1
|
Martini C, Logan JM, Sorvina A, Gordon C, Beck AR, S-Y Ung B, Caruso MC, Moore C, Hocking A, Johnson IRD, Li KL, Karageorgos L, Hopkins AM, Esterman AJ, Huzzell C, Brooks RD, Lazniewska J, Hickey SM, Bader C, Parkinson-Lawrence E, Weigert R, Sorich MJ, Tewari P, Martin C, O'Toole S, Bates M, Ward M, Mohammed B, Keegan H, Watson W, Prendergast S, Heffernan S, NiMhaolcatha S, O'Connor R, Malone V, Carter M, Ryan K, Brady N, Clarke A, Sokol F, Prabhakaran S, Stahl J, Klebe S, Samaratunga H, Delahunt B, Selemidis S, Moretti KL, Butler LM, O'Leary JJ, Brooks DA. Aberrant protein expression of Appl1, Sortilin and Syndecan-1 during the biological progression of prostate cancer. Pathology 2023; 55:40-51. [PMID: 36089417 DOI: 10.1016/j.pathol.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023]
Abstract
Diagnosis and assessment of patients with prostate cancer is dependent on accurate interpretation and grading of histopathology. However, morphology does not necessarily reflect the complex biological changes occurring in prostate cancer disease progression, and current biomarkers have demonstrated limited clinical utility in patient assessment. This study aimed to develop biomarkers that accurately define prostate cancer biology by distinguishing specific pathological features that enable reliable interpretation of pathology for accurate Gleason grading of patients. Online gene expression databases were interrogated and a pathogenic pathway for prostate cancer was identified. The protein expression of key genes in the pathway, including adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (Appl1), Sortilin and Syndecan-1, was examined by immunohistochemistry (IHC) in a pilot study of 29 patients with prostate cancer, using monoclonal antibodies designed against unique epitopes. Appl1, Sortilin, and Syndecan-1 expression was first assessed in a tissue microarray cohort of 112 patient samples, demonstrating that the monoclonal antibodies clearly illustrate gland morphologies. To determine the impact of a novel IHC-assisted interpretation (the utility of Appl1, Sortilin, and Syndecan-1 labelling as a panel) of Gleason grading, versus standard haematoxylin and eosin (H&E) Gleason grade assignment, a radical prostatectomy sample cohort comprising 114 patients was assessed. In comparison to H&E, the utility of the biomarker panel reduced subjectivity in interpretation of prostate cancer tissue morphology and improved the reliability of pathology assessment, resulting in Gleason grade redistribution for 41% of patient samples. Importantly, for equivocal IHC-assisted labelling and H&E staining results, the cancer morphology interpretation could be more accurately applied upon re-review of the H&E tissue sections. This study addresses a key issue in the field of prostate cancer pathology by presenting a novel combination of three biomarkers and has the potential to transform clinical pathology practice by standardising the interpretation of the tissue morphology.
Collapse
Affiliation(s)
- Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Colin Gordon
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Andrew R Beck
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ben S-Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ashleigh Hocking
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Adrian J Esterman
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Chelsea Huzzell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Christie Bader
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | | | - Roberto Weigert
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Prerna Tewari
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Mark Ward
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Bashir Mohammed
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Helen Keegan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - William Watson
- University College Dublin, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sophie Prendergast
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Sheena Heffernan
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Sarah NiMhaolcatha
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Roisin O'Connor
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Victoria Malone
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Marguerite Carter
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Katie Ryan
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Nathan Brady
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Andres Clarke
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Filip Sokol
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Sarita Prabhakaran
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia; Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jürgen Stahl
- Department of Cytopathology and Histopathology, Clinpath Pathology, Adelaide, SA, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Vic, Australia
| | - Kim L Moretti
- Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia; University of South Australia, Adelaide, SA, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia; Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
2
|
Guan F, Ding Y, He Y, Li L, Yang X, Wang C, Hu M. Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:457-468. [PMID: 36302621 PMCID: PMC9614402 DOI: 10.4196/kjpp.2022.26.6.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.
Collapse
Affiliation(s)
- Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yikang He
- Tongji Medical College Huazhong University of Science and Technology, School of Nursing, Wuhan 430030, China
| | - Lu Li
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xinyu Yang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China,Correspondence Changhua Wang, E-mail:
| | - Mingbai Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,Mingbai Hu, E-mail:
| |
Collapse
|
3
|
Preservation of Fat-free Mass in the first year after Bariatric Surgery: A systematic review and meta-analysis of 122 studies and 10758 participants. Surg Obes Relat Dis 2022; 18:964-982. [DOI: 10.1016/j.soard.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
|
4
|
Van de Velde F, Ouwens DM, Batens AH, Van Nieuwenhove Y, Lapauw B. Divergent dynamics in systemic and tissue-specific metabolic and inflammatory responses during weight loss in subjects with obesity. Cytokine 2021; 144:155587. [PMID: 34052657 DOI: 10.1016/j.cyto.2021.155587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
AIM Dysfunction of adipose and muscle tissue associates with obesity-related co-morbidities such as insulin resistance (IR) and inflammation. This study investigates changes in systemic and tissue-specific markers of IR and inflammation after gastric bypass surgery (GBS) in subjects with obesity. METHODS Prospective study, twenty subjects with obesity (50 ± 10 years, 14 men). Prior to, and six months and one year after GBS, subcutaneous abdominal adipose tissue (SAT), skeletal muscle and fasting serum samples were collected. Serum levels of C-reactive protein (CRP), glucose and insulin were determined using standard laboratory assays and serum IL-6, IL-10 and TNF-α levels were determined using ELISA. Tissue mRNA expression of inflammation and insulin/glucose metabolism markers were analyzed using qPCR. RESULTS After GBS, HOMA-IR, CRP and IL-6 serum levels decreased. In SAT, expression of bone morphogenetic protein 4 (BMP4), IL-6, IL-10 and MCP1 decreased and GLUT4 increased (all p < 0.05). In muscle, expression of BMP4, GLUT4 and IL-6 decreased and of MCP1 and IRS-1 increased (all p < 0.05). CONCLUSION Systemic improvements in inflammation and IR after GBS are only partially mirrored by corresponding changes in adipokine and myokine expression patterns. As changes in expression of other markers of inflammation and insulin/glucose metabolism appear less consistent and even divergent between tissues, the inflammatory and IR status at systemic level cannot be extrapolated to the situation in metabolically active tissues.
