1
|
Rehman M, Agarwal V, Chaudhary R, Kaushik AS, Srivastava S, Srivastava S, Kumar A, Singh S, Mishra V. Pharmacological inhibition of histone deacetylase alleviates chronic unpredictable stress induced atherosclerosis and endothelial dysfunction via upregulation of BDNF. Biochem Biophys Res Commun 2024; 735:150485. [PMID: 39098273 DOI: 10.1016/j.bbrc.2024.150485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Long-term stress is a significant risk factor for cardiovascular diseases, including atherosclerosis and endothelial dysfunction. Moreover, prolonged stress has shown to negatively regulate central BDNF expression. The role of central BDNF in CNS disorders is well studied until recently the peripheral BDNF was also found to be involved in endothelial function regulation and atherosclerosis. The peripheral BDNF and its role in chronic stress-induced atherosclerosis and endothelial dysfunction remain unclear. Therefore, we aimed to elucidate the role of BDNF and its modulation by the HDAC inhibitor valproic acid (VA) in chronic unpredictable stress (CUS)-induced atherosclerosis and endothelial dysfunction. We demonstrated that a 10-week CUS mouse model substantially decreases central and peripheral BDNF expression, resulting in enhanced serum lipid indices, plaque deposition, fibrosis, and CD68 expression in thoracic aortas. Further, parameters associated with endothelial dysfunction such as increased levels of endothelin-1 (ET-1), adhesion molecules like VCAM-1, M1 macrophage markers, and decreased M2 macrophage markers, eNOS expression, and nitrite levels in aortas, were also observed. VA (50 mg/kg, 14 days, i. p.) was administered to mice following 8 weeks of CUS exposure until the end of the experimental procedure. VA significantly prevented the decrease in BDNF, eNOS and nitrite levels, reduced lesion formation and fibrosis in thoracic aortas and increased ET-1, and VCAM-1 followed by M2 polarization in VA-treated mice. The study highlights the potential of epigenetic modulation of BDNF as a therapeutic target, in stress-induced cardiovascular pathologies and suggests that VA could be a promising agent for mitigating CUS-induced endothelial dysfunction and atherosclerosis by BDNF modulation.
Collapse
Affiliation(s)
- Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
2
|
Zhang SY, Zhang LY, Wen R, Yang N, Zhang TN. Histone deacetylases and their inhibitors in inflammatory diseases. Biomed Pharmacother 2024; 179:117295. [PMID: 39146765 DOI: 10.1016/j.biopha.2024.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Despite considerable research efforts, inflammatory diseases remain a heavy burden on human health, causing significant economic losses annually. Histone deacetylases (HDACs) play a significant role in regulating inflammation (via histone and non-histone protein deacetylation) and chromatin structure and gene expression regulation. Herein, we present a detailed description of the different HDACs and their functions and analyze the role of HDACs in inflammatory diseases, including pro-inflammatory cytokine production reduction, immune cell function modulation, and anti-inflammatory cell activity enhancement. Although HDAC inhibitors have shown broad inflammatory disease treatment potentials, their clinical applicability remains limited because of their non-specific effects, adverse effects, and drug resistance. With further research and insight, these inhibitors are expected to become important tools for the treatment of a wide range of inflammatory diseases. This review aims to explore the mechanisms and application prospects of HDACs and their inhibitors in multiple inflammatory diseases.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Ying Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Wang L, Bai Y, Cao Z, Guo Z, Lian Y, Liu P, Zeng Y, Lyu W, Chen Q. Histone deacetylases and inhibitors in diabetes mellitus and its complications. Biomed Pharmacother 2024; 177:117010. [PMID: 38941890 DOI: 10.1016/j.biopha.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, with its prevalence linked to both genetic predisposition and environmental factors. Epigenetic modifications, particularly through histone deacetylases (HDACs), have been recognized for their significant influence on DM pathogenesis. This review focuses on the classification of HDACs, their role in DM and its complications, and the potential therapeutic applications of HDAC inhibitors. HDACs, which modulate gene expression without altering DNA sequences, are categorized into four classes with distinct functions and tissue specificity. HDAC inhibitors (HDACi) have shown efficacy in various diseases, including DM, by targeting these enzymes. The review highlights how HDACs regulate β-cell function, insulin sensitivity, and hepatic gluconeogenesis in DM, as well as their impact on diabetic cardiomyopathy, nephropathy, and retinopathy. Finally, we suggest that targeted histone modification is expected to become a key method for the treatment of diabetes and its complications. The study of HDACi offers insights into new treatment strategies for DM and its associated complications.
Collapse
Affiliation(s)
- Li Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yuning Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Zhengmin Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Ziwei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, PR China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China
| | - Yixian Zeng
- Department of Proctology, Beibei Hospital of Traditional Chinese Medicine, Chongqing 400799, PR China
| | - Wenliang Lyu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China.
| |
Collapse
|
4
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Pedersen SS, Ingerslev LR, Olsen M, Prause M, Billestrup N. Butyrate functions as a histone deacetylase inhibitor to protect pancreatic beta cells from IL-1β-induced dysfunction. FEBS J 2024; 291:566-583. [PMID: 37985375 DOI: 10.1111/febs.17005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Butyrate, a gut microbial metabolite, has beneficial effects on glucose homeostasis and has become an attractive drug candidate for type 2 diabetes (T2D). Recently, we showed that butyrate protects pancreatic beta cells against cytokine-induced dysfunction. In this study, we explored the underlying mechanisms of butyrate action. Pancreatic mouse islets were exposed to a non-cytotoxic concentration of interleukin-1β (IL-1β) for 10 days to mimic low-grade inflammation in T2D. Similar to the effect of butyrate, an isoform-selective histone deacetylase 3 (HDAC3) inhibitor normalized IL-1β-reduced glucose-stimulated insulin secretion and insulin content. In contrast, free fatty acid receptor 2 and 3 (FFAR2/3) agonists failed to normalize IL-1β-induced beta cell dysfunction. Furthermore, butyrate inhibited HDAC activity and increased the acetylation of histone H3 and H4 by 3- and 10-fold, respectively. Genome-wide analysis of histone H3 lysine 27 acetylation (H3K27ac) revealed that butyrate mainly increased H3K27ac at promoter regions (74%), while H3K27ac peaks regulated by IL-1β were more equally distributed at promoters (38%), introns (23%) and intergenic regions (23%). Gene ontology analysis showed that butyrate increased IL-1β-reduced H3K27ac levels near several genes related to hormone secretion and reduced IL-1β-increased H3K27ac levels near genes associated with inflammatory responses. Butyrate alone increased H3K27ac near many genes related to MAPK signaling, hormone secretion, and differentiation, and decreased H3K27ac at genes involved in cell replication. Together, these results suggest that butyrate prevents IL-1β-induced pancreatic islet dysfunction by inhibition of HDACs resulting in changes in H3K27ac levels at genes relevant for beta cell function and inflammatory responses.
Collapse
Affiliation(s)
- Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mathias Olsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Liu X, Tian F, Cui J, Gong L, Xiang L, Fan B, Liu S, Zhan J, Zhou Y, Jiang B, Wang M, Sun G, Gong Y, Zou Y. CUL4B functions as a tumor suppressor in KRAS-driven lung tumors by inhibiting the recruitment of myeloid-derived suppressor cells. Oncogene 2023; 42:3113-3126. [PMID: 37653114 DOI: 10.1038/s41388-023-02824-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. KRAS mutations are the most common oncogenic alterations found in lung cancer. Unfortunately, treating KRAS-mutant lung adenocarcinoma (ADC) remains a major oncotherapeutic challenge. Here, we used both autochthonous and transplantable KRAS-mutant tumor models to investigate the role of tumor-derived CUL4B in KRAS-driven lung cancers. We showed that knockout or knockdown of CUL4B promotes lung ADC growth and progression in both models. Mechanistically, CUL4B directly binds to the promoter of Cxcl2 and epigenetically represses its transcription. CUL4B deletion increases the expression of CXCL2, which binds to CXCR2 on myeloid-derived suppressor cells (MDSCs) and promotes their migration to the tumor microenvironment. Targeting of MDSCs significantly delayed the growth of CUL4B knockdown KRAS-mutant tumors. Collectively, our study provides mechanistic insights into the novel tumor suppressor-like functions of CUL4B in regulating KRAS-driven lung tumor development.
