1
|
Pöysti S, Silojärvi S, Brodnicki TC, Catterall T, Liu X, Mackin L, Luster AD, Kay TWH, Christen U, Thomas HE, Hänninen A. Gut dysbiosis promotes islet-autoimmunity by increasing T-cell attraction in islets via CXCL10 chemokine. J Autoimmun 2023; 140:103090. [PMID: 37572540 DOI: 10.1016/j.jaut.2023.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
CXCL10 is an IFNγ-inducible chemokine implicated in the pathogenesis of type 1 diabetes. T-cells attracted to pancreatic islets produce IFNγ, but it is unclear what attracts the first IFNγ -producing T-cells in islets. Gut dysbiosis following administration of pathobionts induced CXCL10 expression in pancreatic islets of healthy non-diabetes-prone (C57BL/6) mice and depended on TLR4-signaling, and in non-obese diabetic (NOD) mice, gut dysbiosis induced also CXCR3 chemokine receptor in IGRP-reactive islet-specific T-cells in pancreatic lymph node. In amounts typical to low-grade endotoxemia, bacterial lipopolysaccharide induced CXCL10 production in isolated islets of wild type and RAG1 or IFNG-receptor-deficient but not type-I-IFN-receptor-deficient NOD mice, dissociating lipopolysaccharide-induced CXCL10 production from T-cells and IFNγ. Although mostly myeloid-cell dependent, also β-cells showed activation of innate immune signaling pathways and Cxcl10 expression in response to lipopolysaccharide indicating their independent sensitivity to dysbiosis. Thus, CXCL10 induction in response to low levels of lipopolysaccharide may allow islet-specific T-cells imprinted in pancreatic lymph node to enter in healthy islets independently of IFN-g, and thus link gut dysbiosis to early islet-autoimmunity via dysbiosis-associated low-grade endotoxemia.
Collapse
MESH Headings
- Animals
- Mice
- Autoimmunity
- Chemokine CXCL10/metabolism
- Chemokine CXCL10/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/etiology
- Disease Models, Animal
- Dysbiosis/immunology
- Gastrointestinal Microbiome/immunology
- Interferon-gamma/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lipopolysaccharides/immunology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Toll-Like Receptor 4/metabolism
Collapse
Affiliation(s)
- Sakari Pöysti
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Satu Silojärvi
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Tara Catterall
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Xin Liu
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Leanne Mackin
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas W H Kay
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Urs Christen
- Klinikum der Goethe Universität Frankfurt, Frankfurt Am Main, Germany
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Arno Hänninen
- Institute of Biomedicine, University of Turku, Turku, Finland; Turku University Hospital Laboratory Division, Turku, Finland.
| |
Collapse
|
2
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
3
|
Wu Z, Tian E, Chen Y, Dong Z, Peng Q. Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases. Microbiol Res 2023; 268:127291. [PMID: 36542917 DOI: 10.1016/j.micres.2022.127291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A new field of microbial research is the relationship between microorganisms and multicellular hosts. It is known that gut microbes can cause various endocrine system diseases, such as diabetes and thyroid disease. Changes in the composition or structure and the metabolites of gut microbes may cause gastrointestinal disorders, including ulcers or intestinal perforation and other inflammatory and autoimmune diseases. In recent years, reports on the interactions between intestinal microorganisms and endocrine system diseases have been increasingly documented. In the meantime, the treatment based on gut microbiome has also been paid much attention. For example, fecal microbiota transplantation is found to have a therapeutic effect on many diseases. As such, understanding the gut microbiota-endocrine system interactions is of great significance for the theranostic of endocrine system diseases. Herein, we summarize the relations of gut microbiome with endocrine system diseases, and discuss the potentials of regulating gut microbiome in treating those diseases. In addition, the concerns and possible solutions regarding the gut microbiome-based therapy are discussed.
Collapse
Affiliation(s)
- Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Erkang Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuyang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Pearson JA, Peng J, Huang J, Yu X, Tai N, Hu Y, Sha S, Flavell RA, Zhao H, Wong FS, Wen L. NLRP6 deficiency expands a novel CD103 + B cell population that confers immune tolerance in NOD mice. Front Immunol 2023; 14:1147925. [PMID: 36911699 PMCID: PMC9995752 DOI: 10.3389/fimmu.2023.1147925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Gut microbiota have been linked to modulating susceptibility to Type 1 diabetes; however, there are many ways in which the microbiota interact with host cells, including through microbial ligand binding to intracellular inflammasomes (large multi-subunit proteins) to initiate immune responses. NLRP6, a microbe-recognizing inflammasome protein, is highly expressed by intestinal epithelial cells and can alter susceptibility to cancer, obesity and Crohn's disease; however, the role of NLRP6 in modulating susceptibility to autoimmune diabetes, was previously unknown. Methods We generated NLRP6-deficient Non-obese diabetic (NOD) mice to study the effect of NLRP6-deficiency on the immune cells and susceptibility to Type 1 diabetes development. Results NLRP6-deficient mice exhibited an expansion of CD103+ B cells and were protected from type 1 diabetes. Moreover, NLRP6-deficient CD103+ B cells express regulatory markers, secreted higher concentrations of IL-10 and TGFb1 cytokines and suppressed diabetogenic T cell proliferation, compared to NLRP6-sufficient CD103+ B cells. Microarray analysis of NLRP6-sufficient and -deficient CD103+ B cells identified 79 significantly different genes including genes regulated by lipopolysaccharide (LPS), tretinoin, IL-10 and TGFb, which was confirmed in vitro following LPS stimulation. Furthermore, microbiota from NLRP6-deficient mice induced CD103+ B cells in colonized NLRP6-sufficient germ-free mice; however, the long-term maintenance of the CD103+ B cells required the absence of NLRP6 in the hosts, or continued exposure to microbiota from NLRP6-deficient mice. Discussion Together, our data indicate that NLRP6 deficiency promotes expansion and maintenance of a novel TGF -dependent CD103+ Breg population. Thus, targeting NLRP6 therapeutically may prove clinically useful.
Collapse
Affiliation(s)
- James A. Pearson
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jian Peng
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Xiaoqing Yu
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - Ningwen Tai
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Youjia Hu
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Sha Sha
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Richard A. Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Hongyu Zhao
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Lo Conte M, Antonini Cencicchio M, Ulaszewska M, Nobili A, Cosorich I, Ferrarese R, Massimino L, Andolfo A, Ungaro F, Mancini N, Falcone M. A diet enriched in omega-3 PUFA and inulin prevents type 1 diabetes by restoring gut barrier integrity and immune homeostasis in NOD mice. Front Immunol 2023; 13:1089987. [PMID: 36713378 PMCID: PMC9880528 DOI: 10.3389/fimmu.2022.1089987] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction The integrity of the gut barrier (GB) is fundamental to regulate the crosstalk between the microbiota and the immune system and to prevent inflammation and autoimmunity at the intestinal level but also in organs distal from the gut such as the pancreatic islets. In support to this idea, we recently demonstrated that breakage of GB integrity leads to activation of islet-reactive T cells and triggers autoimmune Type 1 Diabetes (T1D). In T1D patients as in the NOD mice, the spontaneous model of autoimmune diabetes, there are alterations of the GB that specifically affect structure and composition of the mucus layer; however, it is yet to be determined whether a causal link between breakage of the GB integrity and occurrence of autoimmune T1D exists. Methods Here we restored GB integrity in the NOD mice through administration of an anti-inflammatory diet (AID- enriched in soluble fiber inulin and omega 3-PUFA) and tested the effect on T1D pathogenesis. Results We found that the AID prevented T1D in NOD mice by restoring GB integrity with increased mucus layer thickness and higher mRNA transcripts of structural (Muc2) and immunoregulatory mucins (Muc1 and Muc3) as well as of tight junction proteins (claudin1). Restoration of GB integrity was linked to reduction of intestinal inflammation (i.e., reduced expression of IL-1β, IL-23 and IL-17 transcripts) and expansion of regulatory T cells (FoxP3+ Treg cells and IL-10+ Tr1 cells) at the expenses of effector Th1/Th17 cells in the intestine, pancreatic lymph nodes (PLN) and intra-islet lymphocytes (IIL) of AID-fed NOD mice. Importantly, the restoration of GB integrity and immune homeostasis were associated with enhanced concentrations of anti-inflammatory metabolites of the ω3/ω6 polyunsaturated fatty acids (PUFA) and arachidonic pathways and modifications of the microbiome profile with increased relative abundance of mucus-modulating bacterial species such as Akkermansia muciniphila and Akkermansia glycaniphila. Discussion Our data provide evidence that the restoration of GB integrity and intestinal immune homeostasis through administration of a tolerogenic AID that changed the gut microbial and metabolic profiles prevents autoimmune T1D in preclinical models.