Collapse
Affiliation(s)
| | - D Margriet Ouwens
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium; Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | | | - Yves Van Nieuwenhove
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
Data on Adiponectin from 2010 to 2020: Therapeutic Target and Prognostic Factor for Liver Diseases? Int J Mol Sci 2020; 21:ijms21155242. [PMID: 32718097 PMCID: PMC7432057 DOI: 10.3390/ijms21155242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The review describes the role of adiponectin in liver diseases in the presence and absence of surgery reported in the literature in the last ten years. The most updated therapeutic strategies based on the regulation of adiponectin including pharmacological and surgical interventions and adiponectin knockout rodents, as well as some of the scientific controversies in this field, are described. Whether adiponectin could be a potential therapeutic target for the treatment of liver diseases and patients submitted to hepatic resection or liver transplantation are discussed. Furthermore, preclinical and clinical data on the mechanism of action of adiponectin in different liver diseases (nonalcoholic fatty disease, alcoholic liver disease, nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma) in the absence or presence of surgery are evaluated in order to establish potential targets that might be useful for the treatment of liver disease as well as in the practice of liver surgery associated with the hepatic resections of tumors and liver transplantation.
Collapse
|
6
|
Artimani T, Najafi R. APPL1 as an important regulator of insulin and adiponectin‐signaling pathways in the PCOS: A narrative review. Cell Biol Int 2020; 44:1577-1587. [DOI: 10.1002/cbin.11367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tayebe Artimani
- Endometrium and Endometriosis Research CenterHamadan University of Medical Sciences Hamadan Iran
| | - Rezvan Najafi
- Research Center for Molecular MedicineHamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
7
|
Choi SK, Kwon Y, Byeon S, Haam CE, Lee YH. AdipoRon, adiponectin receptor agonist, improves vascular function in the mesenteric arteries of type 2 diabetic mice. PLoS One 2020; 15:e0230227. [PMID: 32182257 PMCID: PMC7077821 DOI: 10.1371/journal.pone.0230227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/15/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND An orally active synthetic adiponectin receptor agonist, AdipoRon has been suggested to ameliorate insulin resistance, and glucose tolerance. However, the chronic effect of AdipoRon in the vascular dysfunction in type 2 diabetes has not been studied yet. Thus, in this study, we examined whether AdipoRon improves vascular function in type 2 diabetes. METHODS Type 2 diabetic (db-/db-) mice were treated with AdipoRon (10 mg/kg/everyday, by oral gavage) for 2 weeks. Body weight and blood glucose levels were recorded every other day during the experimental period. Diameter of mesenteric arteries was measured. And western blot analysis was performed with mesenteric arteries. RESULTS Pressure-induced myogenic response was significantly increased while endothelium-dependent relaxation was reduced in the mesenteric arteries of db-/db- mice. Treatment of AdipoRon normalized potentiated myogenic response, whereas endothelium-dependent relaxation was not affected by treatment of AdipoRon. The expression levels of AdiR1, AdiR2, APPL1, and APPL 2 were increased in the mesenteric arteries of db-/db- mice and treatment of AdipoRon did not affect them. Interestingly, AdipoRon treatment increased the phospho-AMPK and decreased MYPT1 phosphorylation in db-/db- mice while there was no change in the level of eNOS phosphorylation. CONCLUSION The treatment of AdipoRon improves vascular function in the mesenteric arteries of db-/db- mice through endothelium-independent mechanism. We suggest that MLCP activation through reduced phosphorylation of MYPT1 might be the dominant mechanism in the AdipoRon-induced vascular effect.
Collapse
Affiliation(s)
- Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Youngin Kwon
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Seonhee Byeon
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Chae Eun Haam
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Young-Ho Lee
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
8
|
Rehman MYA, van Herwijnen M, Krauskopf J, Farooqi A, Kleinjans JCS, Malik RN, Briedé JJ. Transcriptome responses in blood reveal distinct biological pathways associated with arsenic exposure through drinking water in rural settings of Punjab, Pakistan. ENVIRONMENT INTERNATIONAL 2020; 135:105403. [PMID: 31864032 DOI: 10.1016/j.envint.2019.105403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/28/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Groundwater Arsenic (As) contamination is a global public health concern responsible for various health implications and a neglected area of environmental health research in Pakistan. Because of interindividual differences in genetic predisposition, As-related health issues may not be equally distributed among the As-exposed population. However, till date, no studies have been conducted including multiple SNPs involved in As metabolism and disease risk using a linear mixed effect model approach to analyze peripheral blood transcriptomics results. OBJECTIVES In order to detect early responses on the gene expression level and to evaluate the impact of selected SNPs inferring disease risks associated with As exposure, we designed a systematic study to investigate blood transcriptomics profiles of 57 differentially exposed rural subjects living in drinking water As-contaminated settings of Lahore and Kasur districts in Punjab Province in southeast Pakistan. Exposure among the subjects was correlated with individual transcriptome responses applying urinary As profiles as the main biomarker for risk stratification. METHODS We performed whole genome gene expression analysis in blood of subjects using microarrays. Linear effect mixed models were applied for evaluating the combined impact of SNPs hypothetically increasing the risk for As exposure-induced health effects (GSTM1, GSTT1, As3MT, DNMT1, MTHFR, ERCC2 and EGFR). RESULTS Our findings confirmed important signaling, growth factor, cancer and other disease related pathways known to be associated with increased As exposure levels. In addition, upon implementing our integrative SNPs-based genetic risk factor, pathways associated with an increased risk of NAFLD and diabetes appeared significantly enhanced by down-regulation of genes NDUFV3, IKBKB, IL6R, ADIPOR1, PPARA, OGT and FOXO1. CONCLUSION We report the first comprehensive study applying state-of-the-art bioinformatics approaches to address multiple SNP-based inter-individual variability in adverse molecular responses among subjects exposed to drinking water As contamination in Pakistan thereby providing strong evidence of various gene expression targets associated with development of known As-related diseases.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Marcel van Herwijnen
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Julian Krauskopf
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Abida Farooqi
- Environmental Hydro-Geochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jos C S Kleinjans
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jacco Jan Briedé
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands.
