1
|
Rao Z, Geng X, Huang P, Wei Q, Liu S, Qu C, Zhao J. Housing temperature influences exercise-induced glucose regulation and expression of exerkines in mice. Exp Physiol 2024. [PMID: 39721028 DOI: 10.1113/ep092319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
The impact of housing temperature on exercise-induced metabolic adaptations is not well understood, despite extensive research on the benefits of exercise for metabolic health. The aim of this study was to elucidate how housing temperatures influence the molecular responses and metabolic benefits of exercise in mice. Male C57BL/6N mice were housed at either room temperature (RT, 21°C) or in a thermoneutral environment (TN, 29°C) and subjected to either a 6-week or acute exercise regimen. The results demonstrated that chronic exercise in TN conditions significantly improved glucose tolerance, whereas no such improvement was observed in RT conditions. Exercise reduced adipocyte size in inguinal and epididymal white adipose tissue in RT conditions, but no significant exercise-induced browning of inguinal white adipose tissue was detected at either housing temperature. Additionally, housing temperature predominantly influenced key metabolic proteins in skeletal muscle, with exercise and temperature exhibiting interactive effects on glycogen synthase, Glut4 and Pgc-1α. Moreover, the regulation of exerkines, including Fgf21, fetuin-A, irisin, Gdf15, spexin and apelin, was temperature dependent after both long-term and acute exercise. Notably, expression of Metrnl was consistently upregulated in skeletal muscle after long-term exercise in both RT and TN environments, but was downregulated after acute exercise. These findings highlight that environmental temperature critically modulates the metabolic benefits of exercise and the expression of exerkines. The results of this study suggest that conventional RT conditions might obscure the full metabolic effects of exercise. We recommend the use of TN conditions in future research to reduce confounding factors and provide a more accurate assessment of the metabolic benefits of exercise.
Collapse
Affiliation(s)
- Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Xue Geng
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Peng Huang
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Qiangman Wei
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Shijie Liu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- College of Physical Education, Hebei Normal University, Hebei, China
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Fiorenza M, Checa A, Sandsdal RM, Jensen SBK, Juhl CR, Noer MH, Bogh NP, Lundgren JR, Janus C, Stallknecht BM, Holst JJ, Madsbad S, Wheelock CE, Torekov SS. Weight-loss maintenance is accompanied by interconnected alterations in circulating FGF21-adiponectin-leptin and bioactive sphingolipids. Cell Rep Med 2024; 5:101629. [PMID: 38959886 PMCID: PMC11293340 DOI: 10.1016/j.xcrm.2024.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Weight loss is often followed by weight regain. Characterizing endocrine alterations accompanying weight reduction and regain may disentangle the complex biology of weight-loss maintenance. Here, we profile energy-balance-regulating metabokines and sphingolipids in adults with obesity undergoing an initial low-calorie diet-induced weight loss and a subsequent weight-loss maintenance phase with exercise, glucagon-like peptide-1 (GLP-1) analog therapy, both combined, or placebo. We show that circulating growth differentiation factor 15 (GDF15) and C16:0-C18:0 ceramides transiently increase upon initial diet-induced weight loss. Conversely, circulating fibroblast growth factor 21 (FGF21) is downregulated following weight-loss maintenance with combined exercise and GLP-1 analog therapy, coinciding with increased adiponectin, decreased leptin, and overall decrements in ceramide and sphingosine-1-phosphate levels. Subgroup analyses reveal differential alterations in FGF21-adiponectin-leptin-sphingolipids between weight maintainers and regainers. Clinically, cardiometabolic health outcomes associate with selective metabokine-sphingolipid remodeling signatures. Collectively, our findings indicate distinct FGF21, GDF15, and ceramide responses to diverse phases of weight change and suggest that weight-loss maintenance involves alterations within the metabokine-sphingolipid axis.
Collapse
Affiliation(s)
- Matteo Fiorenza
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rasmus M Sandsdal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon B K Jensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian R Juhl
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel H Noer
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai P Bogh
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie R Lundgren
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bente M Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Signe S Torekov
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Shams S, Tavasolian M, Amani-Shalamzari S, Motamedi P, Rajabi H, Weiss K, Knechtle B. Effects of swimming in cold water on lipolysis indicators via fibroblast growth factor-21 in male Wistar rats. Biochem Biophys Rep 2024; 38:101662. [PMID: 38375421 PMCID: PMC10875249 DOI: 10.1016/j.bbrep.2024.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
This study aimed to investigate the effects of swimming in cold water on the release of FGF21 from various tissues and its impact on fat metabolism. Twenty Wistar rats were randomly divided into three groups: untrained (C), trained in thermo-neutral water (TN, 30 °C) and trained in cold water (TC, 15 °C). The training groups swam intervals (2-3 min) until exhaustion, 1 min rest, three days a week for six weeks, with 3-6% bodyweight load. The mRNA expression of variables was determined in white fat tissue (WAT), and FGF21 protein was also measured in the liver, brown fat tissue (BAT), serum, and muscle. The experimental protocols resulted in lower body weight gain, associated with reduced WAT volume; the most remarkable improvement was observed in the TC group. Swimming significantly increased FGF21 protein levels in WAT, BAT, and muscle tissues compared to the C group; substantial increases were in the TC group. Changes in FGF21 were highly correlated with the activation of genes involved in fat metabolisms, such as CPT1, CD36, and HSL, and with glycerol in WAT. The findings indicate a positive correlation between swimming in cold water and the activation of genes involved in fat metabolism, possibly through FGF21 production, which was highly correlated with fat-burning genes.