Collapse
Affiliation(s)
- Marta Lo Conte
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy
| | - Martina Antonini Cencicchio
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy
| | - Marynka Ulaszewska
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Nobili
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Cosorich
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Massimino
- Experimental Gastroenterology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Ungaro
- Experimental Gastroenterology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy,Laboratory of Medical Microbiology and Virology, Università “Vita-Salute” San Raffaele, Milan, Italy
| | - Marika Falcone
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy,*Correspondence: Marika Falcone,
| |
Collapse
|
6
|
Redox Remodeling by Nutraceuticals for Prevention and Treatment of Acute and Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12010132. [PMID: 36670995 PMCID: PMC9855137 DOI: 10.3390/antiox12010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Antioxidant-rich dietary regimens are considered the best practice to maintain health, control inflammation, and prevent inflammatory diseases. Yet, nutraceuticals as food supplements are self-prescribed and purchasable over the counter by healthy individuals for the purpose of beneficial effects on fitness and aging. Hence, the effectiveness, safety, and correct intake of these compounds need to be better explored. Since redox-modulating activity of these compounds appears to be involved in activation and or suppression of immune cells, the preventive use of nutraceuticals is very attractive even for healthy people. This review focuses on redox- and immunomodulating nutraceuticals in the context of diabetes mellitus (DM). In fact, DM is an illustrative disease of latent and predictable inflammatory pathogenetic processes set out and sustained by oxidative stress. DM has been thoroughly investigated through in vitro and in vivo models. Furthermore, human DM is characterized by uncontrolled levels of glucose, a pivotal factor shaping immune responses. Hence, antioxidant nutraceuticals with multifaced activities, including glucose keeping, are described here. A greater number of such multi-player nutraceuticals might be identified using DM animal models and validated in clinical settings on genetic and environmental high-risk individuals.
Collapse
|
7
|
Tsai K, Ma C, Han X, Allaire J, Healey GR, Crowley SM, Yu H, Jacobson K, Xia L, Priatel JJ, Vallance BA. Highly Sensitive, Flow Cytometry-Based Measurement of Intestinal Permeability in Models of Experimental Colitis. Cell Mol Gastroenterol Hepatol 2023; 15:425-438. [PMID: 36244647 PMCID: PMC9791122 DOI: 10.1016/j.jcmgh.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Increased intestinal permeability is seen in a variety of inflammatory conditions such as enteric infections and inflammatory bowel disease. Because barrier function can provide a key biomarker of disease severity, it often is assayed in animal models. A common methodology involves gavaging mice with fluorescein isothiocyanate-conjugated dextran (FITC-D), followed by cardiac puncture to assay plasma fluorescence on a spectrophotometer. Although the FITC-D method is relatively simple, its sensitivity is limited and enables only a single measurement because the test requires killing the subject. Herein, we describe a novel flow cytometry-based method of intestinal permeability measurement based on detection of orally gavaged ovalbumin (OVA) that leaks out of the gut. Our approach uses minute blood volumes collected from the tail vein, permitting repeated testing of the same subject at multiple time points. By comparing this assay against the gold standard FITC-D method, we show the expanded utility of our OVA assay in measuring intestinal permeability. METHODS We directly compared our OVA assay against the FITC-D assay by co-administering both probes orally to the same animals and subsequently using their respective methodologies to measure intestinal permeability by detecting probe levels in the plasma. Permeability was assessed in mice genetically deficient in intestinal mucus production or glycosylation. In addition, wild-type mice undergoing dextran sodium sulfate-induced colitis or infected by the enteric bacterial pathogen Citrobacter rodentium also were tested. RESULTS The OVA assay showed very high efficacy in all animal models of intestinal barrier dysfunction tested. Besides identifying intestinal barrier dysfunction in mice with impaired mucin glycosylation, the assay also allowed for repeated tracking of intestinal permeability within the same animal over time, providing data that cannot be easily acquired with other currently applied methods. CONCLUSIONS The OVA assay is a highly sensitive and effective method of measuring intestinal permeability in mouse models of barrier dysfunction and experimental colitis.
Collapse
Affiliation(s)
- Kevin Tsai
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caixia Ma
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiao Han
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joannie Allaire
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Genelle R Healey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shauna M Crowley
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbing Yu
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - John J Priatel
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Hu L, Zhao Y, Xu H. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129652. [PMID: 35901632 DOI: 10.1016/j.jhazmat.2022.129652] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
With the reported ability of microplastics (MPs) to act as "Trojan horses" carrying other environmental contaminants, the focus of researches has shifted from their ubiquitous occurrence to interactive toxicity. In this review, we provided the latest knowledge on the processes and mechanisms of interaction between MPs and co-contaminants (heavy metals, persistent organic pollutants, pathogens, nanomaterials and other contaminants) and discussed the influencing factors (environmental conditions and characteristics of polymer and contaminants) that affect the adsorption/desorption process. In addition, the bio-toxicological outcomes of mixtures are elaborated based on the damaging effects on the intestinal barrier. Our review showed that the interaction processes and toxicological outcomes of mixture are complex and variable, and the intestinal barrier should receive more attention as the first line of defensing against MPs and environmental contaminants invasion. Moreover, we pointed out several knowledge gaps in this new research area and suggested directions for future studies in order to understand the multiple factors involved, such as epidemiological assessment, nanoplastics, mechanisms for toxic alteration and the fate of mixtures after desorption.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
10
|
Majumdar S, Lin Y, Bettini ML. Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front Immunol 2022; 13:974178. [PMID: 36059452 PMCID: PMC9434376 DOI: 10.3389/fimmu.2022.974178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles. However, the predisposition to disease development is not solely predicted by them. This is best exemplified by the observation that a monozygotic twin has just a 35% chance of developing T1D after their twin's diagnosis. This makes a strong case for environmental triggers playing an important role in T1D incidence. Multiple studies indicate that commensal gut microbiota and environmental factors that alter their composition might exacerbate or protect against T1D onset. In this review, we discuss recent literature highlighting microbial species associated with T1D. We explore mechanistic studies which propose how some of these microbial species can modulate adaptive immune responses in T1D, with an emphasis on T-cell responses. We cover topics ranging from gut-thymus and gut-pancreas communication, microbial regulation of peripheral tolerance, to molecular mimicry of islet antigens by microbial peptides. In light of the accumulating evidence on commensal influences in neonatal thymocyte development, we also speculate on the link between molecular mimicry and thymic selection in the context of T1D pathogenesis. Finally, we explore how these observations could inform future therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Yong Lin
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
An J, Liu Y, Wang Y, Fan R, Hu X, Zhang F, Yang J, Chen J. The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Front Immunol 2022; 13:871713. [PMID: 35844539 PMCID: PMC9284064 DOI: 10.3389/fimmu.2022.871713] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases are a series of diseases involving multiple tissues and organs, characterized by the over production of abnormal multiple antibodies. Although most studies support that the impaired immune balance participates in the development of autoimmune diseases, the specific pathogenesis of it is not fully understood. Intestinal immunity, especially the intestinal mucosal barrier has become a research hotspot, which is considered to be an upstream mechanism leading to the impaired immune balance. As an important defense barrier, the intestinal mucosal barrier regulates and maintains the homeostasis of internal environment. Once the intestinal barrier function is impaired under the effect of multiple factors, it will destroy the immune homeostasis, trigger inflammatory response, and participate in the development of autoimmune diseases in the final. However, the mechanism of the intestinal mucosal barrier how to regulate the homeostasis and inflammation is not clear. Some studies suggest that it maintains the balance of immune homeostasis through the zonulin pathway, intestinal microbiome, and Toll-like receptor signaling pathway. Our review focused on the composition and the function of the intestinal mucosal barrier to describe the research progress of it in regulating the immune homeostasis and inflammation, and also pointed that the intestinal mucosal barrier was the potential targets in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jia An
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuqing Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiqi Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ru Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaorong Hu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Fen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinhua Yang
- Department of Internal Medicine, Central Hospital of Xinghualing District, Taiyuan, China
| | - Junwei Chen
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Junwei Chen,
| |
Collapse
|
12
|
Wang Y, Zhao J, Qin Y, Yu Z, Zhang Y, Ning X, Sun S. The Specific Alteration of Gut Microbiota in Diabetic Kidney Diseases—A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:908219. [PMID: 35784273 PMCID: PMC9248803 DOI: 10.3389/fimmu.2022.908219] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Emerging evidence indicates that gut dysbiosis is involved in the occurrence and development of diabetic kidney diseases (DKD). However, the key microbial taxa closely related to DKD have not been determined. Methods PubMed, Web of Science, Cochrane, Chinese Biomedical Databases, China National Knowledge Internet, and Embase were searched for case-control or cross-sectional studies comparing the gut microbiota of patients with DKD and healthy controls (HC) from inception to February 8, 2022, and random/fixed-effects meta-analysis on the standardized mean difference (SMD) were performed for alpha diversity indexes between DKD and HC, and beta diversity indexes and the relative abundance of gut microbiota were extracted and summarized qualitatively. Results A total of 16 studies (578 patients with DKD and 444 HC) were included. Compared to HC, the bacterial richness of patients with DKD was significantly decreased, and the diversity indexes were decreased but not statistically, companying with a distinct beta diversity. The relative abundance of phylum Proteobacteria, Actinobacteria, and Bacteroidetes, family Coriobacteriaceae, Enterobacteriaceae, and Veillonellaceae, genus Enterococcus, Citrobacter, Escherichia, Klebsiella, Akkermansia, Sutterella, and Acinetobacter, and species E. coli were enriched while that of phylum Firmicutes, family Lachnospiraceae, genus Roseburia, Prevotella, and Bifidobacterium were depleted in patients with DKD. Conclusions The gut microbiota of patients with DKD may possess specific features characterized by expansion of genus Escherichia, Citrobacter, and Klebsiella, and depletion of Roseburia, which may contribute most to the alterations of their corresponding family and phylum taxa, as well as the bacterial diversity and composition. These microbial taxa may be closely related to DKD and serve as promising targets for the management of DKD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021289863.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Shiren Sun,
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update regarding the gut barrier and its involvement with chronic diseases, as well as to review biomarkers for identification of gut barrier integrity. This review is timely and relevant as our knowledge is increasing regarding the role of the gut microbiome and the gut barrier in health and disease. RECENT FINDINGS This review provides an overview of: the gut barrier, which is complex and comprised of the mucus layer and the intestinal apical junctional protein complex; the gut microbiome in its relation to regulating the integrity of the gut barrier; select acute and chronic conditions that are known to be associated with gut dysbiosis and impaired gut integrity or 'leaky gut'; and current means for identifying loss in gut barrier integrity. SUMMARY Many chronic conditions are associated with gut dysbiosis and systemic inflammation. Identifying whether the gut barrier is compromised in these conditions could help to inform potential therapeutics as a means to correct losses in gut barrier integrity and mitigate associated medical conditions.
