of transcription-1) and IRF-1 (IFNgamma regulatory factor-1) playing a central role in the downstream pathway. The study of mice with a disruption of these transcription factors has revealed a possible dual role for IFNgamma in beta-cell destruction by cytokines or dsRNA. We demonstrated that the absence of STAT-1 from beta-cells completely protects against IFNgamma+IL-1beta- and IFNgamma+dsRNA-mediated beta-cell death in vitro, whereas absence of IRF-1 does not prevent cytokine-induced beta-cell apoptosis. In vivo, a lack of the IRF-1 gene in pancreatic islets even promotes low-dose streptozotocin-induced diabetes, whereas lack of STAT-1 confers resistance against beta-cell death following low-dose streptozotocin-induced diabetes. Additionally, IRF-1(-/-) islets are more sensitive to PNF (primary islet non-function) after transplantation in spontaneously diabetic NOD (non-obese diabetic) mice, whereas STAT-1(-/-) islets are fully protected. Moreover, proteomic analysis of beta-cells exposed to IFNgamma or IFNgamma+IL-1beta confirms that very different pathways are activated by IFNgamma alone compared with the combination. We conclude that IFNgamma may play a dual role in immune-induced beta-cell destruction. Transcription factors drive this dual role, with STAT-1 driving beta-cell destruction and IRF-1 possibly playing a role in up-regulation of protective pathways induced by IFNgamma.
Collapse
|
28
|
Song KS, Kim K, Chung KC, Seol JH, Yoon JH. Interaction of SOCS3 with NonO attenuates IL-1beta-dependent MUC8 gene expression. Biochem Biophys Res Commun 2008; 377:946-51. [PMID: 18952062 DOI: 10.1016/j.bbrc.2008.10.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/20/2008] [Indexed: 11/30/2022]
Abstract
The intracellular negatively regulatory mechanism which affects IL-1beta-induced MUC8 gene expression remains unclear. We found that SOCS3 overexpression suppressed IL-1beta-induced MUC8 gene expression in NCI-H292 cells, whereas silencing of SOCS3 restored IL-1beta-induced MUC8 gene expression. Sequentially activated ERK1/2, RSK1, and CREB by IL-1beta were not affected by SOCS3, indicating that SOCS3 has an independent mechanism of action. Using immunoprecipitaion and nano LC mass analysis, we found that SOCS3 bound NonO (non-POU-domain containing, octamer-binding domain protein) in the absence of IL-1beta, whereas IL-1beta treatment dissociated the direct binding of SOCS3 and NonO. A dominant-negative SOCS3 mutant (Y204F/Y221F) did not bind to NonO. Interestingly, SOCS3 overexpression dramatically suppressed MUC8 gene expression in cells transfected with wild-type or siRNA of NonO. Moreover, silencing of SOCS3 dramatically increased NonO-mediated MUC8 gene expression caused by IL-1beta compared to NonO overexpression alone, suggesting that SOCS3 acts as a suppressor by regulating the action of NonO.
