1
|
Fuller RN, Morcos A, Bustillos JG, Molina DC, Wall NR. Small non-coding RNAs and pancreatic ductal adenocarcinoma: Linking diagnosis, pathogenesis, drug resistance, and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189153. [PMID: 38986720 DOI: 10.1016/j.bbcan.2024.189153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ann Morcos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joab Galvan Bustillos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Nathan R Wall
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
2
|
Zhang L, Zhang L, Chen H, Xu X. The Interplay Between Cytokines and MicroRNAs to Regulate Metabolic Disorders. J Interferon Cytokine Res 2024; 44:337-348. [PMID: 39082185 DOI: 10.1089/jir.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Metabolic disorders represent significant public health challenges worldwide. Emerging evidence suggests that cytokines and microRNAs (miRNAs) play crucial roles in the pathogenesis of metabolic disorders by regulating various metabolic processes, including insulin sensitivity, lipid metabolism, and inflammation. This review provides a comprehensive overview of the intricate interplay between cytokines and miRNAs in the context of metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. We discuss how dysregulation of cytokine-miRNA networks contributes to the development and progression of metabolic disorders and explore the therapeutic potential of targeting these interactions for disease management.
Collapse
Affiliation(s)
- Li Zhang
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Li Zhang
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Xiangyong Xu
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| |
Collapse
|
3
|
Song X, Song Y, Zhang J, Hu Y, Zhang L, Huang Z, Abbas Raza SH, Jiang C, Ma Y, Ma Y, Wu H, Wei D. Regulatory role of exosome-derived miRNAs and other contents in adipogenesis. Exp Cell Res 2024; 441:114168. [PMID: 39004201 DOI: 10.1016/j.yexcr.2024.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition. This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | | | - Sayed Haidar Abbas Raza
- Xichang University, Xichang, 615000, China; Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
| |
Collapse
|
4
|
Mondal S, Rathor R, Singh SN, Suryakumar G. miRNA and leptin signaling in metabolic diseases and at extreme environments. Pharmacol Res Perspect 2024; 12:e1248. [PMID: 39017237 PMCID: PMC11253706 DOI: 10.1002/prp2.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Samrita Mondal
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | - Richa Rathor
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | - Som Nath Singh
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | | |
Collapse
|
5
|
Lino M, Garcia-Martin R, Muñoz VR, Ruiz GP, Nawaz A, Brandão BB, Dreyfus J, Pan H, Kahn CR. Multi-step regulation of microRNA expression and secretion into small extracellular vesicles by insulin. Cell Rep 2024; 43:114491. [PMID: 39002127 PMCID: PMC11363058 DOI: 10.1016/j.celrep.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.
Collapse
Affiliation(s)
- Marsel Lino
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Vitor Rosetto Muñoz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gabriel Palermo Ruiz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Allah Nawaz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bruna Brasil Brandão
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan Dreyfus
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hui Pan
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
6
|
Méndez-Mancilla A, Turiján-Espinoza E, Vega-Cárdenas M, Hernández-Hernández GE, Uresti-Rivera EE, Vargas-Morales JM, Portales-Pérez DP. miR-21, miR-221, miR-29 and miR-34 are distinguishable molecular features of a metabolically unhealthy phenotype in young adults. PLoS One 2024; 19:e0300420. [PMID: 38662716 PMCID: PMC11045123 DOI: 10.1371/journal.pone.0300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
Discrepancies between the measurement of body mass index (BMI) and metabolic health status have been described for the onset of metabolic diseases. Studying novel biomarkers, some of which are associated with metabolic syndrome, can help us to understand the differences between metabolic health (MetH) and BMI. A group of 1469 young adults with pre-specified anthropometric and blood biochemical parameters were selected. Of these, 80 subjects were included in the downstream analysis that considered their BMI and MetH parameters for selection as follows: norm weight metabolically healthy (MHNW) or metabolically unhealthy (MUNW); overweight/obese metabolically healthy (MHOW) or metabolically unhealthy (MUOW). Our results showed for the first time the differences when the MetH status and the BMI are considered as global MetH statures. First, all the evaluated miRNAs presented a higher expression in the metabolically unhealthy group than the metabolically healthy group. The higher levels of leptin, IL-1b, IL-8, IL-17A, miR-221, miR-21, and miR-29 are directly associated with metabolic unhealthy and OW/OB phenotypes (MUOW group). In contrast, high levels of miR34 were detected only in the MUNW group. We found differences in the SIRT1-PGC1α pathway with increased levels of SIRT1+ cells and diminished mRNA levels of PGCa in the metabolically unhealthy compared to metabolically healthy subjects. Our results demonstrate that even when metabolic diseases are not apparent in young adult populations, MetH and BMI have a distinguishable phenotype print that signals the potential to develop major metabolic diseases.
Collapse
Affiliation(s)
- Alejandro Méndez-Mancilla
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
- Translational and Molecular Medicine Department, Research Center for Health Sciences and Biomedicine (CICSaB), Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
| | - Eneida Turiján-Espinoza
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
- Translational and Molecular Medicine Department, Research Center for Health Sciences and Biomedicine (CICSaB), Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
| | - Mariela Vega-Cárdenas
- Translational and Molecular Medicine Department, Research Center for Health Sciences and Biomedicine (CICSaB), Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
| | - Gloria Estela Hernández-Hernández
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
| | - Edith Elena Uresti-Rivera
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
- Translational and Molecular Medicine Department, Research Center for Health Sciences and Biomedicine (CICSaB), Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
| | - Juan M. Vargas-Morales
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
- Laboratory of Clinical Analysis, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
| | - Diana P. Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
- Translational and Molecular Medicine Department, Research Center for Health Sciences and Biomedicine (CICSaB), Autonomous University of San Luis Potosí, San Luis Potosí, San Luis Potosi, Mexico
| |
Collapse
|
7
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
8
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
9
|
Dhanyamraju PK. Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res 2024; 38:95-121. [PMID: 38413011 PMCID: PMC11001593 DOI: 10.7555/jbr.37.20230248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/29/2024] Open
Abstract
One of the quintessential challenges in cancer treatment is drug resistance. Several mechanisms of drug resistance have been described to date, and new modes of drug resistance continue to be discovered. The phenomenon of cancer drug resistance is now widespread, with approximately 90% of cancer-related deaths associated with drug resistance. Despite significant advances in the drug discovery process, the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy. Therefore, understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities. In the present review, I discuss the different mechanisms of drug resistance in cancer cells, including DNA damage repair, epithelial to mesenchymal transition, inhibition of cell death, alteration of drug targets, inactivation of drugs, deregulation of cellular energetics, immune evasion, tumor-promoting inflammation, genome instability, and other contributing epigenetic factors. Furthermore, I highlight available treatment options and conclude with future directions.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Abdel-Tawab MS, Mohamed MG, Doudar NA, Rateb EE, Reyad HR, Elazeem NAA. Circulating hsa-miR-221 as a possible diagnostic and prognostic biomarker of diabetic nephropathy. Mol Biol Rep 2023; 50:9793-9803. [PMID: 37831346 PMCID: PMC10676308 DOI: 10.1007/s11033-023-08846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN), which is a chronic outcome of diabetes mellitus (DM), usually progresses to end-stage renal disease (ESRD). The DN pathophysiology, nevertheless, is not well-defined. Several miRNAs were reported to be either risk or protective factors in DN. METHODS, AND RESULTS The present study sought to inspect the potential diagnostic and prognostic value of hsa-miR-221 in DN. The study included 200 participants divided into four groups: Group 1 (50 patients with DN), Group 2 (50 diabetic patients without nephropathy), Group 3 (50 nondiabetic patients with CKD), and Group 4 (50 healthy subjects as a control group). Patients in groups 1 and 3 were further classified based on the presence of macroalbuminuria and microalbuminuria. Hsa-miR-221 expression was measured by RT- qRT-PCR. DN patients had significantly elevated serum hsa-miR-221 levels than the other groups, while diabetic patients without nephropathy exhibited elevated levels compared to both nondiabetic patients with CKD, and the control group. The DN patients with macroalbuminuria revealed significantly higher mean values of hsa-miR-221 relative to the patients with microalbuminuria. Significant positive associations were observed in the DN group between serum hsa-miR-221 and fasting insulin, fasting glucose, HOMA IR, ACR, and BMI. The ROC curve analysis of serum hsa-miR-221 in the initial diagnosis of DN in DM revealed high specificity and sensitivity. CONCLUSIONS It is concluded that hsa-miR-221 has the potential to be a useful biomarker for prognostic and diagnostic purposes in DN.