Collapse
Affiliation(s)
- Anthony Santilli
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Stavros Stefanopoulos
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Gail A.M. Cresci
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, Pediatric Institute, Cleveland Clinic Children’s Hospital, Cleveland, OH
| |
Collapse
|
14
|
You Q, Shen Y, Wu Y, Li Y, Liu C, Huang F, Gu HF, Wu J. Neutrophil Extracellular Traps Caused by Gut Leakage Trigger the Autoimmune Response in Nonobese Diabetic Mice. Front Immunol 2022; 12:711423. [PMID: 35111148 PMCID: PMC8801438 DOI: 10.3389/fimmu.2021.711423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/27/2021] [Indexed: 01/14/2023] Open
Abstract
Increased formation of neutrophil extracellular traps (NETs) is associated with gut leakage in type 1 diabetes (T1D). To explore the mechanism of how enteropathy exacerbated by NETs triggers pancreatic autoimmunity in T1D, we carried out a correlation analysis for NET formation with gut barrier functions and autoimmunity in nonobese diabetic (NOD) mice. Inducing chronic colitis or knocking out of peptidyl arginine deiminase type 4 (PAD4) in NOD mice were used to further study the effect of NET formation on the progression of T1D. Microbial alterations in Deferribacteres and Proteobacteria, along with the loss of gut barrier function, were found to be associated with increased endotoxin and abnormal formation of NETs in NOD mice. Both DSS-induced colitis and knockout of PAD4 in NOD mice indicated that PAD4-dependent NET formation was involved in the aggravation of gut barrier dysfunction, the production of autoantibodies, and the activation of enteric autoimmune T cells, which then migrated to pancreatic lymph nodes (PLNs) and caused self-damage. The current study thus provides evidence that PAD4-dependent NET formation is engaged in leaky gut triggering pancreatic autoimmunity and suggests that either degradation of NETs or inhibition of NET formation may be helpful for innovative therapeutic interventions in T1D.
Collapse
Affiliation(s)
- Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiming Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiling Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuyan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Rouland M, Beaudoin L, Rouxel O, Bertrand L, Cagninacci L, Saffarian A, Pedron T, Gueddouri D, Guilmeau S, Burnol AF, Rachdi L, Tazi A, Mouriès J, Rescigno M, Vergnolle N, Sansonetti P, Christine Rogner U, Lehuen A. Gut mucosa alterations and loss of segmented filamentous bacteria in type 1 diabetes are associated with inflammation rather than hyperglycaemia. Gut 2022; 71:296-308. [PMID: 33593807 DOI: 10.1136/gutjnl-2020-323664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic β-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.
Collapse
Affiliation(s)
- Matthieu Rouland
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ophélie Rouxel
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Léo Bertrand
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Cagninacci
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | | | | | - Dalale Gueddouri
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Sandra Guilmeau
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | | | - Latif Rachdi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Asmaa Tazi
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Juliette Mouriès
- Department of Biomedical Sciences - IRCCS, Via Rita Levi Montalcini, 20090 Pieve Emanuele, Humanitas University, Milan, Italy.,IRCCS, Via Manzoni 56, 20089 Rozzano, Humanitas Clinical and Research Center, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences - IRCCS, Via Rita Levi Montalcini, 20090 Pieve Emanuele, Humanitas University, Milan, Italy.,IRCCS, Via Manzoni 56, 20089 Rozzano, Humanitas Clinical and Research Center, Milan, Italy
| | - Nathalie Vergnolle
- Université de Toulouse, Institut de Recherche en Santé Digestive, INSERM U1220, INRAE, ENVT, Toulouse, France
| | | | - Ute Christine Rogner
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France .,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
16
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Correspondence: Jian-Hui Xiao, Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, HuiChuan District, Zunyi, 563003, People’s Republic of China, Email
| |
Collapse
|
17
|
Infection with the enteric pathogen C. rodentium promotes islet-specific autoimmunity by activating a lymphatic route from the gut to pancreatic lymph node. Mucosal Immunol 2022; 15:471-479. [PMID: 35140345 PMCID: PMC9038524 DOI: 10.1038/s41385-022-00490-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
In nonobese diabetic (NOD) mice, C. rodentium promotes priming of islet-specific T-cells in pancreatic lymph nodes (PaLN), which is a critical step in initiation and perpetuation of islet-autoimmunity. To investigate mechanisms by which C. rodentium promotes T-cell priming in PaLN, we used fluorescent imaging of lymphatic vasculature emanating from colon, followed dendritic cell (DC) migration from colon using photoconvertible-reporter mice, and evaluated the translocation of bacteria to lymph nodes with GFP-C. rodentium and in situ hybridization of bacterial DNA. Fluorescent dextran injected in the colon wall accumulated under subcapsular sinus of PaLN indicating the existence of a lymphatic route from colon to PaLN. Infection with C. rodentium induced DC migration from colon to PaLN and bacterial DNA was detected in medullary sinus and inner cortex of PaLN. Following infection with GFP-C. rodentium, fluorescence appeared in macrophages and gut-derived (CD103+) and resident (CD103-/XCR1+) DC, indicating transportation of bacteria from colon to PaLN both by DC and by lymph itself. This induced proinflammatory cytokine transcripts, activation of DC and islet-specific T-cells in PaLN of NOD mice. Our findings demonstrate the existence of a direct, enteric pathogen-activated route for lymph, cells, and bacteria from colon, which promotes activation of islet-specific T-cells in PaLN.
Collapse
|
18
|
Morse ZJ, Horwitz MS. Virus Infection Is an Instigator of Intestinal Dysbiosis Leading to Type 1 Diabetes. Front Immunol 2021; 12:751337. [PMID: 34721424 PMCID: PMC8554326 DOI: 10.3389/fimmu.2021.751337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to genetic predisposition, environmental determinants contribute to a complex etiology leading to onset of type 1 diabetes (T1D). Multiple studies have established the gut as an important site for immune modulation that can directly impact development of autoreactive cell populations against pancreatic self-antigens. Significant efforts have been made to unravel how changes in the microbiome function as a contributor to autoimmune responses and can serve as a biomarker for diabetes development. Large-scale longitudinal studies reveal that common environmental exposures precede diabetes pathology. Virus infections, particularly those associated with the gut, have been prominently identified as risk factors for T1D development. Evidence suggests recent-onset T1D patients experience pre-existing subclinical enteropathy and dysbiosis leading up to development of diabetes. The start of these dysbiotic events coincide with detection of virus infections. Thus viral infection may be a contributing driver for microbiome dysbiosis and disruption of intestinal homeostasis prior to T1D onset. Ultimately, understanding the cross-talk between viral infection, the microbiome, and the immune system is key for the development of preventative measures against T1D.
