1
|
Mu Y, Luo LB, Huang R, Shen ZY, Huang D, Zhao SH, Yang J, Ma ZG. Cardiac-derived CTRP9 mediates the protection of empagliflozin against diabetes-induced male subfertility in mice. Clin Sci (Lond) 2024; 138:1421-1440. [PMID: 39392219 DOI: 10.1042/cs20241477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have shown beneficial effects of empagliflozin (Empa), a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2), on diabetes and cardiovascular outcomes in patients with diabetes. However, whether Empa could ameliorate diabetes mellitus (DM)-induced male spermatogenesis dysfunction remains unclear. Our study aimed to investigate the effect of Empa in the development of DM-induced male spermatogenesis dysfunction and to reveal the molecular mechanisms. DM mice were orally treated with Empa to investigate the effects of Empa on DM-induced male mice spermatogenesis dysfunction. We employed a cardiac-specific C1q/tumor necrosis factor-related protein 9 (CTRP9)-deficient mouse model and a cardiac-specific CTRP9 overexpression mouse model to investigate its role in the protection of Empa against diabetes-induced male subfertility. We found that Empa treatment could improve DM-induced male mice subfertility. Interestingly, we discovered that cardiac-derived CTRP9 was decreased in DM mice and this decrease was prevented by Empa treatment. A CTRP9 blocking antibody or cardiac-specific depletion of CTRP9 abolished the protection of Empa on DM-induced male subfertility. Cardiac-specific CTRP9 overexpression ameliorated DM-induced male subfertility. Mechanistically, we identified that cardiac-derived CTRP9 increased steroidogenesis in mice with diabetes in a PKA-dependent manner. We also provided direct evidence that activation of AMP activated protein kinase α (AMPKα)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signalling pathway by CTRP9 was responsible for the attenuation of ferroptosis in Leydig cells. In conclusions, we supposed that Empa was a potential therapeutic agent against DM-induced male mice spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhuo-Yu Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shu-Hong Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
2
|
Ahmad IH, Elhamed Gbr SSA, Ali El Naggar BMM, Abdelwahab MK, El-Saghier EOA, Mohammed DS, Mohamed MA, Mohamed MS, Ali Abd El-Rahim MMM, Attar SE. Relation between serum sclerostin and CTRP3 levels and bone mineral density in diabetic postmenopausal women. BMC Womens Health 2024; 24:490. [PMID: 39237913 PMCID: PMC11375883 DOI: 10.1186/s12905-024-03311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common finding in diabetic patients especially high-risk populations such as postmenopausal women. Sclerostin is a glycoprotein chiefly secreted by mature osteocytes and is considered a main regulator of bone formation. The C1q/TNF-Related Protein 3 (CTRP3) was found to be significantly associated with OP in postmenopausal women. The effect of type 2 diabetes mellitus (T2DM) on sclerostin and CTRP3 levels in postmenopausal women is rarely investigated. The present study aimed to assess the impact of T2DM on sclerostin and CTRP3 levels and their relation to OP in postmenopausal women. METHODS The study included 60 postmenopausal women with T2DM and 60 age-matched postmenopausal non-diabetic women. Bone mineral density (BMD) was assessed using dual energy X-ray absorptiometry (DEXA). Serum levels of sclerostin and CTRP3 were assessed using enzyme-linked immunosorbent assay (ELISA) technique. RESULTS Diabetic group expressed significantly higher serum levels of sclerostin when compared with non-diabetic group (110.0 ± 29.0 versus 51.5 ± 23.2 ng; p < 0.001). Oppositely, CTRP3 were significantly lower in the diabetic group (3.5 ± 3.5 versus 9.9 ± 3.7 ng/ml, p < 0.001). Multivariate logistic regression analysis identified HbA1c levels [OR (95% CI): 0.49 (0.26-0.93), p = 0.028], sclerotin levels [OR (95% CI): 1.06 (1.0-1.012), p = 0.041] and CTRP3 levels [OR (95%) CI: 1.64 (1.0-2.68), p = 0.047] as significant predictors of OP in diabetic patients. CONCLUSIONS Sclerostin and CTRP3 levels are involved in OP in postmenopausal diabetic patients.
Collapse
Affiliation(s)
- Inass Hassan Ahmad
- Endocrinology and Metabolism Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | | | - Marwa Khairy Abdelwahab
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Doaa Sayed Mohammed
- Endocrinology and Metabolism Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Maha S Mohamed
- Rheumatology and Rehabilitation Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Shahinaz El Attar
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine for Girls, Al- Azhar University, Cairo, Egypt.
| |
Collapse
|
3
|
Zhao B, Li M, Li B, Li Y, Shen Q, Hou J, Wu Y, Gu L, Gao W. The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice. Neural Regen Res 2024; 19:2019-2026. [PMID: 38227531 DOI: 10.4103/1673-5374.390951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/29/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00034/figure1/v/2024-01-16T170235Z/r/image-tiff Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Ma L, Lin J, Shao M, Chen B, Zhou R, Shi J. Decreased Serum CTRP3 level was associated with connective tissue diseases. Heliyon 2024; 10:e36322. [PMID: 39253249 PMCID: PMC11382063 DOI: 10.1016/j.heliyon.2024.e36322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Objective Complement C1q tumor necrosis factor-related protein 3 (CTRP3) and 9 (CTRP9) are two of the most extensively studied adipokines, known for their diverse biological functions. However, it remains unclear whether serum levels of CTRP3 or CTRP9 are associated with connective tissue diseases (CTD). Methods Serum CTRP3 and CTRP9 levels were measured by enzyme-linked immune sorbent assay (ELISA) and analyzed in patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (pSS), ankylosing spondylitis (AS), undifferentiated connective tissue disease (UCTD), as well as in healthy controls (HCs). Results Serum CTRP3 levels were all significantly lower in patients with RA, SLE, pSS and AS compared with HCs. However, there were no significant differences in serum CTRP9 levels between patients with RA, SLE, pSS, or AS and HCs. In pSS patients, CTRP3 showed a weak correlation with blood glucose, creatinine, and urine acid in pSS patients, while no correlations were observed between serum CTRP3 levels and clinical or laboratory indices in RA, SLE or AS patients. Stable associations between CTRP3 and RA, SLE, pSS and AS were evaluated using multivariate logistics regression analysis. Receiver operating characteristic (ROC) curves were plotted to evaluated CTRP3 as a marker for RA, SLE, pSS and AS, yielding area under curve (AUC) values of 0.691, 0.727, 0.658 and 0.694, respectively. Conclusion Decreased serum CTRP3 levels were associated with RA, SLE, pSS and AS.
Collapse
Affiliation(s)
- Lisha Ma
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Jiangbo Lin
- Department of Cardiology, Taizhou Hospital, Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Miaoli Shao
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Binxuan Chen
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Renfang Zhou
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Jianfeng Shi
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
5
|
Li D, Li X, Zhang X, Chen J, Wang Z, Yu Z, Wu M, Liu L. Geniposide for treating atherosclerotic cardiovascular disease: a systematic review on its biological characteristics, pharmacology, pharmacokinetics, and toxicology. Chin Med 2024; 19:111. [PMID: 39164773 PMCID: PMC11334348 DOI: 10.1186/s13020-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.
Collapse
Affiliation(s)
- Dexiu Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zeping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
6
|
Han P, Hu F, Guo J, Xu L, Zhang J. Low serum CTRP3 is related to more severe distal symmetric polyneuropathy in type 2 diabetes patients. Hormones (Athens) 2024:10.1007/s42000-024-00592-5. [PMID: 39155319 DOI: 10.1007/s42000-024-00592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Distal symmetric polyneuropathy (DSPN) is one of the most common chronic complications in patients with type 2 diabetes mellitus (T2DM). Our previous study found that serum C1q tumor necrosis factor-related protein 3 (CTRP3) levels were decreased in type 2 diabetic patients. Thus, this study was designed to reveal the relationship between low serum CTRP3 and the prevalence and severity of DSPN. METHODS A total of 178 cases of patients with T2DM were enrolled in the study. The subjects were divided into the DSPN group (n = 89) and the non-DSPN group (n = 89). Both anthropometric parameters and neurologic symptoms were recorded. Furthermore, neurologic signs, the neuropathy symptom score (NSS), and the neuropathy disability score (NDS) were assessed. Biochemical indexes, fasting insulin, and C peptide were measured. Serum CTRP3 concentrations were assayed using the ELISA method. RESULTS Serum CTRP3 levels decreased significantly in the DSPN group compared with the non-DSPN group (P < 0.05). CTRP3 was negatively associated with the number of positive signs, NSS score, and NDS score in patients with DSPN (all P < 0.05). Interestingly, the higher the NSS score or NDS score, the lower were the levels of serum CTRP3 (all P < 0.05). Moreover, patients with lower CTRP3 levels (< 7.58ng/ml) had a higher rate of neurologic signs (all P < 0.05). Binary logistic regression analysis showed that CTRP3 independently predicted the occurrence of DSPN (β = -0.316, P < 0.001). ROC curve analysis revealed that the best cut-off value of CTRP3 for the prediction of DSPN was 7.55ng/ml (sensitivity 78.7%, specificity 79.8%), the area under the curve (AUC) was 0.763 (95% CI 0.689-0.838, P < 0.001). CONCLUSION Low serum CTRP3 could be a predictor for the occurrence and progression of DSPN in Chinese patients with T2DM.
Collapse
Affiliation(s)
- Pingping Han
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Fan Hu
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
| | - Jia Guo
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Leirui Xu
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese PLA, Wuhan, 430070, China
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Junxia Zhang
- Department of Endocrinology, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei Province, P.R. China.
| |
Collapse
|
7
|
Nawaz L, Grieve DJ, Muzaffar H, Iftikhar A, Anwar H. Methanolic Extract of Phoenix Dactylifera Confers Protection against Experimental Diabetic Cardiomyopathy through Modulation of Glucolipid Metabolism and Cardiac Remodeling. Cells 2024; 13:1196. [PMID: 39056777 PMCID: PMC11274523 DOI: 10.3390/cells13141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-β 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-β 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.
