1
|
McGuire B, Dadah H, Oliver D. The effects of acute hyperglycaemia on sports and exercise performance in type 1 diabetes: A systematic review and meta-analysis. J Sci Med Sport 2024; 27:78-85. [PMID: 38030440 DOI: 10.1016/j.jsams.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES People with type 1 diabetes (T1D) are advised by health care professionals to target mild hyperglycaemia before and during exercise, to reduce the risk of hypoglycaemia. This review aimed to summarise the available evidence on the effects of acute hyperglycaemia on sports and exercise performance in T1D. DESIGN Systematic review and meta-analysis. METHODS Medline, EMBASE, CENTRAL, and Web of Science were searched until 29th May 2023 for studies investigating the effects of acute hyperglycaemia on any sports or exercise performance outcome in T1D. Random-effects meta-analysis was performed using standardised mean differences (SMD) when more than one study reported data for similar outcomes. Certainty of evidence for each outcome was assessed using GRADE. RESULTS Seven studies were included in the review, comprising data from 119 people with T1D. Meta-analysis provided moderate-certainty evidence that acute hyperglycaemia does not significantly affect aerobic exercise performance (SMD -0.17; 95 % CI -0.59, 0.26; p = 0.44). There is low- or very-low certainty evidence that acute hyperglycaemia has no effect on anaerobic (two outcomes), neuromuscular (seven outcomes) or neurocognitive performance (three outcomes), except impaired isometric knee extension strength. One study provided low-certainty evidence that the performance effects of hyperglycaemia may depend on circulating insulin levels. CONCLUSIONS Acute hyperglycaemia before or during exercise appears unlikely to affect aerobic performance to an extent that is relevant to most people with T1D, based on limited evidence. Future research in this field should focus on anaerobic, neuromuscular and neurocognitive performance, and examine the relevance of circulating insulin levels.
Collapse
Affiliation(s)
| | - Hashim Dadah
- St George's University Hospitals NHS Foundation Trust, UK
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, UK; NIHR Oxford Health Biomedical Research Centre, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
2
|
Chmayssem A, Nadolska M, Tubbs E, Sadowska K, Vadgma P, Shitanda I, Tsujimura S, Lattach Y, Peacock M, Tingry S, Marinesco S, Mailley P, Lablanche S, Benhamou PY, Zebda A. Insight into continuous glucose monitoring: from medical basics to commercialized devices. Mikrochim Acta 2023; 190:177. [PMID: 37022500 DOI: 10.1007/s00604-023-05743-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.
Collapse
Affiliation(s)
- Ayman Chmayssem
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France
| | - Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, 38000, Grenoble, Biomics, France
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Pankaj Vadgma
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Seiya Tsujimura
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-5358, Japan
| | | | - Martin Peacock
- Zimmer and Peacock, Nedre Vei 8, Bldg 24, 3187, Horten, Norway
| | - Sophie Tingry
- Institut Européen Des Membranes, UMR 5635, IEM, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, UMR5292, Inserm U1028, CNRS, Univ. Claude-Bernard-Lyon I, 69675, Lyon 08, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, DTBS, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Pierre Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Abdelkader Zebda
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France.