Collapse
Affiliation(s)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Jia LL, Zhang M, Liu H, Sun J, Pan LL. Early-life fingolimod treatment improves intestinal homeostasis and pancreatic immune tolerance in non-obese diabetic mice. Acta Pharmacol Sin 2021; 42:1620-1629. [PMID: 33473182 PMCID: PMC8463616 DOI: 10.1038/s41401-020-00590-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Fingolimod has beneficial effects on multiple diseases, including type 1 diabetes (T1D) and numerous preclinical models of colitis. Intestinal dysbiosis and intestinal immune dysfunction contribute to disease pathogenesis of T1D. Thus, the beneficial effect of fingolimod on T1D may occur via the maintenance of intestinal homeostasis to some extent. Herein, we investigated the role of fingolimod in intestinal dysfunction in non-obese diabetic (NOD) mice and possible mechanisms. NOD mice were treated with fingolimod (1 mg · kg-1 per day, i.g.) from weaning (3-week-old) to 31 weeks of age. We found that fingolimod administration significantly enhanced the gut barrier (evidenced by enhanced expression of tight junction proteins and reduced intestinal permeability), attenuated intestinal microbial dysbiosis (evidenced by the reduction of enteric pathogenic Proteobacteria clusters), as well as intestinal immune dysfunction (evidenced by inhibition of CD4+ cells activation, reduction of T helper type 1 cells and macrophages, and the expansion of regulatory T cells). We further revealed that fingolimod administration suppressed the activation of CD4+ cells and the differentiation of T helper type 1 cells, promoted the expansion of regulatory T cells in the pancreas, which might contribute to the maintenance of pancreatic immune tolerance and the reduction of T1D incidence. The protection might be due to fingolimod inhibiting the toll-like receptor 2/4/nuclear factor-κB/NOD-like receptor protein 3 inflammasome pathway in the colon. Collectively, early-life fingolimod treatment attenuates intestinal microbial dysbiosis and intestinal immune dysfunction in the T1D setting, which might contribute to its anti-diabetic effect.
Collapse
Affiliation(s)
- Ling-Ling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Mønsted MØ, Falck ND, Pedersen K, Buschard K, Holm LJ, Haupt-Jorgensen M. Intestinal permeability in type 1 diabetes: An updated comprehensive overview. J Autoimmun 2021; 122:102674. [PMID: 34182210 DOI: 10.1016/j.jaut.2021.102674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of the autoimmune disease type 1 diabetes (T1D) is still largely unknown, however, both genetic and environmental factors contribute to the development of the disease. A major contact surface for environmental factors is the gastrointestinal (GI) tract, where barrier defects in T1D likely cause diabetogenic antigens to enter the body tissues, contributing to beta-cell autoimmunity. Human and animal research imply that increased intestinal permeability is an important disease determinant, although the underlying methodologies, interpretations and conclusions are diverse. In this review, an updated comprehensive overview on intestinal permeability in patients with T1D and animal models of T1D is provided in the categories: in vivo permeability, ex vivo permeability, zonulin, molecular permeability and blood markers. Across categories, there is consistency pointing towards increased intestinal permeability in T1D. In animal models of T1D, the intestinal permeability varies with age and strains implying a need for careful selection of method and experimental setup. Furthermore, dietary interventions that affect diabetes incidence in animal models does also impact the intestinal permeability, suggesting an association between increased intestinal permeability and T1D development.
Collapse
Affiliation(s)
- Mia Øgaard Mønsted
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark.
| | - Nora Dakini Falck
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Kristina Pedersen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Laurits Juulskov Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | | |
Collapse
|
21
|
Hamilton-Williams EE, Lorca GL, Norris JM, Dunne JL. A Triple Threat? The Role of Diet, Nutrition, and the Microbiota in T1D Pathogenesis. Front Nutr 2021; 8:600756. [PMID: 33869260 PMCID: PMC8046917 DOI: 10.3389/fnut.2021.600756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years the role of the intestinal microbiota in health and disease has come to the forefront of medical research. Alterations in the intestinal microbiota and several of its features have been linked to numerous diseases, including type 1 diabetes (T1D). To date, studies in animal models of T1D, as well as studies in human subjects, have linked several intestinal microbiota alterations with T1D pathogenesis. Features that are most often linked with T1D pathogenesis include decreased microbial diversity, the relative abundance of specific strains of individual microbes, and altered metabolite production. Alterations in these features as well as others have provided insight into T1D pathogenesis and shed light on the potential mechanism by which the microbiota plays a role in T1D pathogenesis, yet the underlying factors leading to these alterations remains unknown. One potential mechanism for alteration of the microbiota is through diet and nutrition. Previous studies have shown associations of diet with islet autoimmunity, but a direct contributing factor has yet to be identified. Diet, through introduction of antigens and alteration of the composition and function of the microbiota, may elicit the immune system to produce autoreactive responses that result in the destruction of the beta cells. Here, we review the evidence associating diet induced changes in the intestinal microbiota and their contribution to T1D pathogenesis. We further provide a roadmap for determining the effect of diet and other modifiable factors on the entire microbiota ecosystem, including its impact on both immune and beta cell function, as it relates to T1D. A greater understanding of the complex interactions between the intestinal microbiota and several interacting systems in the body (immune, intestinal integrity and function, metabolism, beta cell function, etc.) may provide scientifically rational approaches to prevent development of T1D and other childhood immune and allergic diseases and biomarkers to evaluate the efficacy of interventions.
Collapse
Affiliation(s)
- Emma E. Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Graciela L. Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | |
Collapse
|
22
|
Borsa BA, Sudagidan M, Aldag ME, Baris II, Acar EE, Acuner C, Kavruk M, Ozalp VC. Antibiotic administration in targeted nanoparticles protects the faecal microbiota of mice. RSC Med Chem 2021; 12:380-383. [PMID: 34046621 PMCID: PMC8130601 DOI: 10.1039/d0md00347f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotic therapy comes with disturbances on human microbiota, resulting in changes of bacterial communities and thus leading to well-established health problems. In this study, we demonstrated that targeted teicoplanin administration maintains the faecal microbiota composition undisturbed in a mouse model while reaching therapeutic improvements for S. aureus infection.
Collapse
Affiliation(s)
- Baris A Borsa
- Nucleic Acid Technologies Lab, Department of Physics, Chemistry and Biology (IFM), Linköping University SE-58183 Linköping Sweden
| | - Mert Sudagidan
- Kit-Argem Research Centre, Konya Food and Agriculture University Meram 42080 Konya Turkey
| | - Mehmet E Aldag
- Department of Medical Microbiology, Corlu State Hospital Tekirdag Turkey
| | - Isik I Baris
- Department of Pathology, Cakmak Erdem Hospital Istanbul Turkey
| | - Elif E Acar
- Kit-Argem Research Centre, Konya Food and Agriculture University Meram 42080 Konya Turkey
| | - Cagatay Acuner
- Department of Medical Microbiology, Medical School, Yeditepe University Istanbul Turkey
| | - Murat Kavruk
- Test and Calibration Center, Turkish Standards Institution (TSE) 41400, Gebze Kocaeli Turkey
| | - Veli C Ozalp
- Department of Medical Biology, Medical School, Atilim University Incek 06830 Ankara Turkey
| |
Collapse
|
23
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetol 2021; 58:249-265. [PMID: 32712802 DOI: 10.1007/s00592-020-01563-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Early-life healthy gut microbiota has a profound implication on shaping the mucosal immune system as well as maintaining healthy status later in life, especially at the prenatal or neonatal stages, while intestinal dysbiosis in early life is associated with several autoimmune diseases, including type 1 diabetes (T1D). Since the gut microbiome is potentially modifiable, optimizing the intestinal bacterial composition in early life may be a novel option for T1D prevention. In this review, we will review current data depicting the crucial role of early-life intestinal microbiome in the development of T1D and discuss the possible mechanisms whereby early-life intestinal microbiome influences the T1D progression. We also summarize recent findings on environmental factors affecting gut microbiota colonization and interventions that may successfully alter microbial composition to discuss potential means of preventing T1D progression in at-risk children.