| |
Collapse
|
9
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
10
|
Ahmad A, Ali T, Kim MW, Khan A, Jo MH, Rehman SU, Khan MS, Abid NB, Khan M, Ullah R, Jo MG, Kim MO. Adiponectin homolog novel osmotin protects obesity/diabetes-induced NAFLD by upregulating AdipoRs/PPARα signaling in ob/ob and db/db transgenic mouse models. Metabolism 2019; 90:31-43. [PMID: 30473057 DOI: 10.1016/j.metabol.2018.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND In metabolic disorders, adiponectin and adiponectin receptors (AdipoR1/R2) signaling has a key role in improving nonalcoholic fatty liver disease (NAFLD) in obesity-associated diabetes. OBJECTIVE To the best of our knowledge, here, we reported for the first time the underlying mechanistic therapeutic efficacy of the novel osmotin, a homolog of mammalian adiponectin, against NAFLD in leptin-deficient ob/ob and db/db mice. METHODS The ob/ob and db/db mice were treated with osmotin at a dose of 5 μg/g three times a week for two weeks. To co-relate the in vivo results we used the human liver carcinoma HepG2 cells, subjected to knockdown with small siRNAs of AdipoR1/R2 and PPARα genes and treated with osmotin and palmitic acid (P.A.). MTT assay, Western blotting, immunohistofluorescence assays, and plasma biochemical analyses were applied. RESULTS Osmotin stimulated AdipoR1/R2 and its downstream APPL1/PPAR-α/AMPK/SIRT1 pathways in ob/ob and db/db mice, and HepG2 cells exposed to P.A. Mechanistically, we confirmed that knockdown of AdipoR1/R2 and PPARα by their respective siRNAs abolished the osmotin activity in HepG2 cells exposed to P.A. Overall, the in vivo and in vitro results suggested that osmotin protected against NAFLD through activation of AdipoR1/R2 and its downstream APPL1/PPAR-α/AMPK/SIRT1 pathways as shown by the reduced body weight, blood glucose level and glycated hemoglobin, improved glucose tolerance, attenuated insulin resistance and hepatic glucogenesis, regulated serum lipid parameters, and increased fatty acid oxidation and mitochondrial functions. CONCLUSION Our findings strongly suggest that novel osmotin might be a potential novel therapeutic tool against obesity/diabetes-induced NAFLD and other metabolic disorders.
Collapse
MESH Headings
- Adiponectin/analogs & derivatives
- Adiponectin/chemistry
- Animals
- Anti-Obesity Agents/pharmacology
- Cytoprotection/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Disease Models, Animal
- Hep G2 Cells
- Humans
- Hypoglycemic Agents/pharmacology
- Leptin/deficiency
- Leptin/genetics
- Lipid Metabolism/drug effects
- Liver/drug effects
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Mice, Transgenic
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/pathology
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity/complications
- Obesity/genetics
- Obesity/pathology
- PPAR alpha/metabolism
- Plant Proteins/pharmacology
- Receptors, Adiponectin/metabolism
- Receptors, Leptin/deficiency
- Receptors, Leptin/genetics
- Signal Transduction/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Min Woo Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Amjad Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Myeung Hoon Jo
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Noman Bin Abid
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Mehtab Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Rahat Ullah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Min Gi Jo
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
11
|
Xie Z, Huang L, Enkhjargal B, Reis C, Wan W, Tang J, Cheng Y, Zhang JH. Intranasal administration of recombinant Netrin-1 attenuates neuronal apoptosis by activating DCC/APPL-1/AKT signaling pathway after subarachnoid hemorrhage in rats. Neuropharmacology 2017; 119:123-133. [PMID: 28347836 DOI: 10.1016/j.neuropharm.2017.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
Abstract
Neuronal apoptosis is a crucial pathological process in early brain injury after subarachnoid hemorrhage (SAH). The effective therapeutic strategies to ameliorate neuronal apoptosis are still absent. We intended to determine whether intranasal administration of exogenous Netrin-1 (NTN-1) could attenuate neuronal apoptosis after experimental SAH, specifically via activating DCC-dependent APPL-1/AKT signaling cascade. Two hundred twenty-five male Sprague-Dawley rats were subjected to the endovascular perforation model of SAH. Recombinant human NTN-1 (rNTN-1) was administered intranasally. NTN-1 small interfering RNA (siRNA), APPL-1 siRNA, and AKT inhibitor MK2206 were administered through intracerebroventricular (i.c.v.) injection. SAH grade, neurological score, neuronal apoptosis assessed by cleaved caspase-3 (CC-3) expression and Fluoro-Jade C (FJC) staining, double immunofluorescence staining, and Western blot were examined. Our results revealed that endogenous NTN-1 level was increased after SAH. Administration of rNTN-1 improved neurological outcomes at 24 h and 72 h after SAH, while knockdown of endogenous NTN-1 worsened neurological impairments. Furthermore, exogenous rNTN-1 treatment promoted APPL-1 activation, increased phosphorylated-AKT and Bcl-2 expression, as well as decreased apoptotic marker CC-3 expression and the number of FJC-positive neurons, thereby alleviated neuronal apoptosis. Conversely, APPL-1 siRNA and MK2206 abolished the anti-apoptotic effect of exogenous rNTN-1 at 24 h after SAH. Collectively, intranasal administration of exogenous rNTN-1 attenuated neuronal apoptosis and improved neurological function in SAH rats, at least in apart via activating DCC/APPL-1/AKT signaling pathway.