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| |
Collapse
|
3
|
Counterregulatory responses to postprandial hypoglycemia after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2020; 17:55-63. [PMID: 33039341 DOI: 10.1016/j.soard.2020.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Postbariatric hypoglycemia (PBH) is a potentially serious complication after Roux-en-Y gastric bypass (RYGB), and impaired counterregulatory hormone responses have been suggested to contribute to the condition. OBJECTIVES We evaluated counterregulatory responses during postprandial hypoglycemia in individuals with PBH who underwent RYGB. SETTING University hospital. METHODS Eleven women with documented PBH who had RYGB underwent a baseline liquid mixed meal test (MMT) followed by 5 MMTs preceded by treatment with (1) acarbose 50 mg, (2) sitagliptin 100 mg, (3) verapamil 120 mg, (4) liraglutide 1.2 mg, and (5) pasireotide 300 μg. Blood was collected at fixed time intervals. Plasma and serum were analyzed for glucose, insulin, glucagon, epinephrine, norepinephrine, pancreatic polypeptide (PP), and cortisol. RESULTS During the baseline MMT, participants had nadir blood glucose concentrations of 3.3 ± .2 mmol/L. At the time of nadir glucose, there was a small but significant increase in plasma glucagon. Plasma epinephrine concentrations were not increased at nadir glucose but were significantly elevated by the end of the MMT. There were no changes in norepinephrine, PP, and cortisol concentrations in response to hypoglycemia. After treatment with sitagliptin, 8 individuals had glucose nadirs <3.2 mmol/L (versus 4 individuals at baseline), and significant increases in glucagon, PP, and cortisol responses were observed. CONCLUSIONS In response to postprandial hypoglycemia, individuals with PBH who underwent RYGB only had minor increases in counterregulatory hormones, while larger hormone responses occurred when glucose levels were lowered during treatment with sitagliptin. The glycemic threshold for counterregulatory activation could be altered in individuals with PBH, possibly explained by recurrent hypoglycemia.
Collapse
|
4
|
Hameed S, Arshad MS, Ahmad RS, Hussain G, Imran M, Arshad MU, Ahmed A, Imran M, Imran A. Potential preventive and protective perspectives of different spice powders and their mixtures in rat model. Lipids Health Dis 2020; 19:78. [PMID: 32326942 PMCID: PMC7178752 DOI: 10.1186/s12944-020-01223-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spices based dietary interventions are in lime light among the scientific community owing to their promising therapeutic perspective. The bioactive components in spices can be used to exert various health promoting functions in human body such as prompting weight loss, inhibit diet-induced obesity, hypercholesterolemia, hyperglycemia, allergies and various other maladies. In current study extraction and in vitro characterization of coriander seed (CS), black cumin seed (BCS) and fenugreek seed (FS) polyphenols was conducted for further development of dietary intervention against lipid and glycemia related abnormalities in experimental Sprague Dowley rats fed with control and different spice powder supplemented diets. METHODS Purposely, extraction of Coriander (CS), Black cumin (BCS) and Fenugreek seeds (FS) were carried out by using water and aqueous methanol (70:30 v/v). Afterwards, the resultant extracts were thoroughly investigated for their antioxidant potential through different indices like TPC, TFC, FRAP and β Carotene Bleaching Assay and ABTS. Furthermore, HPLC quantification were also conducted with special reference to thymoquinone, disogenin, chlorogenic acid, caffeic acid and kaempferol alongside in vitro pancreatic lipase inhibitory activity estimation. Bio-evaluation trial was consisting of three modules i.e. study-I (normal diet), study-II (high cholesterol diet) and study-III (high sucrose diet). Furthermore, rats were sub-divided in five groups in each module on the basis of diet provision including T0 (control), T1 (Diet containing CS), T2 (Diet containing BCS), T3 (Diet containing FS) and T4 (Diet containing CSP + BCSP + FSP). At the beginning of trial, some rats were dissected to evaluate the baseline values whilst rest of the rats was killed at the termination (56th day). Feed and drink intakes were quantified on daily bases whereas, body weight was calculated weekly. Cholesterol level, serum low density lipoproteins (LDL), high density lipoproteins (HDL), triglycerides, glucose concentration and insulin level of collected sera was measured by standard procedures. RESULTS The in vitro characterization showed better extraction of spices antioxidant through aqueous methanol as compared to water. Among the spices, Black cumin seed alone or in combination revealed highest antioxidant activity in T2 (BCS) followed by T4 (CS + BCS), T7 (CS + BCS + FS), T1 (CS), T6 (BCS + FS), T5 (CS + FS) and lowest in T3 (FS). Likewise, the HPLC characterization showed the presence of thymoquinone in BCS, Dosignienin FGS and chlorogenic acid, caffeic acid and kaempferol in the other treatments. Furthermore, all the treatments showed dose dependent inhibition in Pancreatic lipase activity and order of inhibition was BCS > CS + BCS > CS + BCS + FS > CS > BCS + FC > CS + FS > FS. The maximum feed intake, drink intake and weight gain was observed in T0 (control) trailed by T1, T2, T3 and T4 group in experimental study I, II and III, respectively. The resultant diet T4 enhanced the high density lipoprotein from T0 (58.58 ± 2.51) to 61.71 ± 1.62 (T4) in hypercholesterolemia rats whereas in hyperglycaemia rats the HDL was varied from 38.77 ± 1.2 to 40.02 ± 0.99 in T0 and T4, respectively. Similarly, T2 significantly lowered the low density lipoprotein from 62.53 ± 1.22 (T1) & 46.53 ± 0.99 to 54.88 ± 0.52 & 40.94 ± 1.99 (T2) in hypercholesteraemic and diabetic rats. Moreover, T4 treatment showed maximum reduction as 10.01 & 11.53% in respective studies. CONCLUSIONS The diet prepared from the different combination of spices has been proven effective against Oxidative stress related physiological malfunctioning.
