1
|
Eser M, Hekimoglu G, Dursun F. Unraveling the genetic basis of MODY: insights from next-generation sequencing. J Appl Genet 2025; 66:375-381. [PMID: 39361122 DOI: 10.1007/s13353-024-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is an uncommon kind of monogenic diabetes. The major characteristics of MODY include not having insulin resistance and the absence of autoimmunity, early onset, and a family history suggesting autosomal-dominant inheritance. Nonetheless, genetic testing is necessary for diagnosis. The MODY-related genes CEL, ABCC8, PDX1, GCK, WFS1, HNF4A, HNF1A, and HNF1B were examined using Next Generation Sequencing (NGS) in this investigation. This study aimed to evaluate the genetic and clinical characteristics of patients referred with a preliminary diagnosis of MODY, retrospectively. A total of 30 patients (18 male and 12 female) participated, with ages ranging from 5 to 56. Eight distinct genetic variants were identified in 17 cases (57%). Pathogenic variants in the HNF1A gene have been identified. Likely pathogenic variants were found in CEL, ABCC8, GCK, and HNF4A. The genes APPL1, BLK, INS, KCNJ1, KLF11, NEUROD1, PAX4, RFX6, and ZFP57 were shown to be mutation-free. Four distinct pathogenic variants are found in this series. Unexpectedly high rates of pathogenic variants have been found in the HNF1A gene. In 27% of cases, there is a family history of vertically transmitted diabetes. The study highlights the importance of genetic testing for individuals with early-onset diabetes and a strong family history of the condition. Comprehensive genetic testing and increased public awareness are essential for MODY.
Collapse
Affiliation(s)
- Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gulam Hekimoglu
- Department of Histology and Embryology, International Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Fatma Dursun
- Department of Pediatric Endocrinology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
2
|
Phadnis A, Chawla D, Alex J, Jha P. Decoding MODY: exploring genetic roots and clinical pathways. Diabetol Int 2025; 16:257-271. [PMID: 40166432 PMCID: PMC11954780 DOI: 10.1007/s13340-025-00809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Purpose Maturity-onset diabetes of the young (MODY) is a transformative factor in today's pattern of diabetes care. The definition of its genetic basis brings insight into the diabetes processes, opening up possibilities for its early detection through public health strategies and improvement in precision medicine. Current knowledge on MODY has been brought together in this review. Methods Extensive literature review on PubMed and Google Scholar databases was conducted. Studies encompassing (1) genetic underpinnings and their types, (2) the significance of its biomarkers, and (3) diagnostic techniques and treatment modalities were focused upon. Results The disease accounts for 1-2% of all cases of diabetes and is usually misdiagnosed as either Type 1 or Type 2 diabetes. Several genes are involved in the appropriate functioning of pancreatic β-cells and mutations in these genes lead to an impairment in glucose metabolism and insulin secretion. A mild degree of hyperglycaemia, but without ketosis, is typical of MODY, seen mostly in adolescents and young adults. Treatment varies, including sulfonylureas for HNF1A and HNF4A mutations, lifestyle management for GCK mutations, and emerging therapies like GLP1 receptor agonists. Conclusion Proper genetic diagnosis is cardinal to the best management of MODY. Genetic and clinical advances have been impressive in monogenic diabetes, but further research in novel therapies is needed to optimise outcomes with precision medicine.
Collapse
Affiliation(s)
- Anshuman Phadnis
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Diya Chawla
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Joanne Alex
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| |
Collapse
|
3
|
Bazzazzadehgan S, Shariat-Madar Z, Mahdi F. Distinct Roles of Common Genetic Variants and Their Contributions to Diabetes: MODY and Uncontrolled T2DM. Biomolecules 2025; 15:414. [PMID: 40149950 PMCID: PMC11940602 DOI: 10.3390/biom15030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) encompasses a range of clinical manifestations, with uncontrolled diabetes leading to progressive or irreversible damage to various organs. Numerous genes associated with monogenic diabetes, exhibiting classical patterns of inheritance (autosomal dominant or recessive), have been identified. Additionally, genes involved in complex diabetes, which interact with environmental factors to trigger the disease, have also been discovered. These genetic findings have raised hopes that genetic testing could enhance diagnostics, disease surveillance, treatment selection, and family counseling. However, the accurate interpretation of genetic data remains a significant challenge, as variants may not always be definitively classified as either benign or pathogenic. Research to date, however, indicates that periodic reevaluation of genetic variants in diabetes has led to more consistent findings, with biases being steadily eliminated. This has improved the interpretation of variants across diverse ethnicities. Clinical studies suggest that genetic risk information may motivate patients to adopt behaviors that promote the prevention or management of T2DM. Given that the clinical features of certain monogenic diabetes types overlap with T2DM, and considering the significant role of genetic variants in diabetes, healthcare providers caring for prediabetic patients should consider genetic testing as part of the diagnostic process. This review summarizes current knowledge of the most common genetic variants associated with T2DM, explores novel therapeutic targets, and discusses recent advancements in the pharmaceutical management of uncontrolled T2DM.
Collapse
Affiliation(s)
- Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
4
|
Sharma M, Maurya K, Nautiyal A, Chitme HR. Monogenic Diabetes: A Comprehensive Overview and Therapeutic Management of Subtypes of Mody. Endocr Res 2025; 50:1-11. [PMID: 39106207 DOI: 10.1080/07435800.2024.2388606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Monogenic diabetes often occurs as a result of single-gene mutations. The illness is minimally affected by environmental and behavioral factors, and it constitutes around one to five percent of all cases of diabetes. METHODS Newborn diabetes mellitus (NDM) and maturity-onset diabetes of the young (MODY) are the predominant causes of monogenic diabetes, accounting for a larger proportion of cases, while syndromic diabetes represents a smaller percentage. MODY, a group of inherited non-autoimmune diabetes mellitus disorders, is quite common. However, it remains frequently misdiagnosed despite increasing public awareness. The condition is characterized by insulin resistance, the development of diabetes at a young age (before 25 years), mild high blood sugar levels, inheritance in an autosomal dominant pattern, and the preservation of natural insulin production. RESULTS Currently, there are 14 distinct subtypes of MODY that have been identified. Each subtype possesses distinct characteristics in terms of their frequency, clinical symptoms, severity of diabetes, related complications, and response to medicinal interventions. Due to the clinical similarities, lack of awareness, and high expense of genetic testing, distinguishing between type I (T1D) and type II diabetes mellitus (T2D) can be challenging, resulting in misdiagnosis of this type of diabetes. As a consequence, a significant number of individuals are being deprived of adequate medical attention. Accurate diagnosis enables the utilization of novel therapeutic strategies and enhances the management of therapy in comparison to type II and type I diabetes. CONCLUSION This article offers a concise overview of the clinical subtypes and characteristics of monogenic diabetes. Furthermore, this article discusses the various subtypes of MODY, as well as the process of diagnosing, managing, and treating the condition. It also addresses the difficulties encountered in detecting and treating MODY.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Kajal Maurya
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Anuj Nautiyal
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | |
Collapse
|
5
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. eLife 2024; 12:RP89967. [PMID: 38700926 PMCID: PMC11068355 DOI: 10.7554/elife.89967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.
Collapse
Affiliation(s)
- Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jinsun Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Soma Behera
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | | | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
6
|
Urakami T, Terada H, Mine Y, Aoki M, Suzuki J, Morioka I. Clinical characteristics in children with maturity-onset diabetes of the young detected by urine glucose screening at schools in the Tokyo Metropolitan Area. Clin Pediatr Endocrinol 2024; 33:113-123. [PMID: 38993716 PMCID: PMC11234186 DOI: 10.1297/cpe.2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 07/13/2024] Open
Abstract
This study aimed to examine the clinical characteristics of young children diagnosed with maturity-onset diabetes (MODY) using urine glucose screening at schools. The study participants were 70 non-obese children who were clinically diagnosed with type 2 diabetes through urine glucose screening at schools in Tokyo between 1974 and 2020. Of these children, 55 underwent genetic testing, and 21 were finally diagnosed with MODY: MODY2 in eight, MODY3 in eight, MODY1 in four and MODY5 in one. A family history of diabetes was found in 76.2% of the patients. Fasting plasma glucose levels did not differ between the different MODY subtypes, while patients with MODY 3, 1, and 5 had significantly higher levels of glycosylated hemoglobin and 2-hour glucose in an oral glucose tolerance test than those with MODY2. In contrast, most patients exhibit mild insulin resistance and sustained β-cell function. In the initial treatment, all patients with MODY2 were well controlled with diet and exercise, whereas the majority of those with MODY3, 1, and 5 required pharmacological treatment within one month of diagnosis. In conclusion, urine glucose screening in schools appears to be one of the best opportunities for early detection of the disease and providing appropriate treatment to patients.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Terada
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Mine
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masako Aoki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Suzuki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Balogun WO, Naylor R, Adedokun BO, Ogunniyi A, Olopade OI, Dagogo-Jack SE, Bell GI, Philipson LH. Implementing genetic testing in diabetes: Knowledge, perceptions of healthcare professionals, and barriers in a developing country. POPULATION MEDICINE 2024; 6:9. [PMID: 38681897 PMCID: PMC11052599 DOI: 10.18332/popmed/184210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Maturity-Onset Diabetes of the Young (MODY) is an unusual type of diabetes often missed in clinical practice, especially in Africa. Treatment decisions for MODY depend on a precise diagnosis, only made by genetic testing. We aimed to determine MODY knowledge among Nigerian healthcare professionals (HCPs), their perceptions, and barriers to the implementation of genetic testing in diabetes patients. METHODS A cross-sectional survey was conducted among doctors and nurses in three levels of public and private healthcare institutions in Ibadan, Nigeria, from December 2018 to June 2019. In all, 70% and 30% of a total 415 participants were recruited from public and private centers, respectively. HCPs were recruited in a 60:40% ratio, respectively. A 51-item instrument was used to assess MODY knowledge, perceptions of HCPs, and barriers to the implementation of genetic testing in diabetes patients. RESULTS In the survey, 43.4% self-rated their current MODY knowledge to be at least moderate. About 68%, 73% and 86%, respectively, correctly answered 3 of 5 questions on basic genetics' knowledge. However, only 1 of 7 MODY-specific questions was answered correctly by 72.7% of the respondents. The mean basic genetics and MODY-specific knowledge scores were 2.6/5 (SD=1.0) and 1.8/9 (SD=1.3), respectively. Multiple linear regression showed higher mean scores among those aged 30-49 years, those with degrees and fellowships (except PhD), and general practitioners; 360 (80.0%) perceived that genetic testing plays a central role in diabetes care. Barriers to genetic testing were lack of access to testing facilities, guidance on the use of and updates/educational materials on genetic testing (82.7%, 62.1% and 50.3%, respectively). CONCLUSIONS The level of MODY awareness and knowledge among Nigerian HCPs is unacceptably low with a lack of access to genetic testing facilities. These can hinder the implementation of precision diabetes medicine. Increased awareness, provision of decision support aids, and genetic testing facilities are urgently needed.