Collapse
Affiliation(s)
- Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Tian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Xiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuangteng Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol (Lausanne) 2023; 14:1076343. [PMID: 37008937 PMCID: PMC10050720 DOI: 10.3389/fendo.2023.1076343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
More than 500 million adults suffer from diabetes worldwide, and this number is constantly increasing. Diabetes causes 5 million deaths per year and huge healthcare costs per year. β-cell death is the major cause of type 1 diabetes. β-cell secretory dysfunction plays a key role in the development of type 2 diabetes. A loss of β-cell mass due to apoptotic death has also been proposed as critical for the pathogenesis of type 2 diabetes. Death of β-cells is caused by multiple factors including pro-inflammatory cytokines, chronic hyperglycemia (glucotoxicity), certain fatty acids at high concentrations (lipotoxicity), reactive oxygen species, endoplasmic reticulum stress, and islet amyloid deposits. Unfortunately, none of the currently available antidiabetic drugs favor the maintenance of endogenous β-cell functional mass, indicating an unmet medical need. Here, we comprehensively review over the last ten years the investigation and identification of molecules of pharmacological interest for protecting β-cells against dysfunction and apoptotic death which could pave the way for the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, France
| | - Eric Renard
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
- Laboratoire de Thérapie Cellulaire du Diabète, Centre Hospitalier Universitaire, Montpellier, France
- Département d’Endocrinologie, Diabètologie, Centre Hospitalier Universitaire, Montpellier, France
| |
Collapse
|
8
|
Sonthalia M, Roy BS, Chandrawanshi D, Ganesh GV, Jayasuriya R, Mohandas S, Rajagopal S, Ramkumar KM. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. Eur J Pharmacol 2022; 935:175328. [DOI: 10.1016/j.ejphar.2022.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022]
|
9
|
Pedersen SS, Prause M, Williams K, Barrès R, Billestrup N. Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells. J Biol Chem 2022; 298:102312. [PMID: 35921894 PMCID: PMC9428856 DOI: 10.1016/j.jbc.2022.102312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.
Collapse
|
10
|
Dai Y, Kou H, Gui S, Guo X, Liu H, Gong Z, Sun X, Wang H, Guo Y. Prenatal dexamethasone exposure induced pancreatic β-cell dysfunction and glucose intolerance of male offspring rats: Role of the epigenetic repression of ACE2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154095. [PMID: 35219660 DOI: 10.1016/j.scitotenv.2022.154095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of diabetes in children and adolescents has been rising gradually, which is relevant to adverse environment during development, especially prepartum. We aimed to explore the effects of prenatal dexamethasone exposure (PDE) on β-cell function and glucose homeostasis in juvenile offspring rats. Pregnant Wistar rats were subcutaneously administered with dexamethasone [0.1, 0.2, 0.4mg/(kg.d)] from gestational day 9 to 20. PDE impaired glucose tolerance in the male offspring rather than the females. In male offspring, PDE impaired the development and function of β-cells, accompanied with lower H3K9ac, H3K14ac and H3K27ac levels in the promoter region of angiotensin-converting enzyme 2 (ACE2) as well as suppressed ACE2 expression. Meanwhile, PDE increased expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) in fetal pancreas. Dexamethasone also inhibited ACE2 expression and insulin production in vitro. Recombinant expression of ACE2 restored insulin production inhibited by dexamethasone. In addition, dexamethasone activated GR and HDAC3, increased protein interaction of GR with HDAC3, and promoted the binding of GR-HDAC3 complex to ACE2 promoter region. Both RU486 and TSA abolished dexamethasone-induced decline of histone acetylation and ACE2 expression. In summary, suppression of ACE2 is involved in PDE induced β-cell dysfunction and glucose intolerance in juvenile male offspring rats.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China
| | - Shuxia Gui
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
11
|
Shen Y, Jiang Z, Zhong X, Wang H, Liu Y, Li X. Manipulation of cadmium and diethylhexyl phthalate on Rana chensinensis tadpoles affects the intestinal microbiota and fatty acid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153455. [PMID: 35093358 DOI: 10.1016/j.scitotenv.2022.153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Gastrointestinal tract and intestine microbiota can both have deep effects on the lipid metabolism and immune function of amphibians. Additionally, the composition and structure of the microbial community are influenced by environmental pollutions. It is noteworthy that environmental compounds such as Cd and DEHP are pervasive in the aquatic environment and do not exist in isolation, and single exposure experiments cannot well explain the effects of unpredictable interactions between co-existing compounds on amphibians. In this study, we calculated the parameters of morphological and histological indices of Rana chensinensis tadpoles after treated with Cd and/or DEHP. The 16S rRNA gene sequencing technology was used to assess the relative abundance of intestinal microbial community among tadpoles from each treatment groups. We also examined the mRNA expression levels of lipid digestion and absorption and SCFAs related-genes. Our results indicated that all morphological and histological indices were significantly declined in the Cd treatment group, while the mixed treatment group was similar to the control group. Compared with the control group, the relative abundances of Firmicutes, Proteobacteria and Verrucomicrobia exhibited distinctive differences in Cd and/or DEHP treatment groups. Further, RT-qPCR results revealed that the expression levels of lipid metabolism and SCFAs related-genes were also significantly altered among the treatment groups. Taken together, the present study highlighted a new evidence that the alterations in intestinal microbial community and mRNA expression levels of larval amphibians after exposure to Cd and/or DEHP may impair lipid storage and transport, as well as reduce anti-inflammatory capacity, which may ultimately lead to a decline in amphibian populations.
Collapse
Affiliation(s)
- Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhaoyang Jiang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Zhong
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
12
|
Jayaraman A, Arianas M, Jayaraman S. Epigenetic modulation of selected immune response genes and altered functions of T lymphocytes and macrophages collectively contribute to autoimmune diabetes protection. BBA ADVANCES 2021; 1:100031. [PMID: 37082012 PMCID: PMC10074972 DOI: 10.1016/j.bbadva.2021.100031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have previously demonstrated that weekly treatment of female prediabetic NOD mice with a low dose of the histone deacetylase inhibitor Trichostatin A (TSA) bestowed long-lasting, irreversible protection against autoimmune diabetes. Herein we show that drug treatment diminished the infiltration of the pancreas with CD4+, CD8+ T cells, and Ly-6C+ monocytes. Significantly, TSA administration selectively repressed the expression of a set of genes exaggerated during diabetes and constitutively expressed primarily in the spleen and rarely in the pancreas. These genes encode lymphokines, macrophage-associated determinants, and transcription factors. Although the copy numbers of many histone deacetylases increased during diabetes in the spleen and pancreas, only those upregulated in the spleen were rendered sensitive to repression by TSA treatment. Mitogen-activated T lymphocytes derived from drug-treated donors displayed diminished diabetogenic potential following transfer into immunodeficient NOD.scid mice. In the immunocompromised recipients, diabetes caused by the transfer of activated T lymphocytes from untreated diabetic mice was hampered by the co-transfer of highly purified splenic CD11b+Ly-6C+ macrophages from drug-treated mice. However, the transfer of CD11b+Ly-6C+ macrophages from drug-treated mice failed to block ongoing diabetes in wild-type NOD mice. These data demonstrate that the modified gene expression and functional alteration of T lymphocytes and macrophages collectively contribute to diabetes protection afforded by the histone modifier in female NOD mice.
Collapse
Affiliation(s)
- Arathi Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612
| | - Maria Arianas
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612
| | - Sundararajan Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612
- Dept. of Surgery, University of Illinois College of Medicine at Peoria, IL 61603
| |
Collapse
|
13
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|
14
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
15
|
A Newly Developed Synbiotic Yogurt Prevents Diabetes by Improving the Microbiome-Intestine-Pancreas Axis. Int J Mol Sci 2021; 22:ijms22041647. [PMID: 33562070 PMCID: PMC7915949 DOI: 10.3390/ijms22041647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2D) is increasing worldwide, and there are no long-term preventive strategies to stop this growth. Emerging research shows that perturbations in the gut microbiome significantly contribute to the development of T2D, while microbiome modulators may be beneficial for T2D prevention. However, microbiome modulators that are effective, safe, affordable, and able to be administered daily are not yet available. Based on our previous pro- and prebiotic studies, we developed a novel synbiotic yogurt comprised of human-origin probiotics and plant-based prebiotics and investigated its impact on diet- and streptozotocin-induced T2D in mice. We compared the effects of our synbiotic yogurt to those of a commercially available yogurt (control yogurt). Interestingly, we found that the feeding of the synbiotic yogurt significantly reduced the development of hyperglycemia (diabetes) in response to high-fat diet feeding and streptozotocin compared to milk-fed controls. Surprisingly, the control yogurt exacerbated diabetes progression. Synbiotic yogurt beneficially modulated the gut microbiota composition compared to milk, while the control yogurt negatively modulated it by significantly increasing the abundance of detrimental bacteria such as Proteobacteria and Enterobacteriaceae. In addition, the synbiotic yogurt protected pancreatic islet morphology compared to the milk control, while the control yogurt demonstrated worse effects on islets. These results suggest that our newly developed synbiotic yogurt protects against diabetes in mice and can be used as a therapeutic to prevent diabetes progression.