Collapse
Affiliation(s)
- Saleeha Hameed
- Institute of Home and Food Sciences, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Sajid Arshad
- Institute of Home and Food Sciences, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Rabia Shabir Ahmad
- Institute of Home and Food Sciences, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Institute of Home and Food Sciences, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Aftab Ahmed
- Institute of Home and Food Sciences, Faculty of Life Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore-Pakistan, Lahore, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Faculty of Life Science, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Vergari E, Denwood G, Salehi A, Zhang Q, Adam J, Alrifaiy A, Wernstedt Asterholm I, Benrick A, Chibalina MV, Eliasson L, Guida C, Hill TG, Hamilton A, Ramracheya R, Reimann F, Rorsman NJG, Spilliotis I, Tarasov AI, Walker JN, Rorsman P, Briant LJB. Somatostatin secretion by Na +-dependent Ca 2+-induced Ca 2+ release in pancreatic delta-cells. Nat Metab 2020; 2:32-40. [PMID: 31993555 PMCID: PMC6986923 DOI: 10.1038/s42255-019-0158-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pancreatic islets are complex micro-organs consisting of at least three different cell types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In diabetes, increased somatostatinergic signalling leads to defective counter-regulatory glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous complication of insulin therapy4. The regulation of somatostatin secretion involves both intrinsic and paracrine mechanisms5 but their relative contributions and whether they interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ release (CICR). This mechanism also becomes activated when [Na+]i is elevated following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the extracellular K+ concentration emulating those produced by exogenous insulin in vivo 6. Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to suppression of glucagon secretion that can be alleviated by a somatostatin receptor antagonist. Our data highlight the role of Na+ as an intracellular second messenger, illustrate the significance of the intraislet paracrine network and provide a mechanistic framework for pharmacological correction of the hormone secretion defects associated with diabetes that selectively target the δ-cells.
Collapse
Affiliation(s)
- Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Albert Salehi
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- Department of Clinical Sciences Malmö, Clinical Research Centre, Malmö, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Julie Adam
- Nuffield Department of Clinical Medicine, University of Oxford, NDM Research Building, Oxford, UK
| | - Ahmed Alrifaiy
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | | | - Anna Benrick
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Clinical Research Centre, Malmö, Sweden
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- Department of Clinical Sciences Malmö, Clinical Research Centre, Malmö, Sweden
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Frank Reimann
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Nils J G Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Ioannis Spilliotis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Jonathan N Walker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- MacLeod Diabetes and Endocrine Centre, Royal Devon and Exeter Hospital, Exeter, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK.
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden.
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK.
- Department of Computer Science, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
VanBaak KD, Nally LM, Finigan RT, Jurkiewicz CL, Burnier AM, Conrad BP, Khodaee M, Lipman GS. Wilderness Medical Society Clinical Practice Guidelines for Diabetes Management. Wilderness Environ Med 2019; 30:S121-S140. [PMID: 31753543 DOI: 10.1016/j.wem.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022]
Abstract
The Wilderness Medical Society convened an expert panel in 2018 to develop a set of evidence-based guidelines for the treatment of type 1 and 2 diabetes, as well as the recognition, prevention, and treatment of complications of diabetes in wilderness athletes. We present a review of the classifications, pathophysiology, and evidence-based guidelines for planning and preventive measures, as well as best practice recommendations for both routine and urgent therapeutic management of diabetes and glycemic complications. These recommendations are graded based on the quality of supporting evidence and balance between the benefits and risks or burdens for each recommendation.