Collapse
Affiliation(s)
- Williams O. Balogun
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Rochelle Naylor
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| | - Babatunde O. Adedokun
- Department of Epidemiology and Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Haematology Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Samuel E. Dagogo-Jack
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Division of Endocrinology and Metabolism, University of Tennessee Health Science Center, Tennessee, United States of America
| | - Graeme I. Bell
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Loui H. Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545631. [PMID: 37546831 PMCID: PMC10401960 DOI: 10.1101/2023.06.20.545631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The gain-of-function mutation in the TALK-1 K + channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion (GSIS). The KCNK16 gene encoding TALK-1, is the most abundant and β-cell-restricted K + channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the mixed C57BL/6J:CD-1(ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K + currents resulting in blunted glucose-stimulated Ca 2+ entry and loss of glucose-induced Ca 2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impaired glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet hormone secretion during development. These data strongly suggest that TALK-1 is an islet-restricted target for the treatment of diabetes.
Collapse
|
9
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
10
|
Lee HI, Kwon SS, Lee M, Kim SJ, Song K, Kwon A, Chae HW, Kim HS, Suh J. Maturity-onset diabetes of the young due to NR0B2 gene mutation. Ann Pediatr Endocrinol Metab 2023; 28:S3-S5. [PMID: 38171348 PMCID: PMC10783928 DOI: 10.6065/apem.2244284.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Hae In Lee
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Soon Sung Kwon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Myeongseob Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungchul Song
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ahreum Kwon
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Junghwan Suh
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Zhang J, Jiang Y, Li J, Zou H, Yin L, Yang Y, Yang L. Identification and precision therapy for three maturity-onset diabetes of the young (MODY) families caused by mutations in the HNF4A gene. Front Endocrinol (Lausanne) 2023; 14:1237553. [PMID: 37711893 PMCID: PMC10498112 DOI: 10.3389/fendo.2023.1237553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Heterozygous pathogenic variants in HNF4A gene cause maturity-onset diabetes of the young type 1 (MODY1). The mutation carriers for MODY1 have been reported to be relatively rare, in contrast to the most frequently reported forms of MODY2 and MODY3. Methods Whole exome sequencing (WES) and Sanger sequencing were performed for genetic analysis of MODY pedigrees. Tertiary structures of the mutated proteins were predicted using PyMOL software. Results Three heterozygous missense mutations in the HNF4A gene, I159T, W179C, and D260N, were identified in the probands of three unrelated MODY families using WES, one of which (W179C) was novel. Cascade genetic screening revealed that the mutations co-segregated with hyperglycemic phenotypes in their families. The molecular diagnosis of MODY1 has partly transformed its management in clinical practice and improved glycemic control. The proband in family A successfully converted to sulfonylureas and achieved good glycemic control. Proband B responded well to metformin combined with diet therapy because of his higher body mass index (BMI). The proband in family C, with paternal-derived mutations, had markedly defective pancreatic β-cell function due to the superposition effect of T2DM susceptibility genes from the maternal grandfather, and he is currently treated with insulin. In silico analysis using PyMOL showed that the I159T and D260N mutations altered polar interactions with the surrounding residues, and W179C resulted in a smaller side chain. Discussion We identified three heterozygous missense mutations of HNF4A from Chinese MODY families. Structural alterations in these mutations may lead to defects in protein function, further contributing to the hyperglycemic phenotype of mutation carriers.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Yanyan Jiang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Li
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyin Zou
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Li Yin
- Department of Ultrasound Medicine, The 990th Hospital of The People’s Liberation Army, Zhumadian, China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Lei Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
- Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Institute of Cardiovascular and Cerebrovascular Diseases, School of Medicine, Huanghuai University, Zhumadian, China
| |
Collapse
|
12
|
Yorifuji T, Watanabe Y, Kitayama K, Yamada Y, Higuchi S, Mori J, Kato M, Takahashi T, Okuda T, Aoyama T. Targeted gene panel analysis of Japanese patients with maturity-onset diabetes of the young-like diabetes mellitus: Roles of inactivating variants in the ABCC8 and insulin resistance genes. J Diabetes Investig 2022; 14:387-403. [PMID: 36504295 PMCID: PMC9951579 DOI: 10.1111/jdi.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION To investigate the genetic background of Japanese patients with suspected maturity-onset diabetes of the young (MODY). MATERIALS AND METHODS On 340 proband patients referred from across Japan, genomic variants were analyzed using a targeted multigene panel analysis combined with the multiplex ligation probe amplification (MLPA) analysis, mitochondrial m.3243A > G analysis and methylation-specific polymerase chain reaction of the imprinted 6q24 locus. Pathogenic/likely pathogenic variants were listed according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology criteria. Additionally, variants with a population frequency <0.001 and Combined Annotation Dependent Depletion score >20 (CS >20) were listed as rare variants of uncertain significance-CS >20. RESULTS A total of 157 pathogenic/likely pathogenic variants and 44 rare variants of uncertain significance-CS >20 were identified. In the pathogenic/likely pathogenic variants, alterations in the GCK gene were the most common (82, 52.2%) followed by HNF1A (29, 18.5%), HNF4A (13, 8.3%) and HNF1B (13, 8.3%). One patient was a 29.5% mosaic with a truncating INSR variant. In the rare variants of uncertain significance-CS >20, 20 (45.5%) were in the genes coding for the adenosine triphosphate-sensitive potassium channel, KCNJ11 or ABCC8, and four were in the genes of the insulin-signaling pathway, INSR and PIK3R1. Four variants in ABCC8 were previously reported in patients with congenital hyperinsulinism, suggesting the inactivating nature of these variants, and at least two of our patients had a history of congenital hyperinsulinism evolving into diabetes. In two patients with INSR or PIK3R1 variants, insulin resistance was evident at diagnosis. CONCLUSIONS Causative genomic variants could be identified in at least 46.2% of clinically suspected MODY patients. ABCC8-MODY with inactivating variants could represent a distinct category of MODY. Genes of insulin resistance should be included in the sequencing panel for MODY.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan,Department of Genetic MedicineOsaka City General HospitalOsakaJapan,Clinical Research CenterOsaka City General HospitalOsakaJapan,2nd Department of Internal MedicineDate Red Cross HospitalDate, HokkaidoJapan
| | - Yoh Watanabe
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Kana Kitayama
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Yuki Yamada
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Jun Mori
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Masaru Kato
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Toru Takahashi
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Tokuko Okuda
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| | - Takane Aoyama
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| |
Collapse
|
13
|
Oosterom N, den Braber N, Laverman GD. Efficacy of metformin versus sulfonylurea derivative in HNF4A-MODY. Endocrinol Diabetes Metab Case Rep 2022; 2022:22-0292. [PMID: 37931415 PMCID: PMC9875061 DOI: 10.1530/edm-22-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/05/2022] [Indexed: 11/08/2023] Open
Abstract
Summary This study compares the effects of metformin, sulfonylurea derivative (SU) and no treatment in HNF4A-MODY on glycemic control. In two patients with HNF4A-MODY, we changed the existing metformin treatment to SU derivative. The effect on the glycemic control was registered with a Freestyle Libre Flash glucose monitoring device. Each treatment period had a duration of 2 consecutive weeks, and in between, an intermediate period without medication. Data from the first 2 days after changing medications were excluded. We calculated time in range (TIR), and differences in the mean glucose level were tested with a one-way ANOVA test. The 24-h average glucose levels were significantly lower with either metformin (7.7 mmol/L; P < 0.001 and 6.3 mmol/L; P < 0.001) or gliclazide (7.6 mmol/L; P < 0.001 and 5.8 mmol/L; P < 0.001) compared to no treatment (9.4 and 8.9 mmol/L). The TIR with metformin or gliclazide was higher than without treatment (patient 1: 87 and 83 vs 61% and patient 2: 83 and 93 vs 67%). Treatment with either metformin or gliclazide effectively decreases blood glucose, rendering both drugs appropriate for treating HNF4A-MODY. Learning points HNF4A-MODY has a mild phenotype. Blood glucose was responsive to long-term metformin treatment in HNF4A-MODY. Metformin and gliclazide seem appropriate treatments for HNF4A-MODY.