Collapse
Affiliation(s)
- Kyoung Seob Song
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
29
|
Rønn SG, Börjesson A, Bruun C, Heding PE, Frobøse H, Mandrup-Poulsen T, Karlsen AE, Rasschaert J, Sandler S, Billestrup N. Suppressor of cytokine signalling-3 expression inhibits cytokine-mediated destruction of primary mouse and rat pancreatic islets and delays allograft rejection. Diabetologia 2008; 51:1873-82. [PMID: 18648765 DOI: 10.1007/s00125-008-1090-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 06/10/2008] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS The pro-inflammatory cytokines IL-1 and IFNgamma are critical molecules in immune-mediated beta cell destruction leading to type 1 diabetes mellitus. Suppressor of cytokine signalling (SOCS)-3 inhibits the cytokine-mediated destruction of insulinoma-1 cells. Here we investigate the effect of SOCS3 in primary rodent beta cells and diabetic animal models. METHODS Using mice with beta cell-specific Socs3 expression and a Socs3-encoding adenovirus construct, we characterised the protective effect of SOCS3 in mouse and rat islets subjected to cytokine stimulation. In transplantation studies of NOD mice and alloxan-treated mice the survival of Socs3 transgenic islets was investigated. RESULTS Socs3 transgenic islets showed significant resistance to cytokine-induced apoptosis and impaired insulin release. Neither glucose-stimulated insulin release, insulin content or glucose oxidation were affected by SOCS3. Rat islet cultures transduced with Socs3-adenovirus displayed reduced cytokine-induced nitric oxide and apoptosis associated with inhibition of the IL-1-induced nuclear factor-kappaB and mitogen-activated protein kinase (MAPK) pathways. Transplanted Socs3 transgenic islets were not protected in diabetic NOD mice, but showed a prolonged graft survival when transplanted into diabetic allogenic BALB/c mice. CONCLUSIONS/INTERPRETATION SOCS3 inhibits IL-1-induced signalling through the nuclear factor-kappaB and MAPK pathways and apoptosis induced by cytokines in primary beta cells. Moreover, Socs3 transgenic islets are protected in an allogenic transplantation model. SOCS3 may represent a target for pharmacological or genetic engineering in islet transplantation for treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- S G Rønn
- Steno Diabetes Centre, Niels Steensens Vej 6, Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gurzov EN, Ortis F, Bakiri L, Wagner EF, Eizirik DL. JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells. PLoS One 2008; 3:e3030. [PMID: 18716665 PMCID: PMC2516602 DOI: 10.1371/journal.pone.0003030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/27/2008] [Indexed: 01/16/2023] Open
Abstract
Cytokines contribute to pancreatic β-cell apoptosis in type 1 diabetes (T1D) by modulation of β-cell gene expression networks. The transcription factor Activator Protein-1 (AP-1) is a key regulator of inflammation and apoptosis. We presently evaluated the function of the AP-1 subunit JunB in cytokine-mediated β-cell dysfunction and death. The cytokines IL-1β+IFN-γ induced an early and transitory upregulation of JunB by NF-κB activation. Knockdown of JunB by RNA interference increased cytokine-mediated expression of inducible nitric oxide synthase (iNOS) and endoplasmic reticulum (ER) stress markers, leading to increased apoptosis in an insulin-producing cell line (INS-1E) and in purified rat primary β-cells. JunB knockdown β-cells and junB−/− fibroblasts were also more sensitive to the chemical ER stressor cyclopiazonic acid (CPA). Conversely, adenoviral-mediated overexpression of JunB diminished iNOS and ER markers expression and protected β-cells from cytokine-induced cell death. These findings demonstrate a novel and unexpected role for JunB as a regulator of defense mechanisms against cytokine- and ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Esteban N. Gurzov
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail:
| | - Fernanda Ortis
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Latifa Bakiri
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Erwin F. Wagner
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Decio L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
31
|
Lv N, Song MY, Kim EK, Park JW, Kwon KB, Park BH. Guggulsterone, a plant sterol, inhibits NF-kappaB activation and protects pancreatic beta cells from cytokine toxicity. Mol Cell Endocrinol 2008; 289:49-59. [PMID: 18343024 DOI: 10.1016/j.mce.2008.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/29/2008] [Accepted: 02/01/2008] [Indexed: 11/26/2022]
Abstract
Guggulsterone has been used to treat hyperlipidemia, arthritis, and obesity. Although its anti-inflammatory and anti-hyperlipidemic effects have been well documented, the effect of guggulsterone on pancreatic beta cells is unknown. Therefore, in this study, the effect of guggulsterone on IL-1beta- and IFN-gamma-induced beta-cell damage was investigated. Treatment of RINm5F (RIN) rat insulinoma cells with IL-1beta and IFN-gamma induced cell damage, and this damage was well correlated with nitric oxide (NO) and prostaglandin E2 (PGE2) production. However, guggulsterone completely prevented cytokines-mediated cytotoxicity, as well as NO and PGE2 production, and these effects were correlated with reduced levels of the inducible form of NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA and protein expressions. The molecular mechanism by which guggulsterone inhibits iNOS and COX-2 gene expressions appeared to involve the inhibition of NF-kappaB activation. The cytoprotective effects of guggulsterone were also mediated through the suppression of the JAK/STAT pathway. Cells treated with the cytokines downregulated the protein level of SOCS-3, however pretreatment with guggulsterone attenuated this decrease. Additionally, in a second set of experiments in which rat islets were used, the findings regarding the beta-cell protective effects of guggulsterone were essentially the same as those observed when RIN cells were used; guggulsterone prevented cytokines-induced NO and PGE2 production, iNOS and COX-2 expressions, JAK/STAT activation, NF-kappaB activation, downregulation of SOCS-3, and impairment of glucose-stimulated insulin secretion. Collectively, these results suggest that guggulsterone may be used to preserve functional beta-cell mass.