Collapse
Affiliation(s)
- Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Cesar Reis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Weifeng Wan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States.
| |
Collapse
|
12
|
Saito T, Okada S, Shimoda Y, Tagaya Y, Osaki A, Yamada E, Shibusawa R, Nakajima Y, Ozawa A, Satoh T, Mori M, Yamada M. APPL1 promotes glucose uptake in response to mechanical stretch via the PKCζ-non-muscle myosin IIa pathway in C2C12 myotubes. Cell Signal 2016; 28:1694-702. [DOI: 10.1016/j.cellsig.2016.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
13
|
Dehghan R, Saidijam M, Mehdizadeh M, Shabab N, Yavangi M, Artimani T. Evidence for decreased expression of APPL1 associated with reduced insulin and adiponectin receptors expression in PCOS patients. J Endocrinol Invest 2016; 39:1075-82. [PMID: 27075719 DOI: 10.1007/s40618-016-0468-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the expression of Adaptor protein containing a PH domain, PTB domain and leucine zipper motif 1 (APPL1), insulin receptor (INSR), adiponectin and adiponectin receptors (adipoR1 and R2) and their possible associations in granulosa cells (GCs) of 22 polycystic ovary syndrome (PCOS) women compared to the 22 non-PCOS controls with normal ovulatory function matched for BMI (body mass index). METHODS In this study, 44 infertile women aged 18-40 years undergoing in vitro fertilization (IVF) protocol were recruited. After follicular fluid collection, GCs were isolated and then purified with MACS (Micro Beads conjugated to monoclonal anti-human CD45 antibodies). RNA was extracted from GCs and quantitative real-time PCR (qRT-PCR) was performed to assess APPL1 gene expression. RESULTS Expression of APPL1, insulin receptor and adiponectin system genes was significantly decreased in PCOS group compared to the controls. CONCLUSIONS Reduction of APPL1, insulin receptor and adiponectin system genes in GCs could be involved in the development of PCOS.
Collapse
Affiliation(s)
- R Dehghan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - N Shabab
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Yavangi
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - T Artimani
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Freitas Lima LC, Braga VDA, do Socorro de França Silva M, Cruz JDC, Sousa Santos SH, de Oliveira Monteiro MM, Balarini CDM. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 2015; 6:304. [PMID: 26578976 PMCID: PMC4630286 DOI: 10.3389/fphys.2015.00304] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases can be considered the most important cause of death in diabetic population and diabetes can in turn increase the risk of cardiovascular events. Inflammation process is currently recognized as responsible for the development and maintenance of diverse chronic diseases, including diabetes and atherosclerosis. Considering that adipose tissue is an important source of adipokines, which may present anti and proinflammatory effects, the aim of this review is to explore the role of the main adipokines in the pathophysiology of diabetes and atherosclerosis, highlighting the therapeutic options that could arise from the manipulation of these signaling pathways both in humans and in translational models.
Collapse
Affiliation(s)
| | - Valdir de Andrade Braga
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| | | | - Josiane de Campos Cruz
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| | - Sérgio H. Sousa Santos
- Biological Sciences Institute, Federal University of Minas GeraisBelo Horizonte, Brazil
- Health Science Post-Graduate Program, State University of Montes ClarosMontes Claros, Brazil
| | | | - Camille de Moura Balarini
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
- Health Sciences Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| |
Collapse
|
15
|
Albers PH, Bojsen-Møller KN, Dirksen C, Serup AK, Kristensen DE, Frystyk J, Clausen TR, Kiens B, Richter EA, Madsbad S, Wojtaszewski JFP. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol 2015; 309:R510-24. [PMID: 26062634 DOI: 10.1152/ajpregu.00228.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/01/2015] [Indexed: 12/12/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of this study was to investigate the effect of RYGB on expression and regulation of proteins involved in regulation of peripheral glucose metabolism. Skeletal muscle and adipose tissue biopsies from glucose-tolerant and type 2 diabetic subjects at fasting and during a hyperinsulinemic-euglycemic clamp before as well as 1 wk and 3 and 12 mo after RYGB were analyzed for relevant insulin effector proteins/signaling components. Improvement in peripheral insulin sensitivity mainly occurred at 12 mo postsurgery when major weight loss was evident and occurred concomitantly with alterations in plasma adiponectin and in protein expression/signaling in peripheral tissues. In skeletal muscle, protein expression of GLUT4, phosphorylated levels of TBC1D4, as well as insulin-induced changes in phosphorylation of Akt and glycogen synthase activity were enhanced 12 mo postsurgery. In adipose tissue, protein expression of GLUT4, Akt2, TBC1D4, and acetyl-CoA carboxylase (ACC), phosphorylated levels of AMP-activated protein kinase and ACC, as well as insulin-induced changes in phosphorylation of Akt and TBC1D4, were enhanced 12 mo postsurgery. Adipose tissue from glucose-tolerant subjects was the most responsive to RYGB compared with type 2 diabetic patients, whereas changes in skeletal muscle were largely similar in these two groups. In conclusion, an improved molecular insulin-sensitive phenotype of skeletal muscle and adipose tissue appears to contribute to the improved whole body insulin action following a substantial weight loss after RYGB.