Collapse
Affiliation(s)
- Laaraib Nawaz
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK;
| | - Humaira Muzaffar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Arslan Iftikhar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Haseeb Anwar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| |
Collapse
|
8
|
Chen Y, Wang S, Li J, Fu Y, Chen P, Liu X, Zhang J, Sun L, Zhang R, Li X, Liu L. The relationships between biological novel biomarkers Lp-PLA 2 and CTRP-3 and CVD in patients with type 2 diabetes mellitus. J Diabetes 2024; 16:e13574. [PMID: 38924255 PMCID: PMC11199973 DOI: 10.1111/1753-0407.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/20/2024] [Accepted: 05/04/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is recognized as a primary and severe comorbidity in patients with type 2 diabetes mellitus (T2DM) and is also identified as a leading cause of mortality within this population. Consequently, the identification of novel biomarkers for the risk stratification and progression of CVD in individuals with T2DM is of critical importance. METHODS This retrospective cohort study encompassed 979 patients diagnosed with T2DM, of whom 116 experienced CVD events during the follow-up period. Clinical assessments and comprehensive blood laboratory analyses were conducted. Age- and sex-adjusted Cox proportional hazard regression analysis was utilized to evaluate the association between lipoprotein-associated phospholipase A2 (Lp-PLA2), C1q/tumor necrosis factor-related protein 3 (CTRP-3), and the incidence of CVD in T2DM. The diagnostic performance of these biomarkers was assessed through receiver operating characteristic (ROC) curve analysis and the computation of the area under the curve (AUC). RESULTS Over a median follow-up of 84 months (interquartile range: 42 [32-54] months), both novel inflammatory markers, Lp-PLA2 and CTRP-3, and traditional lipid indices, such as low-density lipoprotein cholesterol and apolipoprotein B, exhibited aberrant expression in the CVD-afflicted subset of the T2DM cohort. Age- and sex-adjusted Cox regression analysis delineated that Lp-PLA2 (hazard ratio [HR] = 1.007 [95% confidence interval {CI}: 1.005-1.009], p < 0.001) and CTRP-3 (HR = 0.943 [95% CI: 0.935-0.954], p < 0.001) were independently associated with the manifestation of CVD in T2DM. ROC curve analysis indicated a substantial predictive capacity for Lp-PLA2 (AUC = 0.81 [95% CI: 0.77-0.85], p < 0.001) and CTRP-3 (AUC = 0.91 [95% CI: 0.89-0.93], p < 0.001) in forecasting CVD occurrence in T2DM. The combined biomarker approach yielded an AUC of 0.94 (95% CI: 0.93-0.96), p < 0.001, indicating enhanced diagnostic accuracy. CONCLUSIONS The findings suggest that the biomarkers Lp-PLA2 and CTRP-3 are dysregulated in patients with T2DM who develop CVD and that each biomarker is independently associated with the occurrence of CVD. The combined assessment of Lp-PLA2 and CTRP-3 may significantly augment the diagnostic precision for CVD in the T2DM demographic.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Shixin Wang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Jian Li
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Yu Fu
- Central LaboratoryXuzhou Central HospitalXuzhouChina
| | - Pengsheng Chen
- Department of EndocrinologyXuzhou Central HospitalXuzhouChina
| | - Xuekui Liu
- Xuzhou Institute of Medical ScienceXuzhouChina
| | - Jiao Zhang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Li Sun
- Department of EndocrinologyXuzhou Central HospitalXuzhouChina
| | - Rui Zhang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Xiaoli Li
- Department of CardiologyXuzhou Central HospitalXuzhouChina
| | - Lingling Liu
- Department of CardiologyXuzhou Central HospitalXuzhouChina
| |
Collapse
|
9
|
Yuan Y, Shen Z, Teng T, Xu S, Kong C, Zeng X, A. Hofmann Bowman M, Yan L. S100a8/9 (S100 Calcium Binding Protein a8/9) Promotes Cardiac Hypertrophy Via Upregulation of FGF23 (Fibroblast Growth Factor 23) in Mice. J Am Heart Assoc 2024; 13:e028006. [PMID: 38726894 PMCID: PMC11179804 DOI: 10.1161/jaha.122.028006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/04/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu‐Pei Yuan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Zhuo‐Yu Shen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Teng Teng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Si‐Chi Xu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Chun‐Yan Kong
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | - Xiao‐Feng Zeng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| | | | - Ling Yan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanChina
| |
Collapse
|
10
|
Mu Y, Luo LB, Wu SJ, Gao Y, Qin XL, Zhao J, Liu Q, Yang J. Bezafibrate alleviates diabetes-induced spermatogenesis dysfunction by inhibiting inflammation and oxidative stress. Heliyon 2024; 10:e28284. [PMID: 38533024 PMCID: PMC10963653 DOI: 10.1016/j.heliyon.2024.e28284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The metabolic disorders caused by diabetes can lead to various complications, including male spermatogenesis dysfunction. Exploring effective therapeutics that attenuate diabetes mellitus (DM)-induced male subfertility is of great importance. Pharmaceuticals targeting PPARα activation such as bezafibrate have been regarded as an important strategy for patients with diabetes. In this study, we use streptozocin (STZ) injection to establish a type 1 DM mice model and use bezafibrate to treat DM mice and evaluate the effects of bezafibrate on the spermatogenic function of the DM male mice. Bezafibrate treatment exhibited protective effects on DM-induced spermatogenesis deficiency, as reflected by increased testis weight, improved histological morphology of testis, elevated sperm parameters, increased serum testosterone concentration as well as increased mRNA levels of steroidogenesis enzymes. Meanwhile, testicular cell apoptosis, inflammation accumulation and oxidative stress status were also shown to be alleviated by bezafibrate compared with the DM group. In vivo and in vitro studies, PPARα specific inhibitor and PPARα knockout mice were further used to investigate the role of PPARα in the protective effects of bezafibrate on DM-induced spermatogenesis dysfunction. Our results indicated that the protection of bezafibrate on DM-induced spermatogenesis deficiency was abrogated by PPARα inhibition or deletion. Our study suggested that bezafibrate administration could ameliorate DM-induced spermatogenesis dysfunction and may represent a novel practical strategy for male infertility.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shu-juan Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yue Gao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-lin Qin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Zhao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
11
|
Liu N, Gong Z, Li Y, Xu Y, Guo Y, Chen W, Sun X, Yin X, Liu W. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats. J Hypertens 2024; 42:315-328. [PMID: 37850974 DOI: 10.1097/hjh.0000000000003591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND PURPOSE Reducing hypertensive myocardial fibrosis is the fundamental approach to preventing hypertensive ventricular remodelling. C1q/TNF-related protein-3 (CTRP3) is closely associated with hypertension. However, the role and mechanism of CTRP3 in hypertensive myocardial fibrosis are unclear. In this study, we aimed to explore the effect of CTRP3 on hypertensive myocardial fibrosis and the potential mechanism. METHODS AND RESULTS WKY and SHR rats were employed, blood pressure, body weight, heart weight, H/BW were measured, and fibrotic-related proteins, CTRP3 and Collagen I were tested in myocardium at 12 and 20 weeks by immunohistochemical staining and Western blotting, respectively. The results showed that compared with the WKY, SBP, DBP, mean arterial pressure and heart rate (HR) were all significantly increased in SHR at 12 and 20 weeks, while heart weight and H/BW were only increased at 20 weeks. Meanwhile, CTRP3 decreased, while Collagen I increased significantly in the SHR rat myocardium at 20 weeks, which compared to the WKY. Moreover, the expression of α-SMA increased from 12 weeks, Collagen I/III and MMP2/9 increased and TIMP-2 decreased until 20 weeks. In order to explore the function and mechanism of CTRP3 in hypertensive fibrosis, Angiotensin II (Ang II) was used to induce hypertension in primary neonatal rat cardiac fibroblasts in vitro . CTRP3 significantly inhibited the Ang II induced activation of fibrotic proteins, purinergic 2X7 receptor (P2X7R)-NLRP3 inflammasome pathway. The P2X7R agonist BzATP significantly exacerbated Ang II-induced NLRP3 inflammasome activation, which was decreased by the P2X7R antagonists A43079, CTRP3 and MCC950. CONCLUSION CTRP3 expression was decreased in the myocardium of SHR rats, and exogenous CTRP3 inhibited Ang II-induced fibrosis in cardiac fibroblasts by regulating the P2X7R-NLRP3 inflammasome pathway, suggesting that CTRP3 is a potential drug for alleviating myocardial fibrosis in hypertensive conditions.
Collapse
Affiliation(s)
- Na Liu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Zhaowei Gong
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
| | - Yang Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yang Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yutong Guo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Wenjia Chen
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xue Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Wenxiu Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| |
Collapse
|
12
|
Shi L, Tan Y, Zheng W, Cao G, Zhou H, Li P, Cui J, Song Y, Feng L, Li H, Shan W, Zhang B, Yi W. CTRP3 alleviates mitochondrial dysfunction and oxidative stress injury in pathological cardiac hypertrophy by activating UPRmt via the SIRT1/ATF5 axis. Cell Death Discov 2024; 10:53. [PMID: 38278820 PMCID: PMC10817931 DOI: 10.1038/s41420-024-01813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure. Disruption of mitochondrial protein homeostasis plays a key role in pathological cardiac hypertrophy; however, the mechanism of maintaining mitochondrial homeostasis in pathological cardiac hypertrophy remains unclear. In this study, we investigated the regulatory mechanisms of mitochondrial protein homeostasis in pathological cardiac hypertrophy. Wildtype (WT) mice, knockout mice, and mice transfected with lentivirus overexpressing mouse C1q-tumor necrosis factor-related protein-3 (CTRP3) underwent transverse aortic constriction or sham surgery. After 4 weeks, cardiac function, mitochondrial function, and oxidative stress injury were examined. For mechanistic studies, neonatal rat cardiomyocytes were treated with small interfering RNA or overexpression plasmids for the relevant genes. CTRP3 overexpression attenuated transverse aortic constriction (TAC) induced pathological cardiac hypertrophy, mitochondrial dysfunction, and oxidative stress injury compared to that in WT mice. TAC or Ang II resulted in compensatory activation of UPRmt, but this was not sufficient to counteract pathologic cardiac hypertrophy. CTRP3 overexpression further induced activation of UPRmt during pathologic cardiac hypertrophy and thereby alleviated pathologic cardiac hypertrophy, whereas CTRP3 knockout or knockdown inhibited UPRmt. ATF5 was a key regulatory molecule of UPRmt, as ATF5 knockout prevented the cardioprotective effect of CTRP3 in TAC mice. In vitro, SIRT1 was identified as a possible downstream CTRP3 effector molecule, and SIRT1 knockout blocked the cardioprotective effects of CTRP3. Our results also suggest that ATF5 may be regulated by SIRT1. Our study demonstrates that CTRP3 activates UPRmt via the SIRT1/ATF5 axis under pathological myocardial hypertrophy, thus attenuating mitochondrial dysfunction and oxidative stress injury.
Collapse
Affiliation(s)
- Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenying Zheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Panpan Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
13
|
Shao Q, Sun L. Clinical Significance of Serum CTRP3 Level in the Prediction of Cardiac and Intestinal Mucosal Barrier Dysfunction in Patients with Severe Acute Pancreatitis. Crit Rev Immunol 2024; 44:99-111. [PMID: 38618732 DOI: 10.1615/critrevimmunol.2024051292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
C1q/tumor necrosis factor-related protein 3 (CTRP3) has been demonstrated to play a protective role in mice with severe acute pancreatitis (SAP). However, its clinical significance in SAP remains unknown. This study was conducted to explore the clinical values of serum C1q/tumor necrosis factor-related protein 3 (CTRP3) level in the diagnosis of cardiac dysfunction (CD) and intestinal mucosal barrier dysfunction (IMBD) in SAP. Through RT-qPCR, we observed decreased CTRP3 level in the serum of SAP patients. Serum CTRP3 level was correlated with C-reactive protein, procalcitonin, creatine, modified computed tomography severity index score, and Acute Physiology and Chronic Health Evaluation II score. The receiver-operating characteristic curve revealed that CTRP3 serum level < 1.005 was conducive to SAP diagnosis with 72.55% sensitivity and 60.00% specificity, CTRP3 < 0.8400 was conducive to CD diagnosis with 80.49% sensitivity and specificity 65.57%, CTRP3 < 0.8900 was conducive to IMBD diagnosis with 94.87% sensitivity and 63.49% specificity, and CTRP3 < 0.6250 was conducive to the diagnosis of CD and IMBD co-existence with 65.22% sensitivity and 89.87% specificity. Generally, CTRP3 was downregulated in the serum of SAP patients and served as a candidate biomarker for the diagnosis of SAP and SAP-induced CD and IMBD.