Collapse
Affiliation(s)
- Sara Shams
- Department of Exercise Physiology, Faculty of Sports Science, Kharazmi University, Tehran, Iran
| | - Mostafa Tavasolian
- Department of Exercise Physiology, Faculty of Sports Science, Kharazmi University, Tehran, Iran
| | - Sadegh Amani-Shalamzari
- Department of Exercise Physiology, Faculty of Sports Science, Kharazmi University, Tehran, Iran
| | - Pezhman Motamedi
- Department of Exercise Physiology, Faculty of Sports Science, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Sports Science, Kharazmi University, Tehran, Iran
| | - Katja Weiss
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Richter MM, Kemp IM, Heebøll S, Winther-Sørensen M, Kjeldsen SAS, Jensen NJ, Nybing JD, Linden FH, Høgh-Schmidt E, Boesen MP, Madsbad S, Schiødt FV, Nørgaard K, Schmidt S, Gluud LL, Haugaard SB, Holst JJ, Nielsen S, Rungby J, Wewer Albrechtsen NJ. Glucagon augments the secretion of FGF21 and GDF15 in MASLD by indirect mechanisms. Metabolism 2024; 156:155915. [PMID: 38631460 DOI: 10.1016/j.metabol.2024.155915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Glucagon receptor agonism is currently explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The metabolic effects of glucagon receptor agonism may in part be mediated by increases in circulating levels of Fibroblast Growth Factor 21 (FGF21) and Growth Differentiation Factor 15 (GDF15). The effect of glucagon agonism on FGF21 and GDF15 levels remains uncertain, especially in the context of elevated insulin levels commonly observed in metabolic diseases. METHODS We investigated the effect of a single bolus of glucagon and a continuous infusion of glucagon on plasma concentrations of FGF21 and GDF15 in conditions of endogenous low or high insulin levels. The studies included individuals with overweight with and without MASLD, healthy controls (CON) and individuals with type 1 diabetes (T1D). The direct effect of glucagon on FGF21 and GDF15 was evaluated using our in-house developed isolated perfused mouse liver model. RESULTS FGF21 and GDF15 correlated with plasma levels of insulin, but not glucagon, and their secretion was highly increased in MASLD compared with CON and T1D. Furthermore, FGF21 levels in individuals with overweight with or without MASLD did not increase after glucagon stimulation when insulin levels were kept constant. FGF21 and GDF15 levels were unaffected by direct stimulation with glucagon in the isolated perfused mouse liver. CONCLUSION The glucagon-induced secretion of FGF21 and GDF15 is augmented in MASLD and may depend on insulin. Thus, glucagon receptor agonism may augment its metabolic benefits in patients with MASLD through enhanced secretion of FGF21 and GDF15.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ida M Kemp
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sara Heebøll
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Janus D Nybing
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Frederik H Linden
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Erik Høgh-Schmidt
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Mikael P Boesen
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital - Hvidovre, Hvidovre 2650, Denmark
| | - Frank Vinholt Schiødt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kirsten Nørgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Signe Schmidt
- Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Gastro Unit, Copenhagen University Hospital - Hvidovre, Hvidovre 2650, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Søren Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
5
|
Liu C, Yan X, Zong Y, He Y, Yang G, Xiao Y, Wang S. The effects of exercise on FGF21 in adults: a systematic review and meta-analysis. PeerJ 2024; 12:e17615. [PMID: 38948228 PMCID: PMC11212618 DOI: 10.7717/peerj.17615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) is a key hormone factor that regulates glucose and lipid homeostasis. Exercise may regulate its effects and affect disease states. Therefore, we sought to determine how exercise affects FGF21 concentrations in adults. Methods The review was registered in the International Prospective Systematic Review (PROSPERO, CRD42023471163). The Cochrane Library, PubMed, and Web of Science databases were searched for studies through July 2023. Studies that assessed the effects of exercise training on FGF21 concentration in adults were included. The random effect model, data with standardized mean difference (SMD), and 95% confidence intervals (CI) were used to evaluate the pooled effect size of exercise training on FGF21. The risk of heterogeneity and bias were evaluated. A total of 12 studies involving 401 participants were included. Results The total effect size was 0.3 (95% CI [-0.3-0.89], p = 0.33) when comparing participants who exercised to those who were sedentary. However, subgroup analysis indicated that concurrent exercise and a duration ≥10 weeks significantly decreased FGF21 concentrations with an effect size of -0.38 (95% CI [-0.74--0.01], p < 0.05) and -0.38 (95% CI [-0.63--0.13], p < 0.01), respectively. Conclusion Concurrent exercise and longer duration may be more efficient way to decrease FGF21 concentrations in adults with metabolic disorder.