Collapse
Affiliation(s)
- Nicole Oosterom
- Department of Internal Medicine/Nephrology, Ziekenhuis Groep Twente, Almelo, the Netherlands
| | - Niala den Braber
- Department of Internal Medicine/Nephrology, Ziekenhuis Groep Twente, Almelo, the Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, the Netherlands
| | - Gozewijn D Laverman
- Department of Internal Medicine/Nephrology, Ziekenhuis Groep Twente, Almelo, the Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, the Netherlands
| |
Collapse
|
14
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Zamanfar D, Ferdosipour F, Ebrahimi P, Moghadam M, Amoli MM, Asadi M, Monajati M. Study of the frequency and clinical features of maturity-onset diabetes in the young in the pediatric and adolescent diabetes population in Iran. J Pediatr Endocrinol Metab 2022; 35:1240-1249. [PMID: 36100423 DOI: 10.1515/jpem-2022-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Maturity-onset diabetes of the young (MODY), an autosomal dominant disease, is frequently misdiagnosed as type 1 or 2 diabetes. Molecular diagnosis is essential to distinguish them. This study was done to investigate the prevalence of MODY subtypes and patients' clinical characteristics. METHODS A total of 43 out of 230 individuals with diabetes were selected based on the age of diagnosis >6 months, family history of diabetes, absence of marked obesity, and measurable C-peptide. Next-generation and direct SANGER sequencing was performed to screen MODY-related mutations. The variants were interpreted using the Genome Aggregation Database (genomAD), Clinical Variation (ClinVar), and pathogenicity prediction tools. RESULTS There were 23 males (53.5%), and the mean age at diabetes diagnosis was 6.7 ± 3.6 years. Sixteen heterozygote single nucleotide variations (SNVs) from 14 patients (14/230, 6%) were detected, frequently GCK (37.5%) and BLK (18.7%). Two novel variants were identified in HNF4A and ABCC8. Half of the detected variants were categorized as likely pathogenic. Most prediction tools predicted Ser28Cys in HNF4A as benign and Tyr123Phe in ABCC8 as a pathogenic SNV. Six cases (42.8%) with positive MODY SNVs had islet autoantibodies. At diagnosis, age, HbA1c, and C-peptide level were similar between SNV-positive and negative patients. CONCLUSIONS This is the first study investigating 14 variants of MODY in Iran. The results recommend genetic screening for MODY in individuals with unusual type 1 or 2 diabetes even without family history. Treatment modifies depending on the type of patients' MODY and is associated with the quality of life.
Collapse
Affiliation(s)
- Daniel Zamanfar
- Diabetes Research Center of Mazandaran, Mazandaran University of Medical Sciences, Sari, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences(DFSSN) University of Calabria, Calabria, Italy
| | - Mohamad Moghadam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
16
|
Limbert C, Lanzinger S, deBeaufort C, Iotova V, Pelicand J, Prieto M, Schiaffini R, Šumnik Z, Pacaud D. Diabetes-related antibody-testing is a valuable screening tool for identifying monogenic diabetes - A survey from the worldwide SWEET registry. Diabetes Res Clin Pract 2022; 192:110110. [PMID: 36183869 DOI: 10.1016/j.diabres.2022.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
Abstract
AIMS To evaluate access to screening tools for monogenic diabetes in paediatric diabetes centres across the world and its impact on diagnosis and clinical outcomes of children and youth with genetic forms of diabetes. METHODS 79 centres from the SWEET diabetes registry including 53,207 children with diabetes participated in a survey on accessibility and use of diabetes related antibodies, c-peptide and genetic testing. RESULTS 73, 63 and 62 participating centres had access to c-peptide, antibody and genetic testing, respectively. Access to antibody testing was associated with higher proportion of patients with rare forms of diabetes identified with monogenic diabetes (54 % versus 17 %, p = 0.01), lower average whole clinic HbA1c (7.7[Q1,Q2: 7.3-8.0]%/61[56-64]mmol/mol versus 9.2[8.6-10.0]%/77[70-86]mmol/mol, p < 0.001) and younger age at onset (8.3 [7.3-8.8] versus 9.7 [8.6-12.7] years p < 0.001). Additional access to c-peptide or genetic testing was not related to differences in age at onset or HbA1c outcome. CONCLUSIONS Clinical suspicion and antibody testing are related to identification of different types of diabetes. Implementing access to comprehensive antibody screening may provide important information for selecting individuals for further genetic evaluation. In addition, worse overall clinical outcomes in centers with limited diagnostic capabilities indicate they may also need support for individualized diabetes management. TRIAL REGISTRATION NCT04427189.
Collapse
Affiliation(s)
- Catarina Limbert
- Hospital Dona Estefânia, Unit of Paediatric Endocrinology and Diabetes, Lisbon, Portugal; Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany; German Centre for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Carine deBeaufort
- Department of Paediatric Diabetes and Endocrinology, Centre Hospitalier Luxembourg, Luxembourg, Luxembourg
| | - Violeta Iotova
- Department of Paediatrics, Medical University of Varna, Varna, Bulgaria
| | - Julie Pelicand
- San Camilo Hospital-Medicine School, Universidad de Valparaíso, San Felipe, Chile
| | - Mariana Prieto
- Servicio de Nutrición, Hospital de Pediatría SAMIC J. P. Garrahan, 1245 Buenos Aieres, Argentina
| | | | - Zdeněk Šumnik
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Danièle Pacaud
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Tosur M, Philipson LH. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig 2022; 13:1465-1471. [PMID: 35638342 PMCID: PMC9434589 DOI: 10.1111/jdi.13860] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Maturity-onset of diabetes of the young (MODY) are monogenic forms of diabetes characterized by early onset diabetes with autosomal dominant inheritance. Since its first description about six decades ago, there have been significant advancements in our understanding of MODY from clinical presentations to molecular diagnostics and therapeutic responses. The prevalence of MODY is estimated as at least 1.1-6.5% of the pediatric diabetes population with a high degree of geographic variability that might arise from several factors in the criteria used to ascertain cases. GCK-MODY, HNF1A-MODY, and HNF4A-MODY account for >90% of MODY cases. While some MODY forms do not require treatment (i.e., GCK-MODY), some others are highly responsive to oral agents (i.e., HNF1A-MODY). The risk of micro- and macro-vascular complications of diabetes also differ significantly between MODY forms. Despite its high clinical impact, 50-90% of MODY cases are estimated to be misdiagnosed as type 1 or type 2 diabetes. Although there are many clinical features suggestive of MODY diagnosis, there is no single clinical criterion. An online MODY Risk Calculator can be a useful tool for clinicians in the decision-making process for MODY genetic testing in some situations. Molecular genetic tests with a commercial gene panel should be performed in cases with a suspicion of MODY. Unresolved atypical cases can be further studied by exome or genome sequencing in a clinical or research setting, as available.
Collapse
Affiliation(s)
- Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes CenterUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
18
|
Srinivasan S, Todd J. The Genetics of Type 2 Diabetes in Youth: Where We Are and the Road Ahead. J Pediatr 2022; 247:17-21. [PMID: 35660490 PMCID: PMC9833991 DOI: 10.1016/j.jpeds.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Shylaja Srinivasan
- Department of Pediatrics, University of California San Francisco, San Francisco, CA.
| | - Jennifer Todd
- Department of Pediatrics, University of Vermont, Burlington, VT
| |
Collapse
|
19
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
20
|
Tomlinson B, Patil NG, Fok M, Chan P, Lam CWK. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin Pharmacother 2021; 23:387-403. [PMID: 34758676 DOI: 10.1080/14656566.2021.1999413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is increasingly prevalent and associated with increased risk for cardiovascular and renal disease. After lifestyle modification, metformin is usually the first-line pharmacotherapy and sulfonylureas are traditionally added after metformin failure. However, with newer glucose lowering drugs that may have less risk of hypoglycemia or that may reduce cardiovascular and renal events, the position of sulfonylureas is being reevaluated. AREAS COVERED In this article, the authors review relevant publications related to the use of sulfonylureas. EXPERT OPINION Sulfonylureas are potent glucose lowering drugs. The risk of hypoglycemia varies with different drugs within the class and can be minimized by using the safer drugs, possibly in lower doses. Cardiovascular events do not appear to be increased with some of the newer generation drugs. The durability of glycemic control also appears comparable to other newer agents. Sulfonylureas are the preferred treatment for some types of monogenic diabetes and selection of T2D patients who may have greater benefit from sulfonylureas based on certain phenotypes and genotypes is likely to be refined further by precision medicine. Sulfonylureas are inexpensive and readily available everywhere and they are still the most frequently used second-line treatment for T2D in many parts of the world.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
21
|
Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Nat Commun 2021; 12:6350. [PMID: 34732735 PMCID: PMC8566521 DOI: 10.1038/s41467-021-26567-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription modulated by the circadian clock is diverse across cell types, underlying circadian control of peripheral metabolism and its observed perturbation in human diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the genome-wide distribution of core clock component BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. Additionally, the epigenetic state and accessibility of the liver genome dynamically change throughout the day, synchronized with chromatin occupancy of HNF4A and clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our results may provide a general mechanism for establishing circadian rhythm heterogeneity during development and disease progression, governed by chromatin structure.