Collapse
Affiliation(s)
- Qiang Shao
- Department of Emergency, Yantai Yuhuangding Hospital, Yaitai 264000, Shandong Province, China
| | | |
Collapse
|
14
|
Saha S, Fang X, Green CD, Das A. mTORC1 and SGLT2 Inhibitors-A Therapeutic Perspective for Diabetic Cardiomyopathy. Int J Mol Sci 2023; 24:15078. [PMID: 37894760 PMCID: PMC10606418 DOI: 10.3390/ijms242015078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic cardiomyopathy is a critical diabetes-mediated co-morbidity characterized by cardiac dysfunction and heart failure, without predisposing hypertensive or atherosclerotic conditions. Metabolic insulin resistance, promoting hyperglycemia and hyperlipidemia, is the primary cause of diabetes-related disorders, but ambiguous tissue-specific insulin sensitivity has shed light on the importance of identifying a unified target paradigm for both the glycemic and non-glycemic context of type 2 diabetes (T2D). Several studies have indicated hyperactivation of the mammalian target of rapamycin (mTOR), specifically complex 1 (mTORC1), as a critical mediator of T2D pathophysiology by promoting insulin resistance, hyperlipidemia, inflammation, vasoconstriction, and stress. Moreover, mTORC1 inhibitors like rapamycin and their analogs have shown significant benefits in diabetes and related cardiac dysfunction. Recently, FDA-approved anti-hyperglycemic sodium-glucose co-transporter 2 inhibitors (SGLT2is) have gained therapeutic popularity for T2D and diabetic cardiomyopathy, even acknowledging the absence of SGLT2 channels in the heart. Recent studies have proposed SGLT2-independent drug mechanisms to ascertain their cardioprotective benefits by regulating sodium homeostasis and mimicking energy deprivation. In this review, we systematically discuss the role of mTORC1 as a unified, eminent target to treat T2D-mediated cardiac dysfunction and scrutinize whether SGLT2is can target mTORC1 signaling to benefit patients with diabetic cardiomyopathy. Further studies are warranted to establish the underlying cardioprotective mechanisms of SGLT2is under diabetic conditions, with selective inhibition of cardiac mTORC1 but the concomitant activation of mTORC2 (mTOR complex 2) signaling.
Collapse
Affiliation(s)
- Sumit Saha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Tang S, Li R, Ma W, Lian L, Gao J, Cao Y, Gan L. Cardiac-to-adipose axis in metabolic homeostasis and diseases: special instructions from the heart. Cell Biosci 2023; 13:161. [PMID: 37667400 PMCID: PMC10476430 DOI: 10.1186/s13578-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023] Open
Abstract
Adipose tissue is essential for maintaining systemic metabolic homeostasis through traditional metabolic regulation, endocrine crosstalk, and extracellular vesicle production. Adipose dysfunction is a risk factor for cardiovascular diseases. The heart is a traditional pump organ. However, it has recently been recognized to coordinate interorgan cross-talk by providing peripheral signals known as cardiokines. These molecules include specific peptides, proteins, microRNAs and novel extracellular vesicle-carried cargoes. Current studies have shown that generalized cardiokine-mediated adipose regulation affects systemic metabolism. Cardiokines regulate lipolysis, adipogenesis, energy expenditure, thermogenesis during cold exposure and adipokine production. Moreover, cardiokines participate in pathological processes such as obesity, diabetes and ischemic heart injury. The underlying mechanisms of the cardiac-to-adipose axis mediated by cardiokines will be further discussed to provide potential therapeutic targets for metabolic diseases and support a new perspective on the need to correct adipose dysfunction after ischemic heart injury.
Collapse
Affiliation(s)
- Songling Tang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Ruixin Li
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Wen Ma
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China
| | - Liu Lian
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Jiuyu Gao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Yu Cao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China.
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China.
| | - Lu Gan
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
16
|
Zou C, Tang X, Guo T, Jiang T, Zhang W, Zhang J. CTRP3 attenuates inflammation, oxidative and cell death in cisplatin induced HK-2 cells. PeerJ 2023; 11:e15890. [PMID: 37637169 PMCID: PMC10460153 DOI: 10.7717/peerj.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Cisplatin has been widely studied and found to be a highly effective anti-tumor drug. It has several side effects, including acute kidney injury (AKI). Cisplatin-induced AKI can be primarily attributed to oxidative stress, inflammation, and apoptosis. The CTRP3 adipokine is a new adipokine that exhibits antioxidant, anti-inflammatory, and antiapoptotic properties. Despite this, the role of CTRP3 in AKI remain unclear. In cisplatin-induced AKI models, our findings demonstrated that CTRP3 expression was decreased in human proximal tubule epithelial cells (HK-2). In the in vitro experiments, HK-2 cells were first transfected with an overexpression plasmid of CTRP3 (pcDNA-CTRP3) or a small interfering RNA for CTRP3 (si-CTRP3) and induced by cisplatin; and cell oxidative stress, inflammation, proliferation, and apoptosis were found to be present. Overexpressing CTRP3 inhibited oxidative stress through decreasing malondialdehyde (MDA) levels and increasing the activity of SOD and CAT. The mRNA levels of SOD1 and SOD2 were increased in response to CTRP3 overexpression. Additionally, CTRP3 decreased TNF-α and MCP-1 levels. Moreover, CTRP3 overexpression increased cisplatin-induced cell activity and decreased cell apoptosis, as indicated by the elevated numbers of EdU positive cells and decreased numbers of apoptotic cells. Consistent with these results, the overexpression of CTRP3 effectively elevated the mRNA levels of Bcl-2 and reduced the mRNA levels of Bax. In contrast, inhibition of CTRP3 expression by si-CTRP3 reversed the cisplatin-induced indices. Mechanistically, we found that the overexpression of CTRP3 can increase expression of Nrf2 and inhibit the activation of MAPK phosphorylation (ERK, JNK, and p38). Furthermore, inhibition of ERK, JNK and p38 activity eliminated aggravation of cisplatin-induced inflammation and apoptosis caused by CTRP3 knockdown. Additionally, the cisplatin-induced oxidative stress and activation of MAPK phosphorylation (ERK, JNK, and p38) in HK-2 cells were reversed by Nrf2 suppression by siRNA. Collectively, these results indicated that CTRP3 may identify as a novel target for AKI treatment and protect against cisplatin-induced AKI through the Nrf2/MAPK pathway.
Collapse
Affiliation(s)
- Chenglin Zou
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, The Second People’s Hospital of Jingzhou, Jingzhou, China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Jiang
- Department of Nephrology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenying Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Zhang X, Hu C, Ma ZG, Hu M, Yuan XP, Yuan YP, Wang SS, Kong CY, Teng T, Tang QZ. Tisp40 prevents cardiac ischemia/reperfusion injury through the hexosamine biosynthetic pathway in male mice. Nat Commun 2023; 14:3383. [PMID: 37291168 PMCID: PMC10250363 DOI: 10.1038/s41467-023-39159-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
The hexosamine biosynthetic pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to facilitate O-linked GlcNAc (O-GlcNAc) protein modifications, and subsequently enhance cell survival under lethal stresses. Transcript induced in spermiogenesis 40 (Tisp40) is an endoplasmic reticulum membrane-resident transcription factor and plays critical roles in cell homeostasis. Here, we show that Tisp40 expression, cleavage and nuclear accumulation are increased by cardiac ischemia/reperfusion (I/R) injury. Global Tisp40 deficiency exacerbates, whereas cardiomyocyte-restricted Tisp40 overexpression ameliorates I/R-induced oxidative stress, apoptosis and acute cardiac injury, and modulates cardiac remodeling and dysfunction following long-term observations in male mice. In addition, overexpression of nuclear Tisp40 is sufficient to attenuate cardiac I/R injury in vivo and in vitro. Mechanistic studies indicate that Tisp40 directly binds to a conserved unfolded protein response element (UPRE) of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) promoter, and subsequently potentiates HBP flux and O-GlcNAc protein modifications. Moreover, we find that I/R-induced upregulation, cleavage and nuclear accumulation of Tisp40 in the heart are mediated by endoplasmic reticulum stress. Our findings identify Tisp40 as a cardiomyocyte-enriched UPR-associated transcription factor, and targeting Tisp40 may develop effective approaches to mitigate cardiac I/R injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Xiao-Pin Yuan
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| |
Collapse
|
18
|
Liu Y, Wu P, Xu X, Shen T, Wang X, Liu Y, Yuan C, Wang T, Zhou L, Liu A. C1q/TNF-related protein 3 alleviates heart failure via attenuation of oxidative stress in myocardial infarction rats. Peptides 2023; 163:170980. [PMID: 36842629 DOI: 10.1016/j.peptides.2023.170980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
C1q-tumor necrosis factor-related protein 3 (CTRP3), an adipokine, has been reported to be closely related to cardiovascular diseases (CVDs). However, the effect of CTRP3 on heart failure (HF) remains dimness. This study was to explore the role of CTRP3 in HF and its potential interaction mechanism. Heart failure model was established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending artery in Sprague-Dawley rats. Four weeks later, the rats were detected by transthoracic echocardiography and masson staining. Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), cardiac troponin I (cTnI) levels, creatine kinase-MB (CK-MB) and oxidative stress levels were recorded. The level of CTRP3 was reduced in the cardiomyocytes (CMs) treated with oxygen-glucose deprivation (OGD) and in the heart of MI rats. CTRP3 overexpression alleviated cardiac dysfunction, attenuated the cardiac fibrosis, and inhibited the increases of ANP, BNP, cTnI and CK-MB in the serum of MI rats. The increases of ANP and BNP in the CMs, and the collagen I and collagen III in the cardiac fibroblasts (CFs) induced by OGD were inhibited by CTRP3 overexpression. The enhancement of oxidative stress in the heart of MI rats was inhibited by CTRP3 overexpression. These results indicated that overexpression of CTRP3 could improve cardiac function and the related cardiac fibrosis in MI-induced HF rats via inhibition of oxidative stress. Upregulation of CTRP3 may be a strategy for HF therapy in the future.