Collapse
Affiliation(s)
- Karin D VanBaak
- Department of Family Medicine and Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO.
| | - Laura M Nally
- Department of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT
| | | | - Carrie L Jurkiewicz
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Barry P Conrad
- Division of Endocrinology, Stanford Children's Hospital, Stanford, CA
| | - Morteza Khodaee
- Department of Family Medicine and Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO
| | - Grant S Lipman
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
7
|
Caduff A, Ben Ishai P, Feldman Y. Continuous noninvasive glucose monitoring; water as a relevant marker of glucose uptake in vivo. Biophys Rev 2019; 11:1017-1035. [PMID: 31741172 DOI: 10.1007/s12551-019-00601-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/13/2019] [Indexed: 01/22/2023] Open
Abstract
With diabetes set to become the number 3 killer in the Western hemisphere and proportionally growing in other parts of the world, the subject of noninvasive monitoring of glucose dynamics in blood remains a "hot" topic, with the involvement of many groups worldwide. There is a plethora of techniques involved in this academic push, but the so-called multisensor system with an impedance-based core seems to feature increasingly strongly. However, the symmetrical structure of the glucose molecule and its shielding by the smaller dipoles of water would suggest that this option should be less enticing. Yet there is enough phenomenological evidence to suggest that impedance-based methods are truly sensitive to the biophysical effects of glucose variations in the blood. We have been trying to answer this very fundamental conundrum: "Why is impedance or dielectric spectroscopy sensitive to glucose concentration changes in the blood and why can this be done over a very broad frequency band, including microwaves?" The vistas for medical diagnostics are very enticing. There have been a significant number of papers published that look seriously at this problem. In this review, we want to summarize this body of research and the underlying mechanisms and propose a perspective toward utilizing the phenomena. It is our impression that the current world view on the dielectric response of glucose in solution, as outlined below, will support the further evolution and implementation toward practical noninvasive glucose monitoring solutions.
Collapse
Affiliation(s)
- Andreas Caduff
- Applied Physics Department and the Center for Electromagnetic Research and Characterization, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, 40700, Ariel, Israel
| | - Yuri Feldman
- Applied Physics Department and the Center for Electromagnetic Research and Characterization, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
8
|
Changes in Serum Electrolytes, ECG, and Baroreflex Sensitivity during Combined Pituitary Stimulation Test. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8692078. [PMID: 30105256 PMCID: PMC6076964 DOI: 10.1155/2018/8692078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
The mechanisms by which hypoglycemia increases cardiovascular mortality remain unclear. The aim of the study is to investigate changes in serum electrolytes, norepinephrine concentrations, electrocardiography, and baroreflex sensitivity (BRS) and associations between corrected QT (QTc) intervals and the changes in serum electrolytes during combined pituitary stimulation test (CPST). We recruited the subjects who were admitted to the Gyeongsang National University Hospital to undergo CPST between September 2013 and December 2014. Participants were 12 patients suspected of having hypopituitarism. Among 12 patients, cardiac arrhythmia in two patients occurred during hypoglycemia. There were significant differences in serum levels of potassium (P < 0.001), sodium (P = 0.003), chloride (P = 0.002), and calcium (P = 0.017) at baseline, hypoglycemia, and 30 and 120 minutes after hypoglycemia. Also, there was a significant increase in heart rate (P = 0.004), corrected QT (QTc) interval (P = 0.008), QRS duration (P = 0.021), and BRS (P = 0.005) at hypoglycemia, compared to other time points during CPST. There was a positive association between QTc intervals and serum sodium levels (P < 0.001) in 10 patients who did not develop arrhythmia during CPST. This study showed that there were significant changes in serum levels of potassium, sodium, chloride, and calcium, as well as heart rate, QTc interval, QRSd, and BRS during CPST. It was revealed that QTc intervals had a significant association with concentrations of sodium.