Collapse
Affiliation(s)
- He Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
24
|
Modern Understanding of the Gut Microbiotа in Patients with Diabetes Mellitus. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Yap YA, Mariño E. Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:499-519. [PMID: 32193865 DOI: 10.1007/5584_2020_515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diet-microbiota related inflammatory conditions such as obesity, autoimmune type 1 diabetes (T1D), type 2 diabetes (T2D), cardiovascular disease (CVD) and gut infections have become a stigma in Western societies and developing nations. This book chapter examines the most relevant pre-clinical and clinical studies about diet-gut microbiota approaches as an alternative therapy for diabetes. We also discuss what we and others have extensively investigated- the power of dietary short-chain fatty acids (SCFAs) technology that naturally targets the gut microbiota as an alternative method to prevent and treat diabetes and its related complications.
Collapse
Affiliation(s)
- Yu Anne Yap
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, VIC, Australia
| | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Abela AG, Fava S. Why is the Incidence of Type 1 Diabetes Increasing? Curr Diabetes Rev 2021; 17:e030521193110. [PMID: 33949935 DOI: 10.2174/1573399817666210503133747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/14/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes is a condition that can lead to serious long-term complications and can have significant psychological and quality of life implications. Its incidence is increasing in all parts of the world, but the reasons for this are incompletely understood. Genetic factors alone cannot explain such a rapid increase in incidence; therefore, environmental factors must be implicated. Lifestyle factors have been classically associated with type 2 diabetes. However, there are data implicating obesity and insulin resistance to type 1 diabetes as well (accelerator hypothesis). Cholesterol has also been shown to be correlated with the incidence of type 1 diabetes; this may be mediated by immunomodulatory effects of cholesterol. There is considerable interest in early life factors, including maternal diet, mode of delivery, infant feeding, childhood diet, microbial exposure (hygiene hypothesis), and use of anti-microbials in early childhood. Distance from the sea has recently been shown to be negatively correlated with the incidence of type 1 diabetes. This may contribute to the increasing incidence of type 1 diabetes since people are increasingly living closer to the sea. Postulated mediating mechanisms include hours of sunshine (and possibly vitamin D levels), mean temperature, dietary habits, and pollution. Ozone, polychlorinated biphenyls, phthalates, trichloroethylene, dioxin, heavy metals, bisphenol, nitrates/nitrites, and mercury are amongst the chemicals which may increase the risk of type 1 diabetes. Another area of research concerns the role of the skin and gut microbiome. The microbiome is affected by many of the factors mentioned above, including the mode of delivery, infant feeding, exposure to microbes, antibiotic use, and dietary habits. Research on the reasons why the incidence of type 1 diabetes is increasing not only sheds light on its pathogenesis but also offers insights into ways we can prevent type 1 diabetes.
Collapse
Affiliation(s)
- Alexia G Abela
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| | - Stephen Fava
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| |
Collapse
|
27
|
Tu L, Gharibani P, Yin J, Chen JDZ. Sacral nerve stimulation ameliorates colonic barrier functions in a rodent model of colitis. Neurogastroenterol Motil 2020; 32:e13916. [PMID: 32537873 DOI: 10.1111/nmo.13916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/30/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mucosal barrier damage is recognized as one of the key factors in the pathogenesis of colitis. While sacral nerve stimulation (SNS) was reported to have therapeutic potential for colitis, its mechanisms of actions on colonic permeability remained largely unknown. METHODS In this study, colitis was induced by intrarectal administration of TNBS in rats. Five days later, they were treated with SNS or sham-SNS for 10 days. The effects of SNS on colonic permeability were assessed by measuring the expression of tight-junction proteins involved in regulating permeability and the FITC-dextran test. The mechanism of actions of SNS was investigated by studying the function of the enteric nervous system (ENS) cells and analyzing the autonomic nervous system. KEY RESULTS SNS decreased the disease activity index, microscopic and macroscopic scores, myeloperoxidase activity, and pro-inflammatory cytokines (TNF-α, IL-6). SNS increased the expression of Zonula Occludens-1, Occludin, Claudin-1, and Junctional adhesion molecule-A in the colon tissue. The FITC-dextran test showed that the colonic permeability was lower with SCS than sham-SNS. SNS increased ChAT, pancreatic polypeptide, and GDNF and reduced norepinephrine NGF, sub-P, and mast cell overactivation in the colon tissue. Concurrently, SNS increased acetylcholine in colon tissues and elevated vagal efferent activity. CONCLUSIONS & INFERENCES SNS ameliorates colonic inflammation and enhances colonic barrier function with the proposed mechanisms involving the increase in parasympathetic activity and modulation of the activity of the ENS and immune system, including mast cells.
Collapse
Affiliation(s)
- Lei Tu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Payam Gharibani
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Kim TK, Lee JC, Im SH, Lee MS. Amelioration of Autoimmune Diabetes of NOD Mice by Immunomodulating Probiotics. Front Immunol 2020; 11:1832. [PMID: 33013834 PMCID: PMC7496355 DOI: 10.3389/fimmu.2020.01832] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
Type 1 autoimmune diabetes is an autoimmune disease characterized by specific destruction of pancreatic β-cells producing insulin. Recent studies have shown that gut microbiota and immunity are closely linked to systemic immunity, affecting the balance between pro-inflammatory and regulatory immune responses. Altered gut microbiota may be causally related to the development of immune-mediated diseases, and probiotics have been suggested to have modulatory effects on inflammatory diseases and immune disorders. We studied whether a probiotic combination that has immunomodulatory effects on several inflammatory diseases can reduce the incidence of diabetes in non-obese diabetic (NOD) mice, a classical animal model of human T1D. When Immune Regulation and Tolerance 5 (IRT5), a probiotic combination comprising Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium bifidium, and Streptococcus thermophiles, was administered 6 times a week for 36 weeks to NOD mice, beginning at 4 weeks of age, the incidence of diabetes was significantly reduced. Insulitis score was also significantly reduced, and β-cell mass was conversely increased by IRT5 administration. IRT5 administration significantly reduced gut permeability in NOD mice. The proportion of total regulatory T cells was not changed by IRT5 administration; however, the proportion of CCR9+ regulatory T (Treg) cells expressing gut-homing receptor was significantly increased in pancreatic lymph nodes (PLNs) and lamina propria of the small intestine (SI-LP). Type 1 T helper (Th1) skewing was reduced in PLNs by IRT5 administration. IRT5 could be a candidate for an effective probiotic combination, which can be safely administered to inhibit or prevent type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Tae Kang Kim
- Department of Internal Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Sin-Hyeog Im
- ImmunoBiome. Inc., Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Myung-Shik Lee
- Department of Internal Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Aplysin Retards Pancreatic Necrosis and Inflammatory Responses in NOD Mice by Stabilizing Intestinal Barriers and Regulating Gut Microbial Composition. Mediators Inflamm 2020; 2020:1280130. [PMID: 32801992 PMCID: PMC7416259 DOI: 10.1155/2020/1280130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 01/26/2023] Open
Abstract
Aplysin is a brominated sesquiterpene with an isoprene skeleton and has biological activities. The purpose of this study is to investigate the inhibitory effect of aplysin on spontaneous pancreatic necrosis in nonobese diabetic (NOD) mice and its potential mechanisms. Results showed that NOD mice at 12 weeks of age showed obvious spontaneous pancreatic necrosis, damaged tight junctions of intestinal epithelia, and widened gaps in tight and adherens junctions. Aplysin intervention was able to alleviate spontaneous pancreatic necrosis in NOD mice, accompanied with decreased serum endotoxin levels and downregulated expressions of Toll-like receptor 4 and its related molecules MyD88, TRAF-6, NF-κB p65, TRIF, TRAM, and IRF-3, as well as protein levels of interleukin-1β and interferon-β in pancreatic tissues. In addition, we observed obvious improvements of intestinal mucosal barrier function and changes of gut microbiota in the relative abundance at the phylum level and the genus level in aplysin-treated mice compared with control mice. Together, these data suggested that aplysin could retard spontaneous pancreatic necrosis and inflammatory responses in NOD mice through the stabilization of intestinal barriers and regulation of gut microbial composition.
Collapse
|
30
|
Yue T, Sun F, Yang C, Wang F, Luo J, Yang P, Xiong F, Zhang S, Yu Q, Wang CY. The AHR Signaling Attenuates Autoimmune Responses During the Development of Type 1 Diabetes. Front Immunol 2020; 11:1510. [PMID: 32849515 PMCID: PMC7426364 DOI: 10.3389/fimmu.2020.01510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcriptional factor widely expressed in immune cells. Its ligands range from xenobiotics and natural substances to metabolites, which renders it capable of sensing and responding to a variety of environmental cues. Although AHR signaling has long been recognized to be implicated in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis (RA), colitis, and systemic lupus erythematosus (SLE), its effect on the pathogenesis of type 1 diabetes (T1D) remains less understood. In this review, we intend to summarize its potential implication in T1D pathogenesis and to sort out the related regulatory mechanisms in different types of immune cells. Emerging evidence supports that β cell destruction caused by autoimmune responses can be rectified by AHR signaling. Upon activation by its ligands, AHR not only modulates the development and functionality of immune cells, but also suppresses the expression of inflammatory cytokines, through which AHR attenuates autoimmune responses during the course of T1D development. Since AHR-initiated biological effects vary between different types of ligands, additional studies would be necessary to characterize or de novo synthesize effective and safe ligands aimed to replenish our arsenal in fighting autoimmune responses and β mass loss in a T1D setting.