Collapse
Affiliation(s)
- Yu Liu
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Pinxia Wu
- Department of Rehabilitation Medicine, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Xiaohong Xu
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Tongtong Shen
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Xinxin Wang
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Yayuan Liu
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Chen Yuan
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Tian Wang
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Limin Zhou
- Department of Internal Medicine, Division of Cardiology, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou City, Anhui Province, China
| | - Ai Liu
- ChuZhou City Vocation College, Chuzhou City, Anhui Province, China.
| |
Collapse
|
19
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|
20
|
Kon M, Tanimura Y. Responses of complement C1q/tumor necrosis factor-related proteins to acute aerobic exercise. Cytokine 2023; 161:156083. [PMID: 36356496 DOI: 10.1016/j.cyto.2022.156083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Aerobic exercise is an effective therapeutic strategy to manage metabolic disorders. However, the mechanisms of aerobic exercise-induced improvements in metabolic diseases are not completely understood. Complement C1q/tumor necrosis factor-related protein (CTRP) 1, CTRP3, CTRP5, and CTRP9 have important roles in improving metabolic disorders via the adenosine monophosphate-activated protein kinase signaling pathway. In this study, we investigated the effects of acute aerobic exercise on circulating CTRP1, CTRP3, CTRP5, and CTRP9 levels in human participants. Eight healthy males with an age of 20.4 ± 0.2 years, height 173.1 ± 1.7 cm, body mass 68.0 ± 1.8 kg, body mass index 22.7 ± 0.7 kg/m2, and maximal oxygen uptake (VO2max) 51.3 ± 2.5 mL/kg/min performed acute aerobic cycling exercise at 75 % of their VO2max for 30 min (data are mean ± standard error). Blood samples were obtained before; immediately after; and 30, 60, and 120 min after exercising. Serum concentrations of CTRP1, CTRP3, CTRP5, CTRP9, tumor necrosis factor-α (TNF-α), and insulin were measured. The CTRP1 concentration significantly increased immediately after exercising and remained elevated for up to 120 min (p < 0.01). The CTRP3 concentration significantly increased at 60 min after exercise (p < 0.05), and the increasing trend continued until at least 120 min after exercise (p < 0.01). The CTRP5, CTRP9, TNF-α, and insulin concentrations significantly increased immediately after exercise (p < 0.05, p < 0.01, p < 0.05, and p < 0.05, respectively) and decreased thereafter. A significant correlation was observed between the peak post-exercise concentrations of CTRP1 and TNF-α (p < 0.05); however, no correlation was observed between the peak post-exercise concentrations of CTRP3 and insulin. The results of this study indicate that acute aerobic exercise may enhance the secretion of CTRP1, CTRP3, CTRP5, and CTRP9 in healthy adults.
Collapse
Affiliation(s)
- Michihiro Kon
- Department of Health Care and Sports, Faculty of Human Life Design, Toyo University, 1-7-11, Akabanedai, Kita-ku, Tokyo 115-0053, Japan.
| | - Yuko Tanimura
- Department of Sports Research, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan
| |
Collapse
|
21
|
Farnesol Protects against Cardiotoxicity Caused by Doxorubicin-Induced Stress, Inflammation, and Cell Death: An In Vivo Study in Wistar Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238589. [PMID: 36500681 PMCID: PMC9737179 DOI: 10.3390/molecules27238589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOXO) is an antineoplastic drug that is used extensively in managing multiple cancer types. However, DOXO-induced cardiotoxicity is a limiting factor for its widespread use and considerably affects patients' quality of life. Farnesol (FSN) is a sesquiterpene with antioxidant, anti-inflammatory, and anti-tumor properties. Thus, the current study explored the cardioprotective effect of FSN against DOXO-induced cardiotoxicity. In this study, male Wistar rats were randomly divided into five groups (n = 7) and treated for 14 days. Group I (Control): normal saline, p.o. daily for 14 days; Group II (TOXIC): DOXO 2.4 mg/kg, i.p, thrice weekly for 14 days; Group III: FSN 100 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group IV: FSN 200 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group V (Standard): nifedipine 10 mg/kg, p.o. daily for 14 days + DOXO similar to Group II. At the end of the study, animals were weighed, blood was collected, and heart-weight was measured. The cardiac tissue was used to estimate biochemical markers and for histopathological studies. The observed results revealed that the FSN-treated group rats showed decrease in heart weight and heart weight/body weight ratio, reversed the oxidative stress, cardiac-specific injury markers, proinflammatory and proapoptotic markers and histopathological aberrations towards normal, and showed cardioprotection. In summary, the FSN reduces cardiac injuries caused by DOXO via its antioxidant, anti-inflammatory, and anti-apoptotic potential. However, more detailed mechanism-based studies are needed to bring this drug into clinical use.
Collapse
|
22
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
23
|
Mu Y, Yin TL, Zhang Y, Yang J, Wu YT. Diet-induced obesity impairs spermatogenesis: the critical role of NLRP3 in Sertoli cells. Inflamm Regen 2022; 42:24. [PMID: 35915511 PMCID: PMC9344614 DOI: 10.1186/s41232-022-00203-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence indicates a key role of Sertoli cell (SC) malfunction in spermatogenesis impairment induced by obesity. Nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) is expressed in SCs, but the role of NLRP3 in the pathological process of obesity-induced male infertility remains unclear. Methods NLRP3-deficient mice were fed a high-fat diet for 24 weeks to establish obesity-related spermatogenesis impairment. In another set of experiments, a lentiviral vector containing a microRNA (miR)-451 inhibitor was injected into AMP-activated protein kinase α (AMPKα)-deficient mouse seminiferous tubules. Human testis samples were obtained by testicular puncture from men with obstructive azoospermia whose samples exhibited histologically normal spermatogenesis. Isolated human SCs were treated with palmitic acid (PA) to mimic obesity model in vitro. Results Increased NLRP3 expression was observed in the testes of obese rodents. NLRP3 was also upregulated in PA-treated human SCs. NLRP3 deficiency attenuated obesity-related male infertility. SC-derived NLRP3 promoted interleukin-1β (IL-1β) secretion to impair testosterone synthesis and sperm performance and increased matrix metalloproteinase-8 (MMP-8) expression to degrade occludin via activation of nuclear factor-kappa B (NF-κB). Increased miR-451 caused by obesity, decreased AMPKα expression and sequentially increased NADPH oxidase activity were responsible for the activation of NLRP3. miR-451 inhibition protected against obesity-related male infertility, and these protective effects were abolished by AMPKα deficiency in mice. Conclusions NLRP3 promoted obesity-related spermatogenesis impairment. Increased miR-451 expression, impaired AMPKα pathway and the subsequent ROS production were responsible for NLRP3 activation. Our study provides new insight into the mechanisms underlying obesity-associated male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00203-z.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan-Ting Wu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
24
|
Chen F, Zhang HY, He D, Rao CM, Xu B. Cardioprotective Effect of Gynostemma pentaphyllum against Streptozotocin Induced Cardiac Toxicity in Rats via Alteration of AMPK/Nrf2/HO-1 Pathway. J Oleo Sci 2022; 71:991-1002. [PMID: 35781259 DOI: 10.5650/jos.ess21281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gynostemma pentaphyllum (GP) is a plant commonly used in diabetic therapy in China. GP having potent antioxidant effect against various free radicals. The purpose of the current investigation to identify the cardioprotective effect of GP against streptozotocin (STZ)/ high fat diet (HFD) induced cardiac dysfunction in rats via alteration of AMPK/Nrf2/HO-1 pathway. Wistar rats were used for the current protocol. The rats were received the intraperitoneal injection of STZ and HFD to induce the cardiac remodelling. Blood glucose level, insulin and lipid parameters were estimated. Blood pressure and heart rate were also estimated. Cardiac parameters, antioxidant, cytokines, total protein and inflammatory mediators were analysed. The mRNA expression was detected using the RT-qPCR, respectively. GP significantly (p < 0.001) decreased the BGL and improved the insulin level. GP altered the ratio of heart/BW, liver/BW, and lung/BW. GP treatment significantly (p < 0.001) suppressed the heart rate and blood pressure (diastolic, systolic and mean pressure). GP significantly (p < 0.001) reduced the level of TC, LDL, TG, VLDL and increased the level of HDL. DCM induced rats received the GP administration exhibited reduction in the level of CK and LDH. GP significantly (p < 0.001) reduced the levels of MDA, hydrogen peroxide, peroxynitrite, ROS and increased the level of GSH, SOD, CAT and GPx. GP significantly (p < 0.001) reduced the levels of cytokines (TNF-α, IL-6, IL-1β) and inflammatory parameters (COX-2 and NFκB). GP significantly (p < 0.001) suppressed the NLRP3 and NF-κB expression. GP also boosted mitochondrial biogenesis by boosting the PGC-1α, HO-1 and Nrf2 expression in cardiac tissue. GP treatment showed the cardioprotective effects against STZ induced diabetic cardiac dysfunction via alteration of AMPK/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Cardiology, Affiliated Hospital of Yunnan University
| | - Huan-Yu Zhang
- Department of Ultrasound, Affiliated Hospital of Yunnan University
| | - Di He
- Department of Hematology, Affiliated Hospital of Yunnan University
| | - Chun-Mei Rao
- Diabetes, Pu'er Hospital of Traditional Chinese Medicine
| | - Bo Xu
- Department of Endocrinology, Affiliated Hospital of Yunnan University
| |
Collapse
|
25
|
Elseweidy MM, Elesawy AE, Sobh MS, Elnagar GM. Ellagic acid ameliorates high fructose-induced hyperuricemia and non-alcoholic fatty liver in Wistar rats: Focusing on the role of C1q/tumor necrosis factor-related protein-3 and ATP citrate lyase. Life Sci 2022; 305:120751. [PMID: 35780841 DOI: 10.1016/j.lfs.2022.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
AIMS High-fructose intake (HF) represents an inducible risk factor for non-alcoholic fatty liver disease (NAFLD). Present study aimed to illustrate the effect of HF diet (HFD) on the induction of NAFLD, hyperuricemia and role of ellagic acid as modulator. MAIN METHODS Twenty-four adult male albino rats were randomly divided into four groups (6/each). The first group received normal chow diet only while the others received 60 % HFD for 4 weeks and subdivided later into 3 groups. The first and second groups received allopurinol and ellagic acid, respectively while the third group received HFD only for extra 4 weeks. KEY FINDINGS Rats fed on HFD for 8 weeks displayed body weight gain, insulin resistance (IR), hyperglycemia, dyslipidemia, hyperuricemia with increased oxidative stress and hepatic lipogenic enzymes such as ATP citrate lyase (ACL), aldolase B, and fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SERBP-1c). C1q /tumor necrosis factor-related protein -3 (CTRP3), and phosphorylated AMP-activated protein kinase (p-AMPK) however showed significant decreases. Ellagic acid or allopurinol administration significantly decreased serum lipids, uric acid, glucose, insulin levels and hepatic contents of enzymes. Malondialdehyde (MDA), FAS, aldolase B, SERBP-1c, and xanthine oxidase (XO) hepatic contents showed significant decreases along with glutathione (GSH) increase as compared to fructose group where ellagic acid was more remarkable compared to allopurinol. SIGNIFICANCE Our findings indicated that ellagic acid had alleviated HFD-induced hyperuricemia, its associated NAFLD pattern as mediated through activation of CTRP3 and inhibition of ACL activities in a pattern more remarkable than allopurinol.