Collapse
Affiliation(s)
- Na Lv
- Department of Biochemistry, Medical School and Institute for Medical Sciences, Chonbuk National University, 2-20 Keumam-dong, Jeonju, Jeonbuk 561-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Signal transducer and activator of transcription (STAT)5A and -5B are latent transcription factors activated by cytokines and hormones of the cytokine family. In pancreatic insulin-secreting β-cells, STAT5A and -5B are activated primarily by prolactin and growth hormone stimulation and are important mediators of the potent stimulation of proliferation and insulin production caused by these hormones. STAT5A and -5B are both expressed in β-cells and control the expression of a number of mRNAs implicated in cell replication control, insulin biosynthesis and secretion. In addition to STAT5A and -5B being transcriptional activators, they may also repress gene transcription. By these means, STAT5 proteins increase the levels of anti-apoptotic transcripts in β-cells and repress expression of pro-apoptotic genes. This review focuses on the anti-apoptotic role of STAT5 signaling, providing a mechanism for β-cell resistance to pro-apoptotic cytokines, Type 1 diabetes mellitus and obesity-associated β-cell stress. It is clear from studies of STAT5 signaling in pancreatic β-cells that STAT5 is important for postnatal β-cell compensatory growth (as in pregnancy or obesity) and in the defense against β-cell stress factors.
Collapse
Affiliation(s)
- Louise T Dalgaard
- a Roskilde University, Department of Science, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | - Nils Billestrup
- b Steno Diabetes Center, Niels Steensens Vej 2, DK-2820 Gentofte, Denmark.
| | - Jens H Nielsen
- c University of Copenhagen, Department of Biomedical Research, Panum Institute, Bldg 6.5, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
33
|
Osborne-Hereford AV, Rogers SW, Gahring LC. Neuronal nicotinic alpha7 receptors modulate inflammatory cytokine production in the skin following ultraviolet radiation. J Neuroimmunol 2008; 193:130-9. [PMID: 18077004 DOI: 10.1016/j.jneuroim.2007.10.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 12/31/2022]
Abstract
The anti-inflammatory effects of the neuronal nicotinic receptor alpha7 (nAChRalpha7) are proposed to require acetylcholine release from vagal efferents. The necessity for vagal innervation in this anti-inflammatory pathway was tested in the skin, which lacks parasympathetic innervation, using ultraviolet radiation (UVB) to induce a local pro-inflammatory response. Cytokine responses to UV in mice administered chronic oral nicotine, a nAChR agonist, were reduced. Conversely, nAChRalpha7 knock-out mice exposed to UVB elicit an enhanced pro-inflammatory cytokine response in the skin. Altered pro-inflammatory responses correlated with changes in SOCS3 protein. These results demonstrate that nAChRalpha7 can participate in modulating a local pro-inflammatory response in the absence of parasympathetic innervation.