Collapse
|
16
|
Andersen PAK, Petrenko V, Rose PH, Koomen M, Fischer N, Ghiasi SM, Dahlby T, Dibner C, Mandrup-Poulsen T. Proinflammatory Cytokines Perturb Mouse and Human Pancreatic Islet Circadian Rhythmicity and Induce Uncoordinated β-Cell Clock Gene Expression via Nitric Oxide, Lysine Deacetylases, and Immunoproteasomal Activity. Int J Mol Sci 2020; 22:E83. [PMID: 33374803 PMCID: PMC7795908 DOI: 10.3390/ijms22010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic β-cell-specific clock knockout mice develop β-cell oxidative-stress and failure, as well as glucose-intolerance. How inflammatory stress affects the cellular clock is under-investigated. Real-time recording of Per2:luciferase reporter activity in murine and human pancreatic islets demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β) lengthened the circadian period. qPCR-profiling of core clock gene expression in insulin-producing cells suggested that the combination of the proinflammatory cytokines IL-1β and interferon-γ (IFN-γ) caused pronounced but uncoordinated increases in mRNA levels of multiple core clock genes, in particular of reverse-erythroblastosis virus α (Rev-erbα), in a dose- and time-dependent manner. The REV-ERBα/β agonist SR9009, used to mimic cytokine-mediated Rev-erbα induction, reduced constitutive and cytokine-induced brain and muscle arnt-like 1 (Bmal1) mRNA levels in INS-1 cells as expected. SR9009 induced reactive oxygen species (ROS), reduced insulin-1/2 (Ins-1/2) mRNA and accumulated- and glucose-stimulated insulin secretion, reduced cell viability, and increased apoptosis levels, reminiscent of cytokine toxicity. In contrast, low (<5,0 μM) concentrations of SR9009 increased Ins-1 mRNA and accumulated insulin-secretion without affecting INS-1 cell viability, mirroring low-concentration IL-1β mediated β-cell stimulation. Inhibiting nitric oxide (NO) synthesis, the lysine deacetylase HDAC3 and the immunoproteasome reduced cytokine-mediated increases in clock gene expression. In conclusion, the cytokine-combination perturbed the intrinsic clocks operative in mouse and human pancreatic islets and induced uncoordinated clock gene expression in INS-1 cells, the latter effect associated with NO, HDAC3, and immunoproteasome activity.
Collapse
Affiliation(s)
- Phillip Alexander Keller Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Peter Horskjær Rose
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Melissa Koomen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Nico Fischer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| |
Collapse
|
17
|
Reading between the (Genetic) Lines: How Epigenetics is Unlocking Novel Therapies for Type 1 Diabetes. Cells 2020; 9:cells9112403. [PMID: 33153010 PMCID: PMC7692667 DOI: 10.3390/cells9112403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune condition where the body’s immune cells destroy their insulin-producing pancreatic beta cells leading to dysregulated glycaemia. Individuals with T1D control their blood glucose through exogenous insulin replacement therapy, often using multiple daily injections or pumps. However, failure to accurately mimic intrinsic glucose regulation results in glucose fluctuations and long-term complications impacting key organs such as the heart, kidneys, and/or the eyes. It is well established that genetic and environmental factors contribute to the initiation and progression of T1D, but recent studies show that epigenetic modifications are also important. Here, we discuss key epigenetic modifications associated with T1D pathogenesis and discuss how recent research is finding ways to harness epigenetic mechanisms to prevent, reverse, or manage T1D.
Collapse
|
18
|
Dahlby T, Simon C, Backe MB, Dahllöf MS, Holson E, Wagner BK, Böni-Schnetzler M, Marzec MT, Lundh M, Mandrup-Poulsen T. Enhancer of Zeste Homolog 2 (EZH2) Mediates Glucolipotoxicity-Induced Apoptosis in β-Cells. Int J Mol Sci 2020; 21:ijms21218016. [PMID: 33137873 PMCID: PMC7672588 DOI: 10.3390/ijms21218016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023] Open
Abstract
Selective inhibition of histone deacetylase 3 (HDAC3) prevents glucolipotoxicity-induced β-cell dysfunction and apoptosis by alleviation of proapoptotic endoplasmic reticulum (ER) stress-signaling, but the precise molecular mechanisms of alleviation are unexplored. By unbiased microarray analysis of the β-cell gene expression profile of insulin-producing cells exposed to glucolipotoxicity in the presence or absence of a selective HDAC3 inhibitor, we identified Enhancer of zeste homolog 2 (EZH2) as the sole target candidate. β-Cells were protected against glucolipotoxicity-induced ER stress and apoptosis by EZH2 attenuation. Small molecule inhibitors of EZH2 histone methyltransferase activity rescued human islets from glucolipotoxicity-induced apoptosis. Moreover, EZH2 knockdown cells were protected against glucolipotoxicity-induced downregulation of the protective non-canonical Nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) pathway. We conclude that EZH2 deficiency protects from glucolipotoxicity-induced ER stress, apoptosis and downregulation of the non-canonical NFκB pathway, but not from insulin secretory dysfunction. The mechanism likely involves transcriptional regulation via EZH2 functioning as a methyltransferase and/or as a methylation-dependent transcription factor.
Collapse
Affiliation(s)
- Tina Dahlby
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Christian Simon
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Marie Balslev Backe
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Edward Holson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (E.H.); (B.K.W.)
| | - Bridget K. Wagner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (E.H.); (B.K.W.)
| | - Marianne Böni-Schnetzler
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland;
| | - Michal Tomasz Marzec
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
| | - Morten Lundh
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (E.H.); (B.K.W.)
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (T.D.); (M.B.B.); (M.S.D.); (M.T.M.); (M.L.)
- Correspondence: ; Tel.: +45-30-33-03-87
| |
Collapse
|
19
|
Lei L, Bai G, Wang X, Liu S, Xia J, Wu S, Huan Y, Shen Z. Histone deacetylase 3-selective inhibitor RGFP966 ameliorates impaired glucose tolerance through β-cell protection. Toxicol Appl Pharmacol 2020; 406:115189. [PMID: 32800772 DOI: 10.1016/j.taap.2020.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
Abstract
The potential therapeutic effect of histone deacetylase 3 (HDAC3) pharmacologic inhibition on diabetes has been focused recently. RGFP966, as a highly-selective HDAC3 inhibitor, its possible roles and underlying mechanism in the treatment of diabetes needs to be clarified. In this study, low-dose streptozotocin (STZ)-induced pre-diabetic mice were used to test the regulatory ability of RGFP966 in blood glucose and insulin. We isolated the islets both from normal C57BL/6 J mice and KKAy mice with spontaneous type 2 diabetes to determine the potency of RGFP966 on glucose-stimulated insulin secretion. NIT-1 pancreatic β-cells induced by sodium palmitate (PA) were applied to identify the protective effects of RGFP966 against β-cell apoptosis. The results showed that administration of RGFP966 in the pre-diabetic mice not only significantly reduced hyperglycemia, promoted phase I insulin secretion, improved morphology of islets, but also increased glucose infusion rate (GIR) during hyperglycemic clamp test. When treated in vitro, RGFP966 enhanced insulin secretion and synthesis in islets of normal C57BL/6J mice and diabetic KKAy mice. In addition, it partially attenuated PA-induced apoptosis in NIT-1 cells. Therefore, our research suggests that RGFP966, probably through selective inhibition of HDAC3, might serve as a novel potential preventive and therapeutic candidate for diabetes.
Collapse
Affiliation(s)
- Lei Lei
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guoliang Bai
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xing Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuainan Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Xia
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Song Wu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Huan
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhufang Shen
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
20
|
Zhang Y, Wang S, Zhang L, Zhou F, Zhu K, Zhu Q, Liu Q, Liu Y, Jiang L, Ning G, Bi Y, Zhou L, Wang X. Protein acetylation derepresses Serotonin Synthesis to potentiate Pancreatic Beta-Cell Function through HDAC1-PKA-Tph1 signaling. Am J Cancer Res 2020; 10:7351-7368. [PMID: 32641996 PMCID: PMC7330849 DOI: 10.7150/thno.44459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: Protein acetylation is tightly linked to transcriptional control and energy metabolism. However, the role of protein acetylation in islet function remains enigmatic. This study aims to determine how protein acetylation controls β-cell function and explore the underlying mechanism. Methods: The gene-expression profiles were analyzed for rat islets in response to two histone deacetylase (HDAC) inhibitors. Insulin secretion, tryptophan hydroxylase 1 (Tph1) expression, and serotonin synthesis of rat islets were detected after HDAC inhibitor treatment both in vivo and ex vivo. β-cell-specific Tph1-overexpressing transgenic rats and β-cell-specific Tph1 knockout mice were constructed to evaluate the role of Tph1 in β-cell function. The deacetylation of PKA in β-cells by HDAC1 was investigated by adenoviral infection, immunoprecipitation, and western blot. Results: Inhibition of HDACs greatly potentiated pancreatic β-cell function and reprogrammed transcriptional landscape of islets. Among the commonly up-regulated genes by two pan-HDAC inhibitors, Tph1 displayed the most prominent change. Specifically, inhibition of HDAC1 and HDAC3 by MS-275 strongly promoted Tph1 expression and endogenous serotonin synthesis in rat islets, concomitantly with enhanced insulin secretory capacity in vivo and ex vivo. β-cell-specific Tph1-overexpressing transgenic rats exhibited improved glucose tolerance and amplified glucose-stimulated insulin secretion. On the contrary, β-cell-specific Tph1 knockout mice displayed glucose intolerance and impaired insulin secretion with aging. Moreover, depletion of Tph1 in β-cells abrogated MS-275-induced insulin hypersecretion. Overexpression of HDAC1, not HDAC3, inhibited Tph1 transcriptional activity and decreased MS-275-stimulated Tph1 expression. Mechanistically, HDAC1 deacetylated PKA catalytic subunit and decreased its activity, resulting in Tph1 transcriptional repression. The acetylation mimetic K62Q mutant of PKA increased its catalytic activity. HDAC1 inhibition exerted a synergistic effect with cAMP/PKA signal on Tph1 expression. Conclusions: The present findings highlight a novel role of HDAC1-PKA-Tph1 signaling in governing β-cell functional compensation by derepressing serotonin synthesis.