Collapse
Affiliation(s)
- Marwa Sayed Abdel-Tawab
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed Gamal Mohamed
- Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Doudar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Enas Ezzat Rateb
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hoda Ramadan Reyad
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Naglaa Adli Abd Elazeem
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
12
|
Vaswani CM, Varkouhi AK, Gupta S, Ektesabi AM, Tsoporis JN, Yousef S, Plant PJ, da Silva AL, Cen Y, Tseng YC, Batah SS, Fabro AT, Advani SL, Advani A, Leong-Poi H, Marshall JC, Garcia CC, Rocco PRM, Albaiceta GM, Sebastian-Bolz S, Watts TH, Moraes TJ, Capelozzi VL, Dos Santos CC. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury. Mol Ther 2023; 31:2681-2701. [PMID: 37340634 PMCID: PMC10491994 DOI: 10.1016/j.ymthe.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sahil Gupta
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sadiya Yousef
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Pamela J Plant
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Adriana L da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Yuchen Cen
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Yi-Chieh Tseng
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cristiana C Garcia
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; Integrated Research Group on Biomarkers. René Rachou Institute, FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Steffen Sebastian-Bolz
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada; Department of Pediatrics University of Toronto and Respirology, Hospital for Sick Children, Toronto, ON, Canada
| | - Vera L Capelozzi
- Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Interdepartmental Division of Critical Care, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
15
|
Islam MK, Islam MR, Rahman MH, Islam MZ, Hasan MM, Mamun MMI, Moni MA. Integrated bioinformatics and statistical approach to identify the common molecular mechanisms of obesity that are linked to the development of two psychiatric disorders: Schizophrenia and major depressive disorder. PLoS One 2023; 18:e0276820. [PMID: 37494308 PMCID: PMC10370737 DOI: 10.1371/journal.pone.0276820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/13/2022] [Indexed: 07/28/2023] Open
Abstract
Obesity is a chronic multifactorial disease characterized by the accumulation of body fat and serves as a gateway to a number of metabolic-related diseases. Epidemiologic data indicate that Obesity is acting as a risk factor for neuro-psychiatric disorders such as schizophrenia, major depression disorder and vice versa. However, how obesity may biologically interact with neurodevelopmental or neurological psychiatric conditions influenced by hereditary, environmental, and other factors is entirely unknown. To address this issue, we have developed a pipeline that integrates bioinformatics and statistical approaches such as transcriptomic analysis to identify differentially expressed genes (DEGs) and molecular mechanisms in patients with psychiatric disorders that are also common in obese patients. Biomarker genes expressed in schizophrenia, major depression, and obesity have been used to demonstrate such relationships depending on the previous research studies. The highly expressed genes identify commonly altered signalling pathways, gene ontology pathways, and gene-disease associations across disorders. The proposed method identified 163 significant genes and 134 significant pathways shared between obesity and schizophrenia. Similarly, there are 247 significant genes and 65 significant pathways that are shared by obesity and major depressive disorder. These genes and pathways increase the likelihood that psychiatric disorders and obesity are pathogenic. Thus, this study may help in the development of a restorative approach that will ameliorate the bidirectional relation between obesity and psychiatric disorder. Finally, we also validated our findings using genome-wide association study (GWAS) and whole-genome sequence (WGS) data from SCZ, MDD, and OBE. We confirmed the likely involvement of four significant genes both in transcriptomic and GWAS/WGS data. Moreover, we have performed co-expression cluster analysis of the transcriptomic data and compared it with the results of transcriptomic differential expression analysis and GWAS/WGS.
Collapse
Affiliation(s)
- Md Khairul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Rakibul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Habibur Rahman
- Dept. of Computer Science Engineering, Islamic University, Kushtia, Bangladesh
| | - Md Zahidul Islam
- Dept. of Information Communication Technology, Islamic University, Kushtia, Bangladesh
| | - Md Mehedi Hasan
- Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Mainul Islam Mamun
- Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- Dept. of Computer Science and Engineering, Pabna University of Science and Technology, Pabna, Bangladesh
| |
Collapse
|
16
|
Aguilera C, Velásquez AE, Gutierrez-Reinoso MA, Wong YS, Melo-Baez B, Cabezas J, Caamaño D, Navarrete F, Rojas D, Riadi G, Castro FO, Rodriguez-Alvarez L. Extracellular Vesicles Secreted by Pre-Hatching Bovine Embryos Produced In Vitro and In Vivo Alter the Expression of IFNtau-Stimulated Genes in Bovine Endometrial Cells. Int J Mol Sci 2023; 24:ijms24087438. [PMID: 37108601 PMCID: PMC10138918 DOI: 10.3390/ijms24087438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The embryo-maternal interaction occurs during the early stages of embryo development and is essential for the implantation and full-term development of the embryo. In bovines, the secretion of interferon Tau (IFNT) during elongation is the main signal for pregnancy recognition, but its expression starts around the blastocyst stage. Embryos release extracellular vesicles (EVs) as an alternative mechanism of embryo-maternal communication. The aim of the study was to determine whether EVs secreted by bovine embryos during blastulation (D5-D7) could induce transcriptomic modifications, activating IFNT signaling in endometrial cells. Additionally, it aims to assess whether the EVs secreted by embryos produced in vivo (EVs-IVV) or in vitro (EVs-IVP) have different effects on the transcriptomic profiles of the endometrial cells. In vitro- and in vivo-produced bovine morulae were selected and individually cultured for 48 h to collect embryonic EVs (E-EVs) secreted during blastulation. E-EVs stained with PKH67 were added to in vitro-cultured bovine endometrial cells to assess EV internalization. The effect of EVs on the transcriptomic profile of endometrial cells was determined by RNA sequencing. EVs from both types of embryos induced several classical and non-classical IFNT-stimulated genes (ISGs) and other pathways related to endometrial function in epithelial endometrial cells. Higher numbers of differentially expressed genes (3552) were induced by EVs released by IVP embryos compared to EVs from IVV (1838). Gene ontology analysis showed that EVs-IVP/IVV induced the upregulation of the extracellular exosome pathway, the cellular response to stimulus, and the protein modification processes. This work provides evidence regarding the effect of embryo origin (in vivo or in vitro) on the early embryo-maternal interaction mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Constanza Aguilera
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Alejandra Estela Velásquez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Miguel Angel Gutierrez-Reinoso
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Yat Sen Wong
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Barbara Melo-Baez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Joel Cabezas
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Diego Caamaño
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Felipe Navarrete
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Daniela Rojas
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Gonzalo Riadi
- ANID-Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, Campus Talca, University of Talca, Talca 3460000, Chile
| | - Fidel Ovidio Castro
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Llretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| |
Collapse
|
17
|
Yang J, Wang ZX, Fang L, Li TS, Liu ZH, Pan Y, Kong LD. Atractylodes lancea and Magnolia officinalis combination protects against high fructose-impaired insulin signaling in glomerular podocytes through upregulating Sirt1 to inhibit p53-driven miR-221. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115688. [PMID: 36067838 DOI: 10.1016/j.jep.2022.115688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, a long term of improper diet causes the Dampness and disturbs Zang-Fu's functions including Kidney deficiency. Atractylodes lancea (Atr) and Magnolia officinalis (Mag) as a famous herb pair are commonly used to transform Dampness, with kidney protection. AIM OF THE STUDY To explore how Atr and Mag protected against insulin signaling impairment in glomerular podocytes induced by high dietary fructose feeding, a major contributor for insulin resistance in glomerular podocyte dysfunction. MATERIALS AND METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyze constituents of Atr and Mag. Rat model was induced by 10% fructose drinking water in vivo, and heat-sensitive human podocyte cells (HPCs) were exposed to 5 mM fructose in vitro. Animal or cultured podocyte models were treated with different doses of Atr, Mag or Atr and Mag combination. Western blot, qRT-PCR and immunofluorescence assays as well as other experiments were performed to detect adiponectin receptor protein 1 (AdipoR1), protein kinase B (AKT), Sirt1, p53 and miR-221 levels in rat glomeruli or HPCs, respectively. RESULTS Fifty-five components were identified in Atr and Mag combination. Network pharmacology analysis indicated that Atr and Mag combination might affect insulin signaling pathway. This combination significantly improved systemic insulin resistance and prevented glomerulus morphological damage in high fructose-fed rats. Of note, high fructose decreased IRS1, AKT and AdipoR1 in rat glomeruli and cultured podocytes. Further data from cultured podocytes with Sirt1 inhibitor/agonist, p53 agonist/inhibitor, or miR-221 mimic/inhibitor showed that high fructose downregulated Sirt1 to stimulate p53-driven miR-221, resulting in insulin signaling impairment. Atr and Mag combination effectively increased Sirt1, and decreased p53 and miR-221 in in vivo and in vitro models. CONCLUSIONS Atr and Mag combination improved insulin signaling in high fructose-stimulated glomerular podocytes possibly through upregulating Sirt1 to inhibit p53-driven miR-221. Thus, the regulation of Sirt1/p53/miR-221 by this combination may be a potential therapeutic approach in podocyte insulin signaling impairment.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Xuan Wang
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School, Nanjing University, Nanjing, PR China
| | - Tu-Shuai Li
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi-Hong Liu
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ying Pan
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Ling-Dong Kong
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
18
|
Dezonne RS, Pereira CM, de Moraes Martins CJ, de Abreu VG, Francischetti EA. Adiponectin, the adiponectin paradox, and Alzheimer's Disease: Is this association biologically plausible? Metab Brain Dis 2023; 38:109-121. [PMID: 35921057 DOI: 10.1007/s11011-022-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Dementia, especially Alzheimer's Disease (AD) and vascular dementia, is a major public health problem that continues to expand in both economically emerging and hegemonic countries. In 2017, the World Alzheimer Report estimated that over 50 million people were living with dementia globally. Metabolic dysfunctions of brain structures such as the hippocampus and cerebral cortex have been implicated as risk factors for dementia. Several well-defined metabolic risk factors for AD include visceral obesity, chronic inflammation, peripheral and brain insulin resistance, type 2 diabetes mellitus (T2DM), hypercholesterolemia, and others. In this review, we describe the relationship between the dysmetabolic mechanisms, although still unknown, and dementia, particularly AD. Adiponectin (ADPN), the most abundant circulating adipocytokine, acts as a protagonist in the metabolic dysfunction associated with AD, with unexpected and intriguing dual biological functions. This contradictory role of ADPN has been termed the adiponectin paradox. Some evidence suggests that the adiponectin paradox is important in amyloidogenic evolvability in AD. We present cumulative evidence showing that AD and T2DM share many common features. We also review the mechanistic pathways involving brain insulin resistance. We discuss the importance of the evolvability of amyloidogenic proteins (APs), defined as the capacity of a system for adaptive evolution. Finally, we describe potential therapeutic strategies in AD, based on the adiponectin paradox.