Collapse
Affiliation(s)
| | - Ahmed E Elesawy
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo)BUC), Egypt
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
26
|
Du C, Zhu Y, Yang Y, Mu L, Yan X, Wu M, Zhou C, Wu H, Zhang W, Wu Y, Zhang G, Hu Y, Ren Y, Shi Y. C1q/tumour necrosis factor-related protein-3 alleviates high-glucose-induced lipid accumulation and necroinflammation in renal tubular cells by activating the adenosine monophosphate-activated protein kinase pathway. Int J Biochem Cell Biol 2022; 149:106247. [PMID: 35753650 DOI: 10.1016/j.biocel.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Lipid accumulation and progressive necroinflammation play pivotal roles in the development of diabetic nephropathy. C1q tumour necrosis factor-related protein-3 (CTRP3) is an adipokine with pleiotropic functions in cell proliferation, glucose and lipid metabolism, and inflammation. However, the mechanism and involvement of CTRP3 in lipid metabolism and the necroinflammation of renal tubular cells remain unclear. Here, we report that CTRP3 expression decreased in a time- and concentration-dependent manner in high glucose-stimulated HK-2 cells. We noted that the overexpression of CTRP3 or recombinant CTRP3 (rCTRP3) treatment prevented high glucose-induced lipid accumulation by inhibiting the expression of sterol regulatory element-binding protein-1 and increasing the expression of peroxisome proliferator-activated receptor-α and ATP-binding cassette A1. Moreover, the nucleotide-binding oligomerisation domain-like receptor protein 3-mediated inflammatory response and mixed lineage kinase domain-like protein-dependent necroinflammation were inhibited by CTRP3 overexpression or rCTRP3 treatment in HK-2 cells cultured in high glucose. Furthermore, lipotoxicity-induced by palmitic acid was found to be involved in necroinflammation in HK-2 cells, and CTRP3 displayed the same protective effect. CTRP3 also activated the adenosine monophosphate-activated protein kinase (AMPK) pathway, whereas adenine 9-β-D-arabinofuranoside, an AMPK inhibitor, replicated the protective effects of CTRP3. Besides, using kidney biopsies from patients with diabetes, we found that decreased CTRP3 expression was accompanied by increased lipid deposition, as well as the structural and functional injury of renal tubular cells. Our findings demonstrate that CTRP3 affects lipid metabolism and necroinflammation in renal tubular cells via the AMPK signalling pathway. Thus, CTRP3 may be a potential therapeutic target in diabetic renal injury.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Zhu
- Laboratorical center for Electron Microscopy, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xue Yan
- Department of Pediatrics, the 2nd Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Chenming Zhou
- Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yanhui Wu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guoyu Zhang
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yue Hu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
27
|
Song Y, Zhang Y, Wan Z, Pan J, Gao F, Li F, Zhou J, Chen J. CTRP3 alleviates myocardial ischemia/reperfusion injury in mice through activating LAMP1/JIP2/JNK pathway. Int Immunopharmacol 2022; 107:108681. [PMID: 35278832 DOI: 10.1016/j.intimp.2022.108681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Myocardial ischemia reperfusion (I/R) injury is an important complication of myocardial infarction reperfusion therapy, and no effective treatment has been identified. Based on preexisting evidence, C1q/tumor necrosis factor-related protein 3 (CTRP3) has been reported to be closely associated with myocardial dysfunction. In this study, we found that CTRP3 was downregulated in acute coronary syndrome (ACS) patients and myocardial I/R mice. Silence of CTRP3 aggravated cardiac systolic function due to I/R of mice, while CTRP3 overexpression ameliorated cardiac function. Moreover, overexpression of CTRP3 improved I/R inhibitory effects on the levels of creatinine phosphokinase (CPK), lactate dehydrogenase (LDH) and cardiac troponin-I (cTn-I), myocardial infarction area, the intensity of the 3-nitrotyrosine (3-NT), apoptosis and protein levels of LAMP1, JNK-Interacting Protein-2 (JIP-2) and JNK, while these effects could be exacerbated by downregulation of CTRP3. Co-IP experiments could identify physical interactions between CTRP3 and lysosomal-associated membrane protein 1 (LAMP1) and Numb and JIP2. LAMP1 silence aggravated the inhibition effects of I/R on JIP2 and JNK protein expression, CPK, LDH and cTn-I levels and caspase-3 activity, while overexpression of LAMP1 recovered these inhibition effects of I/R. JNK inhibitor (SP600125) could reverse the inhibitory effects of CTRP3 overexpression on CPK, LDH, cTn-I, myocardial infarction, strong positive staining for 3-NT and apoptosis. These findings demonstrated that CTRP3 protected against injury caused by myocardial I/R through activating LAMP1/JIP2/JNK pathway to attenuate myocardial injury, improve left ventricular function, decrease myocardial infarction, and reduce myocardial apoptosis.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China.
| | - Yunqing Zhang
- Department of Pathology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Zhaofei Wan
- Department of Cardiology, the Second AffiliatedHospital of Xi'an Jiaotong University, Xi'an 710038, China
| | - Junqiang Pan
- Department of Cardiology, Xi'an Central Hospital, Xi'an 710061, China
| | - Feng Gao
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Fei Li
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Jing Zhou
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Junmin Chen
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| |
Collapse
|
28
|
Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Pharmacotherapy 2022; 148:112726. [DOI: 10.1016/j.biopha.2022.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
|
29
|
Chen S, Lin Y, Zhu Y, Geng L, Cui C, Li Z, Liu H, Chen H, Ju W, Chen M. Atrial Lesions in a Pedigree With PRKAG2 Cardiomyopathy: Involvement of Disrupted AMP-Activated Protein Kinase Signaling. Front Cardiovasc Med 2022; 9:840337. [PMID: 35360035 PMCID: PMC8960295 DOI: 10.3389/fcvm.2022.840337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
PRKAG2 cardiomyopathy is a rare progressive disease characterized by increased ventricular wall thickness and preexcitation. Dysfunction of the protein 5′-AMP-activated protein kinase (AMPK) plays a decisive role in the progression of ventricular lesions. Although patients with the PRKAG2-R302Q mutation have a high incidence of atrial fibrillation (AF), the molecular mechanism contributing to the disease remains unclear. We carried out whole-genome sequencing with linkage analysis in three affected members of a family. Atrial samples were obtained from the proband via surgical intervention. Control atrium biopsies were obtained from patients with persistent AF. Pathological changes were analyzed using the hematoxylin and eosin (H&E), Masson, and periodic acid–Schiff (PAS) staining. The AMPK signaling pathway was investigated by western blot. A murine atrial cardiomyocyte cell line (HL-1) and human induced pluripotent stem derived atrial cardiomyocytes (hiPSC-ACMs) were transfected with an adenovirus carrying the same mutation. We used enzyme linked immunosorbent assay (ELISA) to determine the AMPK activity in HL-1 cells and hiPSC-ACMs overexpressing PRKAG2-R302Q. Pathological results showed a large quantity of glycogen accumulation and vacuolization in cardiomyocytes from the proband atrial tissue. Western blot analysis revealed that the AMPK activity was significantly downregulated compared with that of the controls. Furthermore, remarkable glycogen deposition and impairment of AMPK activity were reproduced in HL-1 cells overexpressing PRKAG2-R302Q. Taken together, PRKAG2-R302Q mutation directly impair atrial cardiomyocytes. PRKAG2-R302Q mutation lead to glycogen deposition and promote the growth of atrial lesions by disrupting the AMPK pathway.
Collapse
Affiliation(s)
- Shaojie Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Geng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaomin Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwu Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhu Ju
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Weizhu Ju,
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Minglong Chen,
| |
Collapse
|
30
|
MicroRNA-181a-5p Promotes Osteosarcoma Progression via PTEN/AKT Pathway. Anal Cell Pathol 2022; 2022:3421600. [PMID: 35310933 PMCID: PMC8924609 DOI: 10.1155/2022/3421600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents with poor prognosis. MicroRNA-181a-5p (miR-181a-5p) is involved in the progression of various tumors; however, its role and underlying mechanism in osteosarcoma remains unclear. In this study, we found that miR-181a-5p was upregulated in human osteosarcoma cells and tissues. miR-181a-5p mimic significantly promoted, while miR-181a-5p inhibitor blocked the proliferation, colony formation, migration, invasion, and cell cycle progression of osteosarcoma cells. Mechanistically, miR-181a-5p bound to the 3′-untranslational region of phosphatase and tensin homolog (PTEN) and reduced its protein expression, thereby activating protein kinase B (PKB/AKT) pathway. Either PTEN overexpression or AKT inhibition notably blocked the tumor-promoting effects of miR-181a-5p. Moreover, we observed that miR-181a-5p mimic further inhibited growth of human osteosarcoma cells in the presence of adriamycin or cisplatin. Overall, miR-181a-5p promotes osteosarcoma progression via PTEN/AKT pathway and it is a promising therapeutic target to treat osteosarcoma.
Collapse
|
31
|
Hao W, Li N, Mi C, Wang Q, Yu Y. Salidroside attenuates cardiac dysfunction in a rat model of diabetes. Diabet Med 2022; 39:e14683. [PMID: 34467560 DOI: 10.1111/dme.14683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
AIM This study aimed to investigate the therapeutic effects of salidroside on diabetes-induced cardiovascular disease. METHODS Sprague-Dawley rats treated with 65 mg/kg of streptozotocin (STZ) on a daily basis were used to establish the diabetic rat model (blood glucose levels >13.9 mmol/L). Cardiac functions of diabetic rats were evaluated by their haemodynamic alterations. Western blot assay was performed to evaluate the protein levels of multiple signalling pathway factors. Quantitative real-time PCR assay was performed to investigate the inflammation and oxidative stress of diabetic rats. RESULTS Salidroside treatment improved the cardiac functions of diabetic rats. In addition, salidroside therapy attenuated the cardiac oxidative stress induced by diabetes. Salidroside inhibited the diabetes-induced inflammation in diabetic rat hearts. The apoptosis of cardiomyocytes was also alleviated by the treatment of salidroside. Salidroside also upregulated the phosphorylation levels of AMPK, ACC, TSC2 and RAPTOR. CONCLUSION Salidroside exerts protective effects against diabetes-induced cardiac dysfunction by modulating the mTOR and AMPK signalling pathways.