Collapse
|
9
|
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK.
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
10
|
The somatostatin-secreting pancreatic δ-cell in health and disease. NATURE REVIEWS. ENDOCRINOLOGY 2018. [PMID: 29773871 DOI: 10.1038/s41574‐018‐0020‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
|
11
|
Yardley JE, Colberg SR. Update on Management of Type 1 Diabetes and Type 2 Diabetes in Athletes. Curr Sports Med Rep 2017; 16:38-44. [PMID: 28067740 DOI: 10.1249/jsr.0000000000000327] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Optimal blood glucose management still remains the biggest challenge in active individuals with diabetes, particularly in insulin users, but some newer strategies have been introduced to maintain blood glucose control. Recent studies emphasize the importance of exercise intensity on glycemic balance. In individuals with type 1 and type 2 diabetes, both resistance and high-intensity intermittent exercise have been shown to confer beneficial physiological adaptations in training studies, while also showing acute glycemic benefits from single sessions. At the same time, anyone training at higher intensities also should take into consideration potential impairments in thermoregulation in individuals with diabetes, which can increase the risk of heat stress during exercise in hot and/or humid conditions. Recent studies of medication effects on electrolyte balance and hydration give a more complete picture of potential exercise risks for athletes with diabetes. Use of the latest diabetes-related technologies also may benefit the athlete with diabetes.
Collapse
Affiliation(s)
- Jane E Yardley
- 1Department of Social Sciences, University of Alberta, Augustana Faculty, Camrose, AB, CANADA; and 2Human Movement Sciences Department, Old Dominion University, Norfolk, VA
| | | |
Collapse
|
12
|
Levy E, Barshtein G, Livshits L, Ishai PB, Feldman Y. Dielectric Response of Cytoplasmic Water and Its Connection to the Vitality of Human Red Blood Cells: I. Glucose Concentration Influence. J Phys Chem B 2016; 120:10214-10220. [PMID: 27618444 DOI: 10.1021/acs.jpcb.6b06996] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The vitality of red blood cells depends on the process control of glucose homeostasis, including the membrane's ability to "switch off" d-glucose uptake at the physiologically specific concentration of 10-12 mM. We present a comprehensive study of human erythrocytes suspended in buffer solutions with varying concentrations of d-glucose at room temperature, using microwave dielectric spectroscopy (0.5 GHz-50 GHz) and cell deformability characterization (the Elongation ratio). By use of mixture formulas the contribution of the cytoplasm to the dielectric spectra was isolated. It reveals a strong dependence on the concentration of buffer d-glucose. Tellingly, the concentration 10-12 mM is revealed as a critical point in the behavior. The dielectric response of cytoplasm depends on dipole-matrix interactions between water structures and moieties, like ATP, produced during glycolysis. Subsequently, it is a marker of cellular health. One would hope that this mechanism could provide a new vista on noninvasive glucose monitoring.