Collapse
Affiliation(s)
- Rômulo Sperduto Dezonne
- Neuropathology and Molecular Genetics Laboratory, State Institute of the Brain Paulo Niemeyer, State Health Department, Rio de Janeiro, Brazil
| | | | - Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Virgínia Genelhu de Abreu
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Gaytán-Pacheco N, Ibáñez-Salazar A, Herrera-Van Oostdam AS, Oropeza-Valdez JJ, Magaña-Aquino M, Adrián López J, Monárrez-Espino J, López-Hernández Y. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics (Basel) 2022; 13:133. [PMID: 36611425 PMCID: PMC9818442 DOI: 10.3390/diagnostics13010133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
COVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying immunological mechanisms, and their possible use as biomarkers to discriminate against patients with severe COVID-19. Functional analysis showed that most enriched pathways were significantly associated with processes related to cell proliferation and immune responses (innate and adaptive). Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential use as predictive prognosis biomarkers.
Collapse
Affiliation(s)
- Noemí Gaytán-Pacheco
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Alejandro Ibáñez-Salazar
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | | | - Juan José Oropeza-Valdez
- Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98600, Mexico
| | | | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital Chihuahua, University of Monterrey, San Pedro Garza García 66238, Mexico
| | - Yamilé López-Hernández
- CONACyT-Metabolomics and Proteomics Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
20
|
Rakib A, Kiran S, Mandal M, Singh UP. MicroRNAs: a crossroad that connects obesity to immunity and aging. Immun Ageing 2022; 19:64. [PMID: 36517853 PMCID: PMC9749272 DOI: 10.1186/s12979-022-00320-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Obesity is characterized by an elevated amount of fat and energy storage in the adipose tissue (AT) and is believed to be the root cause of many metabolic diseases (MDs). Obesity is associated with low-grade chronic inflammation in AT. Like obesity, chronic inflammation and MDs are prevalent in the elderly. The resident immune microenvironment is not only responsible for maintaining AT homeostasis but also plays a crucial role in stemming obesity and related MDs. Mounting evidence suggests that obesity promotes activation in resident T cells and macrophages. Additionally, inflammatory subsets of T cells and macrophages accumulated into the AT in combination with other immune cells maintain low-grade chronic inflammation. microRNAs (miRs) are small non-coding RNAs and a crucial contributing factor in maintaining immune response and obesity in AT. AT resident T cells, macrophages and adipocytes secrete various miRs and communicate with other cells to create a potential effect in metabolic organ crosstalk. AT resident macrophages and T cells-associated miRs have a prominent role in regulating obesity by targeting several signaling pathways. Further, miRs also emerged as important regulators of cellular senescence and aging. To this end, a clear link between miRs and longevity has been demonstrated that implicates their role in regulating lifespan and the aging process. Hence, AT and circulating miRs can be used as diagnostic and therapeutic tools for obesity and related disorders. In this review, we discuss how miRs function as biomarkers and impact obesity, chronic inflammation, and aging.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
21
|
Coppola S, Nocerino R, Paparo L, Bedogni G, Calignano A, Di Scala C, de Giovanni di Santa Severina AF, De Filippis F, Ercolini D, Berni Canani R. Therapeutic Effects of Butyrate on Pediatric Obesity: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2244912. [PMID: 36469320 PMCID: PMC9855301 DOI: 10.1001/jamanetworkopen.2022.44912] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
Importance The pediatric obesity disease burden imposes the necessity of new effective strategies. Objective To determine whether oral butyrate supplementation as an adjunct to standard care is effective in the treatment of pediatric obesity. Design, Setting, and Participants A randomized, quadruple-blind, placebo-controlled trial was performed from November 1, 2020, to December 31, 2021, at the Tertiary Center for Pediatric Nutrition, Department of Translational Medical Science, University of Naples Federico II, Naples, Italy. Participants included children aged 5 to 17 years with body mass index (BMI) greater than the 95th percentile. Interventions Standard care for pediatric obesity supplemented with oral sodium butyrate, 20 mg/kg body weight per day, or placebo for 6 months was administered. Main Outcomes and Measures The main outcome was the decrease of at least 0.25 BMI SD scores at 6 months. The secondary outcomes were changes in waist circumference; fasting glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, ghrelin, microRNA-221, and interleukin-6 levels; homeostatic model assessment of insulin resistance (HOMA-IR); dietary and lifestyle habits; and gut microbiome structure. Intention-to-treat analysis was conducted. Results Fifty-four children with obesity (31 girls [57%], mean [SD] age, 11 [2.91] years) were randomized into the butyrate and placebo groups; 4 were lost to follow-up after receiving the intervention in the butyrate group and 2 in the placebo group. At intention-to-treat analysis (n = 54), children treated with butyrate had a higher rate of BMI decrease greater than or equal to 0.25 SD scores at 6 months (96% vs 56%, absolute benefit increase, 40%; 95% CI, 21% to 61%; P < .01). At per-protocol analysis (n = 48), the butyrate group showed the following changes as compared with the placebo group: waist circumference, -5.07 cm (95% CI, -7.68 to -2.46 cm; P < .001); insulin level, -5.41 μU/mL (95% CI, -10.49 to -0.34 μU/mL; P = .03); HOMA-IR, -1.14 (95% CI, -2.13 to -0.15; P = .02); ghrelin level, -47.89 μg/mL (95% CI, -91.80 to -3.98 μg/mL; P < .001); microRNA221 relative expression, -2.17 (95% CI, -3.35 to -0.99; P < .001); and IL-6 level, -4.81 pg/mL (95% CI, -7.74 to -1.88 pg/mL; P < .001). Similar patterns of adherence to standard care were observed in the 2 groups. Baseline gut microbiome signatures predictable of the therapeutic response were identified. Adverse effects included transient mild nausea and headache reported by 2 patients during the first month of butyrate intervention. Conclusions and Relevance Oral butyrate supplementation may be effective in the treatment of pediatric obesity. Trial Registration ClinicalTrials.gov Identifier: NCT04620057.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples “Federico II,” Naples, Italy
- ImmunoNutritionLab, CEINGE-Advanced Biotechnologies, University of Naples “Federico II,” Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples “Federico II,” Naples, Italy
- ImmunoNutritionLab, CEINGE-Advanced Biotechnologies, University of Naples “Federico II,” Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples “Federico II,” Naples, Italy
- ImmunoNutritionLab, CEINGE-Advanced Biotechnologies, University of Naples “Federico II,” Naples, Italy
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Primary Health Care, Internal Medicine Unit Addressed to Frailty and Aging, S Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples “Federico II,” Naples, Italy
| | - Carmen Di Scala
- Department of Translational Medical Science, University of Naples “Federico II,” Naples, Italy
- ImmunoNutritionLab, CEINGE-Advanced Biotechnologies, University of Naples “Federico II,” Naples, Italy
| | - Anna Fiorenza de Giovanni di Santa Severina
- Department of Translational Medical Science, University of Naples “Federico II,” Naples, Italy
- ImmunoNutritionLab, CEINGE-Advanced Biotechnologies, University of Naples “Federico II,” Naples, Italy
| | - Francesca De Filippis
- Task Force on Microbiome Studies, University of Naples “Federico II,” Naples, Italy
- Department of Agricultural Sciences, University of Naples “Federico II,” Naples, Italy
| | - Danilo Ercolini
- Task Force on Microbiome Studies, University of Naples “Federico II,” Naples, Italy
- Department of Agricultural Sciences, University of Naples “Federico II,” Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples “Federico II,” Naples, Italy
- ImmunoNutritionLab, CEINGE-Advanced Biotechnologies, University of Naples “Federico II,” Naples, Italy
- Task Force on Microbiome Studies, University of Naples “Federico II,” Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples “Federico II,” Naples, Italy
| |
Collapse
|
22
|
Chan GCK, Than WH, Kwan BCH, Lai KB, Chan RCK, Teoh JYC, Ng JKC, Chow KM, Cheng PMS, Law MC, Leung CB, Li PKT, Szeto CC. Adipose and Plasma microRNAs miR-221 and 222 Associate with Obesity, Insulin Resistance, and New Onset Diabetes after Peritoneal Dialysis. Nutrients 2022; 14:nu14224889. [PMID: 36432575 PMCID: PMC9699429 DOI: 10.3390/nu14224889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The correlation between microRNA, obesity, and glycemic intolerance in patients on peritoneal dialysis (PD) is unknown. We aimed to measure the adipose and plasma miR-221 and -222 levels, and to evaluate their association with adiposity, glucose intolerance, and new onset diabetes mellitus (NODM) after the commencement of PD. METHODS We prospectively recruited incident adult PD patients. miR-221 and -222 were measured from adipose tissue and plasma obtained during PD catheter insertion. These patients were followed for 24 months, and the outcomes were changes in adiposity, insulin resistance, and NODM after PD. RESULTS One hundred and sixty-five patients were recruited. Patients with pre-existing DM had higher adipose miR-221 (1.1 ± 1.2 vs. 0.7 ± 0.9-fold, p = 0.02) and -222 (1.9 ± 2.0 vs. 1.2 ± 1.3-fold, p = 0.01). High adipose miR-221 and -222 levels were associated with a greater increase in waist circumference (miR-221: beta 1.82, 95% CI 0.57-3.07, p = 0.005; miR-222: beta 1.35, 95% CI 0.08-2.63, p = 0.038), Homeostatic Model Assessment for Insulin Resistance (HOMA) index (miR-221: beta 8.16, 95% CI 2.80-13.53, p = 0.003; miR-222: beta 6.59, 95% CI 1.13-12.05, p = 0.018), and insulin requirements (miR-221: beta 0.05, 95% CI 0.006-0.09, p = 0.02; miR-222: beta 0.06, 95% CI 0.02-0.11, p = 0.002) after PD. The plasma miR-222 level predicted the onset of NODM (OR 8.25, 95% CI 1.35-50.5, p = 0.02). CONCLUSION miR-221 and -222 are associated with the progression of obesity, insulin resistance, and NODM after PD.