Collapse
|
21
|
Elgamal DA, Abou-Elghait AT, Ali AY, Ali M, Bakr MH. Ultrastructure characterization of pancreatic β-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats. Mol Cell Endocrinol 2020; 503:110700. [PMID: 31904405 DOI: 10.1016/j.mce.2019.110700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023]
Abstract
Genetic and epigenetic factors contribute equally to the pathogenesis of type 1 diabetes mellitus. Sodium butyrate (NaB) has been reported to improve glucose homeostasis by modulation of the p38/ERK MAPK pathway. This work aims to evaluate the effect of NaB on the ultrastructure of pancreatic β-cells and the PI3/AKT pathway. Juvenile albino male rats were used to establish a type 1 diabetes model using streptozotocin injection and NaB in a pre- and post-treatment schedule. Plasma glucose, insulin levels, and glucose tolerance were evaluated. Light and electron microscopy and immunohistochemistry were performed using Ki-67, caspase-3, and insulin. NaB treatment resulted in a significant improvement in plasma glucose levels, plasma insulin levels/expression, and ameliorated diabetes-induced histological alternations. Additionally, it increased the expression of phosphorylated AKT. These findings provide evidence that NaB may be useful in the treatment of juvenile diabetes.
Collapse
Affiliation(s)
- Dalia A Elgamal
- Department of Histology and Cell Biology and Assiut University, Assiut, Egypt.
| | - Amal T Abou-Elghait
- Department of Histology and Cell Biology and Assiut University, Assiut, Egypt.
| | - Asmaa Y Ali
- Department of Histology and Cell Biology and Assiut University, Assiut, Egypt.
| | - Maha Ali
- Department of Medical Biochemistry, Assiut University, Assiut, Egypt.
| | - Marwa H Bakr
- Department of Histology and Cell Biology and Assiut University, Assiut, Egypt.
| |
Collapse
|
22
|
Xie Z, Chang C, Huang G, Zhou Z. The Role of Epigenetics in Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:223-257. [PMID: 32445098 DOI: 10.1007/978-981-15-3449-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain poorly understood. The major epigenetic modifications include DNA methylation, histone modification, and non-coding RNA. There has been extensive research on the role of epigenetic mechanisms including aberrant DNA methylation, histone modification, and microRNA in the pathogenesis of T1D. DNA methylation and microRNA have been proposed as biomarkers to predict islet β cell death, which needs further confirmation before any clinical application can be developed. Small molecule inhibitors of histone deacetylases, histone methylation, and DNA methylation are potentially important for preventing T1D or in the reprogramming of insulin-producing cells. This chapter mainly focuses on T1D-related DNA methylation, histone modification, and non-coding RNA, as well as their possible translational potential in the early diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China.
| |
Collapse
|
23
|
Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 2019; 20:102-115. [PMID: 30390028 DOI: 10.1038/s41580-018-0076-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-type-specific gene expression is physiologically modulated by the binding of transcription factors to genomic enhancer sequences, to which chromatin modifiers such as histone deacetylases (HDACs) are recruited. Drugs that inhibit HDACs are in clinical use but lack specificity. HDAC3 is a stoichiometric component of nuclear receptor co-repressor complexes whose enzymatic activity depends on this interaction. HDAC3 is required for many aspects of mammalian development and physiology, for example, for controlling metabolism and circadian rhythms. In this Review, we discuss the mechanisms by which HDAC3 regulates cell type-specific enhancers, the structure of HDAC3 and its function as part of nuclear receptor co-repressors, its enzymatic activity and its post-translational modifications. We then discuss the plethora of tissue-specific physiological functions of HDAC3.
Collapse
Affiliation(s)
- Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology 2019; 28:345-362. [PMID: 31707555 DOI: 10.1007/s10787-019-00663-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Inflammation has a central role in the etiology of type 2 diabetes (T2D) and its complications. Both genetic and epigenetic factors have been implicated in the development of T2D-associated inflammation. Epigenetic mechanisms regulate the function of several components of the immune system. Diabetic conditions trigger aberrant epigenetic alterations that contribute to the progression of insulin resistance and β-cell dysfunction by induction of inflammatory responses. Thus, targeting epigenetic factors and modifications, as one of the underlying causes of inflammation, could lead to the development of novel immune-based strategies for the treatment of T2D. The aim of this review is to provide an overview of the epigenetic mechanisms involved in the propagation and perpetuation of chronic inflammation in T2D. We also discuss the possible anti-inflammatory approaches that target epigenetic factors for the treatment of T2D.
Collapse
|
25
|
Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol 2019; 19:734-746. [PMID: 31501536 DOI: 10.1038/s41577-019-0213-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Type 1 and type 2 diabetes are characterized by chronic inflammation; both diseases involve pancreatic islet inflammation, while systemic low-grade inflammation is a feature of obesity and type 2 diabetes. Long-term activation of the innate immune system impairs insulin secretion and action, and inflammation also contributes to macrovascular and microvascular complications of diabetes. However, despite strong preclinical evidence and proof-of-principle clinical trials demonstrating that targeting inflammatory pathways can prevent cardiovascular disease and other complications in patients with diabetes, there are still no approved treatments for diabetes that target innate immune mediators. Here, we review recent advances in our understanding of the inflammatory pathogenesis of type 1 and type 2 diabetes from a translational angle and point out the critical gaps in knowledge that need to be addressed to guide drug development.
Collapse
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
26
|
Guo CJ, Xie JJ, Hong RH, Pan HS, Zhang FG, Liang YM. Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling. Biomed Pharmacother 2019; 115:108570. [DOI: 10.1016/j.biopha.2019.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 11/15/2022] Open
|
27
|
Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci 2019; 20:E1110. [PMID: 30841513 PMCID: PMC6429312 DOI: 10.3390/ijms20051110] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs. Chemokines and cytokines control inflammation, immunological and other key biological processes and are shown to be involved in various malignancies. Various HDACs and HDAC inhibitors were reported to regulate chemokines and cytokines. Even though HDAC inhibitors have remarkable anti-tumor activity in hematological cancers, they are not effective in treating many diseases and many patients relapse after treatment. However, the role of HDACs and cytokines in regulating these diseases still remain unclear. Therefore, understanding exact mechanisms and effector functions of HDACs are urgently needed to selectively inhibit them and to establish better a platform to combat various malignancies. In this review, we address regulation of chemokines and cytokines by HDACs and HDAC inhibitors and update on HDAC inhibitors in human diseases.