Collapse
Affiliation(s)
- Amber V Osborne-Hereford
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | | | | |
Collapse
|
34
|
da Silva Krause M, de Bittencourt PIH. Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis. Cell Biochem Funct 2008; 26:406-33. [DOI: 10.1002/cbf.1470] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Mori H, Shichita T, Yu Q, Yoshida R, Hashimoto M, Okamoto F, Torisu T, Nakaya M, Kobayashi T, Takaesu G, Yoshimura A. Suppression of SOCS3 expression in the pancreatic beta-cell leads to resistance to type 1 diabetes. Biochem Biophys Res Commun 2007; 359:952-8. [PMID: 17562326 DOI: 10.1016/j.bbrc.2007.05.198] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta-cells during islet inflammation, which involves inflammatory cytokines and free radicals. However, mechanisms for protecting beta-cells from destruction have not been clarified. In this study, we define the role of SOCS3 on beta-cell destruction using beta-cell-specific SOCS3-conditional knockout (cKO) mice. The beta-cell-specific SOCS3-deficient mice were resistant to the development of diabetes caused by streptozotocin (STZ), a genotoxic methylating agent, which has been used to trigger beta-cell destruction. The islets from cKO mice demonstrated hyperactivation of STAT3 and higher induction of Bcl-xL than did islets from WT mice, and SOCS3-deficient beta-cells were more resistant to apoptosis induced by STZ in vitro than were WT beta-cells. These results suggest that enhanced STAT3 signaling protects beta-cells from destruction induced by a genotoxic stress and that STAT3/SOCS3 can be a potential therapeutic target for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Sif G Rønn
- Steno Diabetes Center, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | | | | |
Collapse
|
37
|
Qin H, Wilson CA, Roberts KL, Baker BJ, Zhao X, Benveniste EN. IL-10 Inhibits Lipopolysaccharide-Induced CD40 Gene Expression through Induction of Suppressor of Cytokine Signaling-3. THE JOURNAL OF IMMUNOLOGY 2006; 177:7761-71. [PMID: 17114447 DOI: 10.4049/jimmunol.177.11.7761] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Costimulation between T cells and APCs is required for adaptive immune responses. CD40, an important costimulatory molecule, is expressed on a variety of cell types, including macrophages and microglia. The aberrant expression of CD40 is implicated in diseases including multiple sclerosis, rheumatoid arthritis, and Alzheimer's disease, and inhibition of CD40 signaling has beneficial effects in a number of animal models of autoimmune diseases. In this study, we discovered that IL-10, a cytokine with anti-inflammatory properties, inhibits LPS-induced CD40 gene expression. We previously demonstrated that LPS induction of CD40 in macrophages/microglia involves both NF-kappaB activation and LPS-induced production of IFN-beta, which subsequently activates STAT-1alpha. IL-10 inhibits LPS-induced IFN-beta gene expression and subsequent STAT-1alpha activation, but does not affect NF-kappaB activation. Our results also demonstrate that IL-10 inhibits LPS-induced recruitment of STAT-1alpha, RNA polymerase II, and the coactivators CREB binding protein and p300 to the CD40 promoter, as well as inhibiting permissive histone H3 acetylation (AcH3). IL-10 and LPS synergize to induce suppressor of cytokine signaling (SOCS)-3 gene expression in macrophages and microglia. Ectopic expression of SOCS-3 attenuates LPS-induced STAT activation, and inhibits LPS-induced CD40 gene expression, comparable to that seen by IL-10. These results indicate that SOCS-3 plays an important role in the negative regulation of LPS-induced CD40 gene expression by IL-10.