Collapse
Affiliation(s)
- Evgeniya Levy
- Department of Applied Physics, The Rachel and Selim Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Gregory Barshtein
- Department of Biochemistry & Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem , Ein Kerem, Jerusalem 91120, Israel
| | - Leonid Livshits
- Department of Biochemistry & Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem , Ein Kerem, Jerusalem 91120, Israel
| | - Paul Ben Ishai
- Department of Applied Physics, The Rachel and Selim Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Jerusalem 91904, Israel.,Department of Physics, Ariel University , P.O.B. 3, Ariel 40700, Israel
| | - Yuri Feldman
- Department of Applied Physics, The Rachel and Selim Benin School of Engineering and Computer Science, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Peritoneal Dialysate Glucose Load and Systemic Glucose Metabolism in Non-Diabetics: Results from the GLOBAL Fluid Cohort Study. PLoS One 2016; 11:e0155564. [PMID: 27249020 PMCID: PMC4889040 DOI: 10.1371/journal.pone.0155564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives Glucose control is a significant predictor of mortality in diabetic peritoneal dialysis (PD) patients. During PD, the local toxic effects of intra-peritoneal glucose are well recognized, but despite large amounts of glucose being absorbed, the systemic effects of this in non-diabetic patients are not clear. We sought to clarify whether dialysate glucose has an effect upon systemic glucose metabolism. Methods and Materials We analysed the Global Fluid Study cohort, a prospective, observational cohort study initiated in 2002. A subset of 10 centres from 3 countries with high data quality were selected (368 incident and 272 prevalent non-diabetic patients), with multilevel, multivariable analysis of the reciprocal of random glucose levels, and a stratified-by-centre Cox survival analysis. Results The median follow up was 5.6 and 6.4 years respectively in incident and prevalent patients. On multivariate analysis, serum glucose increased with age (β = -0.007, 95%CI -0.010, -0.004) and decreased with higher serum sodium (β = 0.002, 95%CI 0.0005, 0.003) in incident patients and increased with dialysate glucose (β = -0.0002, 95%CI -0.0004, -0.00006) in prevalent patients. Levels suggested undiagnosed diabetes in 5.4% of prevalent patients. Glucose levels predicted death in unadjusted analyses of both incident and prevalent groups but in an adjusted survival analysis they did not (for random glucose 6–10 compared with <6, Incident group HR 0.92, 95%CI 0.58, 1.46, Prevalent group HR 1.42, 95%CI 0.86, 2.34). Conclusions In prevalent non-diabetic patients, random glucose levels at a diabetic level are under-recognised and increase with dialysate glucose load. Random glucose levels predict mortality in unadjusted analyses, but this association has not been proven in adjusted analyses.
Collapse
|
14
|
Kang MY. Blood electrolyte disturbances during severe hypoglycemia in Korean patients with type 2 diabetes. Korean J Intern Med 2015; 30:648-56. [PMID: 26354059 PMCID: PMC4578021 DOI: 10.3904/kjim.2015.30.5.648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/26/2014] [Accepted: 04/05/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS To investigate abnormalities in blood electrolyte levels during severe hypoglycemia in Korean patients with type 2 diabetes mellitus (T2DM) in a clinical setting. METHODS Blood electrolyte levels in adult T2DM patients during severe hypoglycemia were collected from January 1, 2008 to December 31, 2012. Patients who maintained normal serum creatinine and blood urea nitrogen levels were utilized in the study. Severe hypoglycemia was defined as a condition requiring medical assistance, such as administering carbohydrates when serum glucose levels less than 70 mg/dL were observed, in conjunction with other symptoms of hypoglycemia. RESULTS A total of 1,068 patients who visited the emergency room with severe hypoglycemia were screened, of which 219 patients were included in this study. The incidence of abnormal levels for any electrolyte was 47%. Hypokalemia (< 3.5 mmol/L) was the most common type of electrolyte disturbance observed at 21.9%. A decrease in serum potassium levels was associated with decreases in blood glucose levels (r = 0.151, p = 0.025). During severe hypoglycemia, median blood glucose levels, incidence of tachycardia (> 100 beats per minute) and severe hypertension (≥ 180/120 mmHg) were 30 mg/dL (range, 14 to 62) and 35 mg/dL (range, 10 to 69; p = 0.04), 18.8% and 7.2% (p = 0.02), and 20.8% and 10.2% (p = 0.05) in the hypokalemia and normokalemia groups, respectively. CONCLUSIONS During severe hypoglycemia, hypokalemia occurred in 21.9% of T2DM patients and was associated with tachycardia and severe hypertension. Therefore, the results suggest that severe hypoglycemia may increase cardiovascular events in T2DM.