Collapse
Affiliation(s)
- Chuannan Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xujie Yan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yue Zong
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yanan He
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Guan Yang
- School of Physical Education, South China University of Technology, Guangzhou, China
| | - Yue Xiao
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Liang Y, Chen Q, Chang Y, Han J, Yan J, Chen Z, Zhou J. Critical role of FGF21 in diabetic kidney disease: from energy metabolism to innate immunity. Front Immunol 2024; 15:1333429. [PMID: 38312833 PMCID: PMC10834771 DOI: 10.3389/fimmu.2024.1333429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Diabetic kidney disease (DKD) stands as the predominant cause of chronic kidney disease (CKD) on a global scale, with its incidence witnessing a consistent annual rise, thereby imposing a substantial burden on public health. The pathogenesis of DKD is primarily rooted in metabolic disorders and inflammation. Recent years have seen a surge in studies highlighting the regulatory impact of energy metabolism on innate immunity, forging a significant area of research interest. Within this context, fibroblast growth factor 21 (FGF21), recognized as an energy metabolism regulator, assumes a pivotal role. Beyond its role in maintaining glucose and lipid metabolism homeostasis, FGF21 exerts regulatory influence on innate immunity, concurrently inhibiting inflammation and fibrosis. Serving as a nexus between energy metabolism and innate immunity, FGF21 has evolved into a therapeutic target for diabetes, nonalcoholic steatohepatitis, and cardiovascular diseases. While the relationship between FGF21 and DKD has garnered increased attention in recent studies, a comprehensive exploration of this association has yet to be systematically addressed. This paper seeks to fill this gap by summarizing the mechanisms through which FGF21 operates in DKD, encompassing facets of energy metabolism and innate immunity. Additionally, we aim to assess the diagnostic and prognostic value of FGF21 in DKD and explore its potential role as a treatment modality for the condition.
Collapse
Affiliation(s)
- Yingnan Liang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Chen
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Chang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junsong Han
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Yan
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenjie Chen
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Zhou
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
8
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
9
|
Primo D, Izaola O, Gomez JJL, Luis DD. Anthropometric, muscle and serum myokine levels effects of physical exercise with an online platform in female patients with obesity. ENDOCRINOL DIAB NUTR 2023; 70:484-491. [PMID: 37596009 DOI: 10.1016/j.endien.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION Under physical exercise conditions, muscles can synthetise and release myokines and these molecules can exert paracrine and endocrine actions. Females with obesity have a sedentary lifestyle with alterations in myokine levels. OBJECTIVE The aim of our study was to evaluate the effect of physical exercise on myokine levels, anthropometric parameters, clinical data, impedance parameters, and muscle ultrasound data in sedentary females with obesity. MATERIAL AND METHODS Anthropometric data, muscle mass by ultrasound at the quadriceps level, myokine determination, and blood pressure were collected at baseline and after 12 weeks in 25 females with obesity. For 12 weeks, the physical exercise programme was prescribed through an online platform. RESULTS After the physical exercise programme, there was a significant improvement in body mass index (-1.49±0.1kg/m2; p=0.02), weight (-3.9±0.7kg; p=0.01), waist circumference (-7.2±0.2cm; p=0.01), skeletal muscle mass (5.4±1.2kg; p=0.01), appendicular skeletal muscle mass index (0.5±0.1kg; p=0.02) and appendicular skeletal muscle mass (1.4±0.1kg; p=0.03), and a decrease in fat mass (-4.1±0.2kg; p=0.01) and blood pressure. The ultrasound parameters of the anterior rectus quadriceps muscle improved significantly. The following biochemical parameters decreased; insulin levels (-66.3±10.2pg/ml; p=0.04), HOMA-IR (-0.4±0.1 units; p=0.03), apelin (-3.5±0.2IU/l; p=0.04), FABP3 (-143.6±38.1pg/ml; p=0.03), IL6 (-4.1±0.02pg/ml; p=0.02), myostatin (-81.6±18.1pg/ml; p=0.04), and FGF21 (-9.5±1.1pg/ml; p=0.03). CONCLUSION The prescription of physical exercise with an online platform for females with obesity decreases weight, body fat mass and increases muscle mass, producing a decrease in insulin resistance and some myokine levels.
Collapse
Affiliation(s)
- David Primo
- Centre of Investigation of Endocrinology and Clinical Nutrition, School of Medicine, Valladolid, Spain; Dept Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Olatz Izaola
- Centre of Investigation of Endocrinology and Clinical Nutrition, School of Medicine, Valladolid, Spain; Dept Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Juan Jose Lopez Gomez
- Centre of Investigation of Endocrinology and Clinical Nutrition, School of Medicine, Valladolid, Spain; Dept Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Daniel de Luis
- Centre of Investigation of Endocrinology and Clinical Nutrition, School of Medicine, Valladolid, Spain; Dept Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain.