Collapse
Affiliation(s)
- Tiantian Yue
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunliang Yang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Luo
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Yu
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Sun T, Liang H, Xue M, Liu Y, Gong A, Jiang Y, Qin Y, Yang J, Meng D. Protective effect and mechanism of fucoidan on intestinal mucosal barrier function in NOD mice. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1789071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Ying Liu
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushan Jiang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Yimin Qin
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, People’s Republic of China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Danyang Meng
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| |
Collapse
|
32
|
Vangoitsenhoven R, Cresci GAM. Role of Microbiome and Antibiotics in Autoimmune Diseases. Nutr Clin Pract 2020; 35:406-416. [DOI: 10.1002/ncp.10489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Roman Vangoitsenhoven
- Bariatric and Metabolic Institute Cleveland Clinic Cleveland Ohio USA
- Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| | - Gail A. M. Cresci
- Department of Pediatric Gastroenterology Cleveland Clinic Children's Hospital Cleveland Ohio USA
- Department of Inflammation and Immunity Cleveland Clinic Cleveland Ohio USA
| |
Collapse
|
33
|
Yahaya T, Shemishere U. Association between Bioactive Molecules in Breast Milk and Type 1 Diabetes Mellitus. Sultan Qaboos Univ Med J 2020; 20:e5-e12. [PMID: 32190364 PMCID: PMC7065699 DOI: 10.18295/squmj.2020.20.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/23/2019] [Accepted: 11/03/2019] [Indexed: 02/05/2023] Open
Abstract
The association between breastfeeding and type 1 diabetes mellitus (T1DM) is controversial. However, several recent studies have established a link between these two factors, necessitating a need to review this subject to raise public awareness. Current research indicates that breast milk contains a variety of bioactive substances including immunoglobulins, oligosaccharides, insulin, lactoferrin, lysozyme, cytokines, epidermal growth factors, leukocytes, nucleotides, beneficial bacteria and vitamins. Such substances strengthen the breastfeeding infant's immune system, both directly, by increasing gut microbiota diversity and attacking harmful bacteria and pro-inflammatory molecules, and indirectly, by increasing thymus performance. Accordingly, a lack of or inadequate breastfeeding may predispose infants to several autoimmune disorders, including T1DM. Nursing mothers and caregivers are therefore advised to follow optimal breastfeeding practices prior to introducing complementary foods.
Collapse
Affiliation(s)
- Tajudeen Yahaya
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Ufuoma Shemishere
- Department of Biochemistry & Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| |
Collapse
|
34
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
35
|
The Interplay between Immune System and Microbiota in Diabetes. Mediators Inflamm 2019; 2019:9367404. [PMID: 32082078 PMCID: PMC7012204 DOI: 10.1155/2019/9367404] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes is not a single and homogeneous disease, but a cluster of metabolic diseases characterized by the common feature of hyperglycemia. The pathogenesis of type 1 diabetes (T1D) and type 2 diabetes (T2D) (and all other intermediate forms of diabetes) involves the immune system, in terms of inflammation and autoimmunity. The past decades have seen an increase in all types of diabetes, accompanied by changes in eating habits and consequently a structural evolution of gut microbiota. It is likely that all these events could be related and that gut microbiota alterations might be involved in the immunomodulation of diabetes. Thus, gut microbiota seems to have a direct, even causative role in mediating connections between the environment, food intake, and chronic disease. As many conditions that increase the risk of diabetes modulate gut microbiota composition, it is likely that immune-mediated reactions, induced by alterations in the composition of the microbiota, can act as facilitators for the onset of diabetes in predisposed subjects. In this review, we summarize recent evidence in the field of gut microbiota and the role of the latter in modulating the immune reactions involved in the pathogenesis of diabetes.
Collapse
|
36
|
Gastrointestinal Microbiota and Type 1 Diabetes Mellitus: The State of Art. J Clin Med 2019; 8:jcm8111843. [PMID: 31684011 PMCID: PMC6912450 DOI: 10.3390/jcm8111843] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of autoimmune type 1 diabetes (T1DM) is increasing worldwide and disease onset tends to occur at a younger age. Unfortunately, clinical trials aiming to detect predictive factors of disease, in individuals with a high risk of T1DM, reported negative results. Hence, actually there are no tools or strategies to prevent T1DM onset. The importance of the gut microbiome in autoimmune diseases is increasingly recognized and recent data suggest that intestinal dysbiosis has a pathogenic role in T1DM by affecting both intestinal immunostasis and the permeability of the gut barrier. An improved understanding of the mechanisms whereby dysbiosis in the gut favors T1DM development may help develop new intervention strategies to reduce both the incidence and burden of T1DM. This review summarizes available data on the associations between gut microbiota and T1DM in both experimental animals and humans and discusses future perspectives in this novel and exciting area of research.
Collapse
|
37
|
Jayasimhan A, Mariño E. Dietary SCFAs, IL-22, and GFAP: The Three Musketeers in the Gut-Neuro-Immune Network in Type 1 Diabetes. Front Immunol 2019; 10:2429. [PMID: 31736937 PMCID: PMC6828936 DOI: 10.3389/fimmu.2019.02429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/30/2019] [Indexed: 01/13/2023] Open
Abstract
Microbial metabolites have a profound effect on the development of type 1 diabetes (T1D). The cross-talk between the gut microbiota, the nervous system, and immune system is necessary to establish and maintain immune and gut tolerance. As quoted by Hippocrates, "All disease begins in the gut." Although this has been recognized for 2,000 years, the connection between the gut and autoimmune T1D is not yet well-understood. Here, we outline new advances supported by our research and others that have contributed to elucidate the impact of microbial metabolites on the physiology of the pancreas and the gut through their remarkable effect on the immune and nervous system. Among many of the mechanisms involved in the gut-beta-cell-immune cross-talk, glial fibrillary acidic protein (GFAP)-expressing cells are critical players in the development of invasive insulitis. Besides, this review reveals a novel mechanism for microbial metabolites by stimulating IL-22, an essential cytokine for gut homeostasis and beta-cell survival. The close connections between the gut and the pancreas are highlighted through our review as microbial metabolites recirculate through the whole body and intimately react with the nervous system, which controls essential disorders associated with diabetes. As such, we discuss the mechanisms of action of microbial metabolites or short-chain fatty acids (SCFAs), IL-22, and GFAP on beta-cells, gut epithelial cells, neurons, and glial cells via metabolite sensing receptors or through epigenetic effects. The fine-tuned gut-neuro-immune network may be profoundly affected by SCFA deficiency related to dysbiosis and diet alterations at very early stages of the initiation of the disease. Thus, dampening the initial immune response or preventing the perpetuation of the immune response by maintaining the integrity of the gut is among the alternative approaches to prevent T1D.
Collapse
Affiliation(s)
- Abhirup Jayasimhan
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Eliana Mariño
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats. Biomed Pharmacother 2019; 118:109393. [DOI: 10.1016/j.biopha.2019.109393] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
|
39
|
Hansen CHF, Larsen CS, Petersson HO, Zachariassen LF, Vegge A, Lauridsen C, Kot W, Krych Ł, Nielsen DS, Hansen AK. Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice. Diabetologia 2019; 62:1689-1700. [PMID: 31139852 DOI: 10.1007/s00125-019-4910-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Adopting a diet containing indigestible fibre compounds such as prebiotics to fuel advantageous bacteria has proven beneficial for alleviating inflammation. The effect of the microbial changes on autoimmunity, however, remains unknown. We studied the effects of prebiotic xylooligosaccharides (XOS) on pancreatic islet and salivary gland inflammation in NOD mice and tested whether these were mediated by the gut microbiota. METHODS Mother and offspring mice were fed an XOS-supplemented diet until diabetes onset or weaning and were compared with a control-fed group. Diabetes incidence was monitored, insulitis and sialadenitis were scored in histological sections from adult mice, and several metabolic and immune variables were analysed in mice before the development of diabetes. Gut barrier function was assessed using an in vivo FITC-dextran permeability test. The importance of XOS-mediated gut microbial changes were evaluated in antibiotic-treated mice fed either XOS or control diet or given a faecal microbiota transplant from test animals. RESULTS Diabetes onset was delayed in the XOS-fed mice, which also had fewer cellular infiltrations in their pancreatic islets and salivary glands. Interestingly, insulitis was most reduced in the XOS-fed groups when the mice were also treated with an antibiotic cocktail. There was no difference in sialadenitis between the dietary groups treated with antibiotics; the mice were protected by microbiota depletion regardless of diet. Faecal microbiota transplantation was not able to transfer protection. No major differences in glucose-insulin regulation, glucagon-like peptide-1, or short-chain fatty acid production were related to the XOS diet. The XOS diet did, however, reduce gut permeability markers in the small and large intestine. This was accompanied by a more anti-inflammatory environment locally and systemically, dominated by a shift from M1 to M2 macrophages, a higher abundance of activated regulatory T cells, and lower levels of induction of natural killer T cells and cytotoxic T cells. CONCLUSIONS/INTERPRETATION Prebiotic XOS have microbiota-dependent effects on salivary gland inflammation and microbiota-independent effects on pancreatic islet pathology that are accompanied by an improved gut barrier that seems able to heighten control of intestinal diabetogenic antigens that have the potential to penetrate the mucosa to activate autoreactive immune responses.