Collapse
Affiliation(s)
- Mi Yeon Kang
- Correspondence to Mi Yeon Kang, M.D. Department of Internal Medicine, Saint Carollo Hospital, 221 Sungwang-ro, Suncheon 57931, Korea Tel: +82-61-720-2428 Fax: +82-61-720-6000 E-mail:
| |
Collapse
|
15
|
Caduff A, Zanon M, Mueller M, Zakharov P, Feldman Y, De Feo O, Donath M, Stahel WA, Talary MS. The Effect of a Global, Subject, and Device-Specific Model on a Noninvasive Glucose Monitoring Multisensor System. J Diabetes Sci Technol 2015; 9:865-72. [PMID: 25910542 PMCID: PMC4525657 DOI: 10.1177/1932296815579459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We study here the influence of different patients and the influence of different devices with the same patients on the signals and modeling of data from measurements from a noninvasive Multisensor glucose monitoring system in patients with type 1 diabetes. The Multisensor includes several sensors for biophysical monitoring of skin and underlying tissue integrated on a single substrate. METHOD Two Multisensors were worn simultaneously, 1 on the upper left and 1 on the upper right arm by 4 patients during 16 study visits. Glucose was administered orally to induce 2 consecutive hyperglycemic excursions. For the analysis, global (valid for a population of patients), personal (tailored to a specific patient), and device-specific multiple linear regression models were derived. RESULTS We find that adjustments of the model to the patients improves the performance of the glucose estimation with an MARD of 17.8% for personalized model versus a MARD of 21.1% for the global model. At the same time the effect of the measurement side is negligible. The device can equally well measure on the left or right arm. We also see that devices are equal in the linear modeling. Thus hardware calibration of the sensors is seen to be sufficient to eliminate interdevice differences in the measured signals. CONCLUSIONS We demonstrate that the hardware of the 2 devices worn on the left and right arms are consistent yielding similar measured signals and thus glucose estimation results with a global model. The 2 devices also return similar values of glucose errors. These errors are mainly due to nonstationarities in the measured signals that are not solved by the linear model, thus suggesting for more sophisticated modeling approaches.
Collapse
Affiliation(s)
| | | | | | | | - Yuri Feldman
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Marc Donath
- Clinic for Endocrinology and Diabetes, University Hospital Basel, Basel, Switzerland
| | | | | |
Collapse
|
16
|
Tura A, Sbrignadello S, Mambelli E, Ravazzani P, Santoro A, Pacini G. Conductivity measures coupled with treatment with ion-exchange resin for the assessment of sodium concentration in physiological fluids: analyses on artificial solutions. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/459/1/012062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Tura A, Sbrignadello S, Mambelli E, Ravazzani P, Santoro A, Pacini G. Sodium concentration measurement during hemodialysis through ion-exchange resin and conductivity measure approach: in vitro experiments. PLoS One 2013; 8:e69227. [PMID: 23844253 PMCID: PMC3699667 DOI: 10.1371/journal.pone.0069227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some “mixed samples”, i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis.
Collapse
Affiliation(s)
- Andrea Tura
- Institute of Biomedical Engineering, National Research Council, Padova, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang TT, Jiang JG. Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications. Expert Opin Investig Drugs 2012; 21:1625-42. [PMID: 22862558 DOI: 10.1517/13543784.2012.713937] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Diabetes mellitus (DM) is a chronic progressive systemic disease caused by metabolic disorder. In recent years, significant amounts of studies have shown that traditional Chinese medicine (TCM) and its active ingredients have obvious hypoglycemic effect. AREAS COVERED This paper summarizes single herbs and their active ingredients from TCM with the role of treating DM, and relevant literatures published in the past decades are reviewed. The active ingredients are divided into polysaccharides, saponins, alkaloids, flavonoids, terpenoids and others, which are described in this article from the aspects of active ingredients, sources, models, efficacy, and mechanisms. EXPERT OPINION Mechanisms of TCM in treating DM are concluded: i) to promote insulin secretion and increase serum insulin levels; ii) to increase the sensitivity of insulin and improve its resistance; iii) to inhibit glucose absorption; iv) to affect glucose metabolism of insulin receptor; and v) to scavenge radicals and prevent lipid peroxidation. The separation and extraction of effective monomer from TCM is an important direction of anti-diabetic drug discovery currently. Future research about hypoglycemic mechanism of TCM based on the clinical should combine with modern scientific methods and regulatory approach to strive for more meaningful discovery and innovation.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- South China University of Technology, College of Food and Bioengineering, Guangzhou, 510640, China
| | | |
Collapse
|