Collapse
Affiliation(s)
- Weiwei Hao
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Na Li
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Caifeng Mi
- Department of Gastroenterology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| | - Qiang Wang
- Department of Cardiology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| | - Yuanyuan Yu
- Department of Endocrinology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
32
|
Miao H, Li X, Zhou C, Liang Y, Li D, Ji Q. NR4A2 alleviates cardiomyocyte loss and myocardial injury in rats by transcriptionally suppressing CCR5 and inducing M2 polarization of macrophages. Microvasc Res 2022; 140:104279. [PMID: 34774582 DOI: 10.1016/j.mvr.2021.104279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND CC chemokine receptor 5 (CCR5) has been demonstrated to be correlated to activation of pro-inflammatory immune cells and tissue injury. This study focused on the role of CCR5 in myocardial injury in rats with diabetic cardiomyopathy (DCM) and the mechanism of action. METHODS A rat model of DCM was induced by streptozotocin (STZ). CCR5 was knocked down in rats to determine its role in myocardial injury and immune cell infiltration. The upstream regulators of CCR5 were bioinformatically predicted and the binding between nuclear receptor subfamily 4 group A member 2 (NR4A2) and CCR5 was validated. The portion of M1 and M2 macrophages in tissues was determined by flow cytometry or double-labeling immunofluorescence. Rat bone marrow mononuclear cells (BMMCs) were treated with granulocyte/macrophage colony stimulating factor (GM-CSF/M-CSF) and co-cultured with H9C2 cells for in vitro experiments. RESULTS STZ-treated rats had impaired cardiac function and increased levels of creatine kinase-MB, cardiac troponin I and lactate dehydrogenase. CCR5 inhibition significantly alleviated myocardial injury in rats and reduced the portion of M1 macrophages in rat cardiac tissues. NR4A2, which could suppress CCR5 transcription, was poorly expressed in rats with DCM. NR4A2 overexpression played a similar myocardium-protective role in rats. In vitro, overexpression of NR4A2 induced M2 polarization of macrophages, which protected the co-cultured H9C2 cells from high glucose-induced damage, but the protective role was blocked after CCR5 overexpression. CONCLUSION This study demonstrated that NR4A2 suppresses CCR5 expression and promotes M2 polarization of macrophages to alleviate cardiomyocyte loss and myocardial injury.
Collapse
MESH Headings
- Animals
- Male
- Cell Line
- Coculture Techniques
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/immunology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Disease Models, Animal
- Down-Regulation
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Phenotype
- Rats, Sprague-Dawley
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Signal Transduction
- Transcription, Genetic
- Rats
Collapse
Affiliation(s)
- Huangtai Miao
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Xiaoying Li
- Department of Health Care for Cadres, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Can Zhou
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Ying Liang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Deshun Li
- Department of Cardiology, Huanghua Traditional Chinese Medicine Hospital of Hebei Province, Huanghua 061100, Hebei, PR China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
33
|
Hu C, Zhang X, Hu M, Teng T, Yuan Y, Song P, Kong C, Xu S, Ma Z, Tang Q. Fibronectin type III domain-containing 5 improves aging-related cardiac dysfunction in mice. Aging Cell 2022; 21:e13556. [PMID: 35166002 PMCID: PMC8920441 DOI: 10.1111/acel.13556] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Aging is an important risk factor for cardiovascular diseases, and aging‐related cardiac dysfunction serves as a major determinant of morbidity and mortality in elderly populations. Our previous study has identified fibronectin type III domain‐containing 5 (FNDC5) and its cleaved form, irisin, as the cardioprotectant against doxorubicin‐induced cardiomyopathy. Herein, aging or matched young mice were overexpressed with FNDC5 by adeno‐associated virus serotype 9 (AAV9) vectors, or subcutaneously infused with irisin to uncover the role of FNDC5 in aging‐related cardiac dysfunction. To verify the involvement of nucleotide‐binding oligomerization domain‐like receptor with a pyrin domain 3 (NLRP3) and AMP‐activated protein kinase α (AMPKα), Nlrp3 or Ampkα2 global knockout mice were used. Besides, young mice were injected with AAV9‐FNDC5 and maintained for 12 months to determine the preventive effect of FNDC5. Moreover, neonatal rat cardiomyocytes were stimulated with tumor necrosis factor‐α (TNF‐α) to examine the role of FNDC5 in vitro. We found that FNDC5 was downregulated in aging hearts. Cardiac‐specific overexpression of FNDC5 or irisin infusion significantly suppressed NLRP3 inflammasome and cardiac inflammation, thereby attenuating aging‐related cardiac remodeling and dysfunction. In addition, irisin treatment also inhibited cellular senescence in TNF‐α‐stimulated cardiomyocytes in vitro. Mechanistically, FNDC5 activated AMPKα through blocking the lysosomal degradation of glucagon‐like peptide‐1 receptor. More importantly, FNDC5 gene transfer in early life could delay the onset of cardiac dysfunction during aging process. We prove that FNDC5 improves aging‐related cardiac dysfunction by activating AMPKα, and it might be a promising therapeutic target to support cardiovascular health in elderly populations.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Xin Zhang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Min Hu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Teng Teng
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Yu‐Pei Yuan
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Peng Song
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Chun‐Yan Kong
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Si‐Chi Xu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Zhen‐Guo Ma
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| | - Qi‐Zhu Tang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Hubei Key Laboratory of Metabolic and Chronic Diseases Wuhan China
| |
Collapse
|
34
|
Yildirim A, Kucukosmanoglu M, Sumbul HE, Koc M. Reduced CTRP3 Levels in Patients with Stable Coronary Artery Disease and Related with the Presence of Paroxysmal Atrial Fibrillation. Arq Bras Cardiol 2022; 118:52-58. [PMID: 35195208 PMCID: PMC8959053 DOI: 10.36660/abc.20200669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Serum Complement C1q/tumor necrosis factor-related protein-3 (CTRP3) levels and the relationship with atrial fibrillation (AF) in stable coronary artery disease (CAD) are not clearly known. OBJECTIVE The aim of this study was to investigate the change in serum CTRP3 levels and its relationship with paroxysmal AF in stable CAD. METHOD The study included 252 patients with CAD and 50 age-sex matched healthy control subjects. Serum CTRP3 levels were measured in addition to routine anamnesis, physical examination, laboratory and echocardiography examinations. The patients were divided into groups with and without CAD and CAD patients with and without paroxysmal AF. Statistical significance was accepted as p<0.05. RESULTS Serum CTRP3 levels were found to be significantly lower in patients with CAD than in the control group (p<0.001). AF was detected in 38 patients (15.08%) in the CAD group. The frequency of hypertension and female gender, hs-CRP, blood urea nitrogen, creatinine levels and left atrial end-diastolic (LAd) diameter were higher (p<0.05 for each one), and CTRP3 levels were lower in patients with AF (p <0.001). In the logistic regression analysis, serum CTRP3 levels and LAd diameters were independently determined the patients with AF (p<0.01 for each one). In this analysis, we found that every 1 ng/mL reduction in CTRP3 levels increased the risk of AF by 10.7%. In the ROC analysis of CTRP3 values for detecting patients with AF, the area under the ROC curve for CTRP3 was 0.971 (0.951-991) and was statistically significant (p<0.001). When the CTRP3 cut-off value was taken as 300 ng/mL, it was found to predict the presence of AF with 87.9% sensitivity and 86.8% specificity. CONCLUSION Serum CTRP3 levels were significantly reduced in patients with stable CAD and decreased CTRP3 levels were closely related to the presence of paroxysmal AF in these patients.
Collapse
Affiliation(s)
- Arafat Yildirim
- Departamento de Cardiologia , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| | - Mehmet Kucukosmanoglu
- Departamento de Cardiologia , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| | - Hilmi Erdem Sumbul
- Departamento de Medicina Interna , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| | - Mevlut Koc
- Departamento de Cardiologia , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| |
Collapse
|
35
|
Song Y, Zhang Y, Wan Z, Pan J, Gao F, Li F, Zhou J, Chen J. CTRP3 alleviates cardiac ischemia/reperfusion injury via LAMP1/JIP2/JNK signaling pathway. Aging (Albany NY) 2022; 14:1321-1335. [PMID: 35114641 PMCID: PMC8876908 DOI: 10.18632/aging.203876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
Background: C1q/tumor necrosis factor-related protein 3 (CTRP3) has been reported to be a crucial regulator in myocardial infarction. Nevertheless, the potential molecular mechanism of CTRP3 in ischemia/reperfusion (I/R) injury remains largely unclear. Methods: The cell model of myocardial I/R injury was established by oxygen-glucose deprivation/reoxygenation (OGD/R) of rat cardiomyocyte H9C2. Expression of CTRP3 and lysosomal-associated membrane protein 1 (LAMP1) was detected in H9C2 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R). H9C2 cells were transfected with overexpression plasmids of CTRP3 (pcDNA-CTRP3) and LAMP1 (pcDNA-LAMP1), or CTRP3 small interfering RNA (si-CTRP3) or/and pcDNA-LAMP1, and cell proliferation, apoptosis and oxidative stress were testified. Co-IP assay was performed to validate the relationship among CTRP3, LAMP1 and JIP2. The role of CTRP3 and LAMP1 in JIP2/JNK pathway was evaluated with Western blot assay. Furthermore, in vivo myocardial I/R injury model was constructed to investigate the effect of CTRP3. Results: Overexpression of CTRP3 and LAMP1 both significantly promoted cell proliferation, inhibited apoptosis and the production of reactive oxygen species (ROS), malondialdehyde (MAD) and cardiac troponin (cTn-I), while silencing CTRP3 exerted the opposite effects, and LAMP1 overexpression reversed the effect of silencing CTRP3 on the aspects above. CTRP3 interacted with LAMP1, and both CTRP3 and LAMP1 bound with JIP2. SP600125 (JNK inhibitor) could restore the effects of CTRP3 or LAMP1 overexpression on the expression of JIP2 and phosphorylated-JNK (p-JNK), proliferation and apoptosis. Moreover, overexpression of CTRP3 improved cardiac I/R injury in vivo. Conclusion: CTRP3 alleviates cardiac I/R injury by elevating LAMP1 and activating JIP2/JNK signaling pathway, which may serve as a potential therapeutic target for I/R injury.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Yunqing Zhang
- Department of Pathology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Zhaofei Wan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710038, China
| | - Junqiang Pan
- Department of Cardiology, Xi'an Central Hospital, Xi'an 710061, China
| | - Feng Gao
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Fei Li
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Jing Zhou
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Junmin Chen
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| |
Collapse
|
36
|
Emerging Role of cAMP/AMPK Signaling. Cells 2022; 11:cells11020308. [PMID: 35053423 PMCID: PMC8774420 DOI: 10.3390/cells11020308] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
Collapse
|
37
|
Guo Z, Tuo H, Tang N, Liu FY, Ma SQ, An P, Yang D, Wang MY, Fan D, Yang Z, Tang QZ. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. Int J Biol Sci 2022; 18:826-840. [PMID: 35002528 PMCID: PMC8741837 DOI: 10.7150/ijbs.65938] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is associated with oxidative stress and augmented inflammation in the heart. Neuraminidases (NEU) 1 has initially been described as a lysosomal protein which plays a role in the catabolism of glycosylated proteins. We investigated the role of NEU1 in the myocardium in diabetic heart. Streptozotocin (STZ) was injected intraperitoneally to induce diabetes in mice. Neonatal rat ventricular myocytes (NRVMs) were used to verify the effect of shNEU1 in vitro. NEU1 is up-regulated in cardiomyocytes under diabetic conditions. NEU1 inhibition alleviated oxidative stress, inflammation and apoptosis, and improved cardiac function in STZ-induced diabetic mice. Furthermore, NEU1 inhibition also attenuated the high glucose-induced increased reactive oxygen species generation, inflammation and, cell death in vitro. ShNEU1 activated Sirtuin 3 (SIRT3) signaling pathway, and SIRT3 deficiency blocked shNEU1-mediated cardioprotective effects in vitro. More importantly, we found AMPKα was responsible for the elevation of SIRT3 expression via AMPKα-deficiency studies in vitro and in vivo. Knockdown of LKB1 reversed the effect elicited by shNEU1 in vitro. In conclusion, NEU1 inhibition activates AMPKα via LKB1, and subsequently activates sirt3, thereby regulating fibrosis, inflammation, apoptosis and oxidative stress in diabetic myocardial tissue.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Hu Tuo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Nan Tang