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Welters HJ, Diakogiannaki E, Mordue JM, Tadayyon M, Smith SA, Morgan NG. Differential protective effects of palmitoleic acid and cAMP on caspase activation and cell viability in pancreatic beta-cells exposed to palmitate. Apoptosis 2006; 11:1231-8. [PMID: 16703263 DOI: 10.1007/s10495-006-7450-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Saturated and mono-unsaturated fatty acids exert differential effects on pancreatic beta-cell viability during chronic exposure. Long chain saturated molecules (e.g. palmitate) are cytotoxic to beta-cells and this is associated with caspase activation and induction of apoptosis. By contrast, mono-unsaturated fatty acids (e.g. palmitoleate) are not toxic and can protect against the detrimental effects of palmitate. In the present study, we show that the protective actions of palmitoleate in BRIN-BD11 beta-cells result in attenuated caspase activation following exposure to palmitate and that a similar response occurs in cells having elevated levels of cAMP. However, unlike palmitoleate, elevation of cAMP was unable to prevent the cytotoxic actions of palmitate since it caused a diversion of the pathway of cell death from apoptosis to necrosis. Palmitoleate did not alter cAMP levels in BRIN-BD11 cells and the results suggest that a change in cAMP is not involved in mediating the protective effects of this fatty acid. Moreover, they reveal that attenuated caspase activation does not always correlate with altered cell viability in cultured beta-cells and suggest that mono-unsaturated fatty acids control cell viability by regulating a different step in the apoptotic pathway from that influenced by cAMP.
Collapse
Affiliation(s)
- Hannah J Welters
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Devon, Research Way, Plymouth, PL6 8BU, UK
| | | | | | | | | | | |
Collapse
|
39
|
Frobøse H, Rønn SG, Heding PE, Mendoza H, Cohen P, Mandrup-Poulsen T, Billestrup N. Suppressor of Cytokine Signaling-3 Inhibits Interleukin-1 Signaling by Targeting the TRAF-6/TAK1 Complex. Mol Endocrinol 2006; 20:1587-96. [PMID: 16543409 DOI: 10.1210/me.2005-0301] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractIL-1 plays a major role in inflammation and autoimmunity through activation of nuclear factor κ B (NFκB) and MAPKs. Although a great deal is known about the mechanism of activation of NFκB and MAPKs by IL-1, much less is known about the down-regulation of this pathway. Suppressor of cytokine signaling (SOCS)-3 was shown to inhibit IL-1-induced transcription and activation of NFκB and the MAPKs JNK and p38, but the mechanism is unknown. We show here that SOCS-3 inhibits NFκB-dependent transcription induced by overexpression of the upstream IL-1 signaling molecules MyD88, IL-1R-activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFβ-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex. By coimmunoprecipitation, it was shown that SOCS-3 inhibited the association between TRAF6 and TAK1 and that SOCS-3 coimmunoprecipitated with TAK1 and TRAF6. Furthermore, SOCS-3 inhibited the IL-1-induced catalytic activity of TAK1. Because ubiquitination of TRAF6 is required for activation of TAK1, we analyzed the role of SOCS-3 on TRAF6 ubiquitination and found that SOCS-3 inhibited ubiquitin modification of TRAF6. These results indicate that SOCS-3 inhibits IL-1 signal transduction by inhibiting ubiquitination of TRAF6, thus preventing association and activation of TAK1.