| |
Collapse
|
10
|
Shams S, Amirinejad M, Amani-Shalamzari S, Rajabi H, Suzuki K. Swimming in cold water upregulates genes involved in thermogenesis and the browning of white adipose tissues. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110834. [PMID: 36740139 DOI: 10.1016/j.cbpb.2023.110834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to investigate whether there is an interacting effect of six weeks of swimming in cold water on the gene expression of browning markers in adipose tissue in rodents. Twenty male Wistar rats were randomly divided into four groups: Control (C, 25 °C), Cold Exposure (CE, 4 °C), Swimming in tepid Water (STW, 30 °C), and Swimming in Cold Water (SCW, 15 °C). The swimming included 2-3 min intervals, 1 min rest, until exhaustion, three days a week for six weeks, with 3 to 6% of bodyweight overload. Rats from CE were exposed to cold for 2 h per day, five days per week. After the experimental protocol, interscapular brown (BAT) and inguinal subcutaneous white (WAT) fat tissues were excised, weighed, and processed for beiging and mitochondrial biogenesis markers gene expression. The experimental protocols resulted in an apparent increase in the number of brown adipocytes (per mm2) in the adipose deposits compared to the C group; substantial changes were observed in the SCW group. Compared to other groups, cold exposure alone increased significantly serum norepinephrine, and also β2-adrenergic receptor expression was upregulated in the adipocytes compared to the C group. The STW group increased the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1 alpha (PGC-1α), β2-adrenergic receptor, and CCAAT/enhancer-binding proteins-α(c/EBP-α) in WAT in comparison with the C group(p < 0.05). In both adipocytes, the SCW intervention significantly upregulated the expression of PGC-1α, PPAR-γ, and c/EBP-α genes in comparison with the C and CE groups. In addition, the expression of TFAM and UCP1 was upregulated substantially in the SCW group compared to other groups. Our data demonstrate that swim training and cold exposure present additive effects in the expression of genes involved in the beiging process and mitochondrial biogenesis markers in BAT and WAT. In addition, it seems that the upregulation of these genes is related to the activation of β2-adrenergic receptors.
Collapse
Affiliation(s)
- Sara Shams
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Mahdi Amirinejad
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Sadegh Amani-Shalamzari
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran.
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan.
| |
Collapse
|
11
|
Cui X, Feng J, Wei T, Zhang L, Lang S, Yang K, Yang J, Liu J, Sterr M, Lickert H, Wei R, Hong T. Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes. Diabetologia 2023; 66:535-550. [PMID: 36331598 PMCID: PMC9892158 DOI: 10.1007/s00125-022-05822-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
AIMS/HYPOTHESIS Glucagon receptor (GCGR) antagonism ameliorates hyperglycaemia and promotes beta cell regeneration in mouse models of type 2 diabetes. However, the underlying mechanisms remain unclear. The present study aimed to investigate the mechanism of beta cell regeneration induced by GCGR antagonism in mice. METHODS The db/db mice and high-fat diet (HFD)+streptozotocin (STZ)-induced mice with type 2 diabetes were treated with antagonistic GCGR monoclonal antibody (mAb), and the metabolic variables and islet cell quantification were evaluated. Plasma cytokine array and liver RNA sequencing data were used to screen possible mediators, including fibroblast growth factor 21 (FGF21). ELISA, quantitative RT-PCR and western blot were applied to verify FGF21 change. Blockage of FGF21 signalling by FGF21-neutralising antibody (nAb) was used to clarify whether FGF21 was involved in the effects of GCGR mAb on the expression of beta cell identity-related genes under plasma-conditional culture and hepatocyte co-culture conditions. FGF21 nAb-treated db/db mice, systemic Fgf21-knockout (Fgf21-/-) diabetic mice and hepatocyte-specific Fgf21-knockout (Fgf21Hep-/-) diabetic mice were used to reveal the involvement of FGF21 in beta cell regeneration. A BrdU tracing study was used to analyse beta cell proliferation in diabetic mice treated with GCGR mAb. RESULTS GCGR mAb treatment improved blood glucose control, and increased islet number (db/db 1.6±0.1 vs 0.8±0.1 per mm2, p<0.001; HFD+STZ 1.2±0.1 vs 0.5±0.1 per mm2, p<0.01) and area (db/db 2.5±0.2 vs 1.2±0.2%, p<0.001; HFD+STZ 1.0±0.1 vs 0.3±0.1%, p<0.01) in diabetic mice. The plasma cytokine array and liver RNA sequencing data showed that FGF21 levels in plasma and liver were upregulated by GCGR antagonism. The GCGR mAb induced upregulation of plasma FGF21 levels (db/db 661.5±40.0 vs 466.2±55.7 pg/ml, p<0.05; HFD+STZ 877.0±106.8 vs 445.5±54.0 pg/ml, p<0.05) and the liver levels of Fgf21 mRNA (db/db 3.2±0.5 vs 1.8±0.1, p<0.05; HFD+STZ 2.0±0.3 vs 1.0±0.2, p<0.05) and protein (db/db 2.0±0.2 vs 1.4±0.1, p<0.05; HFD+STZ 1.6±0.1 vs 1.0±0.1, p<0.01). Exposure to plasma or hepatocytes from the GCGR mAb-treated mice upregulated the mRNA levels of characteristic genes associated with beta cell identity in cultured mouse islets and a beta cell line, and blockage of FGF21 activity by an FGF21 nAb diminished this upregulation. Notably, the effects of increased beta cell number induced by GCGR mAb were attenuated in FGF21 nAb-treated db/db mice, Fgf21-/- diabetic mice and Fgf21Hep-/- diabetic mice. Moreover, GCGR mAb treatment enhanced beta cell proliferation in the two groups of diabetic mice, and this effect was weakened in Fgf21-/- and Fgf21Hep-/- mice. CONCLUSIONS/INTERPRETATION Our findings demonstrate that liver-derived FGF21 is involved in the GCGR antagonism-induced beta cell regeneration in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Linxi Zhang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
12
|