Collapse
Affiliation(s)
- Peter H Albers
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, University of Copenhagen, Copenhagen, Denmark; Diabetes Research Unit, Novo Nordisk A/S, Maaloev, Denmark
| | - Kirstine N Bojsen-Møller
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark; Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; and
| | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark; Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; and
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Dorte E Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
16
|
Liu JB, Li WJ, Fu FM, Zhang XL, Jiao L, Cao LJ, Chen L. Inverse correlation between serum adiponectin and 8-iso-prostaglandin F2α in newly diagnosed type 2 diabetes patients. Int J Clin Exp Med 2015; 8:6085-6090. [PMID: 26131208 PMCID: PMC4483936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
This study was set out to determine the association of serum adiponectin and oxidative stress in newly diagnosed type 2 diabetes patients. 106 patients with newly diagnosed type 2 diabetes were recruited. Simultaneously scanning of the extracranial carotid arteries, common iliac arteries and femoral arteries were performed for measurement of intima media thickness (IMT) in all subjects. Atherosclerotic plaque was defined as IMT value >1.3 mm. The serum levels of adiponectin and 8-iso-prostaglandin F2α (8-iso-PGF2α), a marker of oxidative stress, were examined by enzyme-linked immunosorbent assay. Metabolic parameters were detected by clinical chemistry. According to the results, all of 106 patients with type 2 diabetes were newly diagnosed within 12 months, and aged 60.68±4.32 years. The level of serum adiponectin in newly diagnosed type 2 diabetes patients was lower than that in healthy subjects. Furthermore, type 2 diabetes patients with atherosclerotic plaques had lower serum adiponectin level than those without atherosclerotic plaques. Serum 8-iso-PGF2α level in newly diagnosed type 2 diabetes patients was higher than that in healthy subjects. Further analyses showed that serum adiponectin level was reversely associated with serum 8-iso-PGF2α in newly diagnosed type 2 diabetes patients. Additionally, the atherosclerotic plaques in newly diagnosed type 2 diabetes patients were positively correlated with total cholesterol, but negatively correlated with serum adiponectin level. Taken together, this study suggests that in newly diagnosed type 2 diabetes, serum adiponectin levels are probably associated with oxidative stress and also with the severity of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Bo Liu
- Department of Endocrinology, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Wen-Juan Li
- Department of Endocrinology, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Fang-Ming Fu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Xiao-Li Zhang
- Department of Endocrinology, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Lei Jiao
- Department of Endocrinology, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Li-Jun Cao
- Department of Endocrinology, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| |
Collapse
|
17
|
Park M, Sabetski A, Kwan Chan Y, Turdi S, Sweeney G. Palmitate induces ER stress and autophagy in H9c2 cells: implications for apoptosis and adiponectin resistance. J Cell Physiol 2015; 230:630-9. [PMID: 25164368 DOI: 10.1002/jcp.24781] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
Abstract
The association between obesity and heart failure is well documented and recent studies have indicated that understanding the physiological role of autophagy will be of great significance. Cardiomyocyte apoptosis is one component of cardiac remodeling which leads to heart failure and in this study we used palmitate-treated H9c2 cells as an in vitro model of lipotoxicity to investigate the role of autophagy in cell death. Temporal analysis revealed that palmitate (100 μM) treatment induced a gradual increase of intracellular lipid accumulation as well as apoptotic cell death. Palmitate induced autophagic flux, determined via increased LC3-II formation and p62 degradation as well as by detecting reduced colocalization of GFP with RFP in cells overexpressing tandem fluorescent GFP/RFP-LC3. The increased level of autophagy indicated by these measures were confirmed using transmission electron microscopy (TEM). Upon inhibiting autophagy using bafilomycin we observed an increased level of palmitate-induced cell death assessed by Annexin V/PI staining, detection of active caspase-3 and MTT cell viability assay. Interestingly, using TEM and p-PERK or p-eIF2α detection we observed increased endoplasmic reticulum (ER) stress in response to palmitate. Autophagy was induced as an adaptive response against ER stress since it was sensitive to ER stress inhibition. Palmitate-induced ER stress also induced adiponectin resistance, assessed via AMPK phosphorylation, via reducing APPL1 expression. This effect was independent of palmitate-induced autophagy. In summary, our data indicate that palmitate induces autophagy subsequent to ER stress and that this confers a prosurvival effect against lipotoxicity-induced cell death. Palmitate-induced ER stress also led to adiponecin resistance.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Canada
| | | | | | | | | |
Collapse
|
18
|
Xu X, Wang G, Zhou T, Chen L, Chen J, Shen X. Novel approaches to drug discovery for the treatment of type 2 diabetes. Expert Opin Drug Discov 2014; 9:1047-58. [PMID: 25054271 DOI: 10.1517/17460441.2014.941352] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a chronic, complex and multifactorial metabolic disorder, which has become a serious global health problem. The side effects of known drugs and the deficiency of long-term safety data, in addition to the already determined adverse effects for the current preclinical drugs against T2DM, have largely called upon the urgent exploration of novel therapeutic and preventative strategies against this disease. AREAS COVERED The authors highlight the potential approaches for anti-T2DM drug discovery by focusing on: the restoration of pancreatic β-cell mass, the promotion of insulin secretion, the regulation of oxidative stress and endoplasmic reticulum (ER) stress and the modulation of autophagy. EXPERT OPINION T2DM is based on the gradual development of insulin resistance and β-cell dysfunction. Thus, the restoration of β-cell function is considered as one of the promising therapeutic strategies against T2DM. The stress factors, such as oxidative stress, ER stress and autophagy, play potent roles in the regulation of β-cell apoptosis, insulin secretion and sensitivity in the development of T2DM involving complicated cross-talks. Based on multiplex stress-involved regulatory networks, more and more novel potential targets have been discovered and the multi-targeted drug leads are expected to help develop more effective clinical agents for the treatment of T2DM.