Collapse
Affiliation(s)
- Helle Frobøse
- Steno Diabetes Center, Niels Steensens Vej 2, 2820 Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Karlsen AE, Størling ZM, Sparre T, Larsen MR, Mahmood A, Størling J, Roepstorff P, Wrzesinski K, Larsen PM, Fey S, Nielsen K, Heding P, Ricordi C, Johannesen J, Kristiansen OP, Christensen UB, Kockum I, Luthman H, Nerup J, Pociot F. Immune-mediated β-cell destruction in vitro and in vivo—A pivotal role for galectin-3. Biochem Biophys Res Commun 2006; 344:406-15. [PMID: 16600178 DOI: 10.1016/j.bbrc.2006.03.105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/10/2006] [Indexed: 12/30/2022]
Abstract
Pro-apoptotic cytokines are toxic to the pancreatic beta-cells and have been associated with the pathogenesis of Type 1 diabetes (T1D). Proteome analysis of IL-1beta exposed isolated rat islets identified galectin-3 (gal-3) as the most up-regulated protein. Here analysis of human and rat islets and insulinoma cells confirmed IL-1beta regulated gal-3 expression of several gal-3 isoforms and a complex in vivo expression profile during diabetes development in rats. Over-expression of gal-3 protected beta-cells against IL-1beta toxicity, with a complete blockage of JNK phosphorylation, essential for IL-1-mediated apoptosis. Mutation scanning of regulatory and coding regions of the gal-3 gene (LGALS3) identified six polymorphisms. A haplotype comprising three cSNPs showed significantly increased transmission to unaffected offspring in 257 T1D families and replicated in an independent set of 170 T1D families. In summary, combined proteome-transcriptome-genome and functional analyses identify gal-3 as a candidate gene/protein in T1D susceptibility that may prove valuable in future intervention/prevention strategies.
Collapse
|
41
|
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54 Suppl 2:S97-107. [PMID: 16306347 DOI: 10.2337/diabetes.54.suppl_2.s97] [Citation(s) in RCA: 1109] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 and type 2 diabetes are characterized by progressive beta-cell failure. Apoptosis is probably the main form of beta-cell death in both forms of the disease. It has been suggested that the mechanisms leading to nutrient- and cytokine-induced beta-cell death in type 2 and type 1 diabetes, respectively, share the activation of a final common pathway involving interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and Fas. We review herein the similarities and differences between the mechanisms of beta-cell death in type 1 and type 2 diabetes. In the insulitis lesion in type 1 diabetes, invading immune cells produce cytokines, such as IL-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. IL-1beta and/or TNF-alpha plus IFN-gamma induce beta-cell apoptosis via the activation of beta-cell gene networks under the control of the transcription factors NF-kappaB and STAT-1. NF-kappaB activation leads to production of nitric oxide (NO) and chemokines and depletion of endoplasmic reticulum (ER) calcium. The execution of beta-cell death occurs through activation of mitogen-activated protein kinases, via triggering of ER stress and by the release of mitochondrial death signals. Chronic exposure to elevated levels of glucose and free fatty acids (FFAs) causes beta-cell dysfunction and may induce beta-cell apoptosis in type 2 diabetes. Exposure to high glucose has dual effects, triggering initially "glucose hypersensitization" and later apoptosis, via different mechanisms. High glucose, however, does not induce or activate IL-1beta, NF-kappaB, or inducible nitric oxide synthase in rat or human beta-cells in vitro or in vivo in Psammomys obesus. FFAs may cause beta-cell apoptosis via ER stress, which is NF-kappaB and NO independent. Thus, cytokines and nutrients trigger beta-cell death by fundamentally different mechanisms, namely an NF-kappaB-dependent mechanism that culminates in caspase-3 activation for cytokines and an NF-kappaB-independent mechanism for nutrients. This argues against a unifying hypothesis for the mechanisms of beta-cell death in type 1 and type 2 diabetes and suggests that different approaches will be required to prevent beta-cell death in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Miriam Cnop
- Laboratory of Experimental Medicine, Faculty of Medicine, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, CP-618, 1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
42
|