Collapse
Affiliation(s)
- Gordon Chun Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-3505-1729; Fax: +852-2637-3852
| | - Win Hlaing Than
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bonnie Ching Ha Kwan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ka Bik Lai
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ronald Cheong Kin Chan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeremy Yuen Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jack Kit Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kai Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Phyllis Mei Shan Cheng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Man Ching Law
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chi Bon Leung
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Philip Kam Tao Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cheuk Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
23
|
Ma L, Gilani A, Yi Q, Tang L. MicroRNAs as Mediators of Adipose Thermogenesis and Potential Therapeutic Targets for Obesity. BIOLOGY 2022; 11:1657. [PMID: 36421371 PMCID: PMC9687157 DOI: 10.3390/biology11111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 07/30/2023]
Abstract
Obesity is a growing health problem worldwide, associated with an increased risk of multiple chronic diseases. The thermogenic activity of brown adipose tissue (BAT) correlates with leanness in adults. Understanding the mechanisms behind BAT activation and the process of white fat "browning" has important implications for developing new treatments to combat obesity. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in various tissues, including adipose tissue. Recent studies show that miRNAs are involved in adipogenesis and adipose tissue thermogenesis. In this review, we discuss recent advances in the role of miRNAs in adipocyte thermogenesis and obesity. The potential for miRNA-based therapies for obesity and recommendations for future research are highlighted, which may help provide new targets for treating obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646099, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
24
|
Concistrè A, Petramala L, Circosta F, Romagnoli P, Soldini M, Bucci M, De Cesare D, Cavallaro G, De Toma G, Cipollone F, Letizia C. Analysis of the miRNA expression from the adipose tissue surrounding the adrenal neoplasia. Front Cardiovasc Med 2022; 9:930959. [PMID: 35966515 PMCID: PMC9366211 DOI: 10.3389/fcvm.2022.930959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Primary aldosteronism (PA) is characterized by several metabolic changes such as insulin resistance, metabolic syndrome, and adipose tissue (AT) inflammation. Mi(cro)RNAs (miRNAs) are a class of non-coding small RNA molecules known to be critical regulators in several cellular processes associated with AT dysfunction. The aim of this study was to evaluate the expression of some miRNAs in visceral and subcutaneous AT in patients undergoing adrenalectomy for aldosterone-secreting adrenal adenoma (APA) compared to the samples of AT obtained in patients undergoing adrenalectomy for non-functioning adrenal mass (NFA). Methods The quantitative expression of selected miRNA using real-time PCR was analyzed in surrounding adrenal neoplasia, peri-renal, and subcutaneous AT samples of 16 patients with adrenalectomy (11 patients with APA and 5 patients with NFA). Results Real-time PCR cycles for miRNA-132, miRNA-143, and miRNA-221 in fat surrounding adrenal neoplasia and in peri-adrenal AT were significantly higher in APA than in patients with NFA. Unlike patients with NFA, miRNA-132, miRNA-143, miRNA-221, and miRNA-26b were less expressed in surrounding adrenal neoplasia AT compared to subcutaneous AT in patients with APA. Conclusion This study, conducted on tissue expression of miRNAs, highlights the possible pathophysiological role of some miRNAs in determining the metabolic alterations in patients with PA.
Collapse
Affiliation(s)
- Antonio Concistrè
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Luigi Petramala
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Circosta
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Priscilla Romagnoli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Soldini
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Marco Bucci
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Domenico De Cesare
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Cavallaro
- Department of Surgery “Pietro Valdoni, ” “Sapienza” University of Rome, Rome, Italy
| | - Giorgio De Toma
- Department of Surgery “Pietro Valdoni, ” “Sapienza” University of Rome, Rome, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Claudio Letizia
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Claudio Letizia
| |
Collapse
|
25
|
Li X, Qi L. Epigenetics in Precision Nutrition. J Pers Med 2022; 12:jpm12040533. [PMID: 35455649 PMCID: PMC9027461 DOI: 10.3390/jpm12040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging area of nutrition research, with primary focus on the individual variability in response to dietary and lifestyle factors, which are mainly determined by an individual’s intrinsic variations, such as those in genome, epigenome, and gut microbiome. The current research on precision nutrition is heavily focused on genome and gut microbiome, while epigenome (DNA methylation, non-coding RNAs, and histone modification) is largely neglected. The epigenome acts as the interface between the human genome and environmental stressors, including diets and lifestyle. Increasing evidence has suggested that epigenetic modifications, particularly DNA methylation, may determine the individual variability in metabolic health and response to dietary and lifestyle factors and, therefore, hold great promise in discovering novel markers for precision nutrition and potential targets for precision interventions. This review summarized recent studies on DNA methylation with obesity, diabetes, and cardiovascular disease, with more emphasis put in the relations of DNA methylation with nutrition and diet/lifestyle interventions. We also briefly reviewed other epigenetic events, such as non-coding RNAs, in relation to human health and nutrition, and discussed the potential role of epigenetics in the precision nutrition research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-504-988-7259
| |
Collapse
|
26
|
Renal Cell Cancer and Obesity. Int J Mol Sci 2022; 23:ijms23063404. [PMID: 35328822 PMCID: PMC8951303 DOI: 10.3390/ijms23063404] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancers are a frequent cause of morbidity and mortality. There are many risk factors for tumours, including advanced age, personal or family history of cancer, some types of viral infections, exposure to radiation and some chemicals, smoking and alcohol consumption, as well as obesity. Increasing evidence suggest the role of obesity in the initiation and progression of various cancers, including renal cell carcinoma. Since tumours require energy for their uncontrollable growth, it appears plausible that their initiation and development is associated with the dysregulation of cells metabolism. Thus, any state characterised by an intake of excessive energy and nutrients may favour the development of various cancers. There are many factors that promote the development of renal cell carcinoma, including hypoxia, inflammation, insulin resistance, excessive adipose tissue and adipokines and others. There are also many obesity-related alterations in genes expression, including DNA methylation, single nucleotide polymorphisms, histone modification and miRNAs that can promote renal carcinogenesis. This review focuses on the impact of obesity on the risk of renal cancers development, their aggressiveness and patients’ survival.
Collapse
|
27
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
28
|
Kornmueller K, Amri EZ, Scheideler M, Prassl R. Delivery of miRNAs to the adipose organ for metabolic health. Adv Drug Deliv Rev 2022; 181:114110. [PMID: 34995679 DOI: 10.1016/j.addr.2021.114110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Despite the increasing prevalence of obesity and diabetes, there is no efficient treatment to combat these epidemics. The adipose organ is the main site for energy storage and plays a pivotal role in whole body lipid metabolism and energy homeostasis, including remodeling and dysfunction of adipocytes and adipose tissues in obesity and diabetes. Thus, restoring and balancing metabolic functions in the adipose organ is in demand. MiRNAs represent a novel class of drugs and drug targets, as they are heavily involved in the regulation of many cellular and metabolic processes and diseases, likewise in adipocytes. In this review, we summarize key regulatory activities of miRNAs in the adipose organ, discuss various miRNA replacement and inhibition strategies, promising delivery systems for miRNAs and reflect the future of novel miRNA-based therapeutics to target adipose tissues with the ultimate goal to combat metabolic disorders.