- The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, RP China.,People's Hospital affiliated to Nanjing Drama Tower Hospital Group, Suqian 223800, RP China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Min-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, RP China
| |
Collapse
|
38
|
Zhang J, Lin X, Xu J, Tang F, Tan L. CTRP3 protects against uric acid-induced endothelial injury by inhibiting inflammation and oxidase stress in rats. Exp Biol Med (Maywood) 2022; 247:174-183. [PMID: 34601891 PMCID: PMC8777481 DOI: 10.1177/15353702211047183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia, which contributes to vascular endothelial damage, plays a key role in multiple cardiovascular diseases. This study was designed to investigate whether C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) has a protective effect on endothelial damage induced by uric acid and its underlying mechanisms. Animal models of hyperuricemia were established in Sprague-Dawley (SD) rats through the consumption of 10% fructose water for 12 weeks. Then, the rats were given a single injection of Ad-CTRP3 or Ad-GFP. The animal experiments were ended two weeks later. In vitro, human umbilical vein endothelial cells (HUVECs) were first infected with Ad-CTRP3 or Ad-GFP. Then, the cells were stimulated with 10 mg/dL uric acid for 48 h after pretreatment with or without a Toll-like receptor 4 (TLR4)-specific inhibitor. Hyperuricemic rats showed disorganized intimal structures, increased endothelial apoptosis rates, increased inflammatory responses and oxidative stress, which were accompanied by reduced CTRP3 and elevated TLR4 protein levels in the thoracic aorta. In contrast, CTRP3 overexpression decreased TLR4 protein levels and ameliorated inflammatory responses and oxidative stress, thereby improving the morphology and apoptosis of the aortic endothelium in rats with hyperuricemia. Similarly, CTRP3 overexpression decreased TLR4-mediated inflammation, reduced oxidative stress, and rescued endothelial damage induced by uric acid in HUVECs. In conclusion, CTRP3 ameliorates uric acid-induced inflammation and oxidative stress, which in turn protects against endothelial injury, possibly by inhibiting TLR4-mediated inflammation and downregulating oxidative stress.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Xue Lin
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
| | - Jinxiu Xu
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Feng Tang
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Lupin Tan
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
| |
Collapse
|
39
|
Zhang J, Xu J, Lin X, Tang F, Tan L. CTRP3 ameliorates fructose-induced metabolic associated fatty liver disease via inhibition of xanthine oxidase-associated oxidative stress. Tissue Cell 2021; 72:101595. [PMID: 34303283 DOI: 10.1016/j.tice.2021.101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The incidence of metabolic associated fatty liver disease (MAFLD) induced by high fructose consumption is dramatically increasing in the world while lacking specifically therapeutic drugs. The present study aimed to investigate the effect of complement C1q/tumor necrosis factor-related protein-3 (CTRP3) on fructose-induced MAFLD and its potential mechanisms. METHOD The animal models with MAFLD were built with Sprague-Dawley (SD) rats drinking 10 % fructose solution for 12 weeks. Then, specific hepatic CTRP3 overexpression was conducted by a single caudal-vein injection of CTRP3-expressing adenoviruses. Rats were sacrificed two weeks later. RESULTS Drinking 10 % fructose solution for 12 weeks successfully built the rats models with MAFLD. Fructose feeding markedly decreased hepatic CTRP3 expression in rats. However, CTRP3 overexpression in liver alleviated hyperuricemia, dyslipidemia, liver function injury, intrahepatic triglyceride (TG) accumulation and histological changes of hepatic steatosis in rats fed with fructose. CTRP3 overexpression also inhibited hepatic XO activity in liver and improved subsequent oxidative stress, accompanied with downregulation of gene expression of sterol-regulatory element binding protein 1c (SERBP-1c) and fatty acid synthase (FAS). CONCLUSION CTRP3 attenuates MAFLD induced by fructose, which maybe partially attribute to rescued oxidative stress related with xanthine oxidase overactivity.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.
| | - Jinxiu Xu
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Xue Lin
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Feng Tang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Lupin Tan
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| |
Collapse
|
40
|
Liu C, Han Y, Gu X, Li M, Du Y, Feng N, Li J, Zhang S, Maslov LN, Wang G, Pei J, Fu F, Ding M. Paeonol promotes Opa1-mediated mitochondrial fusion via activating the CK2α-Stat3 pathway in diabetic cardiomyopathy. Redox Biol 2021; 46:102098. [PMID: 34418601 PMCID: PMC8385203 DOI: 10.1016/j.redox.2021.102098] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
Diabetes disrupts mitochondrial function and often results in diabetic cardiomyopathy (DCM). Paeonol is a bioactive compound that has been reported to have pharmacological potential for cardiac and mitochondrial protection. This study aims to explore the effects of paeonol on mitochondrial disorderes in DCM and the underlying mechanisms. We showed that paeonol promoted Opa1-mediated mitochondrial fusion, inhibited mitochondrial oxidative stress, and preserved mitochondrial respiratory capacity and cardiac performance in DCM in vivo and in vitro. Knockdown of Opa1 blunted the above protective effects of paeonol in both diabetic hearts and high glucose-treated cardiomyocytes. Mechanistically, inhibitor screening, siRNA knockdown and chromatin immunoprecipitation experiments showed that paeonol-promoted Opa1-mediated mitochondrial fusion required the activation of Stat3, which directly bound to the promoter of Opa1 to upregulate its transcriptional expression. Moreover, pharmmapper screening and molecular docking studies revealed that CK2α served as a direct target of paeonol that interacted with Jak2 and induced the phosphorylation and activation of Jak2-Stat3. Knockdown of CK2α blunted the promoting effect of paeonol on Jak2-Stat3 phosphorylation and Opa1-mediated mitochondrial fusion. Collectively, we have demonstrated for the first time that paeonol is a novel mitochondrial fusion promoter in protecting against hyperglycemia-induced mitochondrial oxidative injury and DCM at least partially via an Opa1-mediated mechanism, a process in which paeonol interacts with CK2α and restores its kinase activity that subsequently increasing Jak2-Stat3 phosphorylation and enhancing the transcriptional level of Opa1. These findings suggest that paeonol or the promotion of mitochondrial fusion might be a promising strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Chaoyang Liu
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Man Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanyan Du
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, 634000, Russia
| | - Guoen Wang
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
41
|
Saygisever K, Faikoglu G, Celik H, Ugur SA, Gokhan Akk A, Kelicen-Ug P, Ozyazgan S. Effect of Three PDEIs on Neuroprotective and Autophagy Proteins in vitro AD Model. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.169.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Mu Y, Dai HG, Luo LB, Yang J. Irisin alleviates obesity-related spermatogenesis dysfunction via the regulation of the AMPKα signalling pathway. Reprod Biol Endocrinol 2021; 19:135. [PMID: 34496874 PMCID: PMC8424900 DOI: 10.1186/s12958-021-00821-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Infertility is a common complication in obese men. Oxidative stress and testicular apoptosis play critical roles in obesity-induced spermatogenesis dysfunction. It has been reported that irisin, an exercise-induced myokine, may attenuate oxidative damage and testicular apoptosis in several diseases; however, its role in obesity-induced spermatogenesis dysfunction remains unclear. The purpose of this study was to investigate the role and underlying mechanism of irisin in obesity-induced dysfunction of spermatogenesis. METHODS Male mice were fed a high-fat diet (HFD) for 24 weeks to establish a model of obesity-induced spermatogenesis dysfunction. To explore the effects of irisin, mice were subcutaneously infused with recombinant irisin for 8 weeks beginning at 16 weeks after starting a HFD. To confirm the role of AMP-activated protein kinase α (AMPKα), AMPKα-deficient mice were used. RESULTS The data showed decreased serum irisin levels in obese patients, which was negatively correlated with sperm count and progressive motility. Irisin was downregulated in the plasma and testes of obese mice. Supplementation with irisin protected against HFD-induced spermatogenesis dysfunction and increased testosterone levels in mice. HFD-induced oxidative stress, endoplasmic reticulum (ER) stress and testicular apoptosis were largely attenuated by irisin treatment. Mechanistically, we identified that irisin activated the AMPKα signalling pathway. With AMPKα depletion, we found that the protective effects of irisin on spermatogenesis dysfunction were abolished in vivo and in vitro. CONCLUSIONS In conclusion, we found that irisin alleviated obesity-related spermatogenesis dysfunction via activation of the AMPKα signalling pathway. Based on these findings, we hypothesized that irisin is a potential therapeutic agent against obesity-related spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Huang-Guan Dai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital to Qingdao University, Yantai, Shandong, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
43
|
Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 2021; 42:1390-1400. [PMID: 33214697 PMCID: PMC8379181 DOI: 10.1038/s41401-020-00557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
Collapse
|
44
|
Fu F, Liu C, Shi R, Li M, Zhang M, Du Y, Wang Q, Li J, Wang G, Pei J, Ding M. Punicalagin Protects Against Diabetic Cardiomyopathy by Promoting Opa1-Mediated Mitochondrial Fusion via Regulating PTP1B-Stat3 Pathway. Antioxid Redox Signal 2021; 35:618-641. [PMID: 33906428 DOI: 10.1089/ars.2020.8248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: This study aims to explore the efficacy of punicalagin (PG) on diabetic cardiomyopathy (DCM), with a specific focus on the mechanisms underlying the effects of PG on mitochondrial fusion/fission dynamics. Results: Cardiac structural and functional abnormalities were ameliorated in diabetic rats receiving PG administration as evidenced by increased ejection fraction, and attenuated myocardial fibrosis and hypertrophy. PG enhanced mitochondrial function and inhibited mitochondria-derived oxidative stress by promoting Opa1-mediated mitochondrial fusion. The benefits of PG could be abrogated by knockdown of Opa1 in vivo and in vitro. Inhibitor screening and chromatin immunoprecipitation analysis showed that Stat3 directly regulated the transcriptional expression of Opa1 by binding to its promoter and was responsible for PG-induced Opa1-mediated mitochondrial fusion. Moreover, pharmmapper screening and molecular docking studies revealed that PG embedded into the activity pocket of PTP1B and inhibited the activity of PTP1B. Overexpression of PTP1B blocked the promoting effect of PG on Stat3 phosphorylation and Opa1-mediated mitochondrial fusion, whereas knockdown of PTP1B mimicked the benefits of PG in high-glucose-treated cardiomyocytes. Innovation: Our study is the first to identify PG as a novel mitochondrial fusion promoter against hyperglycemia-induced mitochondrial oxidative injury and cardiomyopathy by upregulating Opa1 via regulating PTP1B-Stat3 pathway. Conclusion: PG protects against DCM by promoting Opa1-mediated mitochondrial fusion, a process in which PG interacts with PTP1B and inhibits its activity, which in turn increases Stat3 phosphorylation and then enhances the transcriptional expression of Opa1. These results suggest that PG might be a promising new therapeutic approach against diabetic cardiac complication. Antioxid. Redox Signal. 35, 618-641.