Current literature in diabetes. Diabetes Metab Res Rev 2005; 21:560-7. [PMID: 16240284 DOI: 10.1002/dmrr.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Gysemans CA, Ladrière L, Callewaert H, Rasschaert J, Flamez D, Levy DE, Matthys P, Eizirik DL, Mathieu C. Disruption of the gamma-interferon signaling pathway at the level of signal transducer and activator of transcription-1 prevents immune destruction of beta-cells. Diabetes 2005; 54:2396-403. [PMID: 16046307 DOI: 10.2337/diabetes.54.8.2396] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
beta-cells under immune attack are destroyed by the aberrant activation of key intracellular signaling cascades. The aim of the present study was to evaluate the contribution of the signal transducer and activator of transcription (STAT)-1 pathway for beta-cell apoptosis by studying the sensitivity of beta-cells from STAT-1 knockout (-/-) mice to immune-mediated cell death in vitro and in vivo. Whole islets from STAT-1-/- mice were completely resistant to interferon (IFN)-gamma (studied in combination with interleukin [IL]-1beta)-mediated cell death (92 +/- 4% viable cells in STAT-1-/- mice vs. 56 +/- 3% viable cells in wild-type controls, P < or = 0.001) and had preserved insulin release after exposure to IL-1beta and IFN-gamma. Moreover, analysis of cell death in cytokine-exposed purified beta-cells confirmed that protection was due to absence of STAT-1 in the beta-cells themselves. Deficiency of STAT-1 in islets completely prevented cytokine-induced upregulation of IL-15, interferon inducible protein 10, and inducible nitric oxide synthase transcription but did not interfere with monocyte chemoattractant protein 1 and macrophage inflammatory protein 3alpha expression. In vivo, STAT-1-/- mice were partially resistant to development of diabetes after multiple low-dose streptozotocin injections as reflected by mean blood glucose at 12 days after first injection (159 +/- 28 vs. 283 +/- 81 mg/dl in wild-type controls, P < or = 0.05) and diabetes incidence at the end of the follow-up period (39 vs. 73% in wild-type controls, P < or = 0.05). In conclusion, the present results indicate that STAT-1 is a crucial transcription factor in the process of IFN-gamma-mediated beta-cell death and the subsequent development of immune-mediated diabetes.
Collapse
Affiliation(s)
- Conny A Gysemans
- LEGENDO, UZ Gasthuisberg O&N, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang JY, Walicki J, Abderrahmani A, Cornu M, Waeber G, Thorens B, Widmann C. Expression of an uncleavable N-terminal RasGAP fragment in insulin-secreting cells increases their resistance toward apoptotic stimuli without affecting their glucose-induced insulin secretion. J Biol Chem 2005; 280:32835-42. [PMID: 16046410 DOI: 10.1074/jbc.m504058200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Apoptosis of pancreatic beta cells is implicated in the onset of type 1 and type 2 diabetes. Consequently, strategies aimed at increasing the resistance of beta cells toward apoptosis could be beneficial in the treatment of diabetes. RasGAP, a regulator of Ras and Rho GTPases, is an atypical caspase substrate, since it inhibits, rather than favors, apoptosis when it is partially cleaved by caspase-3 at position 455. The antiapoptotic signal generated by the partial processing of RasGAP is mediated by the N-terminal fragment (fragment N) in a Ras-phosphatidylinositol 3-kinase-Akt-dependent, but NF-kappaB-independent, manner. Further cleavage of fragment N at position 157 abrogates its antiapoptotic properties. Here we demonstrate that an uncleavable form of fragment N activates Akt, represses NF-kappaB activity, and protects the conditionally immortalized pancreatic insulinoma betaTC-tet cell line against various insults, including exposure to genotoxins, trophic support withdrawal, and incubation with inflammatory cytokines. Fragment N also induced Akt activity and protection against cytokine-induced apoptosis in primary pancreatic islet cells. Fragment N did not alter insulin cell content and insulin secretion in response to glucose. These data indicate that fragment N protects beta cells without affecting their function. The pathways regulated by fragment N are therefore promising targets for antidiabetogenic therapy.
Collapse
Affiliation(s)
- Jiang-Yan Yang
- Department of Cellular Biology and Department of Physiology, Faculty of Biology and Medicine, Lausanne University, Bugnon 9, Lausanne 1005, Switzerland
| | | | | | | | | | | | | |
Collapse
|