Collapse
Affiliation(s)
- Camilla H F Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| | - Christian S Larsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Henriette O Petersson
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Line F Zachariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | | | | | - Witold Kot
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Łukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Axel K Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| |
Collapse
|
40
|
Neuman V, Cinek O, Funda DP, Hudcovic T, Golias J, Kramna L, Petruzelkova L, Pruhova S, Sumnik Z. Human gut microbiota transferred to germ-free NOD mice modulate the progression towards type 1 diabetes regardless of the pace of beta cell function loss in the donor. Diabetologia 2019; 62:1291-1296. [PMID: 31025045 DOI: 10.1007/s00125-019-4869-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS This study aimed to assess the ability of human gut microbiota to delay the onset of type 1 diabetes when transferred into germ-free NOD mice. METHODS Two children with rapid and three children with slow beta cell function loss (as assessed by C-peptide AUC change in the mixed-meal tolerance tests performed 1 and 12 months after type 1 diabetes onset), participating in an ongoing trial with gluten-free diet, donated faeces, which were transferred into germ-free NOD mice. The mice were subsequently followed for diabetes incidence. RESULTS The bacterial profiles of bacteriome-humanised mice had significantly (p < 10-5) lower alpha diversity than the donor material, with marked shifts in ratios between the main phyla. Diabetes onset was significantly delayed in all bacteriome-humanised colonies vs germ-free NOD mice, but the pace of beta cell loss was not transferable to the mouse model. CONCLUSIONS/INTERPRETATION Germ-free NOD mice colonised with human gut microbiome are able to adopt a large proportion of transferred bacterial content, although the ratios of main phyla are reproduced only suboptimally. The recipient mice did not replicate the phenotype of the stool donor in relation to the pace towards type 1 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT02867436.
Collapse
Affiliation(s)
- Vit Neuman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, CZ-15006, Prague 5, Czech Republic.
| | - Ondrej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, CZ-15006, Prague 5, Czech Republic
| | - David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague and Novy Hradek, Czech Republic
| | - Tomas Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague and Novy Hradek, Czech Republic
| | - Jaroslav Golias
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague and Novy Hradek, Czech Republic
| | - Lenka Kramna
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, CZ-15006, Prague 5, Czech Republic
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, CZ-15006, Prague 5, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, CZ-15006, Prague 5, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, CZ-15006, Prague 5, Czech Republic
| |
Collapse
|
41
|
Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A 2019; 116:15140-15149. [PMID: 31182588 PMCID: PMC6660755 DOI: 10.1073/pnas.1814558116] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Functional loss of gut barrier integrity with subsequent increased antigen trafficking and occurrence of low-grade intestinal inflammation precede the onset of type 1 diabetes (T1D) in patients and preclinical models, thus suggesting that these events are mechanistically linked to the autoimmune pathogenesis of the disease. However, a causal relationship between increased intestinal permeability and autoimmune diabetes was never demonstrated. Our data show that breakage of gut barrier continuity leads to activation of islet-reactive T cells in the intestine, thus triggering autoimmune diabetes. An important implication of our findings is that restoration of a healthy gut barrier through microbiota and diet modulation in diabetes-prone individuals could reduce intestinal activation of islet-reactive T cells and prevent T1D occurrence. Low-grade intestinal inflammation and alterations of gut barrier integrity are found in patients affected by extraintestinal autoimmune diseases such as type 1 diabetes (T1D), but a direct causal link between enteropathy and triggering of autoimmunity is yet to be established. Here, we found that onset of autoimmunity in preclinical models of T1D is associated with alterations of the mucus layer structure and loss of gut barrier integrity. Importantly, we showed that breakage of the gut barrier integrity in BDC2.5XNOD mice carrying a transgenic T cell receptor (TCR) specific for a beta cell autoantigen leads to activation of islet-reactive T cells within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota by antibiotic treatment. Our results indicate that loss of gut barrier continuity can lead to activation of islet-specific T cells within the intestinal mucosa and to autoimmune diabetes and provide a strong rationale to design innovative therapeutic interventions in “at-risk” individuals aimed at restoring gut barrier integrity to prevent T1D occurrence.
Collapse
|
42
|
Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. Int J Mol Sci 2018; 19:ijms19123720. [PMID: 30467295 PMCID: PMC6320976 DOI: 10.3390/ijms19123720] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of metabolic disorders, including diabetes, has elevated exponentially during the last decades and enhanced the risk of a variety of complications, such as diabetes and cardiovascular diseases. In the present review, we have highlighted the new insights on the complex relationships between diet-induced modulation of gut microbiota and metabolic disorders, including diabetes. Literature from various library databases and electronic searches (ScienceDirect, PubMed, and Google Scholar) were randomly collected. There exists a complex relationship between diet and gut microbiota, which alters the energy balance, health impacts, and autoimmunity, further causes inflammation and metabolic dysfunction, including diabetes. Faecalibacterium prausnitzii is a butyrate-producing bacterium, which plays a vital role in diabetes. Transplantation of F. prausnitzii has been used as an intervention strategy to treat dysbiosis of the gut’s microbial community that is linked to the inflammation, which precedes autoimmune disease and diabetes. The review focuses on literature that highlights the benefits of the microbiota especially, the abundant of F. prausnitzii in protecting the gut microbiota pattern and its therapeutic potential against inflammation and diabetes.
Collapse
|
43
|
Yap YA, Mariño E. An Insight Into the Intestinal Web of Mucosal Immunity, Microbiota, and Diet in Inflammation. Front Immunol 2018; 9:2617. [PMID: 30532751 PMCID: PMC6266996 DOI: 10.3389/fimmu.2018.02617] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rising global incidence of autoimmune and inflammatory conditions can be attributed to changes in the large portion of the immune system that belongs to our gastrointestinal tract (GI). The intestinal immune system serves as a gatekeeper to prevent pathogenic invasions and to preserve a healthier gut microbiota. The gut microbiota has been increasingly studied as a fundamental contributor to the state of health and disease. From food fermentation, the gut microbiota releases metabolites or short chain fatty acids (SCFAs), which have anti-inflammatory properties and preserve gut homeostasis. Immune responses against food and microbial antigens can cause inflammatory disorders such as inflammatory bowel disease (IBD) and celiac disease. As such, many autoimmune and inflammatory diseases also have a “gut origin”. A large body of evidence in recent years by ourselves and others has uncovered the link between the immune system and the SCFAs in specific diseases such as autoimmune type 1 diabetes (T1D), obesity and type 2 diabetes (T2D), cardiovascular disease, infections, allergies, asthma, and IBD. Thus, the power of these three gut dynamic components—the mucosal immunity, the microbiota, and diet—can be harnessed in tandem for the prevention and treatment of many inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Yu Anne Yap
- Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Eliana Mariño
- Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
44
|
Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A, Tinahones FJ, Fernández-García JC, Queipo-Ortuño MI. Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study. Diabetes Care 2018; 41:2385-2395. [PMID: 30224347 DOI: 10.2337/dc18-0253] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/26/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared. RESEARCH DESIGN AND METHODS This was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors modifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing. RESULTS Compared with healthy control subjects, type 1 diabetes was associated with a significantly lower microbiota diversity, a significantly higher relative abundance of Bacteroides, Ruminococcus, Veillonella, Blautia, and Streptococcus genera, and a lower relative abundance of Bifidobacterium, Roseburia, Faecalibacterium, and Lachnospira. Children with MODY2 showed a significantly higher Prevotella abundance and a lower Ruminococcus and Bacteroides abundance. Proinflammatory cytokines and lipopolysaccharides were increased in type 1 diabetes, and gut permeability (determined by zonulin levels) was significantly increased in type 1 diabetes and MODY2. The PICRUSt analysis found an increment of genes related to lipid and amino acid metabolism, ABC transport, lipopolysaccharide biosynthesis, arachidonic acid metabolism, antigen processing and presentation, and chemokine signaling pathways in type 1 diabetes. CONCLUSIONS Gut microbiota in type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy subjects but fundamentally with regard to a model of nonautoimmune diabetes. Future longitudinal studies should be aimed at evaluating if the modulation of gut microbiota in patients with a high risk of type 1 diabetes could modify the natural history of this autoimmune disease.