Collapse
Affiliation(s)
- Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, 92521, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
22
|
Todd JN, Kleinberger JW, Zhang H, Srinivasan S, Tollefsen SE, Levitsky LL, Levitt Katz LE, Tryggestad JB, Bacha F, Imperatore G, Lawrence JM, Pihoker C, Divers J, Flannick J, Dabelea D, Florez JC, Pollin TI. Monogenic Diabetes in Youth With Presumed Type 2 Diabetes: Results From the Progress in Diabetes Genetics in Youth (ProDiGY) Collaboration. Diabetes Care 2021; 44:dc210491. [PMID: 34362814 PMCID: PMC8929184 DOI: 10.2337/dc21-0491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Maturity-onset diabetes of the young (MODY) is frequently misdiagnosed as type 1 or type 2 diabetes. Correct diagnosis may result in a change in clinical treatment and impacts prediction of complications and familial risk. In this study, we aimed to assess the prevalence of MODY in multiethnic youth under age 20 years with a clinical diagnosis of type 2 diabetes. RESEARCH DESIGN AND METHODS We evaluated whole-exome sequence data of youth with a clinical diagnosis of type 2 diabetes. We considered participants to have MODY if they carried a MODY gene variant classified as likely pathogenic (LP) or pathogenic (P) according to current guidelines. RESULTS Of 3,333 participants, 93 (2.8%) carried an LP/P variant in HNF4A (16 participants), GCK (23), HNF1A (44), PDX1 (5), INS (4), and CEL (1). Compared with those with no LP/P variants, youth with MODY had a younger age at diagnosis (12.9 ± 2.5 vs. 13.6 ± 2.3 years, P = 0.002) and lower fasting C-peptide levels (3.0 ± 1.7 vs. 4.7 ± 3.5 ng/mL, P < 0.0001). Youth with MODY were less likely to have hypertension (6.9% vs. 19.5%, P = 0.007) and had higher HDL cholesterol (43.8 vs. 39.7 mg/dL, P = 0.006). CONCLUSIONS By comprehensively sequencing the coding regions of all MODY genes, we identified MODY in 2.8% of youth with clinically diagnosed type 2 diabetes; importantly, in 89% (n = 83) the specific diagnosis would have changed clinical management. No clinical criterion reliably separated the two groups. New tools are needed to find ideal criteria for selection of individuals for genetic testing.
Collapse
Affiliation(s)
- Jennifer N Todd
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Vermont, Burlington, VT
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Haichen Zhang
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Shylaja Srinivasan
- Division of Pediatric Endocrinology, University of California, San Francisco, San Francisco, CA
| | - Sherida E Tollefsen
- Department of Pediatrics, Saint Louis University Health Sciences Center, St. Louis, MO
| | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lorraine E Levitt Katz
- Children's Hospital of Philadelphia, Perelman School of Medicine of University of Pennsylvania, Philadelphia, PA
| | - Jeanie B Tryggestad
- Section of Diabetes & Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Fida Bacha
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | | | - Jean M Lawrence
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | | | - Jasmin Divers
- New York University Langone Medical Center, New York, NY
| | - Jason Flannick
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jose C Florez
- Program in Medical and Population Genetics, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
24
|
A Review of Functional Characterization of Single Amino Acid Change Mutations in HNF Transcription Factors in MODY Pathogenesis. Protein J 2021; 40:348-360. [PMID: 33950347 DOI: 10.1007/s10930-021-09991-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Mutations in HNF transcription factor genes cause the most common subtypes of maturity-onset of diabetes of youth (MODY), a monogenic form of diabetes mellitus. Mutations in the HNF1-α, HNF4-α, and HNF1-β genes are primarily considered as the cause of MODY3, MODY1, and MODY5 subtypes, respectively. Although patients with different subtypes display similar symptoms, they may develop distinct diabetes-related complications and require different treatments depending on the type of the mutation. Genetic analysis of MODY patients revealed more than 400 missense/nonsense mutations in HNF1-α, HNF4-α, and HNF1-β genes, however only a small portion of them are functionally characterized. Evaluation of nonsense mutations are more direct as they lead to premature stop codons and mostly in mRNA decay or nonfunctional truncated proteins. However, interpretation of the single amino acid change (missense) mutation is not such definite, as effect of the variant may vary depending on the location and also the substituted amino acid. Mutations with benign effect on the protein function may not be the pathologic variant and further genetic testing may be required. Here, we discuss the functional characterization analysis of single amino acid change mutations identified in HNF1-α, HNF4-α, and HNF1-β genes and evaluate their roles in MODY pathogenesis. This review will contribute to comprehend HNF nuclear family-related molecular mechanisms and to develop more accurate diagnosis and treatment based on correct evaluation of pathologic effects of the variants.
Collapse
|
25
|
Hughes AE, Hattersley AT, Flanagan SE, Freathy RM. Two decades since the fetal insulin hypothesis: what have we learned from genetics? Diabetologia 2021; 64:717-726. [PMID: 33569631 PMCID: PMC7940336 DOI: 10.1007/s00125-021-05386-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower birthweight and adult cardiometabolic disease.
Collapse
Affiliation(s)
- Alice E Hughes
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
26
|
Broome DT, Pantalone KM, Kashyap SR, Philipson LH. Approach to the Patient with MODY-Monogenic Diabetes. J Clin Endocrinol Metab 2021; 106:237-250. [PMID: 33034350 PMCID: PMC7765647 DOI: 10.1210/clinem/dgaa710] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED Maturity-onset diabetes of the young, or MODY-monogenic diabetes, is a not-so-rare collection of inherited disorders of non-autoimmune diabetes mellitus that remains insufficiently diagnosed despite increasing awareness. These cases are important to efficiently and accurately diagnose, given the clinical implications of syndromic features, cost-effective treatment regimen, and the potential impact on multiple family members. Proper recognition of the clinical manifestations, family history, and cost-effective lab and genetic testing provide the diagnosis. All patients must undergo a thorough history, physical examination, multigenerational family history, lab evaluation (glycated hemoglobin A1c [HbA1c], glutamic acid decarboxylase antibodies [GADA], islet antigen 2 antibodies [IA-2A], and zinc transporter 8 [ZnT8] antibodies). The presence of clinical features with 3 (or more) negative antibodies may be indicative of MODY-monogenic diabetes, and is followed by genetic testing. Molecular genetic testing should be performed before attempting specific treatments in most cases. Additional testing that is helpful in determining the risk of MODY-monogenic diabetes is the MODY clinical risk calculator (>25% post-test probability in patients not treated with insulin within 6 months of diagnosis should trigger genetic testing) and 2-hour postprandial (after largest meal of day) urinary C-peptide to creatinine ratio (with a ≥0.2 nmol/mmol to distinguish HNF1A- or 4A-MODY from type 1 diabetes). Treatment, as well as monitoring for microvascular and macrovascular complications, is determined by the specific variant that is identified. In addition to the diagnostic approach, this article will highlight recent therapeutic advancements when patients no longer respond to first-line therapy (historically sulfonylurea treatment in many variants). LEARNING OBJECTIVES Upon completion of this educational activity, participants should be able to. TARGET AUDIENCE This continuing medical education activity should be of substantial interest to endocrinologists and all health care professionals who care for people with diabetes mellitus.
Collapse
Affiliation(s)
- David T Broome
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
- Correspondence and Reprint Requests: David T. Broome, MD, Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail code: F-20, Cleveland, OH 44195, USA. E-mail:
| | - Kevin M Pantalone
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sangeeta R Kashyap
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Louis H Philipson
- Kovler Diabetes Center, Departments of Medicine and Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
28
|
Abstract
Monogenic diabetes, including maturity-onset diabetes of the young, neonatal diabetes, and other rare forms of diabetes, results from a single gene mutation. It has been estimated to represent around 1% to 6% of all diabetes. With the advances in genome sequencing technology, it is possible to diagnose more monogenic diabetes cases than ever before. In Korea, 11 studies have identified several monogenic diabetes cases, using Sanger sequencing and whole exome sequencing since 2001. The recent largest study, using targeted exome panel sequencing, found a molecular diagnosis rate of 21.1% for monogenic diabetes in clinically suspected patients. Mutations in glucokinase (GCK), hepatocyte nuclear factor 1α (HNF1A), and HNF4A were most commonly found. Genetic diagnosis of monogenic diabetes is important as it determines the therapeutic approach required for patients and helps to identify affected family members. However, there are still many challenges, which include a lack of simple clinical criterion for selecting patients for genetic testing, difficulties in interpreting the genetic test results, and high costs for genetic testing. In this review, we will discuss the latest updates on monogenic diabetes in Korea, and suggest an algorithm to screen patients for genetic testing. The genetic tests and non-genetic markers for accurate diagnosis of monogenic diabetes will be also reviewed.