Collapse
Affiliation(s)
- Xing Xu
- Shanghai Institute of Materia Medica, Key Laboratory of Receptor Research, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203 , China ; ;
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The increased prevalence of obesity has mandated extensive research focused on mechanisms responsible for associated clinical complications. Emerging from the focus on adipose tissue biology as a vitally important adipokine is adiponectin which is now believed to mediate anti-diabetic, anti-atherosclerotic, anti-inflammatory, cardioprotective and cancer modifying actions. Adiponectin mediates these primarily beneficial effects via direct signaling effects and via enhancing insulin sensitivity via crosstalk with insulin signaling pathways. Reduced adiponectin action is detrimental and occurs in obesity via decreased circulating levels of adiponectin action or development of adiponectin resistance. This review will focus on cellular mechanisms of adiponectin action, their crosstalk with insulin signaling and the resultant role of adiponectin in cardiovascular disease, diabetes and cancer and reviews data from in vitro cell based studies through animal models to clinical observations.
Collapse
Affiliation(s)
- Michael P Scheid
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | |
Collapse
|
20
|
Ryu J, Galan AK, Xin X, Dong F, Abdul-Ghani MA, Zhou L, Wang C, Li C, Holmes BM, Sloane LB, Austad SN, Guo S, Musi N, DeFronzo RA, Deng C, White MF, Liu F, Dong LQ. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor. Cell Rep 2014; 7:1227-38. [PMID: 24813896 PMCID: PMC4380268 DOI: 10.1016/j.celrep.2014.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/25/2014] [Accepted: 04/05/2014] [Indexed: 11/20/2022] Open
Abstract
Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.
Collapse
Affiliation(s)
- Jiyoon Ryu
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Amanda K Galan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Xiaoban Xin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Feng Dong
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Muhammad A Abdul-Ghani
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Lijun Zhou
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Changhua Wang
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Cuiling Li
- Mammalian Genetics Section, GDDB, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bekke M Holmes
- Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Lauren B Sloane
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Steven N Austad
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; The Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Shaodong Guo
- Division of Molecular Cardiology, Texas A&M University, Temple, TX 76504, USA
| | - Nicolas Musi
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Chuxia Deng
- Mammalian Genetics Section, GDDB, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Morris F White
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Feng Liu
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; The Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Lily Q Dong
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; The Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
21
|
Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis 2014; 233:721-728. [PMID: 24603219 DOI: 10.1016/j.atherosclerosis.2014.01.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022]
Abstract
Adiponectin is produced predominantly by adipocytes and plays an important role in metabolic and cardiovascular homeostasis through its insulin-sensitizing actions and anti-inflammatory and anti-atherogenic properties. Recently, it has been observed that lower levels of adiponectin can substantially increase the risk of developing type 2 diabetes, metabolic syndrome, atherosclerosis, and cardiovascular disease in patients who are obese. Circulating adiponectin levels are inversely related to the inflammatory process, oxidative stress, and metabolic dysregulation. Intensive lifestyle modifications and pharmacologic agents, including peroxisome proliferator-activated receptor-γ or α agonists, some statins, renin-angiotensin-aldosterone system blockers, some calcium channel blockers, mineralocorticoid receptor blockers, new β-blockers, and several natural compounds can increase adiponectin levels and suppress or prevent disease initiation or progression, respectively, in cardiovascular and metabolic disorders. Therefore, it is important for investigators to have a thorough understanding of the interventions that can modulate adiponectin. Such knowledge may lead to new therapeutic approaches for diseases such as type 2 diabetes, metabolic syndrome, cardiovascular disease, and obesity. This review focuses on recent updates regarding therapeutic interventions that might modulate adiponectin.
Collapse
Affiliation(s)
- Soo Lim
- Division of Endocrinology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Michael J Quon
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kwang Kon Koh
- Cardiology, Gachon University Gil Medical Center, Incheon, Republic of Korea; Gachon Cardiovascular Research Institute, Incheon, Republic of Korea.
| |
Collapse
|
22
|
Lustig Y, Barhod E, Ashwal-Fluss R, Gordin R, Shomron N, Baruch-Umansky K, Hemi R, Karasik A, Kanety H. RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling. Diabetes 2014; 63:433-45. [PMID: 24130336 DOI: 10.2337/db13-1032] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adiponectin receptor 1 (AdipoR1) mediates adiponectin's pleiotropic effects in muscle and liver and plays an important role in the regulation of insulin resistance and diabetes. Here, we demonstrate a pivotal role for microRNA-221 (miR-221) and the RNA-binding protein polypyrimidine tract-binding protein (PTB) in posttranscriptional regulation of AdipoR1 during muscle differentiation and in obesity. RNA-immunoprecipitation and luciferase reporter assays illustrated that both PTB and miR-221 bind AdipoR1-3'UTR and cooperatively inhibit AdipoR1 translation. Depletion of PTB or miR-221 increased, while overexpression of these factors decreased, AdipoR1 protein synthesis in both muscle and liver cells. During myogenesis, downregulation of PTB and miR-221 robustly induced AdipoR1 translation, providing a mechanism for enhanced AdipoR1 protein expression and activation in differentiated muscle cells. In addition, since both PTB and miR-221 are upregulated in liver and muscle of genetic and dietary mouse models of obesity, this novel translational mechanism may be at least partly responsible for the reduction in AdipoR1 protein levels in obesity. These findings highlight the importance of translational control in regulating AdipoR1 protein expression and adiponectin signaling. Given that adiponectin is reduced in obesity, induction of AdipoR1 could potentially enhance adiponectin beneficial effects and ameliorate insulin resistance and diabetes.