Collapse
Affiliation(s)
- Feng Fu
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Chaoyang Liu
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Rui Shi
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Man Li
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Min Zhang
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yanyan Du
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Qiaojuan Wang
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Guoen Wang
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
45
|
Zhan L, Wang X, Zhang Y, Zhu G, Ding Y, Chen X, Jiang W, Wu S. Benazepril hydrochloride protects against doxorubicin cardiotoxicity by regulating the PI3K/Akt pathway. Exp Ther Med 2021; 22:1082. [PMID: 34447475 PMCID: PMC8355712 DOI: 10.3892/etm.2021.10516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Doxorubicin (DOX) stimulates the generation of reactive oxygen species, thereby impairing mitochondrial functions. Angiotensin-converting enzyme inhibitors (ACEIs) have been identified to exhibit protective effects on cardiovascular diseases. The present study aimed to test the hypothesis that an ACEI benazepril hydrochloride (HCl) may protect against DOX-induced cardiotoxicity. The DOX injury model was established using rat embryonic cardiac myoblast cells (H9c2 cell line) treated with DOX in vitro. H9c2 cells were treated with benazepril-HCl, DOX or a mixture of DOX and benazepril-HCl to measure the activities of myocardial enzymes including lactate dehydrogenase (LDH), superoxide dismutase, catalase and glutathione peroxidase, in addition to the concentration of malondialdehyde in the culture medium. Cells without any treatment were used as a control. DOX treatment increased the levels of activity of myocardial enzymes in H9c2 cells compared with those in the untreated control cells. Additionally, co-treatment with benazepril-HCl significantly reduced the levels of apoptosis occurring due to DOX-mediated cellular damage. The mechanistic experiment revealed that pretreatment with benazepril-HCl counteracted the DOX-induced oxidative stress and suppressed the activation of apoptosis via the PI3K/Akt signaling pathway. By contrast, an Akt inhibitor (MK2206) inhibited the protective effects of benazepril-HCl against DOX-induced H9c2 cell injury, as revealed by increased LDH release in H9c2 cells. These results suggested that benazepril-HCl may potentially be administered as an adjuvant for DOX in long-term clinical use.
Collapse
Affiliation(s)
- Lan Zhan
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiangxiu Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanjing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guonian Zhu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Ding
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuemei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sisi Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
46
|
Wu X, Zhang T, Lyu P, Chen M, Ni G, Cheng H, Xu G, Li X, Wang L, Shang H. Traditional Chinese Medication Qiliqiangxin Attenuates Diabetic Cardiomyopathy via Activating PPARγ. Front Cardiovasc Med 2021; 8:698056. [PMID: 34336956 PMCID: PMC8322738 DOI: 10.3389/fcvm.2021.698056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy is the primary complication associated with diabetes mellitus and also is a major cause of death and disability. Limited pharmacological therapies are available for diabetic cardiomyopathy. Qiliqiangxin (QLQX), a Chinese medication, has been proven to be beneficial for heart failure patients. However, the role and the underlying protective mechanisms of QLQX in diabetic cardiomyopathy remain largely unexplored. Methods: Primary neonatal rat cardiomyocytes (NRCMs) were treated with glucose (HG, 40 mM) to establish the hyperglycemia-induced apoptosis model in vitro. Streptozotocin (STZ, 50 mg/kg/day for 5 consecutive days) was intraperitoneally injected into mice to establish the diabetic cardiomyopathy model in vivo. Various analyses including qRT-PCR, western blot, immunofluorescence [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining] histology (hematoxylin-eosin and Masson's trichrome staining), and cardiac function (echocardiography) were performed in these mice. QLQX (0.5 μg/ml in vitro and 0.5 g/kg/day in vivo) was used in this study. Results: QLQX attenuated hyperglycemia-induced cardiomyocyte apoptosis via activating peroxisome proliferation-activated receptor γ (PPARγ). In vivo, QLQX treatment protected mice against STZ-induced cardiac dysfunction and pathological remodeling. Conclusions: QLQX attenuates diabetic cardiomyopathy via activating PPARγ.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Lyu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiling Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guie Xu
- Cardiac Regeneration and Ageing Lab, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Zhang X, Hu C, Yuan XP, Yuan YP, Song P, Kong CY, Teng T, Hu M, Xu SC, Ma ZG, Tang QZ. Osteocrin, a novel myokine, prevents diabetic cardiomyopathy via restoring proteasomal activity. Cell Death Dis 2021; 12:624. [PMID: 34135313 PMCID: PMC8209005 DOI: 10.1038/s41419-021-03922-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Proteasomal activity is compromised in diabetic hearts that contributes to proteotoxic stresses and cardiac dysfunction. Osteocrin (OSTN) acts as a novel exercise-responsive myokine and is implicated in various cardiac diseases. Herein, we aim to investigate the role and underlying molecular basis of OSTN in diabetic cardiomyopathy (DCM). Mice received a single intravenous injection of the cardiotrophic adeno-associated virus serotype 9 to overexpress OSTN in the heart and then were exposed to intraperitoneal injections of streptozotocin (STZ, 50 mg/kg) for consecutive 5 days to generate diabetic models. Neonatal rat cardiomyocytes were isolated and stimulated with high glucose to verify the role of OSTN in vitro. OSTN expression was reduced by protein kinase B/forkhead box O1 dephosphorylation in diabetic hearts, while its overexpression significantly attenuated cardiac injury and dysfunction in mice with STZ treatment. Besides, OSTN incubation prevented, whereas OSTN silence aggravated cardiomyocyte apoptosis and injury upon hyperglycemic stimulation in vitro. Mechanistically, OSTN treatment restored protein kinase G (PKG)-dependent proteasomal function, and PKG or proteasome inhibition abrogated the protective effects of OSTN in vivo and in vitro. Furthermore, OSTN replenishment was sufficient to prevent the progression of pre-established DCM and had synergistic cardioprotection with sildenafil. OSTN protects against DCM via restoring PKG-dependent proteasomal activity and it is a promising therapeutic target to treat DCM.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Xiao-Pin Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| |
Collapse
|
48
|
Prakoso D, Tate M, Blasio M, Ritchie R. Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy - current and future perspectives. Clin Sci (Lond) 2021; 135:1369-1387. [PMID: 34076247 PMCID: PMC8187922 DOI: 10.1042/cs20210052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the prevalence of heart failure by 6-8-fold, independent of other comorbidities such as hypertension and coronary artery disease, a phenomenon termed diabetic cardiomyopathy. Several key signalling pathways have been identified that drive the pathological changes associated with diabetes-induced heart failure. This has led to the development of multiple pharmacological agents that are currently available for clinical use. While fairly effective at delaying disease progression, these treatments do not reverse the cardiac damage associated with diabetes. One potential alternative avenue for targeting diabetes-induced heart failure is the use of adeno-associated viral vector (AAV) gene therapy, which has shown great versatility in a multitude of disease settings. AAV gene therapy has the potential to target specific cells or tissues, has a low host immune response and has the possibility to represent a lifelong cure, not possible with current conventional pharmacotherapies. In this review, we will assess the therapeutic potential of AAV gene therapy as a treatment for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Darnel Prakoso
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
| | - Mitchel Tate
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
| | - Miles J. De Blasio
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H. Ritchie
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
49
|
Kung YL, Lu CY, Badrealam KF, Kuo WW, Shibu MA, Day CH, Chen RJ, Lu SY, Padma VV, Huang CY. Cardioprotective potential of amygdalin against angiotensin II induced cardiac hypertrophy, oxidative stress and inflammatory responses through modulation of Nrf2 and NF-κB activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:926-934. [PMID: 33448586 DOI: 10.1002/tox.23094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Heart failure (HF) and cardiac hypertrophy is an unfavorable outcome of pathological cardiac remodeling and represents the most important contributing factor for HF and cardiac hypertrophy. Amygdalin (AMG) is a cyanogenic glycoside derived from bitter almonds. Accumulating evidences have highlighted their pharmacological potentials against various diseases. However, there is no report delineating the potential of AMG against angiotensin (Ang II) induced cardiac injuries. Thus, the present study was performed to explore whether AMG could ameliorate Ang II induced cardiomyopathies and thereby ascertain the underlying mechanisms thereof. To this end, H9c2 cells were treated with Ang II and thereafter treated with various concentration of AMG and finally the cardio-protective effects of AMG were analyzed through Western blotting, immunofluorescence, and insilico analysis. Our results showed that the cardiomyocyte cell size, inflammatory markers and cytokines(pNF-κB, TNF-α, iNOS and COX-2) were markedly increased following Ang II treatment; nevertheless, treatment with AMG led to considerable decrement in the Ang II induced enlargement of the cardiomyocytes, and attenuate the expression of hypertrophic markers(ANP, BNP and MHC-7), inflammatory markers and cytokines. Additionally, oxidative stress related proteins (Nrf2, catalase, SOD-2, and GPX-4) were markedly increased following AMG treatment. Molecular docking reveals the interaction of AMG with Nrf2 possessing good binding affinity. Cumulatively, our study highlights the cardio-protective role of AMG against Ang II induced cardiomyopathies, including oxidative stress and inflammation effects. The intriguing in vitro results warrants the need of further animal studies to truly ascertain their potentialities.
Collapse
Affiliation(s)
- Yen-Lun Kung
- Integration of Chinese medicine and Modern medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Khan Fareen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
50
|
Li Z, Zhang J, Wang M, Qiu F, Jin C, Fu G. Expression of farnesyl pyrophosphate synthase is increased in diabetic cardiomyopathy. Cell Biol Int 2021; 45:1393-1403. [PMID: 33595160 DOI: 10.1002/cbin.11573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are involved in diabetic cardiomyopathy. This study investigated the specific role of FPPS in the development of diabetic cardiomyopathy. We demonstrated that FPPS expression was elevated in both in vivo and in vitro models of diabetic cardiomyopathy. FPPS inhibition decreased the expression of proteins related to cardiac fibrosis and cardiomyocytic hypertrophy, including collagen I, collagen III, connective tissue growth factor, natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Furthermore, FPPS inhibition and knockdown prevented phosphorylated c-Jun N-terminal kinase 1/2 (JNK1/2) activation in vitro. In addition, a JNK1/2 inhibitor downregulated high-glucose-induced responses to diabetic cardiomyopathy. Finally, immunofluorescence revealed that cardiomyocytic size was elevated by high glucose and was decreased by zoledronate, small-interfering farnesyl pyrophosphate synthase (siFPPS), and a JNK1/2 inhibitor. Taken together, our findings indicate that FPPS and JNK1/2 may be part of a signaling pathway that plays an important role in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Fuyu Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Chongyin Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|