Collapse
Affiliation(s)
- Karin Kornmueller
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | | | - Marcel Scheideler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ruth Prassl
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
29
|
Dowling L, Duseja A, Vilaca T, Walsh JS, Goljanek-Whysall K. MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review. J Cachexia Sarcopenia Muscle 2022; 13:68-85. [PMID: 34984856 PMCID: PMC8818592 DOI: 10.1002/jcsm.12878] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenic obesity is a distinct condition of sarcopenia in the context of obesity, with the cumulative health risks of both phenotypes. Differential expression of microRNAs (miRNAs) has been reported separately in people with obesity and sarcopenia and may play a role in the pathogenesis of sarcopenic obesity. However, this has not been explored to date. This study aimed to identify differentially expressed miRNAs reported in serum, plasma, and skeletal muscle of people with obesity and sarcopenia and whether there are any commonalities between these conditions. We performed a systematic review on Embase and MEDLINE (PROSPERO, CRD42020224486) for differentially expressed miRNAs (fold change >1.5 or P-value <0.05) in (i) sarcopenia or frailty and (ii) obesity or metabolic syndrome. The functions and targets of miRNAs commonly changed in both conditions, in the same direction, were searched using PubMed. Following deduplication, 247 obesity and 42 sarcopenia studies were identified for full-text screening. Screening identified 36 obesity and 6 sarcopenia studies for final inclusion. A total of 351 miRNAs were identified in obesity and 157 in sarcopenia. Fifty-five miRNAs were identified in both obesity and sarcopenia-by sample type, 48 were found in plasma and one each in serum and skeletal muscle. Twenty-four miRNAs were identified from 10 of the included studies as commonly changed in the same direction (22 in plasma and one each in serum and skeletal muscle) in obesity and sarcopenia. The majority of miRNA-validated targets identified in the literature search were members of the phosphoinositide 3-kinase/protein kinase B and transforming growth factor-β signalling pathways. The most common targets identified were insulin-like growth factor 1 (miR-424-5p, miR-483-3p, and miR-18b-5p) and members of the SMAD family (miR-483-3p, miR-92a-3p, and miR-424-5p). The majority of commonly changed miRNAs were involved in protein homeostasis, mitochondrial dynamics, determination of muscle fibre type, insulin resistance, and adipogenesis. Twenty-four miRNAs were identified as commonly dysregulated in obesity and sarcopenia with functions and targets implicated in the pathogenesis of sarcopenic obesity. Given the adverse health outcomes associated with sarcopenic obesity, understanding the pathogenesis underlying this phenotype has the potential to lead to effective screening, monitoring, or treatment strategies. Further research is now required to confirm whether these miRNAs are differentially expressed in older adults with sarcopenic obesity.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Goljanek-Whysall
- The University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
30
|
Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front Med (Lausanne) 2022; 8:770504. [PMID: 35087844 PMCID: PMC8787199 DOI: 10.3389/fmed.2021.770504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.
Collapse
Affiliation(s)
- J Samael Rodríguez-Sanabria
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Juan S Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Mexico
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
31
|
Chattopadhyay S, Joharapurkar A, Das N, Khatoon S, Kushwaha S, Gurjar AA, Singh AK, Shree S, Ahmed MZ, China SP, Pal S, Kumar H, Ramachandran R, Patel V, Trivedi AK, Lahiri A, Jain MR, Chattopadhyay N, Sanyal S. Estradiol overcomes adiponectin-resistance in diabetic mice by regulating skeletal muscle adiponectin receptor 1 expression. Mol Cell Endocrinol 2022; 540:111525. [PMID: 34856343 DOI: 10.1016/j.mce.2021.111525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/19/2022]
Abstract
Adiponectin and insulin resistance creates a vicious cycle that exacerbates type 2 diabetes. Earlier, we observed that female leptin receptor-deficient BLKS mice (BKS-db/db) were more sensitive to an adiponectin mimetic GTDF than males, which led us to explore if E2 plays a crucial role in modulation of adiponectin-sensitivity. Male but not female BKS-db/db mice were resistant to metabolic effects of globular adiponectin treatment. Male BKS-db/db displayed reduced skeletal muscle AdipoR1 protein expression, which was consequent to elevated polypyrimidine tract binding protein 1 (PTB) and miR-221. E2 treatment in male BKS-db/db, and ovariectomized BALB/c mice rescued AdipoR1 protein expression via downregulation of PTB and miR-221, and also directly increased AdipoR1 mRNA by its classical nuclear receptors. Estrogen receptor regulation via dietary or pharmacological interventions may improve adiponectin resistance and consequently ameliorate insulin resistance in type 2 diabetes.
Collapse
MESH Headings
- Adiponectin/metabolism
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Drug Resistance/genetics
- Estradiol/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Receptors, Leptin/genetics
- Sex Characteristics
Collapse
Affiliation(s)
- Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | | | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sapana Kushwaha
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anagha Ashok Gurjar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Abhishek Kumar Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sonal Shree
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Md Zohaib Ahmed
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shyamsundar Pal China
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Harish Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ravishankar Ramachandran
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Arun Kumar Trivedi
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Amit Lahiri
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India.
| |
Collapse
|
32
|
Bourgeois BL, Lin HY, Yeh AY, Levitt DE, Primeaux SD, Ferguson TF, Molina PE, Simon L. Unique circulating microRNA associations with dysglycemia in people living with HIV and alcohol use. Physiol Genomics 2022; 54:36-44. [PMID: 34859690 PMCID: PMC8891241 DOI: 10.1152/physiolgenomics.00085.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
People living with HIV (PLWH) have increased prevalence of comorbid conditions including insulin resistance and at-risk alcohol use. Circulating microRNAs (miRs) may serve as minimally invasive indicators of pathophysiological states. We aimed to identify whether alcohol modulates circulating miR associations with measures of glucose/insulin dynamics in PLWH. PLWH (n = 96; 69.8% males) enrolled in the Alcohol & Metabolic Comorbidities in PLWH: Evidence-Driven Interventions (ALIVE-Ex) study were stratified into negative phosphatidylethanol (PEth < 8 ng/mL, n = 42) and positive PEth (PEth ≥ 8 ng/mL, n = 54) groups. An oral glucose tolerance test (OGTT) was administered, and total RNA was isolated from fasting plasma to determine absolute miR expression. Circulating miRs were selected based on their role in skeletal muscle (miR-133a and miR-206), pancreatic β-cell (miR-375), liver (miR-20a), and adipose tissue (miR-let-7b, miR-146a, and miR-221) function. Correlation and multiple regression analyses between miR expression and adiponectin, 2 h glucose, insulin, and C-peptide values were performed adjusting for body mass index (BMI) category, age, sex, and viral load. miR-133a was negatively associated with adiponectin (P = 0.002) in the negative PEth group, and miR-20a was positively associated with 2 h glucose (P = 0.013) in the positive PEth group. Regression analyses combining miRs demonstrated that miR-133a (P < 0.001) and miR-221 (P = 0.010) together predicted adiponectin in the negative PEth group. miR-20a (P < 0.001) and miR-375 (P = 0.002) together predicted 2 h glucose in the positive PEth group. Our results indicate that associations between miRs and measures of glucose/insulin dynamics differed between PEth groups, suggesting that the pathophysiological mechanisms contributing to altered glucose homeostasis in PLWH are potentially modulated by alcohol use.
Collapse
Affiliation(s)
- Brianna L. Bourgeois
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Hui-Yi Lin
- 2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,3School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Alice Y. Yeh
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Danielle E. Levitt
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D. Primeaux
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,4Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Tekeda F. Ferguson
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,5Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
33
|
microRNAs in Human Adipose Tissue Physiology and Dysfunction. Cells 2021; 10:cells10123342. [PMID: 34943849 PMCID: PMC8699244 DOI: 10.3390/cells10123342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a large amount of evidence on the role of microRNA (miRNA) in regulating adipose tissue physiology. Indeed, miRNAs control critical steps in adipocyte differentiation, proliferation and browning, as well as lipolysis, lipogenesis and adipokine secretion. Overnutrition leads to a significant change in the adipocyte miRNOME, resulting in adipose tissue dysfunction. Moreover, via secreted mediators, dysfunctional adipocytes may impair the function of other organs and tissues. However, given their potential to control cell and whole-body energy expenditure, miRNAs also represent critical therapeutic targets for treating obesity and related metabolic complications. This review attempts to integrate present concepts on the role miRNAs play in adipose tissue physiology and obesity-related dysfunction and data from pre-clinical and clinical studies on the diagnostic or therapeutic potential of miRNA in obesity and its related complications.