Garneau L, Terada T, Mistura M, Mulvihill EE, Reed JL, Aguer C. Exercise training reduces circulating cytokines in male patients with coronary artery disease and type 2 diabetes: A pilot study. Physiol Rep 2023; 11:e15634. [PMID: 36905198 PMCID: PMC10006733 DOI: 10.14814/phy2.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Low-grade inflammation is central to coronary artery disease (CAD) and type 2 diabetes (T2D) and is reduced by exercise training. The objective of this study was to compare the anti-inflammatory potential of moderate-to-vigorous intensity continuous training (MICT) and high-intensity interval training (HIIT) in patients with CAD with or without T2D. The design and setting of this study is based on a secondary analysis of registered randomized clinical trial NCT02765568. Male patients with CAD were randomly assigned to either MICT or HIIT, with subgroups divided according to T2D status (non-T2D-HIIT n = 14 and non-T2D-MICT n = 13; T2D-HIIT n = 6 and T2D-MICT n = 5). The intervention was a 12-week cardiovascular rehabilitation program consisting of either MICT or HIIT (twice weekly sessions) and circulating cytokines measured pre- and post-training as inflammatory markers. The co-occurrence of CAD and T2D was associated with increased plasma IL-8 (p = 0.0331). There was an interaction between T2D and the effect of the training interventions on plasma FGF21 (p = 0.0368) and IL-6 (p = 0.0385), which were further reduced in the T2D groups. An interaction between T2D, training modalities, and the effect of time (p = 0.0415) was detected for SPARC, with HIIT increasing circulating concentrations in the control group, while lowering them in the T2D group, and the inverse occurring with MICT. The interventions also reduced plasma FGF21 (p = 0.0030), IL-6 (p = 0.0101), IL-8 (p = 0.0087), IL-10 (p < 0.0001), and IL-18 (p = 0.0009) irrespective of training modality or T2D status. HIIT and MICT resulted in similar reductions in circulating cytokines known to be increased in the context of low-grade inflammation in CAD patients, an effect more pronounced in patients with T2D for FGF21 and IL-6.
Collapse
Affiliation(s)
- Léa Garneau
- Institut du Savoir Montfort – RechercheOntarioOttawaCanada
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Tasuku Terada
- Exercise Physiology and Cardiovascular Health LabUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- Division of Cardiac Prevention and RehabilitationUniversity of Ottawa Heart InstituteOttawaOntarioCanada
| | - Matheus Mistura
- Exercise Physiology and Cardiovascular Health LabUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- Division of Cardiac Prevention and RehabilitationUniversity of Ottawa Heart InstituteOttawaOntarioCanada
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Energy Substrate Metabolism Research LabUniversity of Ottawa Heart InstituteOttawaOntarioCanada
| | - Jennifer L. Reed
- Exercise Physiology and Cardiovascular Health LabUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- Division of Cardiac Prevention and RehabilitationUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- School of Human Kinetics, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Céline Aguer
- Institut du Savoir Montfort – RechercheOntarioOttawaCanada
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- School of Human Kinetics, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
- Department of Physiology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Interdisciplinary School of Health Sciences, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
13
|
Power Guerra N, Leyens K, Müller L, Brauer D, Janowitz D, Schlick S, Pilz K, Grabe HJ, Vollmar B, Kuhla A. The effect of different weight loss strategies to treat non-alcoholic fatty liver disease focusing on fibroblast growth factor 21. Front Nutr 2022; 9:935805. [PMID: 36034917 PMCID: PMC9399780 DOI: 10.3389/fnut.2022.935805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Obesity, often associated with non-alcoholic fatty liver disease (NAFLD), is characterized by an imbalance between energy expenditure and food intake, which is also reflected by desensitization of fibroblast growth factor 21 (FGF21). FGF21 is strongly influenced, among others, by TNFα, which is known to be upregulated in obesity-induced inflammation. Successful long-term treatments of NAFLD might be dietary modification, exercise, or fasting. Materials and methods Whether succeeded NAFLD recovery is linked with improved FGF21 sensitivity and finally reverted FGF21 resistance was the focus of the present study. For this purpose, mice received a high-fat diet (HFD) for 6 months to establish obesity. Afterward, the mice were subjected to three different weight loss interventions, namely, dietary change to low-fat diet (LFD), treadmill training, and/or time-restricted feeding for additional 6 months, whereas one group remained on HFD. Results In addition to the expected decrease in NAFLD activity with dietary change, this was also observed in the HFD group with additional time-restricted feeding. There was also an associated decrease in hepatic TNFα and FGF21 expression and an increase in ß-klotho expression, demonstrated mainly by using principal component analysis. Pearson correlation analysis shows that independent of any intervention, TNFα expression decreased with improved NAFLD recovery. This was accompanied with higher FGF21 sensitivity, as expressed by an increase in β-klotho and FGFR1c expression and concomitantly decreased FGF21 levels. Conclusion In summary, we conclude that successful NAFLD therapy is associated with a reversion of the TNFα-triggered FGF21-resistant state or desensitization.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Katharina Leyens
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Luisa Müller
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - David Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Samin Schlick
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Kristin Pilz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
14
|