Collapse
Affiliation(s)
- Ye Seul Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea
- Corresponding author: Kyong Soo Park Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea E-mail:
| |
Collapse
|
29
|
Bonnefond A, Boissel M, Bolze A, Durand E, Toussaint B, Vaillant E, Gaget S, Graeve FD, Dechaume A, Allegaert F, Guilcher DL, Yengo L, Dhennin V, Borys JM, Lu JT, Cirulli ET, Elhanan G, Roussel R, Balkau B, Marre M, Franc S, Charpentier G, Vaxillaire M, Canouil M, Washington NL, Grzymski JJ, Froguel P. Pathogenic variants in actionable MODY genes are associated with type 2 diabetes. Nat Metab 2020; 2:1126-1134. [PMID: 33046911 DOI: 10.1038/s42255-020-00294-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive. Here, we show a significant burden of pathogenic variants in genes linked with monogenic diabetes among people with common T2D, particularly in actionable MODY genes, thus implying that there should be a substantial change in care for carriers with T2D. We show that, among 74,629 individuals, this burden is probably driven by the pathogenic variants found in GCK, and to a lesser extent in HNF4A, KCNJ11, HNF1B and ABCC8. The carriers with T2D are leaner, which evidences a functional metabolic effect of these mutations. Pathogenic variants in actionable MODY genes are more frequent than was previously expected in common T2D. These results open avenues for future interventions assessing the clinical interest of these pathogenic mutations in precision medicine.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Franck De Graeve
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Aurélie Dechaume
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - David Le Guilcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Loïc Yengo
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Australia
| | - Véronique Dhennin
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | | | | | - Gai Elhanan
- Desert Research Institute, Reno, NV, USA
- Renown Institute of Health Innovation, Reno, NV, USA
| | - Ronan Roussel
- Department of Diabetology Endocrinology Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France
- Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Beverley Balkau
- Inserm U1018, Institut Gustave Roussy, Center for Research in Epidemiology and Population Health, Villejuif, France
- University Paris-Saclay, University Paris-Sud, Villejuif, France
| | - Michel Marre
- Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Sylvia Franc
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
- Department of Diabetes, Sud-Francilien Hospital, University Paris-Sud, Orsay, Corbeil-Essonnes, France
| | - Guillaume Charpentier
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France
| | | | - Joseph J Grzymski
- Desert Research Institute, Reno, NV, USA
- Renown Institute of Health Innovation, Reno, NV, USA
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Université de Lille, Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
30
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
31
|
Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, McCarthy MI, Nolan JJ, Norris JM, Pearson ER, Philipson L, McElvaine AT, Cefalu WT, Rich SS, Franks PW. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020; 63:1671-1693. [PMID: 32556613 PMCID: PMC8185455 DOI: 10.1007/s00125-020-05181-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as 'diabetes'. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
Collapse
Affiliation(s)
- Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Karel Erion
- American Diabetes Association, Arlington, VA, USA
| | - Jose C Florez
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Marie-France Hivert
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Christine G Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - John J Nolan
- School of Medicine, Trinity College, Dublin, Ireland
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Louis Philipson
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | | | - William T Cefalu
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Lund University, CRC, Skåne University Hospital - Malmö, Building 91, Level 12, Jan Waldenströms gata 35, SE-205 02, Malmö, Sweden.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
32
|
Delvecchio M, Pastore C, Giordano P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther 2020; 11:1667-1685. [PMID: 32583173 PMCID: PMC7376807 DOI: 10.1007/s13300-020-00864-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is an unusual form of diabetes with specific features that distinguish it from type 1 and type 2 diabetes. There are 14 known subtypes of MODY, and mutations in three genes (HNF1A, HNF4A, GCK) account for about 95% of all MODY cases. Diagnosis usually occurs before the age of 25 years, although less frequent forms may occur more often-but not necessarily-later in life. The molecular diagnosis may tailor the choice of the most appropriate treatment, with the aim to optimize blood glucose control, reduce the risk of hypoglycemic events and long-term complications, and enable proper genetic counseling. Treatment is usually unnecessary for patients with mutations in the GCK gene, while oral hypoglycemic agents (generally sulphonylureas) are recommended for patients with mutations in the HNF4A and HNF1A genes. More recent data show that other glucose-lowering agents can be effective in the latter patients, and additional and alternative therapies have been proposed. Proper management guidelines during pregnancy have been developed for carriers of GCK gene mutations, but such guidelines are still a subject of debate in other cases, although some recommendations are available. The other subtypes of MODY are even more rare, and very little data are available in the literature. In this review we summarize the most pertinent findings and recommendations on the treatment of patients with the different subtypes of MODY. Our aim is to provide the reader with an easy-to-read update that can be used to drive the clinician's therapeutical approach to these patients after the molecular diagnosis.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Metabolic Disorders and Diabetes Unit, "Giovanni XXIII" Children's Hospital, A.O.U. Policlinico di Bari, Bari, Italy.
| | - Carmela Pastore
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
33
|
Dusatkova P, Pavlikova M, Spirkova A, Elblova L, Zdarska DJ, Rozenkova K, Hron J, Sumnik Z, Cinek O, Lebl J, Pruhova S. Quality of Life and Treatment Satisfaction in Participants with Maturity-Onset Diabetes of the Young: A Comparison to Other Major Forms of Diabetes. Exp Clin Endocrinol Diabetes 2020; 130:85-93. [PMID: 32722819 DOI: 10.1055/a-1200-1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS We investigated the quality of life (QoL), treatment satisfaction and perception of genetic results in participants with Maturity-Onset Diabetes of the Young (MODY) and compared the results with those of subjects with type 1 (T1D) or type 2 (T2D) diabetes. METHODS A total of 162 adults with GCK-MODY, 62 with HNF1A-MODY and 29 with HNF4A-MODY answered the questionnaire Audit of Diabetes Dependent Quality of Life, the Diabetes Treatment Satisfaction Questionnaire and non-validated instrument examining the respondent's perception of the genetic results. Data from GCK-MODY patients were compared with 84 participants with T2D and HNF-MODY subjects were compared with 81 participants having T1D. RESULTS Higher age (p=0.004), higher haemoglobin A1c (p=0.026) and medication (p=0.019) were associated with lower general QoL in GCK-MODY patients. In HNF-MODY patients, lower general QoL was associated with a longer time since diagnosis (p=0.005), worse haemoglobin bA1c (p=0.006) and insulin treatment (p=0.019). Similar numbers of participants with GCK- and HNF-MODY considered the genetic diagnosis of MODY to be positive, negative and without significance. The patient with GCK-MODY did not differ from those with T2D in terms of their QoL, but they were less satisfied with their treatment (p<0.001). QoL was better in patients with HNF-MODY compared with patients with T1D (p=0.006), and they did not differ in terms of treatment satisfaction. CONCLUSIONS QoL was affected in both GCK-MODY and HNF-MODY subjects. Apprehension of genetic diagnosis was not single-valued in MODY respondents.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Alena Spirkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Denisa Janickova Zdarska
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Klara Rozenkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ondrej Cinek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
34
|
Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, McCarthy MI, Nolan JJ, Norris JM, Pearson ER, Philipson L, McElvaine AT, Cefalu WT, Rich SS, Franks PW. Precision Medicine in Diabetes: A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020; 43:1617-1635. [PMID: 32561617 PMCID: PMC7305007 DOI: 10.2337/dci20-0022] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The convergence of advances in medical science, human biology, data science, and technology has enabled the generation of new insights into the phenotype known as "diabetes." Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence, and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field, and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment), and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e., monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realize its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
Collapse
Affiliation(s)
- Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Karel Erion
- American Diabetes Association, Arlington, VA
| | - Jose C Florez
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, U.K
| | - Marie-France Hivert
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA
| | - Christine G Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - John J Nolan
- School of Medicine, Trinity College, Dublin, Ireland
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Louis Philipson
- Department of Medicine, University of Chicago, Chicago, IL
- Department of Pediatrics, University of Chicago, Chicago, IL
| | | | - William T Cefalu
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Lund University, Malmo, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
35
|
Arslanian S, El ghormli L, Haymond MH, Chan CL, Chernausek SD, Gandica RG, Gubitosi-Klug R, Levitsky LL, Siska M, Willi SM. Beta cell function and insulin sensitivity in obese youth with maturity onset diabetes of youth mutations vs type 2 diabetes in TODAY: Longitudinal observations and glycemic failure. Pediatr Diabetes 2020; 21:575-585. [PMID: 32064729 PMCID: PMC7654712 DOI: 10.1111/pedi.12998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE In treatment options for type 2 diabetes in adolescents and youth (TODAY), 4.5% of obese youth clinically diagnosed with type 2 diabetes (T2D) had genetic variants consistent with maturity onset diabetes of youth (MODY) diagnosis. The course of IS and β-cell function in obese youth with MODY remains unknown. In this secondary analysis, we examined IS and β-cell function in MODY vs. non-MODY obese youth at randomization and over time. METHODS Genetic data in TODAY included 426 non-MODY (T2D) and 22 MODY youth (7 glucokinase MODY mutation positive [GCK-MODY], 12 hepatocyte nuclear factor MODY mutation positive [HNF-MODY], 2 Insulin gene mutation [insulin (INS)-MODY], and 1 Kruppel-like factor 11 [KLF11-MODY]). Oral glucose tolerance test (OGTT)-derived IS, C-peptide index, and β-cell function relative to IS oral disposition index (oDI) was measured at randomization, and over 24 months in addition to total and high-molecular-weight adiponectin (HMWA). RESULTS At randomization, IS, total adiponectin, and HMWA were significantly higher in the two MODY groups than in non-MODY. β-cell function measured by C-peptide oDI was 3-fold higher in GCK-MODY than in HNF-MODY and 1.5-fold higher than non-MODY (P for both <.05). Glycemic failure rate was 75.0% in HNF-MODY, 46.9% in non-MODY, and zero in GCK-MODY youth. While the changes in IS and oDI were not different among the three groups in the first 6 months, IS improved from 6 to 24 months in HNF-MODY vs GCK-MODY youth. CONCLUSIONS In TODAY, β-cell function at randomization was worse in obese HNF-MODY youth compared with GCK-MODY youth, while insulin sensitivity was worse in non-MODY compared with the other two MODY groups. Over time, IS showed the greatest improvement in HNF-MODY youth. This raises the possibility that TODAY therapeutic modalities of insulin sensitization in these obese HNF-MODY youth may have played a beneficial role.