Collapse
Affiliation(s)
- Isabel Leiva-Gea
- Pediatric Endocrinology, Hospital Materno-Infantil, Málaga, Spain
| | - Lidia Sánchez-Alcoholado
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | | | - Daniel Castellano-Castillo
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | | | - Francisco J Tinahones
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain .,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
45
|
Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, De Vos WM. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 2018; 67:1445-1453. [PMID: 29269438 DOI: 10.1136/gutjnl-2017-314508] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intestinal microbiota is implicated in the pathogenesis of autoimmune type 1 diabetes in humans and in non-obese diabetic (NOD) mice, but evidence on its causality and on the role of individual microbiota members is limited. We investigated if different diabetes incidence in two NOD colonies was due to microbiota differences and aimed to identify individual microbiota members with potential significance. DESIGN We profiled intestinal microbiota between two NOD mouse colonies showing high or low diabetes incidence by 16S ribosomal RNA gene sequencing and colonised the high-incidence colony with the microbiota of the low-incidence colony. Based on unaltered incidence, we identified a few taxa which were not effectively transferred and thereafter, transferred experimentally one of these to test its potential significance. RESULTS Although the high-incidence colony adopted most microbial taxa present in the low-incidence colony, diabetes incidence remained unaltered. Among the few taxa which were not transferred, Akkermansia muciniphila was identified. As A. muciniphila abundancy is inversely correlated to the risk of developing type 1 diabetes-related autoantibodies, we transferred A. muciniphila experimentally to the high-incidence colony. A. muciniphila transfer promoted mucus production and increased expression of antimicrobial peptide Reg3γ, outcompeted Ruminococcus torques from the microbiota, lowered serum endotoxin levels and islet toll-like receptor expression, promoted regulatory immunity and delayed diabetes development. CONCLUSION Transfer of the whole microbiota may not reduce diabetes incidence despite a major change in gut microbiota, but single symbionts such as A. muciniphila with beneficial metabolic and immune signalling effects may reduce diabetes incidence when administered as a probiotic.
Collapse
Affiliation(s)
- Arno Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.,Turku University Hospital, Hospital District of Southwest Finland, Turku, Finland
| | - Raine Toivonen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Sakari Pöysti
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Universite Catholique de Louvain, Brussels, Belgium
| | - Janneke P Ouwerkerk
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands
| | - Rohini Emani
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Universite Catholique de Louvain, Brussels, Belgium
| | - Willem M De Vos
- Laboratory of Microbiology, Wagenigen University, Wageningen, The Netherlands.,RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Rios-Arce ND, Collins FL, Schepper JD, Steury MD, Raehtz S, Mallin H, Schoenherr DT, Parameswaran N, McCabe LR. Epithelial Barrier Function in Gut-Bone Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:151-183. [PMID: 29101655 DOI: 10.1007/978-3-319-66653-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as cytokines, diet, and diseases, can affect this barrier. These factors have been shown to increase intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory bowel disease. Our lab and others have also shown that barrier disruption can have systemic effects including bone loss. In this chapter, we will discuss the current literature to understand the link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis, and metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current suggested mechanism between intestinal barrier and bone.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Heather Mallin
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Danny T Schoenherr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Narayanan Parameswaran
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA. .,Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Laura R McCabe
- Department of Physiology and Department of Radiology, Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
47
|
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9:432. [PMID: 29593681 PMCID: PMC5857604 DOI: 10.3389/fmicb.2018.00432] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.
Collapse
Affiliation(s)
- Maria C Opazo
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Elizabeth M Ortega-Rocha
- Laboratorio de Inmunobiología, Facultad de Medicina, Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Irenice Coronado-Arrázola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Helene Boudin
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Michel Neunlist
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad, Metropolitana, Chile
| | - Claudia A Riedel
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
48
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the selective destruction of insulin-producing β cells as result of a complex interplay between genetic, stochastic and environmental factors in genetically susceptible individuals. An increasing amount of experimental data from animal models and humans has supported the role played by imbalanced gut microbiome in T1D pathogenesis. The commensal intestinal microbiota is fundamental for several physiologic mechanisms, including the establishment of immune homeostasis. Alterations in its composition have been correlated to changes in the gut immune system, including defective tolerance to food antigens, intestinal inflammation and enhanced gut permeability. Early findings reported differences in the intestinal microbiome of subjects affected by prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence microbiome composition and discusses their putative correlation with T1D development. Further studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced permeability and the autoimmune mechanisms responsible for T1D onset.
Collapse
|
49
|
Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H, Jin Y, Zhu B, Wei Y. Alterations of the Gut Microbiota in Hashimoto's Thyroiditis Patients. Thyroid 2018; 28:175-186. [PMID: 29320965 DOI: 10.1089/thy.2017.0395] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disease in which both genetic predisposition and environmental factors serve as disease triggers. Many studies have indicated that alterations in the gut microbiota are important environmental factors in the development of inflammatory and autoimmune diseases. A comparative analysis was systematically performed of the gut microbiota in HT patients and healthy controls. METHODS First, a cross-sectional study of 28 HT patients and 16 matched healthy controls was conducted. Fecal samples were collected, and microbiota were analyzed using 16S ribosomal RNA gene sequencing. Second, an independent cohort of 22 HT patients and 11 healthy controls was used to evaluate the diagnostic potential of the selected biomarkers. RESULTS Similar levels of bacterial richness and diversity were found in the gut microbiota of HT patients and healthy controls (p = 0.11). A detailed fecal microbiota Mann-Whitney U-test (Q value <0.05) revealed that the abundance levels of Blautia, Roseburia, Ruminococcus_torques_group, Romboutsia, Dorea, Fusicatenibacter, and Eubacterium_hallii_group genera were increased in HT patients, whereas the abundance levels of Fecalibacterium, Bacteroides, Prevotella_9, and Lachnoclostridium genera were decreased. A correlation matrix based on the Spearman correlation distance confirmed correlations among seven clinical parameters. Additionally, the linear discriminant analysis effect size method showed significant differences in 27 genera between the two groups that were strongly correlated with clinical parameters. The linear discriminant analysis value was used to select the first 10 species from the 27 different genera as biomarkers, achieving area under the curve values of 0.91 and 0.88 for exploration and validation data, respectively. CONCLUSIONS Characterization of the gut microbiota in HT patients confirmed that HT patients have altered gut microbiota and that gut microbiota are correlated with clinical parameters, suggesting that microbiome composition data could be used for disease diagnosis. Further investigation is required to understand better the role of the gut microbiota in the pathogenesis of HT.
Collapse
Affiliation(s)
- Fuya Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Jing Feng
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Huinan Chen
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Ye Jin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Biqiang Zhu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, People's Republic of China
| |
Collapse
|
50
|
Serino M. Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. J Mol Biol 2018; 430:581-590. [PMID: 29374557 DOI: 10.1016/j.jmb.2018.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
Alterations of both ecology and functions of gut microbiota are conspicuous traits of several inflammatory pathologies, notably metabolic diseases such as obesity and type 2 diabetes. Moreover, the proliferation of enterobacteria, subdominant members of the intestinal microbial ecosystem, has been shown to be favored by Western diet, the strongest inducer of both metabolic diseases and gut microbiota dysbiosis. The inner interdependence between the host and the gut microbiota is based on a plethora of molecular mechanisms by which host and intestinal microbes modify each other. Among these mechanisms are as follows: (i) the well-known metabolic impact of short chain fatty acids, produced by microbial fermentation of complex carbohydrates from plants; (ii) a mutual modulation of miRNAs expression, both on the eukaryotic (host) and prokaryotic (gut microbes) side; (iii) the production by enterobacteria of virulence factors such as the genotoxin colibactin, shown to alter the integrity of host genome and induce a senescence-like phenotype in vitro; (iv) the microbial excretion of outer-membrane vesicles, which, in addition to other functions, may act as a carrier for multiple molecules such as toxins to be delivered to target cells. In this review, I describe the major molecular mechanisms by which gut microbes exert their metabolic impact at a multi-organ level (the gut barrier being in the front line) and support the emerging triad of metabolic diseases, gut microbiota dysbiosis and enterobacteria infections.
Collapse
Affiliation(s)
- Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| |
Collapse
|