Collapse
|
34
|
Yusof KM, Groen K, Rosli R, Avery-Kiejda KA. Crosstalk Between microRNAs and the Pathological Features of Secondary Lymphedema. Front Cell Dev Biol 2021; 9:732415. [PMID: 34733847 PMCID: PMC8558478 DOI: 10.3389/fcell.2021.732415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023] Open
Abstract
Secondary lymphedema is characterized by lymphatic fluid retention and subsequent tissue swelling in one or both limbs that can lead to decreased quality of life. It often arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial modalities, such as lymphatic insults after surgery, immune system dysfunction, deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation. Although secondary lymphedema is often associated with breast cancer, the condition can occur in patients with any type of cancer that requires lymphadenectomy such as gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal roles in regulating gene expression in biological processes such as lymphangiogenesis, angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA profiling has led to the discovery of the molecular mechanisms involved in the pathophysiology of auto-immune, inflammation-related, and metabolic diseases. Although the role of microRNAs in regulating secondary lymphedema is yet to be elucidated, the crosstalk between microRNAs and molecular factors involved in the pathological features of lymphedema, such as skin fibrosis, inflammation, immune dysregulation, and aberrant lipid metabolism have been demonstrated in several studies. MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of their roles in lymphedema can provide a better understanding or new insights of the mechanisms underlying this debilitating condition.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kira Groen
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kelly A. Avery-Kiejda
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
35
|
Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci 2021; 22:ijms222011137. [PMID: 34681797 PMCID: PMC8540232 DOI: 10.3390/ijms222011137] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is a condition which refers to individuals whose cells and tissues become insensitive to the peptide hormone, insulin. Over the recent years, a wealth of data has made it clear that a synergistic relationship exists between IR, type 2 diabetes mellitus, and cancer. Although the underlying mechanism(s) for this association remain unclear, it is well established that hyperinsulinemia, a hallmark of IR, may play a role in tumorigenesis. On the other hand, IR is strongly associated with visceral adiposity dysfunction and systemic inflammation, two conditions which favor the establishment of a pro-tumorigenic environment. Similarly, epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA, in IR states, have been often associated with tumorigenesis in numerous types of human cancer. In addition to these observations, it is also broadly accepted that gut microbiota may play an intriguing role in the development of IR-related diseases, including type 2 diabetes and cancer, whereas potential chemopreventive properties have been attributed to some of the most commonly used antidiabetic medications. Herein we provide a concise overview of the most recent literature in this field and discuss how different but interrelated molecular pathways may impact on tumor development.
Collapse
|
36
|
Zhao YJ, Gao ZC, He XJ, Li J. The let-7f-5p-Nme4 pathway mediates tumor necrosis factor α-induced impairment in osteogenesis of bone marrow-derived mesenchymal stem cells. Biochem Cell Biol 2021; 99:488-498. [PMID: 34297624 DOI: 10.1139/bcb-2020-0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although tumor necrosis factor α (TNF-α)-mediated inflammation significantly impacts osteoporosis, the mechanisms underlying the osteogenic differentiation defects of bone marrow-derived mesenchymal stem cells (BM-MSCs) caused by TNF-α remain poorly understood. We found that TNF-α stimulation of murine BM-MSCs significantly upregulated the expression levels of several microRNAs (miRNAs), including let-7f-5p, but this increase was significantly reversed by treatment with the kinase inhibitor BAY 11-7082. To study gain- or loss of function, we transfected cells with an miRNA inhibitor or miRNA mimic. We then demonstrated that let-7f-5p impaired osteogenic differentiation of BM-MSCs in the absence and presence of TNF-α, as evidenced by alkaline phosphatase and alizarin red staining as well as quantitative assays of the mRNA levels of bone formation marker genes in differentiated BM-MSCs. Moreover, let-7f-5p targets the 3' untranslated region of Nucleoside diphosphate kinase 4 (Nme4) mRNA and negatively regulates Nme4 expression in mouse BM-MSCs. Ectopic expression of Nme4 completely reversed the inhibitory effects of the let-7f-5p mimic on osteogenic differentiation of mouse BM-MSCs. Furthermore, inhibition of let-7f-5p or overexpression of Nme4 in BM-MSCs restored in-vivo bone formation in an ovariectomized animal model. Collectively, our work indicates that let-7f-5p is involved in TNF-α-mediated reduction of BM-MSC osteogenesis via targeting Nme4.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng-Chao Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi-Jing He
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Li
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
37
|
Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Crit Rev Biochem Mol Biol 2021; 56:455-481. [PMID: 34182855 DOI: 10.1080/10409238.2021.1925219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over accumulation of lipids in adipose tissue disrupts metabolic homeostasis by affecting cellular processes. Endoplasmic reticulum (ER) stress is one such process affected by obesity. Biochemical and physiological alterations in adipose tissue due to obesity interfere with adipose ER functions causing ER stress. This is in line with increased irregularities in other cellular processes such as inflammation and autophagy, affecting overall metabolic integrity within adipocytes. Additionally, microRNAs (miRNAs), which can post-transcriptionally regulate genes, are differentially modulated in obesity. A better understanding and identification of such miRNAs could be used as novel therapeutic targets to fight against diseases. In this review, we discuss ways in which ER stress participates as a common molecular process in the pathogenesis of obesity-associated metabolic disorders. Moreover, our review discusses detailed underlying mechanisms through which ER stress and miRNAs contribute to metabolic alteration in adipose tissue in obesity. Hence, identifying mechanistic involvement of miRNAs-ER stress cross-talk in regulating adipose function during obesity could be used as a potential therapeutic approach to combat chronic diseases, including obesity.
Collapse
|
38
|
Liu Y, Zhang Y, Xiao B, Tang N, Hu J, Liang S, Pang Y, Xu H, Ao J, Yang J, Liang X, Wei L, Wang Y, Luo X. MiR-103a promotes tumour growth and influences glucose metabolism in hepatocellular carcinoma. Cell Death Dis 2021; 12:618. [PMID: 34131101 PMCID: PMC8206076 DOI: 10.1038/s41419-021-03905-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common and high-mortality cancer worldwide. Numerous microRNAs have crucial roles in the progression of different cancers. However, identifying the important microRNAs and the target biological function of the microRNA in HCC progression is difficult. In this study, we selected highly expressed microRNAs with different read counts as candidate microRNAs and then tested whether the microRNAs were differentially expressed in HCC tumour tissues, and we found that their expression was related to the HCC prognosis. Then, we investigated the effects of microRNAs on the cell growth and mobility of HCC using a real-time cell analyser (RTCA), colony formation assay and subcutaneous xenograft models. We further used deep-sequencing technology and bioinformatic analyses to evaluate the main functions of the microRNAs. We found that miR-103a was one of the most highly expressed microRNAs in HCC tissues and that it was upregulated in HCC tissue compared with the controls. In addition, high miR-103a expression was associated with poor patient prognosis, and its overexpression promoted HCC cell growth and mobility. A functional enrichment analysis showed that miR-103a mainly promoted glucose metabolism and inhibited cell death. We validated this analysis, and the data showed that miR-103a promoted glucose metabolism-likely function and directly inhibited cell death via ATP11A and EIF5. Therefore, our study revealed that miR-103a may act as a key mediator in HCC progression.
Collapse
Affiliation(s)
- Yuling Liu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Yuanzhou Zhang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Bowen Xiao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Ning Tang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Jingying Hu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Shunshun Liang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Yechun Pang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Huili Xu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Junping Ao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Juan Yang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Xiaofei Liang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Lin Wei
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | - Yunfeng Wang
- grid.507037.6Department of General Surgery, Pudong New Area People’s Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaoying Luo
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
39
|
Meliț LE, Mărginean CO, Mărginean CD, Săsăran MO. The Peculiar Trialogue between Pediatric Obesity, Systemic Inflammatory Status, and Immunity. BIOLOGY 2021; 10:biology10060512. [PMID: 34207683 PMCID: PMC8229553 DOI: 10.3390/biology10060512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Pediatric obesity is not only an energetic imbalance, but also a chronic complex multisystem disorder that might impair both the life length and quality. Its pandemic status should increase worldwide awareness regarding the long-term life-threatening associated complications. Obesity related complications, such as cardiovascular, metabolic, or hepatic ones, affect both short and long-term wellbeing, and they do not spare pediatric subjects, defined as life-threatening consequences of the systemic inflammatory status triggered by the adipose tissue. The energetic imbalance of obesity clearly results in adipocytes hypertrophy and hyperplasia expressing different degrees of chronic inflammation. Adipose tissue might be considered an immune organ due to its rich content in a complex array of immune cells, among which the formerly mentioned macrophages, neutrophils, mast cells, but also eosinophils along with T and B cells, acting together to maintain the tissue homeostasis in normal weight individuals. Adipokines belong to the class of innate immunity humoral effectors, and they play a crucial role in amplifying the immune responses with a subsequent trigger effect on leukocyte activation. The usefulness of complete cellular blood count parameters, such as leukocytes, lymphocytes, neutrophils, erythrocytes, and platelets as predictors of obesity-triggered inflammation, was also proved in pediatric patients with overweight or obesity. The dogma that adipose tissue is a simple energy storage tissue is no longer accepted since it has been proved that it also has an incontestable multifunctional role acting like a true standalone organ resembling to endocrine or immune organs.