Collapse
Affiliation(s)
- Himavanth Reddy Gatla
- Department of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Prashanth Thevkar
- Department of Microbiology, New York University, New York, NY 10016, USA.
| | - Siddhartha Yavvari
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Sahithi Sukhavasi
- Center for Distance Learning, GITAM University, Visakhapatnam, AP 530045, India.
| | - Monish Ram Makena
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Zhang Y, Zhou F, Bai M, Liu Y, Zhang L, Zhu Q, Bi Y, Ning G, Zhou L, Wang X. The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to β-cell function. Cell Death Dis 2019; 10:66. [PMID: 30683850 PMCID: PMC6347623 DOI: 10.1038/s41419-019-1349-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/16/2023]
Abstract
Protein acetylation has a crucial role in energy metabolism. Here we performed the first large-scale profiling of acetylome in rat islets, showing that almost all enzymes in core metabolic pathways related to insulin secretion were acetylated. Label-free quantitative acetylome of islets in response to high glucose revealed hyperacetylation of enzymes involved in fatty acid β-oxidation (FAO), including trifunctional enzyme subunit alpha (ECHA). Acetylation decreased the protein stability of ECHA and its ability to promote FAO. The overexpression of SIRT3, a major mitochondrial deacetylase, prevented the degradation of ECHA via decreasing its acetylation level in β-cells. SIRT3 expression was upregulated in rat islets upon exposure to low glucose or fasting. SIRT3 overexpression in islets markedly decreased palmitate-potentiated insulin secretion, whereas islets from SIRT3 knockout mice secreted more insulin, with an opposite action on FAO. ECHA overexpression partially reversed SIRT3 deficiency-elicited insulin hypersecretion. Our study highlights the potential role of protein acetylation in insulin secretion.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.,Center for Reproductive Medicine, Shandong University, Jinan, 250000, China.,Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, Jinan, 250000, China
| | - Feiye Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Mengyao Bai
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yun Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Linlin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Qin Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Kwon Y, Kim Y, Jung HS, Jeoung D. Role of HDAC3-miRNA-CAGE Network in Anti-Cancer Drug-Resistance. Int J Mol Sci 2018; 20:ijms20010051. [PMID: 30583572 PMCID: PMC6337380 DOI: 10.3390/ijms20010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Histone modification is associated with resistance to anti-cancer drugs. Epigenetic modifications of histones can regulate resistance to anti-cancer drugs. It has been reported that histone deacetylase 3 (HDAC3) regulates responses to anti-cancer drugs, angiogenic potential, and tumorigenic potential of cancer cells in association with cancer-associated genes (CAGE), and in particular, a cancer/testis antigen gene. In this paper, we report the roles of microRNAs that regulate the expression of HDAC3 and CAGE involved in resistance to anti-cancer drugs and associated mechanisms. In this review, roles of HDAC3-miRNAs-CAGE molecular networks in resistance to anti-cancer drugs, and the relevance of HDAC3 as a target for developing anti-cancer drugs are discussed.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon 24251, Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
30
|
HDAC1 overexpression enhances β-cell proliferation by down-regulating Cdkn1b/p27. Biochem J 2018; 475:3997-4010. [PMID: 30322885 DOI: 10.1042/bcj20180465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022]
Abstract
The homeobox transcription factor Nkx6.1 is sufficient to increase functional β-cell mass, where functional β-cell mass refers to the combination of β-cell proliferation, glucose-stimulated insulin secretion (GSIS) and β-cell survival. Here, we demonstrate that the histone deacetylase 1 (HDAC1), which is an early target of Nkx6.1, is sufficient to increase functional β-cell mass. We show that HDAC activity is necessary for Nkx6.1-mediated proliferation, and that HDAC1 is sufficient to increase β-cell proliferation in primary rat islets and the INS-1 832/13 β-cell line. The increase in HDAC1-mediated proliferation occurs while maintaining GSIS and increasing β-cell survival in response to apoptotic stimuli. We demonstrate that HDAC1 overexpression results in decreased expression of the cell cycle inhibitor Cdkn1b/p27 which is essential for inhibiting the G1 to S phase transition of the cell cycle. This corresponds with increased expression of key cell cycle activators, such as Cyclin A2, Cyclin B1 and E2F1, which are activated by activation of the Cdk4/Cdk6/Cyclin D holoenzymes due to down-regulation of Cdkn1b/p27. Finally, we demonstrate that overexpression of Cdkn1b/p27 inhibits HDAC1-mediated β-cell proliferation. Our data suggest that HDAC1 is critical for the Nkx6.1-mediated pathway that enhances functional β-cell mass.
Collapse
|
31
|
Ghiasi SM, Dahllöf MS, Osmai Y, Osmai M, Jakobsen KK, Aivazidis A, Tyrberg B, Perruzza L, Prause MCB, Christensen DP, Fog-Tonnesen M, Lundh M, Grassi F, Chatenoud L, Mandrup-Poulsen T. Regulation of the β-cell inflammasome and contribution to stress-induced cellular dysfunction and apoptosis. Mol Cell Endocrinol 2018; 478:106-114. [PMID: 30121202 DOI: 10.1016/j.mce.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/03/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022]
Abstract
β-Cells may be a source of IL-1β that is produced as inactive pro-IL-1β and processed into biologically-active IL-1β by enzymatic cleavage mediated by the NLRP1-, NLRP3- and NLRC4-inflammasomes. Little is known about the β-cell inflammasomes. NLRP1-expression was upregulated in islet-cells from T2D-patients and by IL-1β+IFNγ in INS-1 cells in a histone-deacetylase dependent manner. NLRP3 was downregulated by cytokines in INS-1 cells. NLRC4 was barely expressed and not regulated by cytokines. High extracellular K+ reduced cytokine-induced apoptosis and NO production and restored cytokine-inhibited accumulated insulin-secretion. Basal inflammasome expression was JNK1-3 dependent. Knock-down of the ASC interaction domain common for NLRP1 and 3 improved insulin secretion and ameliorated IL-1β and/or glucolipotoxicity-induced cell death and reduced cytokine-induced NO-production. Broad inflammasome-inhibition, but not NLRP3-selective inhibition, protected against IL-1β-induced INS-1 cell-toxicity. We suggest that IL-1β causes β-cell toxicity in part by NLRP1 mediated caspase-1-activation and maturation of IL-1β leading to an autocrine potentiation loop.
Collapse
Affiliation(s)
- Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yama Osmai
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mirwais Osmai
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Alexander Aivazidis
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Tyrberg
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Dan Ploug Christensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten Fog-Tonnesen
- Diabetes Biology and Hagedorn Research Institute, Novo Nordisk, Copenhagen, Denmark
| | - Morten Lundh
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Lucienne Chatenoud
- Hospital Necker-Enfants Malades, Université Paris Descartes, INSERM, Paris, France
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
32
|
MicroRNAs and histone deacetylase inhibition-mediated protection against inflammatory β-cell damage. PLoS One 2018; 13:e0203713. [PMID: 30260972 PMCID: PMC6160007 DOI: 10.1371/journal.pone.0203713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/24/2018] [Indexed: 01/22/2023] Open
Abstract
Inflammatory β-cell failure contributes to type 1 and type 2 diabetes pathogenesis. Pro-inflammatory cytokines cause β-cell dysfunction and apoptosis, and lysine deacetylase inhibitors (KDACi) prevent β-cell failure in vitro and in vivo, in part by reducing NF-κB transcriptional activity. We investigated the hypothesis that the protective effect of KDACi involves transcriptional regulation of microRNAs (miRs), potential new targets in diabetes treatment. Insulin-producing INS1 cells were cultured with or without the broad-spectrum KDACi Givinostat, prior to exposure to the pro-inflammatory cytokines IL-1β and IFN-γ for 6 h or 24 h, and miR expression was profiled with miR array. Thirteen miRs (miR-7a-2-3p, miR-29c-3p, miR-96-5p, miR-101a-3p, miR-140-5p, miR-146a-5p, miR-146b-5p, miR-340-5p, miR-384-5p, miR-455-5p, miR-466b-2-3p, miR-652-5p, and miR-3584-5p) were regulated by both cytokines and Givinostat, and nine were examined by qRT-PCR. miR-146a-5p was strongly regulated by cytokines and KDACi and was analyzed further. miR-146a-5p expression was induced by cytokines in rat and human islets. Cytokine-induced miR-146a-5p expression was specific for INS1 and β-TC3 cells, whereas α-TC1 cells exhibited a higher basal expression. Transfection of INS1 cells with miR-146a-5p reduced cytokine signaling, including the activity of NF-κB and iNOS promoters, as well as NO production and protein levels of iNOS and its own direct targets TNF receptor associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1). miR-146a-5p was elevated in the pancreas of diabetes-prone BB-DP rats at diabetes onset, suggesting that miR-146a-5p could play a role in type 1 diabetes development. The miR array of cytokine-exposed INS1 cells rescued by KDACi revealed several other miRs potentially involved in cytokine-induced β-cell apoptosis, demonstrating the strength of this approach.