Lombardo M, Feraco A, Bellia C, Prisco L, D’Ippolito I, Padua E, Storz MA, Lauro D, Caprio M, Bellia A. Influence of Nutritional Status and Physical Exercise on Immune Response in Metabolic Syndrome. Nutrients 2022; 14:nu14102054. [PMID: 35631195 PMCID: PMC9145042 DOI: 10.3390/nu14102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to visceral adiposity, which in turn promotes glucose intolerance and a chronic systemic inflammatory state, characterized by immune cell infiltration. Such immune system activation increases the risk of severe disease subsequent to viral infections. Strong correlations between elevated body mass index (BMI), type-2-diabetes and increased risk of hospitalization after pandemic influenza H1N1 infection have been described. Similarly, a correlation between elevated blood glucose level and SARS-CoV-2 infection severity and mortality has been described, indicating MetS as an important predictor of clinical outcomes in patients with COVID-19. Adipose secretome, including two of the most abundant and well-studied adipokines, leptin and interleukin-6, is involved in the regulation of energy metabolism and obesity-related low-grade inflammation. Similarly, skeletal muscle hormones—called myokines—released in response to physical exercise affect both metabolic homeostasis and immune system function. Of note, several circulating hormones originate from both adipose tissue and skeletal muscle and display different functions, depending on the metabolic context. This review aims to summarize recent data in the field of exercise immunology, investigating the acute and chronic effects of exercise on myokines release and immune system function.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Chiara Bellia
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Prisco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
| | - Ilenia D’Ippolito
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- School of Human Movement Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alfonso Bellia
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| |
Collapse
|
15
|
Physiological and pathophysiological role of endocrine fibroblast growth factors. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The endocrine subfamily of fibroblast growth factors (FGF) includes three factors: FGF19, FGF21, FGF23. They act on distal tissues through FGF receptors (FGFRs). The FGFR activation requires two cofactors: α- and β-Klotho, which are structurally related single-pass transmembrane proteins. The endocrine FGFs regulate various metabolic processes involved in the regulation of glucose and lipid metabolism as well as bile acid circulation, vitamin D modulation, and phosphate homeostasis. The FGF-FGFR dysregulation is widely implicated in the pathogenesis of various disorders. Significant alterations in plasma FGF concentration are associated with the most prevalent chronic diseases, including dyslipidemia, type 2 diabetes, cardiovascular diseases, obesity, non-alcoholic fatty liver disease, diseases of the biliary tract, chronic kidney disease, inflammatory bowel disease, osteomalacia, various malignancies, and depression. Therefore, the endocrine FGFs may serve as disease predictors or biomarkers, as well as potential therapeutic targets. Currently, numerous analogues and inhibitors of endocrine FGFs are under development for treatment of various disorders, and recently, a human monoclonal antibody against FGF23 has been approved for treatment of X-linked hypophosphatemia. The aim of this review is to summarize the current data on physiological and pathophysiological actions of the endocrine FGF subfamily and recent research concerning the therapeutic potential of the endocrine FGF pathways.
Collapse
|
16
|
Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022; 11:872. [PMID: 35269492 PMCID: PMC8909156 DOI: 10.3390/cells11050872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Healthspan is the period of our life without major debilitating diseases. In the modern world where unhealthy lifestyle choices and chronic diseases taper the healthspan, which lead to an enormous economic burden, finding ways to promote healthspan becomes a pressing goal of the scientific community. Exercise, one of humanity's most ancient and effective lifestyle interventions, appears to be at the center of the solution since it can both treat and prevent the occurrence of many chronic diseases. Here, we will review the current evidence and opinions about regular exercise promoting healthspan through enhancing the functionality of our organ systems and preventing diseases.
Collapse
Affiliation(s)
- Yuntian Guan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
17
|
Sommakia S, Almaw NH, Lee SH, Ramadurai DKA, Taleb I, Kyriakopoulos CP, Stubben CJ, Ling J, Campbell RA, Alharethi RA, Caine WT, Navankasattusas S, Hoareau GL, Abraham AE, Fang JC, Selzman CH, Drakos SG, Chaudhuri D. FGF21 (Fibroblast Growth Factor 21) Defines a Potential Cardiohepatic Signaling Circuit in End-Stage Heart Failure. Circ Heart Fail 2022; 15:e008910. [PMID: 34865514 PMCID: PMC8930477 DOI: 10.1161/circheartfailure.121.008910] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Extrinsic control of cardiomyocyte metabolism is poorly understood in heart failure (HF). FGF21 (Fibroblast growth factor 21), a hormonal regulator of metabolism produced mainly in the liver and adipose tissue, is a prime candidate for such signaling. METHODS To investigate this further, we examined blood and tissue obtained from human subjects with end-stage HF with reduced ejection fraction at the time of left ventricular assist device implantation and correlated serum FGF21 levels with cardiac gene expression, immunohistochemistry, and clinical parameters. RESULTS Circulating FGF21 levels were substantially elevated in HF with reduced ejection fraction, compared with healthy subjects (HF with reduced ejection fraction: 834.4 [95% CI, 628.4-1040.3] pg/mL, n=40; controls: 146.0 [86.3-205.7] pg/mL, n=20, P=1.9×10-5). There was clear FGF21 staining in diseased cardiomyocytes, and circulating FGF21 levels negatively correlated with the expression of cardiac genes involved in ketone metabolism, consistent with cardiac FGF21 signaling. FGF21 gene expression was very low in failing and nonfailing hearts, suggesting extracardiac production of the circulating hormone. Circulating FGF21 levels were correlated with BNP (B-type natriuretic peptide) and total bilirubin, markers of chronic cardiac and hepatic congestion. CONCLUSIONS Circulating FGF21 levels are elevated in HF with reduced ejection fraction and appear to bind to the heart. The liver is likely the main extracardiac source. This supports a model of hepatic FGF21 communication to diseased cardiomyocytes, defining a potential cardiohepatic signaling circuit in human HF.