Collapse
Affiliation(s)
- Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
- Correspondence: ; Tel.: +40-723-278543
| | - Cristian Dan Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
40
|
Li W, Wen S, Wu J, Zeng B, Chen T, Luo J, Shu G, Wang SB, Zhang Y, Xi Q. Comparative Analysis of MicroRNA Expression Profiles Between Skeletal Muscle- and Adipose-Derived Exosomes in Pig. Front Genet 2021; 12:631230. [PMID: 34135937 PMCID: PMC8202525 DOI: 10.3389/fgene.2021.631230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Skeletal muscle and adipose tissues are both involved in regulation of metabolism. In the skeletal muscle-adipose tissue crosstalk, exosomes may play an important role but the main components of exosomes are not clear. In this study, we found skeletal muscle-derived exosomes can inhibit adipogenesis of porcine preadipocytes. We identified microRNA expression profiles of muscle exosomes and adipose exosomes by high-throughput sequencing. There were 104 (both novel and known microRNAs) microRNAs differentially expressed (DE miRNAs) between M-EXO (muscle-derived exosomes) and A-EXO (adipose–derived exosomes) groups. A total of 2,137 target genes of DE miRNAs for M-EXO and 2,004 target genes of DE miRNAs for A-EXO were detected. Bioinformatic analyses revealed that some DE miRNAs of M-EXO (especially miR-221-5p) were mainly enriched in lipid-related metabolism processes. The findings may serve as a fundamental resource for understanding the detailed functions of exosomes between the skeletal muscle-adipose crosstalk and the potential relationship between skeletal muscle atrophy and obesity.
Collapse
Affiliation(s)
- Weite Li
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shulei Wen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahan Wu
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Zeng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Song-Bo Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Kim SH, Kim SE, Choi MH, Park MJ. Altered glucocorticoid metabolism in girls with central obesity. Mol Cell Endocrinol 2021; 527:111225. [PMID: 33640459 DOI: 10.1016/j.mce.2021.111225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dysregulation of glucocorticoid metabolism is known to be a causative factor of obesity. However, only a few studies have evaluated the enzymatic activities involved in glucocorticoid metabolism in the pediatric population. OBJECTIVE To examine whether circulating glucocorticoid metabolites and their ratios reflecting the activities of metabolic enzyme are associated with obesity and body composition in girls. METHODS A total of 227 girls aged 7-13 years (131 control, 45 overweight, 51 obese) were enrolled in this study. Serum concentrations of glucocorticoids (11-deoxycortisol, cortisol, tetrahydrocortisol [THF], allo-THF, allo-dihydrocortisol [allo-DHF], and cortisone) were evaluated by gas chromatography-mass spectrometry. Enzyme activities corresponding to the ratios of cortisol and cortisone to their respective precursors and metabolites were also assessed. RESULTS Serum levels of allo-THF were significantly higher in obese girls compared with those in overweight and control girls (P = 0.018); however, concentrations of other cortisol metabolites were not significantly different between the groups studied. According to the severity of obesity, increasing trends in the metabolic ratios reflecting the activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) [(cortisol + allo-DHF + allo-THF + THF)/cortisone], relative 5α/5β-reductase [allo-THF/THF] activity, and 3α-HSD [allo-THF/allo-DHF] activity, were noted (P-for-trend <0.05). Body fat percentage and waist-to-height ratio positively correlated with the activities of 11β-HSD1 and 3α-HSD (P < 0.05). Following covariate control, girls with central obesity demonstrated significantly higher metabolic ratios reflecting 11β-HSD1, relative 5α/5β-reductase, and 3α-HSD activities (P < 0.05). CONCLUSIONS We found an altered glucocorticoid metabolism suggesting increased production of cortisol by 11β-HSD1 and increased metabolic clearance of cortisol catalyzed by 3α-HSD in girls with central obesity.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, 01757, South Korea
| | - Si-Eun Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, 01757, South Korea.
| |
Collapse
|
42
|
Abu-Izneid T, AlHajri N, Ibrahim AM, Javed MN, Salem KM, Pottoo FH, Kamal MA. Micro-RNAs in the regulation of immune response against SARS CoV-2 and other viral infections. J Adv Res 2021; 30:133-145. [PMID: 33282419 PMCID: PMC7708232 DOI: 10.1016/j.jare.2020.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Micro-RNAs (miRNAS) are non-coding, small RNAs that have essential roles in different biological processes through silencing genes, they consist of 18-24 nucleotide length RNA molecules. Recently, miRNAs have been viewed as important modulators of viral infections they can function as suppressors of gene expression by targeting cellular or viral RNAs during infection. Aim of review We describe the biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity, and we discuss the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of SARS-CoV-2 and other viral infections. Key scientific concepts of review miRNAs are the key players that regulate the expression of the gene in the post-transcriptional phase and have important effects on viral infections, thus are potential targets in the development of novel therapeutics for the treatment of viral infections. Besides, micro-RNAs (miRNAs) modulation of immune-pathogenesis responses to viral infection is one of the most-known indirect effects, which leads to suppressing of the interferon (IFN-α/β) signalling cascade or upregulation of the IFN-α/β production another IFN-stimulated gene (ISGs) that inhibit replication of the virus. These virus-mediated alterations in miRNA levels lead to an environment that might either enhance or inhibit virus replication.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Noora AlHajri
- Department of Epidemiology and Population Health, College of Medicine, Khalifa University, United Arab Emirates
| | - Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department, College of Nursing, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Md. Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India
| | - Khairi Mustafa Salem
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
43
|
Ehtesham N, Shahrbanian S, Valadiathar M, Mowla SJ. Modulations of obesity-related microRNAs after exercise intervention: a systematic review and bioinformatics analysis. Mol Biol Rep 2021; 48:2817-2831. [PMID: 33772703 DOI: 10.1007/s11033-021-06275-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/11/2021] [Indexed: 12/26/2022]
Abstract
Obesity is one of the prevalent health-threatening conditions; however, it is preventable by lifestyle interventions such as exercise. The molecular mechanisms underlying physiological adaptation to physical activity are not fully understood. It has been documented that both intracellular and extracellular (circulating) microRNAs (miRNAs) are involved in both obesogenic and exercise adaptation mechanisms. We aimed to conduct a systematic review of publications that examined the effect of exercise on the expression of miRNAs in individuals with obesity. In addition, bioinformatics analysis was performed on most repetitive miRNAs. PubMed, Scopus, and Google Scholar were searched with relevant keywords. We only included studies that utilized exercise as a modality for the health management of human subjects with obesity to evaluate the changes in expression of obesity-related miRNAs. Through checking of 211 retrieved articles, we reached 12 eligible studies. Some studies reported a statistically significant correlation between the change of miRNAs and clinical parameters such as body mass index and fasting glucose. In silico analysis of most repetitive miRNAs i.e. miR-126, miR-21, miR-146a, miR-221, and miR-223 resulted in the molecular signaling pathways that potentially involve in cellular adaption to exercise in people with obesity. miRNAs partake in health-related benefits of physical activity on obesity-associated cellular and molecular phenomena. However, our understanding of the exact mechanism is still in its infancy. Consistently, the clinicians waiting for the result of more integrated experiments to develop a miRNAs panel as a predictive biomarker of exercise in patients with obesity.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Shahrbanian
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Mohammad Valadiathar
- Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Seyed Javad Mowla
- Departments of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
44
|
Cellular and Molecular Players in the Interplay between Adipose Tissue and Breast Cancer. Int J Mol Sci 2021; 22:ijms22031359. [PMID: 33572982 PMCID: PMC7866411 DOI: 10.3390/ijms22031359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and severity of obesity are rising in most of the world. In addition to metabolic disorders, obesity is associated with an increase in the incidence and severity of a variety of types of cancer, including breast cancer (BC). The bidirectional interaction between BC and adipose cells has been deeply investigated, although the molecular and cellular players involved in these mechanisms are far from being fully elucidated. Here, we review the current knowledge on these interactions and describe how preclinical research might be used to clarify the effects of obesity over BC progression and morbidity, with particular attention paid to promising therapeutic interventions.
Collapse
|
45
|
Huang F, Zhu P, Wang J, Chen J, Lin W. Postnatal overfeeding induces hepatic microRNA-221 expression and impairs the PI3K/AKT pathway in adult male rats. Pediatr Res 2021; 89:143-149. [PMID: 32305038 DOI: 10.1038/s41390-020-0877-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Increasing evidence suggests that postnatal overfeeding induces childhood obesity, which is strongly associated with metabolic syndrome. Insulin resistance is a risk factor for metabolic syndrome. MicroRNA-221 (miR-221) is involved in the development of obesity and has been reported to negatively regulate insulin sensitivity. However, the underlying mechanism remains unclear. METHODS Rats raised in small litters (SLs, three pups/dam, n = 10) and normal litters (NLs, 10 pups/dam, n = 10) were used to model early postnatal overfeeding and act as controls, respectively. miR-221 and proteins related to the phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT) pathway were assessed in the liver. RESULTS Early postnatal overfeeding significantly increased body weight, visceral fat index, blood glucose, serum triglycerides, and the homeostasis model assessment of insulin resistance at 9 weeks. Real-time polymerase chain reaction (PCR) and western blot analysis revealed that postnatal overfeeding induced insulin receptor and insulin receptor substrate 2 expression, but decreased PI3K and AKT phosphorylation in the liver. Quantitative real-time PCR showed that hepatic miR-221 was significantly overexpressed in the SL group. CONCLUSIONS These results indicate that postnatal overfeeding induces hepatic miR-221 overexpression and impairs the PI3K/AKT signal pathway, which may cause insulin resistance. IMPACT We first report postnatal overfeeding induces hepatic miR-221 expression. Postnatal overfeeding impairs PI3K/AKT pathway in the liver of adult rats. Postnatal overfeeding induces obesity and high blood glucose. Avoidance of overfeeding during early postnatal life may prevent obesity and T2DM.