Collapse
Affiliation(s)
- Yaniv Lustig
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The beneficial metabolic effects of adiponectin which confer insulin-sensitizing and anti-diabetic effects are well established. Skeletal muscle is an important target tissue for adiponectin where it regulates glucose and fatty acid metabolism directly and via insulin sensitizing effects. Cell surface receptors and the intracellular signaling events via which adiponectin orchestrates metabolism are now becoming well characterized. The initially accepted dogma of adiponectin action was that the physiological effects were mediated via endocrine effects of adipose-derived adiponectin. However, in recent years it has been established that skeletal muscle can also produce and secrete adiponectin that can elicit important functional effects. There is evidence that skeletal muscle adiponectin resistance may develop in obesity and play a role in the pathogenesis of diabetes. In summary, adiponectin acting in an autocrine and endocrine manner has important metabolic and insulin sensitizing effects on skeletal muscle which contribute to the overall anti-diabetic outcome of adiponectin action.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
24
|
Cheng KKY, Lam KSL, Wang B, Xu A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract Res Clin Endocrinol Metab 2014; 28:3-13. [PMID: 24417941 DOI: 10.1016/j.beem.2013.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adiponectin is an insulin-sensitizing adipokine with protective effects against a cluster of obesity-related metabolic and cardiovascular disorders. The adipokine exerts its insulin-sensitizing effects by alleviation of obesity-induced ectopic lipid accumulation, lipotoxicity and chronic inflammation, as well as by direct cross-talk with insulin signaling cascades. Adiponectin and insulin signaling pathways converge at the adaptor protein APPL1. On the one hand, APPL1 interacts with adiponectin receptors and mediates both metabolic and vascular actions of adiponectin through activation of AMP-activated protein kinase and p38 MAP kinase. On the other hand, APPL1 potentiates both the actions and secretion of insulin by fine-tuning the Akt activity in multiple insulin target tissues. In obese animals, reduced APPL1 expression contributes to both insulin resistance and defective insulin secretion. This review summarizes recent advances on the molecular mechanisms by which adiponectin sensitizes insulin actions, and discusses the roles of APPL1 in regulating both adiponectin and insulin signaling cascades.
Collapse
Affiliation(s)
- Kenneth K Y Cheng
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Karen S L Lam
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Baile Wang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong; Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong.
| |
Collapse
|
25
|
Park M, Wu D, Park T, Choi CS, Li RK, Cheng KKY, Xu A, Sweeney G. APPL1 transgenic mice are protected from high-fat diet-induced cardiac dysfunction. Am J Physiol Endocrinol Metab 2013; 305:E795-804. [PMID: 23921137 DOI: 10.1152/ajpendo.00257.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
APPL1 (adaptor protein containing PH domain, PTB domain, and leucine zipper motif 1) has been established as an important mediator of insulin and adiponectin signaling. Here, we investigated the influence of transgenic (Tg) APPL1 overexpression in mice on high-fat diet (HFD)-induced cardiomyopathy in mice. Wild-type (WT) mice fed an HFD for 16 wk showed cardiac dysfunction, determined by echocardiography, with decreased ejection fraction, decreased fractional shortening, and increased end diastolic volume. HFD-fed APPL1 Tg mice were significantly protected from this dysfunction. Speckle tracking echocardiography to accurately assess cardiac tissue deformation strain and wall motion also indicated dysfunction in WT mice and a similar improvement in Tg vs. WT mice on HFD. APPL1 Tg mice had less HFD-induced increase in circulating nonesteridied fatty acid levels and myocardial lipid accumulation. Lipidomic analysis using LC-MS-MS showed HFD significantly increased myocardial contents of distinct ceramide, sphingomyelin, and diacylglycerol (DAG) species, of which increases in C16:0 and C18:0 ceramides plus C16:0 and C18:1 DAGs were attenuated in Tg mice. A glucose tolerance test indicated less peripheral insulin resistance in response to HFD in Tg mice, which was also apparent by measuring cardiac Akt phosphorylation and cardiomyocyte glucose uptake. In summary, APPL1 Tg mice exhibit improved peripheral metabolism, reduced cardiac lipotoxicity, and improved insulin sensitivity. These cellular effects contribute to protection from HFD-induced cardiomyopathy.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Finelli C, Tarantino G. What is the role of adiponectin in obesity related non-alcoholic fatty liver disease? World J Gastroenterol 2013; 19:802-12. [PMID: 23430039 PMCID: PMC3574877 DOI: 10.3748/wjg.v19.i6.802] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/03/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of chronic liver disease in Western countries. Insulin resistance is a key factor in the pathogenesis of NAFLD, the latter being considered as the hepatic component of insulin resistance or obesity. Adiponectin is the most abundant adipose-specific adipokine. There is evidence that adiponectin decreases hepatic and systematic insulin resistance, and attenuates liver inflammation and fibrosis. Adiponectin generally predicts steatosis grade and the severity of NAFLD; however, to what extent this is a direct effect or related to the presence of more severe insulin resistance or obesity remains to be addressed. Although there is no proven pharmacotherapy for the treatment of NAFLD, recent therapeutic strategies have focused on the indirect upregulation of adiponectin through the administration of various therapeutic agents and/or lifestyle modifications. In this adiponectin-focused review, the pathogenetic role and the potential therapeutic benefits of adiponectin in NAFLD are analyzed systematically.