Collapse
Affiliation(s)
- Salah Sommakia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Naredos H. Almaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Sandra H. Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Dinesh K. A. Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Christos P. Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Chris J. Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jing Ling
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Campbell
- Department of Internal Medicine, Division of General Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Rami A. Alharethi
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
| | - William T. Caine
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Guillaume L. Hoareau
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, Division of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Anu E. Abraham
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - James C. Fang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Craig H. Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT
| | - Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
18
|
Sabaratnam R, Wojtaszewski JFP, Højlund K. Factors mediating exercise-induced organ crosstalk. Acta Physiol (Oxf) 2022; 234:e13766. [PMID: 34981891 DOI: 10.1111/apha.13766] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/11/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Exercise activates a plethora of metabolic and signalling pathways in skeletal muscle and other organs causing numerous systemic beneficial metabolic effects. Thus, regular exercise may ameliorate and prevent the development of several chronic metabolic diseases. Skeletal muscle is recognized as an important endocrine organ regulating systemic adaptations to exercise. Skeletal muscle may mediate crosstalk with other organs through the release of exercise-induced cytokines, peptides and proteins, termed myokines, into the circulation. Importantly, other tissues such as the liver and adipose tissue may also release cytokines and peptides in response to exercise. Hence, exercise-released molecules are collectively called exerkines. Moreover, extracellular vesicles (EVs), in the form of exosomes or microvesicles, may carry some of the signals involved in tissue crosstalk. This review focuses on the role of factors potentially mediating crosstalk between muscle and other tissues in response to exercise.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| |
Collapse
|
19
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
20
|
Keipert S, Ost M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab 2021; 32:904-915. [PMID: 34526227 DOI: 10.1016/j.tem.2021.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are established as stress-responsive cytokines that can modulate energy balance by increasing energy expenditure or suppressing food intake, respectively. Despite their pharmacologically induced beneficial effects on obesity and comorbidities, circulating levels of both cytokines are elevated during obesity and related metabolic complications. On the other hand, endocrine crosstalk via FGF21 and GDF15 was also reported to play a crucial role in genetically modified mouse models of mitochondrial perturbations leading to diet-induced obesity (DIO) resistance. This review aims to dissect the complexities of endogenous FGF21 and GDF15 action in obesity versus DIO resistance for the regulation of energy balance in metabolic health and disease.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Mario Ost
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Power Guerra N, Parveen A, Bühler D, Brauer DL, Müller L, Pilz K, Witt M, Glass Ä, Bajorat R, Janowitz D, Wolkenhauer O, Vollmar B, Kuhla A. Fibroblast Growth Factor 21 as a Potential Biomarker for Improved Locomotion and Olfaction Detection Ability after Weight Reduction in Obese Mice. Nutrients 2021; 13:nu13092916. [PMID: 34578793 PMCID: PMC8470262 DOI: 10.3390/nu13092916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most challenging diseases of the 21st century and is accompanied by behavioural disorders. Exercise, dietary adjustments, or time-restricted feeding are the only successful long-term treatments to date. Fibroblast growth factor 21 (FGF21) plays a key role in dietary regulation, but FGF21 resistance is prevalent in obesity. The aim of this study was to investigate in obese mice whether weight reduction leads to improved behaviour and whether these behavioural changes are associated with decreased plasma FGF21 levels. After establishing a model for diet-induced obesity, mice were subjected to three different interventions for weight reduction, namely dietary change, treadmill exercise, or time-restricted feeding. In this study, we demonstrated that only the combination of dietary change and treadmill exercise affected all parameters leading to a reduction in weight, fat, and FGF21, as well as less anxious behaviour, higher overall activity, and improved olfactory detection abilities. To investigate the interrelationship between FGF21 and behavioural parameters, feature selection algorithms were applied designating FGF21 and body weight as one of five highly weighted features. In conclusion, we concluded from the complementary methods that FGF21 can be considered as a potential biomarker for improved behaviour in obese mice after weight reduction.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Alisha Parveen
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - Daniel Bühler
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - David Leon Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
| | - Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Kristin Pilz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Änne Glass
- Institute for Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057 Rostock, Germany;
| | - Rika Bajorat
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Schillingallee 35, 18057 Rostock, Germany;
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|
22
|
Pérez-López A, Gonzalo-Encabo P, Pérez-Köhler B, García-Honduvilla N, Valadés D. Circulating myokines IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. Eur J Sport Sci 2021; 22:1426-1435. [PMID: 34086518 DOI: 10.1080/17461391.2021.1939430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To examine the effects of a time-matched endurance vs. concurrent training on circulating IL-6, IL-13, IL-15, IL-15Ra, FGF21 levels in postmenopausal women with obesity, and to determine these myokines response to endurance training pre- and postmenopause. Thirty-five sedentary postmenopausal women with obesity were randomly divided into endurance training (EN1, N = 10), concurrent training (CON, N = 13) or no training group (CT, N = 12). Additionally, twelve sedentary premenopausal women with obesity were added to an endurance training group (EN2, N = 12). Participants took part in a 12-week supervised intervention, performing 3 sessions/week of 60 min/session. Before and after the interventions, body composition and fitness were assessed, and blood samples obtained to measure serum myokines levels. Total fat mass decreased in all exercised groups (CON,-5.2%; EN1,-5.3%; EN2,-5.6%). In postmenopausal women, serum IL-6, IL-15 and IL-15Ra decreased after training (P<0.01), finding a pronounced reduction in IL-6 (-42% vs. -16%) and IL-15 (-50% vs. -31%) when comparing EN1 to CON (P<0.05). Serum FGF21 was only reduced in the EN1 (-27%; P=0.012). While EN1 and EN2 comparison, reported differences for IL-15Rα concentration (-28% vs. -40%; P=0.023). Finally, in EN2, the delta change of fat mass and IL-6, IL-15 and IL-15Rα were associated (r = 0.605; r = 0.546; r = 0.515; P<0.05). IL-13 showed undetected concentrations. Circulating IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. Endurance training promotes a higher reduction of these myokines, potentially activating their intricate immune and fat mass regulation roles in postmenopausal women with obesity.