Collapse
Affiliation(s)
- Fang Huang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Pingping Zhu
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingwen Wang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Chen
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenting Lin
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
46
|
MiR-125b-2 knockout increases high-fat diet-induced fat accumulation and insulin resistance. Sci Rep 2020; 10:21969. [PMID: 33319811 PMCID: PMC7738482 DOI: 10.1038/s41598-020-77714-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Obese individuals are more susceptible to comorbidities than individuals of healthy weight, including cardiovascular disease and metabolic disorders. MicroRNAs are a class of small and noncoding RNAs that are implicated in the regulation of chronic human diseases. We previously reported that miR-125b plays a critical role in adipogenesis in vitro. However, the involvement of miR-125b-2 in fat metabolism in vivo remains unknown. In the present study, miR-125b-2 knockout mice were generated using CRISPR/CAS9 technology, resulting in mice with a 7 bp deletion in the seed sequence of miR-125b-2. MiR-125b-2 knockout increased the weight of liver tissue, epididymal white fat and inguinal white fat. MiR-125b-2 knockout also increased adipocyte volume in HFD-induced obese mice, while there were no significant differences in body weight and feed intake versus mice fed a normal diet. Additionally, qRT-PCR and western blot analysis revealed that the expression of the miR-125b-2 target gene SCD-1 and fat synthesis-associated genes, such as PPARγ and C/EBPα, were significantly up-regulated in miR-125b-2KO mice (P < 0.05). Moreover, miR-125b-2KO altered HFD-induced changes in glucose tolerance and insulin resistance. In conclusion, we show that miR-125b-2 is a novel potential target for regulating fat accumulation, and also a candidate target to develop novel treatment strategies for obesity and diabetes.
Collapse
|
47
|
Su H, Qiao J, Hu J, Li Y, Lin J, Yu Q, Zhen J, Ma Q, Wang Q, Lv Z, Wang R. Podocyte-derived extracellular vesicles mediate renal proximal tubule cells dedifferentiation via microRNA-221 in diabetic nephropathy. Mol Cell Endocrinol 2020; 518:111034. [PMID: 32926967 DOI: 10.1016/j.mce.2020.111034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
Podocyte injury is a key event in the initiation of Diabetic nephropathy (DN). Tubulointerstitium, especially the proximal tubule has been regarded as a target of injury. In the present study, we showed that podocytes induced dedifferentiation of proximal tubular epithelial cells(PTECs) in high-glucose conditions and extracellular vesicles (EVs) mediates the interaction. Then we extracted and identified these EVs derived from podocytes as exosome, further, the EVs induced PTECs dedifferentiation. Total microRNA(miRNA) expression of podocyte-derived EVs was extracted and miR-221 expression was remarkably increased. By making use of the miRNA gain- and loss-of-function approaches, we observed that miR-221 mediated PTECs dedifferentiation. In addition, a dual-luciferase reporter assay confirmed that miR-221 direct target DKK2, which was an inhibitor of Wnt signaling, and overexpression of miR-221 significantly resulted in β-catenin nuclear accumulation. Moreover, we regulated the expression of β-catenin and demonstrated that miR-221 in EVs mediated proximal tubule cells injury through Wnt/β-catenin signaling. Furthermore, inhibition of miR-221 in diabetic mice reversed the abnormal expression of PTECs dedifferentiation related protein. These findings provide unique insights in the mechanisms of proximal tubule cell injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Hong Su
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Jiao Qiao
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yanmei Li
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Jiangong Lin
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Qiqi Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qianhui Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
48
|
Liu R, Liu X, Bai X, Xiao C, Dong Y. Identification and Characterization of circRNA in Longissimus Dorsi of Different Breeds of Cattle. Front Genet 2020; 11:565085. [PMID: 33324445 PMCID: PMC7726199 DOI: 10.3389/fgene.2020.565085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 01/16/2023] Open
Abstract
Shandong black cattle is a new breed of cattle that is developed by applying modern biotechnology, such as somatic cloning, and conventional breeding methods to Luxi cattle. It is very important to study the function and regulatory mechanism of circRNAs in muscle differentiation among different breeds to improve meat quality and meat production performance and to provide new ideas for beef cattle meat quality improvements and new breed development. Therefore, the goal of this study was to sequence and identify circRNAs in muscle tissues of different breeds of cattle. We used RNA-seq to identify circRNAs in the muscles of two breeds of cattle (Shandong black and Luxi). We identified 14,640 circRNAs and found 655 differentially expressed circRNAs. We also analyzed the classification and characteristics of circRNAs in muscle tissue. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used on the parental genes of circRNAs. They were mainly involved in a variety of biological processes, such as muscle fiber development, smooth muscle cell proliferation, bone system morphogenesis, tight junctions and the MAPK, AMPK, and mTOR signaling pathways. In addition, we used miRanda to predict the interactions between 14 circRNAs and 11 miRNAs. Based on the above assays, we identified circRNAs (circ0001048, circ0001103, circ0001159, circ0003719, circ0003424, circ0003721, circ0003720, circ0001519, circ0001530, circ0005011, circ0014518, circ0000181, circ0000190, circ0010558) that may play important roles in the regulation of muscle growth and development. Using real-time quantitative PCR, 14 circRNAs were randomly selected to verify the real circRNAs. Luciferase reporter gene system was used to verify the binding site of miR-1 in circ0014518. Our results provide more information about circRNAs regulating muscle development in different breeds of cattle and lay a solid foundation for future experiments.
Collapse
Affiliation(s)
- Ruili Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Chaozhu Xiao
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
49
|
Gharanei S, Shabir K, Brown JE, Weickert MO, Barber TM, Kyrou I, Randeva HS. Regulatory microRNAs in Brown, Brite and White Adipose Tissue. Cells 2020; 9:cells9112489. [PMID: 33207733 PMCID: PMC7696849 DOI: 10.3390/cells9112489] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). Indeed, an increasing number of miRNAs has been identified to regulate key signaling pathways of adipogenesis in BAT, brite AT, and WAT by acting on transcription factors that promote or inhibit adipocyte differentiation. For example, MiR-328, MiR-378, MiR-30b/c, MiR-455, MiR-32, and MiR-193b-365 activate brown adipogenesis, whereas MiR-34a, MiR-133, MiR-155, and MiR-27b are brown adipogenesis inhibitors. Given that WAT mainly stores energy as lipids, whilst BAT mainly dissipates energy as heat, clarifying the effects of miRNAs in different types of AT has recently attracted significant research interest, aiming to also develop novel miRNA-based therapies against obesity, diabetes, and other obesity-related diseases. Therefore, this review presents an up-to-date comprehensive overview of the role of key regulatory miRNAs in BAT, brite AT, and WAT.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kiran Shabir
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - James E. Brown
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- Correspondence:
| |
Collapse
|
50
|
Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158841. [PMID: 33075494 DOI: 10.1016/j.bbalip.2020.158841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
MicroRNA-221-3p (miR-221-3p) is associated with both metabolic diseases and cancers. However, its role in terminal adipocyte differentiation and lipid metabolism are uncharacterized. miR-221-3p or its inhibitor was transfected into differentiating or mature human adipocytes. Triglyceride (TG) content and adipogenic gene expression were monitored, global lipidome analysis was carried out, and mechanisms underlying the effects of miR-221-3p were investigated. Finally, cross-talk between miR-221-3p expressing adipocytes and MCF-7 breast carcinoma (BC) cells was studied, and miR-221-3p expression in tumor-proximal adipose biopsies from BC patients analyzed. miR-221-3p overexpression inhibited terminal differentiation of adipocytes, as judged from reduced TG storage and gene expression of the adipogenic markers SCD1, GLUT4, FAS, DGAT1/2, AP2, ATGL and AdipoQ, whereas the miR-221-3p inhibitor increased TG storage. Knockdown of the predicted miR-221-3p target, 14-3-3γ, had similar antiadipogenic effects as miR-221-3p overexpression, indicating it as a potential mediator of mir-221-3p function. Importantly, miR-221-3p overexpression inhibited de novo lipogenesis but increased the concentrations of ceramides and sphingomyelins, while reducing diacylglycerols, concomitant with suppression of sphingomyelin phosphodiesterase, ATP citrate lyase, and acid ceramidase. miR-221-3p expression was elevated in tumor proximal adipose tissue from patients with invasive BC. Conditioned medium of miR-221-3p overexpressing adipocytes stimulated the invasion and proliferation of BC cells, while medium of the BC cells enhanced miR-221-3p expression in adipocytes. Elevated miR-221-3p impairs adipocyte lipid storage and differentiation, and modifies their ceramide, sphingomyelin, and diacylglycerol content. These alterations are relevant for metabolic diseases but may also affect cancer progression.
Collapse
|