Collapse
Affiliation(s)
- Silva Arslanian
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laure El ghormli
- George Washington University Biostatistics Center, Rockville, Maryland
| | | | | | | | | | | | | | | | - Steven M. Willi
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|
36
|
Xu A, Lin Y, Sheng H, Cheng J, Mei H, Ting TH, Zeng C, Liang C, Zhang W, Li C, Li X, Liu L. Molecular diagnosis of maturity-onset diabetes of the young in a cohort of Chinese children. Pediatr Diabetes 2020; 21:431-440. [PMID: 31957151 DOI: 10.1111/pedi.12985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by whole-exome sequencing (WES) and estimate the frequency and describe the clinical characteristics of MODY in southern China. METHODS Genetic analysis was performed in 42 patients with MODY aged 1 month to 18 years among a cohort of 759 patients with diabetes, identified with the following four clinical criteria: age of diagnosis ≤18 years; negative pancreatic autoantibodies; family history of diabetes; or persistently detectable C-peptide; or diabetes associated with extrapancreatic features. GCK gene mutations were first screened by Sanger sequencing. GCK mutation-negative patients were further analyzed by WES. RESULTS Mutations were identified in 24 patients: 20 mutations in GCK, 1 in HNF4A, 1 in INS, 1 in ABCC8, and a 17q12 microdeletion. Four previously unpublished novel GCK mutations: c.1108G>C in exon 9, and c.1339C>T, c.1288_1290delCTG, and c.1340_1343delGGGGinsCTGGTCT in exon 10 were detected. WES identified a novel missense mutation c.311A>G in exon 3 in the INS gene, and copy number variation analysis detected a 1.4 Mb microdeletion in the long arm of the chromosome 17q12 region. Compared with mutation-negative subjects, the mutation-positive subjects had lower hemoglobin A1c and initial blood glucose levels. CONCLUSIONS Most MODY cases in this study were due to GCK mutations, which is in contrast to previous reports in Chinese patients. Diabetes associated with extrapancreatic features should be a clinical criterion for MODY genetic analysis. Mutational analysis by WES provided a precise diagnosis of MODY subtypes. Moreover, WES can be useful for detecting large deletions in coding regions in addition to point mutations.
Collapse
Affiliation(s)
- Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tzer Hwu Ting
- Department of Paediatrics, Faculty of Medicine & Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cuiling Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Tatsi EB, Kanaka-Gantenbein C, Scorilas A, Chrousos GP, Sertedaki A. Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. Pediatr Diabetes 2020; 21:28-39. [PMID: 31604004 DOI: 10.1111/pedi.12931] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/02/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Maturity Onset Diabetes of the Young (MODY) constitutes a genetically and clinically heterogeneous type of monogenic diabetes. It is characterized by early onset, autosomal dominant inheritance and a defect in pancreatic β-cell insulin secretion. To date, various MODY subtypes have been reported, each one of a distinct genetic etiology. OBJECTIVE The aim of this study was to identify the molecular defects of 50 patients with MODY employing the methodology of next generation sequencing (NGS) targeted gene panel. METHODS A panel of seven MODY genes was designed and employed to screen 50 patients fulfilling the MODY diagnostic criteria. Patients with no pathogenic, likely pathogenic or uncertain significance variants detected, were further tested by multiplex ligation-dependent probe amplification (MLPA) for copy number variations (CNVs). RESULTS Eight different pathogenic or likely pathogenic variants were identified in eight MODY patients (diagnostic rate 16%). Five variants of uncertain significance were also detected in seven MODY patients. Five novel pathogenic and likely pathogenic variants were detected in the genes GCK; p.Cys371X, HNF1A; p.Asn402Tyr, HNF4A; p.Glu285Lys, and ABCC8; p.Met1514Thr and p.Ser1386Phe. Two de novo heterozygous deletions of the entire HNF1B gene were detected in two patients, raising the diagnostic rate to 20%. CONCLUSIONS Although many MODY patients still remain without exact MODY type identification, the application of NGS methodology provided rapid results, increased diagnostic accuracy, and was cost-effective compared to Sanger sequencing. Accurate genetic diagnosis of the MODY subtype is important for treatment selection, disease prognosis, and family counseling.
Collapse
Affiliation(s)
- Elizabeth B Tatsi
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
38
|
Jang KM. Maturity-onset diabetes of the young: update and perspectives on diagnosis and treatment. Yeungnam Univ J Med 2020; 37:13-21. [PMID: 31914718 PMCID: PMC6986955 DOI: 10.12701/yujm.2019.00409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic disorders characterized by ß-cell dysfunction. MODY accounts for between 2% and 5% of all diabetes cases, and distinguishing it from type 1 or type 2 diabetes is a diagnostic challenge. Recently, MODY-causing mutations have been identified in 14 different genes. Sanger DNA sequencing is the gold standard for identifying the mutations in MODY-related genes, and may facilitate the diagnosis. Despite the lower frequency among diabetes mellitus cases, a correct genetic diagnosis of MODY is important for optimizing treatment strategies. There is a discrepancy in the disease-causing locus between the Asian and Caucasian patients with MODY. Furthermore, the prevalence of the disease in Asian populations remains to be studied. In this review, the current understanding of MODY is summarized and the Asian studies of MODY are discussed in detail.
Collapse
Affiliation(s)
- Kyung Mi Jang
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
39
|
Carlsson A, Shepherd M, Ellard S, Weedon M, Lernmark Å, Forsander G, Colclough K, Brahimi Q, Valtonen-Andre C, Ivarsson SA, Elding Larsson H, Samuelsson U, Örtqvist E, Groop L, Ludvigsson J, Marcus C, Hattersley AT. Absence of Islet Autoantibodies and Modestly Raised Glucose Values at Diabetes Diagnosis Should Lead to Testing for MODY: Lessons From a 5-Year Pediatric Swedish National Cohort Study. Diabetes Care 2020; 43:82-89. [PMID: 31704690 PMCID: PMC6925576 DOI: 10.2337/dc19-0747] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Identifying maturity-onset diabetes of the young (MODY) in pediatric populations close to diabetes diagnosis is difficult. Misdiagnosis and unnecessary insulin treatment are common. We aimed to identify the discriminatory clinical features at diabetes diagnosis of patients with glucokinase (GCK), hepatocyte nuclear factor-1A (HNF1A), and HNF4A MODY in the pediatric population. RESEARCH DESIGN AND METHODS Swedish patients (n = 3,933) aged 1-18 years, diagnosed with diabetes May 2005 to December 2010, were recruited from the national consecutive prospective cohort Better Diabetes Diagnosis. Clinical data, islet autoantibodies (GAD insulinoma antigen-2, zinc transporter 8, and insulin autoantibodies), HLA type, and C-peptide were collected at diagnosis. MODY was identified by sequencing GCK, HNF1A, and HNF4A, through either routine clinical or research testing. RESULTS The minimal prevalence of MODY was 1.2%. Discriminatory factors for MODY at diagnosis included four islet autoantibody negativity (100% vs. 11% not-known MODY; P = 2 × 10-44), HbA1c (7.0% vs. 10.7% [53 vs. 93 mmol/mol]; P = 1 × 10-20), plasma glucose (11.7 vs. 26.7 mmol/L; P = 3 × 10-19), parental diabetes (63% vs. 12%; P = 1 × 10-15), and diabetic ketoacidosis (0% vs. 15%; P = 0.001). Testing 303 autoantibody-negative patients identified 46 patients with MODY (detection rate 15%). Limiting testing to the 73 islet autoantibody-negative patients with HbA1c <7.5% (58 mmol/mol) at diagnosis identified 36 out of 46 (78%) patients with MODY (detection rate 49%). On follow-up, the 46 patients with MODY had excellent glycemic control, with an HbA1c of 6.4% (47 mmol/mol), with 42 out of 46 (91%) patients not on insulin treatment. CONCLUSIONS At diagnosis of pediatric diabetes, absence of all islet autoantibodies and modest hyperglycemia (HbA1c <7.5% [58 mmol/mol]) should result in testing for GCK, HNF1A, and HNF4A MODY. Testing all 12% patients negative for four islet autoantibodies is an effective strategy for not missing MODY but will result in a lower detection rate. Identifying MODY results in excellent long-term glycemic control without insulin.
Collapse
Affiliation(s)
- Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Maggie Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Michael Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Gun Forsander
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kevin Colclough
- Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Qefsere Brahimi
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Camilla Valtonen-Andre
- Department of Clinical Chemistry, University and Regional Laboratories Region Skåne, Malmö, Sweden
| | - Sten A Ivarsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria's Children's and Youth Hospital, University Hospital, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eva Örtqvist
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Leif Groop
- Finnish Institute for Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's and Youth Hospital, University Hospital, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| |
Collapse
|
40
|
Chandran S, Rajadurai VS, Hoi WH, Flanagan SE, Hussain K, Yap F. A Novel HNF4A Mutation Causing Three Phenotypic Forms of Glucose Dysregulation in a Family. Front Pediatr 2020; 8:320. [PMID: 32670997 PMCID: PMC7332776 DOI: 10.3389/fped.2020.00320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) classically describes dominantly inherited forms of monogenic diabetes diagnosed before 25 years of age due to pancreatic β-cell dysfunction. In contrast, mutations in certain MODY genes can also present with transient or persistent hyperinsulinemic hypoglycemia in newborn infants, reflecting instead β-cell dysregulation. Of the MODY genes described to date, only hepatocyte nuclear factor-4-alpha (HNF4A; MODY1) and hepatocyte nuclear factor-1-alpha (HNF1A; MODY3) mutations may result in a biphasic phenotype of hypoglycemia in early life and hyperglycemia in later life. We report a family with a novel HNF4A mutation with diverse phenotypic presentations of glucose dysregulation. The proband was a term, appropriate-for-gestational age male infant with symptomatic hypoglycemia on day 3 of life needing high glucose infusion rate to maintain normoglycemia. He was born to a non-obese and non-diabetic mother. Glucose regulation was optimized using diazoxide upon confirmation of hyperinsulinism. Cascade genetic screening identified the same mutation in his father and elder sister, but mother was negative. Father was diagnosed with Type 1 diabetes at 15 years of age that required insulin therapy. Proband's elder sister, born at term appropriate for gestational age, presented with transient neonatal hypoglycemia needing parenteral glucose infusion for a week followed by spontaneous resolution. The paternal grandparents were negative for this mutation, confirming a paternal de novo mutation and autosomal dominant inheritance in this family. This pedigree suggests that the presence of early-onset paternal diabetes should prompt molecular testing in infants presenting in the newborn period with diazoxide-responsive hyperinsulinemic hypoglycemia, even in the absence of maternal diabetes and macrosomia.