Collapse
|
33
|
Narayanan S, Loganathan G, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Endothelial cell regulation through epigenetic mechanisms: Depicting parallels and its clinical application within an intra-islet microenvironment. Diabetes Res Clin Pract 2018; 143:120-133. [PMID: 29953914 DOI: 10.1016/j.diabres.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The intra-islet endothelial cells (ECs), the building blocks of islet microvasculature, govern a number of cellular and pathophysiological processes associated with the pancreatic tissue. These cells are key to the angiogenic process and essential for islet revascularization after transplantation. Understanding fundamental mechanisms by which ECs regulate the angiogenic process is important as these cells maintain and regulate the intra-islet environment facilitated by a complex signaling crosstalk with the surrounding endocrine cells. In recent years, many studies have demonstrated the impact of epigenetic regulation on islet cell development and function. This review will present an overview of the reports involving endothelial epigenetic mechanisms particularly focusing on histone modifications which have been identified to play a critical role in governing EC functions by modifying the chromatin structure. A better understanding of epigenetic mechanisms by which these cells regulate gene expression and function to orchestrate cellular physiology and pathology is likely to offer improved insights on the functioning and regulation of an intra-islet endothelial microvascular environment.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | | | - Michael G Hughes
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Stuart K Williams
- Department of Physiology, University of Louisville, Louisville, KY 40202, United States
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
34
|
Manea SA, Antonescu ML, Fenyo IM, Raicu M, Simionescu M, Manea A. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol 2018; 16:332-343. [PMID: 29587244 PMCID: PMC5953221 DOI: 10.1016/j.redox.2018.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) generated by up-regulated NADPH oxidase (Nox) contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC)-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC) line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Mihaela-Loredana Antonescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Monica Raicu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
35
|
Ruiz L, Gurlo T, Ravier MA, Wojtusciszyn A, Mathieu J, Brown MR, Broca C, Bertrand G, Butler PC, Matveyenko AV, Dalle S, Costes S. Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment. Cell Death Dis 2018; 9:600. [PMID: 29789539 PMCID: PMC5964068 DOI: 10.1038/s41419-018-0603-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/09/2018] [Accepted: 04/17/2018] [Indexed: 12/25/2022]
Abstract
In type 2 diabetes, amyloid oligomers, chronic hyperglycemia, lipotoxicity, and pro-inflammatory cytokines are detrimental to beta-cells, causing apoptosis and impaired insulin secretion. The histone acetyl transferase p300, involved in remodeling of chromatin structure by epigenetic mechanisms, is a key ubiquitous activator of the transcriptional machinery. In this study, we report that loss of p300 acetyl transferase activity and expression leads to beta-cell apoptosis, and most importantly, that stress situations known to be associated with diabetes alter p300 levels and functional integrity. We found that proteasomal degradation is the mechanism subserving p300 loss in beta-cells exposed to hyperglycemia or pro-inflammatory cytokines. We also report that melatonin, a hormone produced in the pineal gland and known to play key roles in beta-cell health, preserves p300 levels altered by these toxic conditions. Collectively, these data imply an important role for p300 in the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Lucie Ruiz
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Magalie A Ravier
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Anne Wojtusciszyn
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Cell Therapy for Diabetes (LTCD), Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, Montpellier, France.,Department of Endocrinology, Diabetes, and Nutrition, University Hospital of Montpellier, Montpellier, France
| | - Julia Mathieu
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christophe Broca
- Laboratory of Cell Therapy for Diabetes (LTCD), Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, Montpellier, France
| | | | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stéphane Dalle
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Safia Costes
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.
| |
Collapse
|
36
|
Chen WB, Gao L, Wang J, Wang YG, Dong Z, Zhao J, Mi QS, Zhou L. Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes. Oncotarget 2018; 7:57485-57497. [PMID: 27542279 PMCID: PMC5295367 DOI: 10.18632/oncotarget.11295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate gene expression by modifying chromatin structure through removal of acetyl groups from target histones or non-histone proteins. Previous in vitro studies suggest that HDACs may be novel pharmacological targets in immune-mediated islet β-cell destruction. However, the role of specific HDAC in islet β-cell development and function remain unclear. Here, we generated a conditional islet β-cells specific HDAC3 deletion mouse model to determine the consequences of HDAC3 depletion on islet β-cell differentiation, maintenance and function. Islet morphology, insulin secretion, glucose tolerance, and multiple low-dose streptozotocin (STZ)-induced diabetes incidence were evaluated and compared between HDAC3 knockout and wild type littermate controls. Mice with β-cell-specific HDAC3 deletion displayed decreased pancreatic insulin content, disrupted glucose-stimulated insulin secretion, with intermittent spontaneous diabetes and dramatically enhanced susceptibility to STZ-induced diabetes. Furthermore, islet β-cell line, MIN6 cells with siRNA-mediated HDAC3 silence, showed decreased insulin gene transcription, which was mediated, at least partially, through the upregulation of suppressors of cytokine signaling 3 (SOCS3). These results indicate the critical role of HDAC3 in normal β-cell differentiation, maintenance and function.
Collapse
Affiliation(s)
- Wen-Bin Chen
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Ling Gao
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Gang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
37
|
High dose of histone deacetylase inhibitors affects insulin secretory mechanism of pancreatic beta cell line. Endocr Regul 2018; 52:21-26. [DOI: 10.2478/enr-2018-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Objective. Histone deacytylase inhibitors (HDACis) inhibit the deacetylation of the lysine residue of proteins, including histones, and regulate the transcription of a variety of genes. Recently, HDACis have been used clinically as anti-cancer drugs and possible anti-diabetic drugs. Even though HDACis have been proven to protect the cytokine-induced damage of pancreatic beta cells, evidence also shows that high doses of HDACis are cytotoxic. In the present study, we, therefore, investigated the eff ect of HDACis on insulin secretion in a pancreatic beta cell line. Methods. Pancreatic beta cells MIN6 were treated with selected HDACis (trichostatin A, TSA; valproic acid, VPA; and sodium butyrate, NaB) in medium supplemented with 25 mM glucose and 13% heat-inactivated fetal bovine serum (FBS) for indicated time intervals. Protein expression of Pdx1 and Mafa in MIN6 cells was demonstrated by immunohistochemistry and immunocytochemistry, expression of Pdx1 and Mafa genes was measured by quantitative RT-PCR method. Insulin release from MIN6 cells and insulin cell content were estimated by ELISA kit. Superoxide production in MIN6 cells was measured using a Total ROS/Superoxide Detection System. Results. TSA, VPA, and NaB inhibited the expression of Pdx1 and Mafa genes and their products. TSA treatment led to beta cell malfunction, characterized by enhanced insulin secretion at 3 and 9 mM glucose, but impaired insulin secretion at 15 and 25 mM glucose. Th us, TSA induced dysregulation of the insulin secretion mechanism. TSA also enhanced reactive oxygen species production in pancreatic beta cells. Conclusions. Our results showed that HDACis caused failure to suppress insulin secretion at low glucose concentrations and enhance insulin secretion at high glucose concentrations. In other words, when these HDACis are used clinically, high doses of HDACis may cause hypoglycemia in the fasting state and hyperglycemia in the fed state. When using HDACis, physicians should, therefore, be aware of the capacity of these drugs to modulate the insulin secretory capacity of pancreatic beta cells.
Collapse
|
38
|
Besançon A, Goncalves T, Valette F, Dahllöf MS, Mandrup-Poulsen T, Chatenoud L, You S. Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice. Diabetologia 2018; 61:389-398. [PMID: 29030662 DOI: 10.1007/s00125-017-4459-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/16/2017] [Indexed: 12/23/2022]
Abstract
AIM/HYPOTHESIS Combination therapy targeting the major actors involved in the immune-mediated destruction of pancreatic beta cells appears to be an indispensable approach to treat type 1 diabetes effectively. We hypothesised that the combination of an orally active pan-histone deacetylase inhibitor (HDACi: givinostat) with subtherapeutic doses of CD3 antibodies may provide ideal synergy to treat ongoing autoimmunity. METHODS NOD mice transgenic for the human CD3ε (also known as CD3E) chain (NOD-huCD3ε) were treated for recent-onset diabetes with oral givinostat, subtherapeutic doses of humanised CD3 antibodies (otelixizumab, 50 μg/day, 5 days, i.v.) or a combination of both drugs. Disease remission, metabolic profiles and autoreactive T cell responses were analysed in treated mice. RESULTS We demonstrated that givinostat synergised with otelixizumab to induce durable remission of diabetes in 80% of recently diabetic NOD-huCD3ε mice. Remission was obtained in only 47% of mice treated with otelixizumab alone. Oral givinostat monotherapy did not reverse established diabetes but reduced the in situ production of inflammatory cytokines (IL-1β, IL-6, TNF-α). Importantly, the otelixizumab + givinostat combination strongly improved the metabolic status of NOD-huCD3ε mice; the mice recovered the capacity to appropriately produce insulin, control hyperglycaemia and sustain glucose tolerance. Finally, diabetes remission induced by the combination therapy was associated with a significant reduction of insulitis and autoantigen-specific CD8+ T cell responses. CONCLUSIONS/INTERPRETATION HDACi and low-dose CD3 antibodies synergised to abrogate in situ inflammation and thereby improved pancreatic beta cell survival and metabolic function leading to long-lasting diabetes remission. These results support the therapeutic potential of protocols combining these two drugs, both in clinical development, to restore self-tolerance and insulin independence in type 1 diabetes.
Collapse
Affiliation(s)
- Alix Besançon
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Tania Goncalves
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Fabrice Valette
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Mattias S Dahllöf
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucienne Chatenoud
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Sylvaine You
- University Paris Descartes, Sorbonne Paris Cité, Paris, France.
- INSERM U1151, Institut Necker-Enfants Malades, Hôpital Necker, Bâtiment Hamburger, 5ème étage, 149 rue de Sèvres, 75015, Paris, France.
- CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France.
| |
Collapse
|
39
|
Backe MB, Andersson JL, Bacos K, Christensen DP, Hansen JB, Dorosz JJ, Gajhede M, Dahlby T, Bysani M, Kristensen LH, Ling C, Olsen L, Mandrup-Poulsen T. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function. Mol Cell Endocrinol 2018; 460:47-56. [PMID: 28684291 DOI: 10.1016/j.mce.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting a possible role in inflammation-induced β-cell destruction. Inhibition of KDM6 demethylases using the selective inhibitor GSK-J4 protected insulin-producing cells and human and mouse islets from cytokine-induced apoptosis by blunting nuclear factor (NF)-κB signaling and endoplasmic reticulum (ER) stress response gene expression. GSK-J4 furthermore increased expression of insulin gene and glucose-stimulated insulin secretion. Expression of genes regulating purinergic and cytokine ligand-receptor interactions was downregulated following GSK-J4 exposure, while expression of genes involved in cell maintenance and survival was upregulated. These data suggest that KDMs are important regulators of inflammation-induced β-cell dysfunction and death.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jan Legaard Andersson
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Karl Bacos
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Dan Ploug Christensen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jakob Bondo Hansen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jerzy Jòzef Dorosz
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Michael Gajhede
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Tina Dahlby
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Madhusudhan Bysani
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Line Hyltoft Kristensen
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Charlotte Ling
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Lars Olsen
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
40
|
Kawada Y, Asahara SI, Sugiura Y, Sato A, Furubayashi A, Kawamura M, Bartolome A, Terashi-Suzuki E, Takai T, Kanno A, Koyanagi-Kimura M, Matsuda T, Hashimoto N, Kido Y. Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells. PLoS One 2017; 12:e0184435. [PMID: 28886131 PMCID: PMC5590960 DOI: 10.1371/journal.pone.0184435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/23/2017] [Indexed: 12/23/2022] Open
Abstract
Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yukina Kawada
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yumiko Sugiura
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ayaka Sato
- Medical Technology Major, Faculty of Health Sciences Major, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayuko Furubayashi
- Medical Technology Major, Faculty of Health Sciences Major, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mao Kawamura
- Medical Technology Major, Faculty of Health Sciences Major, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Alberto Bartolome
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Emi Terashi-Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayumi Kanno
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Maki Koyanagi-Kimura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoko Hashimoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Kido
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
41
|
Zullo A, Sommese L, Nicoletti G, Donatelli F, Mancini FP, Napoli C. Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl Res 2017; 185:85-93. [PMID: 28552218 DOI: 10.1016/j.trsl.2017.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 02/01/2023]
Abstract
Type 1 diabetes (T1D) is an irreversible degenerative disease with severe complications such as heart disease, nephropathy, neuropathy, and retinopathy. Although exogenous insulin administration is a life-saving therapy, it does not cure the disease. This review addresses the epigenetic mechanisms responsible for the development of T1D and discusses epigenetic-based strategies for prevention and treatment of the disease. We describe novel epigenetic biomarkers for the identification of susceptible individuals and the establishment of innovative therapies with epidrugs and cell therapy to regenerate the lost β-cells. Despite the wealth of promising data regarding the potential benefits of epigenetic tools to reduce the burden of T1D, clinical trials are still very few, and this issue needs to be resolved in the near future.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy; CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Linda Sommese
- U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Gianfranco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Donatelli
- Cardiovascular Department, Chair of Cardiosurgery, University of Milan, Milan, Italy
| | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
42
|
Khan S, Komarya SK, Jena G. Phenylbutyrate and β-cell function: contribution of histone deacetylases and ER stress inhibition. Epigenomics 2017; 9:711-720. [PMID: 28470097 DOI: 10.2217/epi-2016-0160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Incidences of diabetes are increasing globally due to involvement of genetic and epigenetic factors. Phenylbutyrate (PBA) is a US FDA approved drug for treatment of urea cycle disorder in children. PBA reduces endoplasmic reticulum (ER) stress and is proven as a potent histone deacetylases (HDACs) inhibitor. Chronic ER stress results in unfolding protein response, which triggers apoptosis. Abnormal ER homoeostasis is responsible for defective processing of several genes/proteins and contributes to β-cell death/failure. Accumulated evidences indicated that HDACs modulate key biochemical pathways and HDAC inhibitors improve β-cell function and insulin resistance by modulating multiple targets. This review highlights the role of PBA on β-cell functions, insulin resistance for possible treatment of diabetes through inhibition of ER stress and HDACs.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, SAS Nagar, Punjab-160062, India
| | - Sandeep K Komarya
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, SAS Nagar, Punjab-160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, SAS Nagar, Punjab-160062, India
| |
Collapse
|
43
|
A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors. Int J Mol Sci 2017; 18:ijms18010137. [PMID: 28106794 PMCID: PMC5297770 DOI: 10.3390/ijms18010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive “flexible docking”, as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way.
Collapse
|
44
|
Daneshpajooh M, Bacos K, Bysani M, Bagge A, Ottosson Laakso E, Vikman P, Eliasson L, Mulder H, Ling C. HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia 2017; 60:116-125. [PMID: 27796421 PMCID: PMC6518079 DOI: 10.1007/s00125-016-4113-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cell dysfunction is a prerequisite for the development of type 2 diabetes. Histone deacetylases (HDACs) may affect pancreatic endocrine function and glucose homeostasis through alterations in gene regulation. Our aim was to investigate the role of HDAC7 in human and rat pancreatic islets and clonal INS-1 beta cells (INS-1 832/13). METHODS To explore the role of HDAC7 in pancreatic islets and clonal beta cells, we used RNA sequencing, mitochondrial functional analyses, microarray techniques, and HDAC inhibitors MC1568 and trichostatin A. RESULTS Using RNA sequencing, we found increased HDAC7 expression in human pancreatic islets from type 2 diabetic compared with non-diabetic donors. HDAC7 expression correlated negatively with insulin secretion in human islets. To mimic the situation in type 2 diabetic islets, we overexpressed Hdac7 in rat islets and clonal beta cells. In both, Hdac7 overexpression resulted in impaired glucose-stimulated insulin secretion. Furthermore, it reduced insulin content, mitochondrial respiration and cellular ATP levels in clonal beta cells. Overexpression of Hdac7 also led to changes in the genome-wide gene expression pattern, including increased expression of Tcf7l2 and decreased expression of gene sets regulating DNA replication and repair as well as nucleotide metabolism. In accordance, Hdac7 overexpression reduced the number of beta cells owing to enhanced apoptosis. Finally, we found that inhibiting HDAC7 activity with pharmacological inhibitors or small interfering RNA-mediated knockdown restored glucose-stimulated insulin secretion in beta cells that were overexpressing Hdac7. CONCLUSIONS/INTERPRETATION Taken together, these results indicate that increased HDAC7 levels caused beta cell dysfunction and may thereby contribute to defects seen in type 2 diabetic islets. Our study supports HDAC7 inhibitors as a therapeutic option for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Mahboubeh Daneshpajooh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, 20502, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, 20502, Malmö, Sweden
| | - Madhusudhan Bysani
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, 20502, Malmö, Sweden
| | - Annika Bagge
- Molecular Metabolism Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Emilia Ottosson Laakso
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Petter Vikman
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Hindrik Mulder
- Molecular Metabolism Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, 20502, Malmö, Sweden.
| |
Collapse
|
45
|
Sathishkumar C, Prabu P, Balakumar M, Lenin R, Prabhu D, Anjana RM, Mohan V, Balasubramanyam M. Augmentation of histone deacetylase 3 ( HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clin Epigenetics 2016; 8:125. [PMID: 27904654 PMCID: PMC5122206 DOI: 10.1186/s13148-016-0293-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A role of proinflammation has been implicated in the pathogenesis of diabetes, but the up-stream regulatory signals and molecular signatures are poorly understood. While histone modifications such as changes in histone deacetylase (HDAC) are emerging as novel epigenetic biomarkers, there is lack of studies to demonstrate their clinical relevance in diabetes. Therefore, we investigated the extent of HDAC machinery and inflammatory signals in peripheral blood mononuclear cells (PBMCs) from patients with type 2 diabetes mellitus (T2DM) compared to control subjects. RESULTS HDAC3 activity was significantly (p < 0.05) increased in patients with T2DM compared to control subjects. While subtypes of HDACs were differentially expressed at their transcriptional levels in patients with type 2 diabetes, the most prominent observation is the significantly (p < 0.05) elevated messenger RNA (mRNA) levels of HDAC3. Expression levels of Sirt1 which represents the class III HDAC were decreased significantly in T2DM (p < 0.05). Plasma levels of both TNF-α and IL-6 were significantly higher (p < 0.05) in patients with type 2 diabetes compared to control subjects. Among the proinflammatory mediators, the mRNA expression of MCP-1, IL1-β, NFκB, TLR2, and TLR4 were also significantly (p < 0.05) increased in T2DM. Transcriptional levels of DBC1 (deleted in breast cancer 1, which is a negative regulator of HDAC3) were seen significantly reduced in PBMCs from T2DM. Interestingly, HDAC3 activity/HDAC3 mRNA levels positively correlated to proinflammation, poor glycemic control, and insulin resistance. CONCLUSIONS Striking message from this study is that while looking for anti-inflammatory strategies and drugs with novel mode of action for T2DM, discovering and designing specific inhibitors targeted to HDAC3 appears promising.