Collapse
|
27
|
Goldberg RB, Mather K. Targeting the consequences of the metabolic syndrome in the Diabetes Prevention Program. Arterioscler Thromb Vasc Biol 2012; 32:2077-90. [PMID: 22895669 DOI: 10.1161/atvbaha.111.241893] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review describes the effect of lifestyle change or metformin compared with standard care on incident type 2 diabetes and cardiometabolic risk factors in the Diabetes Prevention Program and its Outcome Study. The Diabetes Prevention Program was a randomized controlled clinical trial of intensive lifestyle and metformin treatments versus standard care in 3234 subjects at high risk for type 2 diabetes. At baseline, hypertension was present in 28% of subjects, and 53% had metabolic syndrome with considerable variation in risk factors by age, sex, and race. Over 2.8 years, type 2 diabetes incidence fell by 58% and 31% in the lifestyle and metformin groups, respectively, and metabolic syndrome prevalence fell by one-third with lifestyle change but was not reduced by metformin. In placebo- and metformin-treated subjects, the prevalence of hypertension and dyslipidemia increased during the Diabetes Prevention Program, whereas lifestyle intervention slowed these increases significantly. During long-term follow-up using modified interventions, type 2 diabetes incidence decreased to ≈5% per year in all groups. This was accompanied by significant improvement in cardiovascular disease risk factors over time in all treatment groups, in part associated with increasing use of lipid-lowering and antihypertensive medications. Thus a program of lifestyle change significantly reduced type 2 diabetes incidence and metabolic syndrome prevalence in subjects at high risk for type 2 diabetes. Metformin had more modest effects.
Collapse
Affiliation(s)
- Ronald B Goldberg
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
28
|
Chao A, Zhang X, Ma D, Langlais P, Luo M, Mandarino LJ, Zingsheim M, Pham K, Dillon J, Yi Z. Site-specific phosphorylation of protein phosphatase 1 regulatory subunit 12A stimulated or suppressed by insulin. J Proteomics 2012; 75:3342-50. [PMID: 22516431 DOI: 10.1016/j.jprot.2012.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/08/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. So far, only few specific phosphorylation sites of PP1 regulatory subunit 12A (PPP1R12A) have been shown to regulate the PP1 activity. The effect of insulin on PPP1R12A phosphorylation is largely unknown. Utilizing a mass spectrometry based phosphorylation identification and quantification approach, we identified 21 PPP1R12A phosphorylation sites (7 novel sites, including Ser20, Thr22, Thr453, Ser478, Thr671, Ser678, and Ser680) and quantified 16 of them under basal and insulin stimulated conditions in hamster ovary cells overexpressing the insulin receptor (CHO/IR), an insulin sensitive cell model. Insulin stimulated the phosphorylation of PPP1R12A significantly at Ser477, Ser478, Ser507, Ser668, and Ser695, while simultaneously suppressing the phosphorylation of PPP1R12A at Ser509 (more than 2-fold increase or decrease compared to basal). Our data demonstrate that PPP1R12A undergoes insulin stimulated/suppressed phosphorylation, suggesting that PPP1R12A phosphorylation may play a role in insulin signal transduction. The novel PPP1R12A phosphorylation sites as well as the new insulin-responsive phosphorylation sites of PPP1R12A in CHO/IR cells provide targets for investigation of the regulation of PPP1R12A and the PPP1R12A-PP1cδ complex in insulin action and other signaling pathways in other cell models, animal models, and humans.
Collapse
Affiliation(s)
- Alex Chao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Dadson K, Liu Y, Sweeney G. Adiponectin action: a combination of endocrine and autocrine/paracrine effects. Front Endocrinol (Lausanne) 2011; 2:62. [PMID: 22649379 PMCID: PMC3355882 DOI: 10.3389/fendo.2011.00062] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022] Open
Abstract
The widespread physiological actions of adiponectin have now been well characterized as clinical studies and works in animal models have established strong correlations between circulating adiponectin level and various disease-related outcomes. Thus, conventional thinking attributes many of adiponectin's beneficial effects to endocrine actions of adipose-derived adiponectin. However, it is now clear that several tissues can themselves produce adiponectin and there is growing evidence that locally produced adiponectin can mediate functionally important autocrine or paracrine effects. In this review article we discuss regulation of adiponectin production, its mechanism of action via receptor isoforms and signaling pathways, and its principal physiological effects (i.e., metabolic and cardiovascular). The role of endocrine actions of adiponectin and changes in local production of adiponectin or its receptors in whole body physiology is discussed.
Collapse
Affiliation(s)
- Keith Dadson
- Department of Biology, York UniversityToronto, ON, Canada
| | - Ying Liu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York UniversityToronto, ON, Canada
- Institut Pasteur KoreaSeoul, South Korea
| |
Collapse
|
31
|
Choudhary S, Sinha S, Zhao Y, Banerjee S, Sathyanarayana P, Shahani S, Sherman V, Tilton RG, Bajaj M. NF-kappaB-inducing kinase (NIK) mediates skeletal muscle insulin resistance: blockade by adiponectin. Endocrinology 2011; 152:3622-7. [PMID: 21846802 PMCID: PMC3176647 DOI: 10.1210/en.2011-1343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase β and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sanjeev Choudhary
- Department of Internal Medicine, Division of Endocrinology, Sealy Center of Molecular Medicine, 8.138 Medical Research Building, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1060, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|