Collapse
Affiliation(s)
- Suresh Chandran
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore.,Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Victor Samuel Rajadurai
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore.,Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Wai Han Hoi
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Khalid Hussain
- Department of Pediatric Endocrinology, Sidra Medicine, Doha, Qatar
| | - Fabian Yap
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| |
Collapse
|
41
|
Shidler KL, Letourneau LR, Novak LM. Uncommon Presentations of Diabetes: Zebras in the Herd. Clin Diabetes 2020; 38:78-92. [PMID: 31975755 PMCID: PMC6969666 DOI: 10.2337/cd19-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The majority of patients with diabetes are diagnosed as having either type 1 or type 2 diabetes. However, when encountered in clinical practice, some patients may not match the classic diagnostic criteria or expected clinical presentation for either type of the disease. Latent autoimmune, ketosis-prone, and monogenic diabetes are nonclassical forms of diabetes that are often misdiagnosed as either type 1 or type 2 diabetes. Recognizing the distinguishing clinical characteristics and understanding the diagnostic criteria for each will lead to appropriate treatment, facilitate personalized medicine, and improve patient outcomes.
Collapse
Affiliation(s)
- Karen L. Shidler
- North Central Indiana Area Health Education Center, Rochester, IN
| | | | - Lucia M. Novak
- Riverside Diabetes Center, Riverside Medical Associates, Riverdale, MD
| |
Collapse
|
42
|
Urbanova J, Brunerova L, Broz J. Hypoglycemia and antihyperglycemic treatment in adult MODY patients - A systematic review of literature. Diabetes Res Clin Pract 2019; 158:107914. [PMID: 31682881 DOI: 10.1016/j.diabres.2019.107914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 01/26/2023]
Abstract
Maturity onset diabetes of the young (MODY) is a heterogeneous group of diseases caused by a single mutation in one of the 14 genes involved in the regulation of glucose homeostasis. GCK, HNF1A, and HNF4A genes are among the most common genes affected. Expression of these genes in the key organs for defense against hypoglycemia and their participation in counter-regulation to hypoglycemia may potentially put individuals with a heterozygous mutation in these genes at increased risk for hypoglycemia. In HNF4A-MODY and HNF1A-MODY patients, normal or even increased insulin sensitivity together with glucose-independent mechanism of action of the first-line therapy - sulphonylurea derivatives - often leads to hypoglycemia, even at the much lower dose used in type 2 diabetes. This review aims to analyze clinical studies and case reports concerning hypoglycemia associated with antihyperglycemic treatment in adult MODY patients.
Collapse
Affiliation(s)
- Jana Urbanova
- Diabetologic Centre, II. Department of Medicine, Charles University, Third Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Šrobarova 50, 10034 Prague 10, Czechia
| | - Ludmila Brunerova
- Diabetologic Centre, II. Department of Medicine, Charles University, Third Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Šrobarova 50, 10034 Prague 10, Czechia.
| | - Jan Broz
- Department of Medicine, Charles Univeristy, Second Faculty of Medicine and Faculty Hospital Motol, V Úvalu 84, 15006 Prague 5, Czechia
| |
Collapse
|
43
|
GoodSmith MS, Skandari MR, Huang ES, Naylor RN. The Impact of Biomarker Screening and Cascade Genetic Testing on the Cost-Effectiveness of MODY Genetic Testing. Diabetes Care 2019; 42:2247-2255. [PMID: 31558549 PMCID: PMC6868460 DOI: 10.2337/dc19-0486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/10/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In the U.S., genetic testing for maturity-onset diabetes of the young (MODY) is frequently delayed because of difficulty with insurance coverage. Understanding the economic implications of clinical genetic testing is imperative to advance precision medicine for diabetes. The objective of this article is to assess the cost-effectiveness of genetic testing, preceded by biomarker screening and followed by cascade genetic testing of first-degree relatives, for subtypes of MODY in U.S. pediatric patients with diabetes. RESEARCH DESIGN AND METHODS We used simulation models of distinct forms of diabetes to forecast the clinical and economic consequences of a systematic genetic testing strategy compared with usual care over a 30-year time horizon. In the genetic testing arm, patients with MODY received treatment changes (sulfonylureas for HNF1A- and HNF4A-MODY associated with a 1.0% reduction in HbA1c; no treatment for GCK-MODY). Study outcomes included costs, life expectancy (LE), and quality-adjusted life years (QALY). RESULTS The strategy of biomarker screening and genetic testing was cost-saving as it increased average quality of life (+0.0052 QALY) and decreased costs (-$191) per simulated patient relative to the control arm. Adding cascade genetic testing increased quality-of-life benefits (+0.0081 QALY) and lowered costs further (-$735). CONCLUSIONS A combined strategy of biomarker screening and genetic testing for MODY in the U.S. pediatric diabetes population is cost-saving compared with usual care, and the addition of cascade genetic testing accentuates the strategy's benefits. Widespread implementation of this strategy could improve the lives of patients with MODY while saving the health system money, illustrating the potential population health benefits of personalized medicine.
Collapse
Affiliation(s)
| | - M Reza Skandari
- Imperial College Business School, Imperial College London, London, U.K
| | - Elbert S Huang
- Section of General Internal Medicine, University of Chicago, Chicago, IL
| | - Rochelle N Naylor
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
| |
Collapse
|
44
|
Hohendorff J, Zapala B, Ludwig-Slomczynska AH, Solecka I, Ucieklak D, Matejko B, Mrozinska S, Malecki MT, Szopa M. The utility of MODY Probability Calculator in probands of families with early-onset autosomal dominant diabetes from Poland. Minerva Med 2019; 110:499-506. [PMID: 31638358 DOI: 10.23736/s0026-4806.19.06053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) accounts for 1-2% of all diabetes cases. Unfortunately, circa 90% of MODY cases are misdiagnosed as type 1 or type 2 diabetes. A proper genetic diagnosis based on automatic sequencing is crucial for the use of a tailored treatment. However, this method is still expensive and, thus, patients' selection for testing should be performed precisely. In 2012, an easy-to-use tool was developed in Exeter, UK, to support genetic testing for MODY in the British population. The aim of the study was to assess the utility of MODY Probability Calculator in probands from Polish families with early-onset autosomal dominant diabetes. METHODS We have performed a retrospective analysis of 155 probands who were qualified for genetic testing between 2006 and 2018. Probands were recruited for MODY testing based on the following criteria: 1) early age of diagnosis (≤35 years); 2) a positive, multigenerational family history of diabetes. Automatic sequencing, Sanger and, in case of initial negative results, new generation sequencing (NGS) of a set of 28 genes, were performed. MODY Probability was calculated on the website www.diabetesgenes.org. RESULTS The group of probands consisted of 64 GCK-, 37 HNF1A-, and three HNF4A-MODY patients and 51 NGS-negative subjects. The median positive predictive value (PPV) was 75.5% (95% CI: 75.5-75.5%), 49.4% (95% CI: 24.4-75.5%), 45.5% (95% CI: 21.0-75.5%) and 49.4% (95% CI: 32.9-75.5%) for GCK-, HNF1A-, HNF4A-MODY and NGS-negative, respectively. The discriminative accuracy, as expressed by AUC, of PPV between MODY and NGS negative groups was 0.62 (95% CI: 0.52-0.71) with the corresponding sensitivity of 71.2% and specificity of 51.0%. CONCLUSIONS In this highly pre-selected group of probands that were qualified for genetic testing based on clinical features, the use of MODY Probability Calculator would not substantially improve the patients' selection process for genetic testing. Further efforts to improve this tool are desirable.
Collapse
Affiliation(s)
- Jerzy Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Barbara Zapala
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - Iwona Solecka
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Damian Ucieklak
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Bartlomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Sandra Mrozinska
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland -
- Krakow University Hospital, Krakow, Poland
| |
Collapse
|
45
|
[Other specific types of diabetes and exocrine pancreatic insufficiency (Update 2019)]. Wien Klin Wochenschr 2019; 131:16-26. [PMID: 30980164 DOI: 10.1007/s00508-019-1454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The heterogenous catagory "specific types of diabetes due to other causes" encompasses disturbances in glucose metabolism due to other endocrine disorders such as acromegaly or hypercortisolism, drug-induced diabetes (e. g. antipsychotic medications, glucocorticoids, immunosuppressive agents, highly active antiretroviral therapy (HAART)), genetic forms of diabetes (e. g. Maturity Onset Diabetes of the Young (MODY), neonatal diabetes, Down Syndrome, Klinefelter Syndrome, Turner Syndrome), pancreatogenic diabetes (e. g. postoperatively, pancreatitis, pancreatic cancer, haemochromatosis, cystic fibrosis), and some rare autoimmune or infectious forms of diabetes. Diagnosis of specific diabetes types might influence therapeutic considerations. Exocrine pancreatic insufficiency is not only found in patients with pancreatogenic diabetes but is also frequently seen in type 1 and long-standing type 2 diabetes.