Collapse
Affiliation(s)
- Chandrakumar Sathishkumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Paramasivam Prabu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Mahalingam Balakumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Raji Lenin
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Durai Prabhu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Ranjith Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Gopalapuram, Chennai, 600086 India
| |
Collapse
|
46
|
Remsberg JR, Ediger BN, Ho WY, Damle M, Li Z, Teng C, Lanzillotta C, Stoffers DA, Lazar MA. Deletion of histone deacetylase 3 in adult beta cells improves glucose tolerance via increased insulin secretion. Mol Metab 2016; 6:30-37. [PMID: 28123935 PMCID: PMC5220396 DOI: 10.1016/j.molmet.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Objective Histone deacetylases are epigenetic regulators known to control gene transcription in various tissues. A member of this family, histone deacetylase 3 (HDAC3), has been shown to regulate metabolic genes. Cell culture studies with HDAC-specific inhibitors and siRNA suggest that HDAC3 plays a role in pancreatic β-cell function, but a recent genetic study in mice has been contradictory. Here we address the functional role of HDAC3 in β-cells of adult mice. Methods An HDAC3 β-cell specific knockout was generated in adult MIP-CreERT transgenic mice using the Cre-loxP system. Induction of HDAC3 deletion was initiated at 8 weeks of age with administration of tamoxifen in corn oil (2 mg/day for 5 days). Mice were assayed for glucose tolerance, glucose-stimulated insulin secretion, and islet function 2 weeks after induction of the knockout. Transcriptional functions of HDAC3 were assessed by ChIP-seq as well as RNA-seq comparing control and β-cell knockout islets. Results HDAC3 β-cell specific knockout (HDAC3βKO) did not increase total pancreatic insulin content or β-cell mass. However, HDAC3βKO mice demonstrated markedly improved glucose tolerance. This improved glucose metabolism coincided with increased basal and glucose-stimulated insulin secretion in vivo as well as in isolated islets. Cistromic and transcriptomic analyses of pancreatic islets revealed that HDAC3 regulates multiple genes that contribute to glucose-stimulated insulin secretion. Conclusions HDAC3 plays an important role in regulating insulin secretion in vivo, and therapeutic intervention may improve glucose homeostasis. HDAC3 ablation in adult mouse β-cells improves glucose tolerance. Improved glucose tolerance is due to increased insulin secretion. HDAC3 targets multiple genes involved in potentiating insulin secretion.
Collapse
Affiliation(s)
- Jarrett R Remsberg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin N Ediger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wesley Y Ho
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manashree Damle
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhenghui Li
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Teng
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cristina Lanzillotta
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Sharma S, Taliyan R. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res 2016; 113:320-326. [DOI: 10.1016/j.phrs.2016.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
|
48
|
Bricambert J, Favre D, Brajkovic S, Bonnefond A, Boutry R, Salvi R, Plaisance V, Chikri M, Chinetti-Gbaguidi G, Staels B, Giusti V, Caiazzo R, Pattou F, Waeber G, Froguel P, Abderrahmani A. Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Mol Metab 2016; 5:1200-1207. [PMID: 27900262 PMCID: PMC5123204 DOI: 10.1016/j.molmet.2016.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023] Open
Abstract
Objective The goal of the study was to investigate the role of histone deacetylases (HDACs) in adipocyte function associated with obesity and hypoxia. Methods Total proteins and RNA were prepared from human visceral adipose tissues (VAT) of human obese and normal weight subjects and from white adipose tissue (WAT) of C57Bl6-Rj mice fed a normal or high fat diet (HFD) for 16 weeks. HDAC activity was measured by colorimetric assay whereas the gene and protein expression were monitored by real-time PCR and by western blotting, respectively. RNA interference (RNAi) was used to silence the expression of genes in 3T3-L1 adipocytes. Results Total HDAC activity was decreased in VAT and WAT from obese individuals and from mice fed a HFD, respectively. The HDAC activity reduction was associated with decreased HDAC5/Hdac5 and HDAC6/Hdac6 expression in human and mice adipocyte fraction. Similarly, hypoxia hampered total Hdac activity and reduced the expression of Hdac5 and Hdac6 in 3T3-L1 adipocytes. The decrease of both Hdac5 and Hdac6 by hypoxia was associated with altered expression of adipokines and of the inducible cAMP early repressor (Icer), a key repressor that is defective in human and mice obesity. Silencing of Icer in adipocytes reproduced the changes in adipokine levels under hypoxia and obesity, suggesting a causative effect. Finally, modeling the defect of the two Hdacs in adipocytes by RNAi or selective inhibitors mimicked the effects of hypoxia on the expression of Icer, leading to impairment of insulin-induced glucose uptake. Conclusion Hdac5 and Hdac6 expression are required for the adequate expression of Icer and adipocyte function. Altered adipose expression of the two Hdacs in obesity by hypoxia may contribute to the development of metabolic abnormalities. Impaired adipose HDAC activity in human obese subjects and obese mice. HDAC5 and HDAC6 expression is reduced in adipocytes of obese mice and human. The expression of HDAC5, HDAC6 and ICER is altered by hypoxia in 3T3-L1 adipocytes. ICER regulates hypoxia-sensitive adipokines expression. Hdac5 and Hdac6 control the expression of ICER and glucose uptake in adipocytes.
Collapse
Affiliation(s)
- Julien Bricambert
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Dimitri Favre
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Saška Brajkovic
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France; Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Amélie Bonnefond
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Raphael Boutry
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Roberto Salvi
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Mohamed Chikri
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Univ. Sidi Mohammed Ben Abdellah, FMPF, Fes, Morocco
| | - Giulia Chinetti-Gbaguidi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France; Inserm, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice-Sophia Antipolis, Nice and Clinical Chemistry Laboratory, University Hospital, Nice, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Vittorio Giusti
- Metabolic Center, Fribourg Hospital HFR, Fribourg, Switzerland
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000 Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000 Lille, France
| | - Gérard Waeber
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Froguel
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France; Department of Genomic of Common Disease, Imperial College London, UK
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France; Department of Genomic of Common Disease, Imperial College London, UK.
| |
Collapse
|
49
|
Vestergaard AL, Blankestijn M, Stahl JL, Pallesen EMH, Bang-Berthelsen CH, Pociot F, Novotny GW, Lundh M, Mandrup-Poulsen T. A Systematic Comparison of Purification and Normalization Protocols for Quantitative MicroRNA Expressional Profiling in Insulin-Producing Cells. Int J Mol Sci 2016; 17:ijms17060896. [PMID: 27338345 PMCID: PMC4926430 DOI: 10.3390/ijms17060896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022] Open
Abstract
As microRNAs (miRs) are gaining increasing attention as key regulators of cellular processes, expressional quantification is widely applied. However, in the processing of relatively quantified data, the importance of testing the stability of several reference mRNAs and/or miRs and choosing among these for normalization is often overlooked, potentially leading to biased results. Here, we have optimized the purification of miR-enriched total RNA from pancreatic insulin-producing INS-1 cells. Additionally, we optimized and analyzed miR expression by a qPCR-based microarray and by specific qPCR and tested the stability of candidate reference mRNAs and miRs. Hence, this study gives a widely applicable example on how to easily and systematically test and decide how to normalize miR quantification. We suggest that caution in the interpretation of miR quantification studies that do not comprise stability analysis should be exerted.
Collapse
Affiliation(s)
- Anna Lindeløv Vestergaard
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Maaike Blankestijn
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Jonathan Lucien Stahl
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Emil Marek Heymans Pallesen
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Claus Heiner Bang-Berthelsen
- Center for Non-coding RNA in Technology and Health, Department of Pediatrics, Herlev and Gentofte Hospital, 2730 Herlev, Denmark.
| | - Flemming Pociot
- Center for Non-coding RNA in Technology and Health, Department of Pediatrics, Herlev and Gentofte Hospital, 2730 Herlev, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Guy Wayne Novotny
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Morten Lundh
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Thomas Mandrup-Poulsen
- Laboratory for Immuno-Endocrinology, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
50
|
Sato S, Katsushima K, Shinjo K, Hatanaka A, Ohka F, Suzuki S, Naiki-Ito A, Soga N, Takahashi S, Kondo Y. Histone Deacetylase Inhibition in Prostate Cancer Triggers miR-320–Mediated Suppression of the Androgen Receptor. Cancer Res 2016; 76:4192-204. [DOI: 10.1158/0008-5472.can-15-3339] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/12/2016] [Indexed: 11/16/2022]
|