Collapse
|
46
|
De Franco E. From Biology to Genes and Back Again: Gene Discovery for Monogenic Forms of Beta-Cell Dysfunction in Diabetes. J Mol Biol 2019; 432:1535-1550. [PMID: 31479665 DOI: 10.1016/j.jmb.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
This review focuses on gene discovery strategies used to identify monogenic forms of diabetes caused by reduced pancreatic beta-cell number (due to destruction or defective development) or impaired beta-cell function. Gene discovery efforts in monogenic diabetes have identified 36 genes so far. These genetic causes have been identified using four main approaches: linkage analysis, candidate gene sequencing and most recently, exome and genome sequencing. The advent of next-generation sequencing has allowed researchers to move away from linkage analysis (relying on large pedigrees and/or multiple families with the same genetic condition) and candidate gene (relying on previous knowledge on the gene's role) strategies to use a gene agnostic approach, utilizing genetic evidence (such as variant frequency, predicted variant effect on protein function, and predicted mode of inheritance) to identify the causative mutation. This approach led to the identification of seven novel genetic causes of monogenic diabetes, six by exome sequencing and one by genome sequencing. In many of these cases, the disease-causing gene was not known to be important for beta-cell function prior to the gene discovery study. These novel findings highlight a new role for gene discovery studies in furthering our understanding of beta-cell function and dysfunction in diabetes. While many gene discovery studies in the past were led by knowledge in the field (through the candidate gene strategy), now they often lead the scientific advances in the field by identifying new important biological players to be further characterized by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, EX2 5DW Exeter, UK; Institute of Biomedical and Clinical Science, Level 3, RILD Building, Barrack Road, EX2 5DW Exeter, United Kingdom.
| |
Collapse
|
47
|
Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes 2019; 12:1047-1056. [PMID: 31360071 PMCID: PMC6625604 DOI: 10.2147/dmso.s179793] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is characterized by autosomal dominant inheritance, onset before 25 years of age, absence of β-cell autoimmunity, and sustained pancreatic β-cell function. To date, mutations have been identified in at least 14 different genes, including six genes encoding proteins that, respectively, correspond to MODY subtypes 1-6: hepatocyte nuclear factor (HNF) 4α (HNF4α), glucokinase (GCK), HNF1α (HNF1 α), pancreatic and duodenal homeobox 1 (PDX1), HNF1β (HNF1 β), and neurogenic differentiation 1 (NEUROD1). Diagnostic tools based on currently available genetic tests can facilitate the correct diagnosis and appropriate treatment of patients with MODY. Candidates for genetic testing include nonobese subjects with hyperglycemia, no evidence of β-cell autoimmunity, sustained β-cell function, and a strong family history of similar-type diabetes among first-degree relatives. Moreover, identification of the MODY subtype is important, given the subtype-related differences in the age of onset, clinical course and progression, type of hyperglycemia, and response to treatment. This review discusses the current perspectives on the diagnosis and treatment of MODY, particularly with regard to the six major subtypes (MODY 1-6).
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Ng NHJ, Jasmen JB, Lim CS, Lau HH, Krishnan VG, Kadiwala J, Kulkarni RN, Ræder H, Vallier L, Hoon S, Teo AKK. HNF4A Haploinsufficiency in MODY1 Abrogates Liver and Pancreas Differentiation from Patient-Derived Induced Pluripotent Stem Cells. iScience 2019; 16:192-205. [PMID: 31195238 PMCID: PMC6562146 DOI: 10.1016/j.isci.2019.05.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/20/2018] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Maturity-onset diabetes of the young 1 (MODY1) is a monogenic diabetes condition caused by heterozygous HNF4A mutations. We investigate how HNF4A haploinsufficiency from a MODY1/HNF4A mutation influences the development of foregut-derived liver and pancreatic cells through differentiation of human induced pluripotent stem cells from a MODY1 family down the foregut lineage. In MODY1-derived hepatopancreatic progenitors, which expressed reduced HNF4A levels and mislocalized HNF4A, foregut genes were downregulated, whereas hindgut-specifying HOX genes were upregulated. MODY1-derived hepatocyte-like cells were found to exhibit altered morphology. Hepatic and β cell gene signatures were also perturbed in MODY1-derived hepatocyte-like and β-like cells, respectively. As mutant HNF4A (p.Ile271fs) did not undergo complete nonsense-mediated decay or exert dominant negativity, HNF4A-mediated loss of function is likely due to impaired transcriptional activation of target genes. Our results suggest that in MODY1, liver and pancreas development is perturbed early on, contributing to altered hepatic proteins and β cell defects in patients. HNF4A is downregulated and predominantly mislocalized in the cytoplasm in MODY1 Foregut markers, pancreatic and hepatic genes, were downregulated in MODY1-HPPs A reciprocal upregulation of hindgut HOX genes was observed in MODY1-HPPs Mutant HNF4A resulted in loss of transcriptional activation of target genes
Collapse
Affiliation(s)
- Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Joanita Binte Jasmen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Chang Siang Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Juned Kadiwala
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Stem Cell Institute, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - Helge Ræder
- Department of Pediatrics, Haukeland University Hospital, 5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Shawn Hoon
- Molecular Engineering Lab, A*STAR, Singapore 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
49
|
Wang X, Wang T, Yu M, Zhang H, Ping F, Zhang Q, Xu J, Feng K, Xiao X. Screening of HNF1A and HNF4A mutation and clinical phenotype analysis in a large cohort of Chinese patients with maturity-onset diabetes of the young. Acta Diabetol 2019; 56:281-288. [PMID: 30293189 DOI: 10.1007/s00592-018-1232-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
AIMS The study aimed to screen the HNF1A and HNF4A mutation in a large Chinese cohort of high clinical suspicion of maturity-onset diabetes of the young (MODY) patients and characterize the clinical features of those patients. The performance of hsCRP as a biomarker to differentiate MODY3 from early onset T2DM was also evaluated. METHODS A total of 74 patients with a strong clinical suspicion of MODY from 59 families and 33 newly diagnosed early-onset T2DM were included. HNF1A and HNF4A mutations were analyzed by Sanger sequencing. ROC curves were used to identify the optimal cutoff of hsCRP. RESULTS One novel (c.864_865insG) and six recurrent HNF1A mutations (R203H, R263H, P379T, L422P, P519L and c.873delC) in 17 patients from 8 families (13.6%), as well as one novel HNF4A (R331H) mutation were identified. Nonspecific clinical presentations were observed in MODYX compared to MODY3 patients. MODY3 subjects exhibited with younger, lower BMI, TG, fasting and postprandial C-peptide, higher HDL than T2DM. Particularly, we confirmed serum hsCRP was lower in MODY3 than T2DM. ROC curve showed a good discrimination with an AUC of 0.852 and identified a cutoff hsCRP of 0.79 (75% sensitivity and 83% specificity). Good glycemic control was observed in all identified patients after switching to glimepiride therapy. CONCLUSIONS The prevalence of HNF1A mutation was relatively lower in Mainland China and HNF4A mutation was rare. Serum hsCRP concentrations performed well in discriminating MODY3 from T2DM. Molecular diagnosis of MODY3/1 did transform management in clinical practice and facilitated the glycemic control.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Huabing Zhang
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Jianping Xu
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Kai Feng
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Shuai fu yuan No.1, Dongcheng District, Beijing, China.
| |
Collapse
|
50
|
Johnson SR, Ellis JJ, Leo PJ, Anderson LK, Ganti U, Harris JE, Curran JA, McInerney-Leo AM, Paramalingam N, Song X, Conwell LS, Harris M, Jones TW, Brown MA, Davis EA, Duncan EL. Comprehensive genetic screening: The prevalence of maturity-onset diabetes of the young gene variants in a population-based childhood diabetes cohort. Pediatr Diabetes 2019; 20:57-64. [PMID: 30191644 DOI: 10.1111/pedi.12766] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/05/2018] [Accepted: 08/12/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is caused by autosomal dominant mutations in one of 13 confirmed genes. Estimates of MODY prevalence vary widely, as genetic screening is usually restricted based on clinical features, even in population studies. We aimed to determine prevalence of MODY variants in a large and unselected pediatric diabetes cohort. METHODS MODY variants were assessed using massively parallel sequencing in the population-based diabetes cohort (n = 1363) of the sole tertiary pediatric diabetes service for Western Australia (population 2.6 million). All individuals were screened, irrespective of clinical features. MODY variants were also assessed in a control cohort (n = 993). RESULTS DNA and signed consent were available for 821 children. Seventeen children had pathogenic/likely pathogenic variants in MODY genes, two diagnosed with type 2 diabetes, four diagnosed with antibody-negative type 1 diabetes (T1DM), three diagnosed with antibody-positive T1DM, and eight previously diagnosed with MODY. Prevalence of MODY variants in the sequenced cohort was 2.1%, compared to 0.3% of controls. CONCLUSIONS This is the first comprehensive study of MODY variants in an unselected population-based pediatric diabetes cohort. The observed prevalence, increasing access to rapid and affordable genetic screening, and significant clinical implications suggest that genetic screening for MODY could be considered for all children with diabetes, irrespective of other clinical features.
Collapse
Affiliation(s)
- Stephanie R Johnson
- Department of Endocrinology and Diabetes, Lady Cilento Children's Hospital, South Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jonathan J Ellis
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Paul J Leo
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Lisa K Anderson
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Uma Ganti
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Jessica E Harris
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jacqueline A Curran
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Aideen M McInerney-Leo
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nirubasini Paramalingam
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Xiaoxia Song
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Louise S Conwell
- Department of Endocrinology and Diabetes, Lady Cilento Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark Harris
- Department of Endocrinology and Diabetes, Lady Cilento Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Timothy W Jones
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Elizabeth A Davis
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Emma L Duncan
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology (QUT), Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|