Collapse
Affiliation(s)
- Alberto Pérez-López
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Madrid, España
| | - Paola Gonzalo-Encabo
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Madrid, España.,Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Medicina y Especialidades Médicas, Madrid, España
| | - Bárbara Pérez-Köhler
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Medicina y Especialidades Médicas, Madrid, España.,Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Natalio García-Honduvilla
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Medicina y Especialidades Médicas, Madrid, España.,Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,University Center of Defense of Madrid (CUD-ACD), Madrid, Spain
| | - David Valadés
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Madrid, España
| |
Collapse
|
23
|
Richter MM, Plomgaard P. The Regulation of Circulating Hepatokines by Fructose Ingestion in Humans. J Endocr Soc 2021; 5:bvab121. [PMID: 34337280 PMCID: PMC8317633 DOI: 10.1210/jendso/bvab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Context Fibroblast growth factor 21 (FGF21), follistatin, angiopoietin-like 4 (ANGPTL4), and growth differential factor 15 (GDF15) are regulated by energy metabolism. Recent findings in humans demonstrate that fructose ingestion increases circulating FGF21, with increased response in conditions of insulin resistance. Objective This study examines the acute effect of fructose and somatostatin on circulating FGF21, follistatin, ANGPTL4, and GDF15 in humans. Methods Plasma FGF21, follistatin, ANGPTL4, and GDF15 concentrations were measured in response to oral ingestion of 75 g of fructose in 10 young healthy males with and without a 15-minute infusion of somatostatin to block insulin secretion. A control infusion of somatostatin was also performed in the same subjects. Results Following fructose ingestion, plasma FGF21 peaked at 3.7-fold higher than basal concentration (P < 0.05), and it increased 4.9-fold compared with basal concentration (P < 0.05) when somatostatin was infused. Plasma follistatin increased 1.8-fold after fructose ingestion (P < 0.05), but this increase was blunted by concomitant somatostatin infusion. For plasma ANGPTL4 and GDF15, no increases were obtained following fructose ingestion. Infusion of somatostatin alone slightly increased plasma FGF21 and follistatin. Conclusion Here we show that in humans (1) the fructose-induced increase in plasma FGF21 was enhanced when somatostatin was infused, suggesting an inhibitory role of insulin on the fructose-induced FGF21 increase; (2) fructose ingestion also increased plasma follistatin, but somatostatin infusion blunted the increase; and (3) fructose ingestion had no stimulating effect on ANGPTL4 and GDF15 levels, demonstrating differences in the hepatokine response to fructose ingestion.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark.,The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, DK-2100 Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules. BMC Endocr Disord 2021; 21:80. [PMID: 33902539 PMCID: PMC8074411 DOI: 10.1186/s12902-021-00718-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. METHODS To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. RESULTS A total of 820 DEGs were identified between healthy obese and metabolically unhealthy obese, among 409 up regulated and 411 down regulated genes. The GO enrichment analysis results showed that these DEGs were significantly enriched in ion transmembrane transport, intrinsic component of plasma membrane, transferase activity, transferring phosphorus-containing groups, cell adhesion, integral component of plasma membrane and signaling receptor binding, whereas, the REACTOME pathway enrichment analysis results showed that these DEGs were significantly enriched in integration of energy metabolism and extracellular matrix organization. The hub genes CEBPD, TP73, ESR2, TAB1, MAP 3K5, FN1, UBD, RUNX1, PIK3R2 and TNF, which might play an essential role in obesity associated type 2 diabetes mellitus was further screened. CONCLUSIONS The present study could deepen the understanding of the molecular mechanism of obesity associated type 2 diabetes mellitus, which could be useful in developing therapeutic targets for obesity associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, Karnataka, 577501, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka, 582209, India
| |
Collapse
|
25
|
Sun H, Sherrier M, Li H. Skeletal Muscle and Bone - Emerging Targets of Fibroblast Growth Factor-21. Front Physiol 2021; 12:625287. [PMID: 33762965 PMCID: PMC7982600 DOI: 10.3389/fphys.2021.625287] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF family, which functions as a powerful endocrine and paracrine regulator of glucose and lipid metabolism. In addition to liver and adipose tissue, recent studies have shown that FGF21 can also be produced in skeletal muscle. As the most abundant tissue in the human body, skeletal muscle has become increasingly recognized as a major site of metabolic activity and an important modulator of systemic metabolic homeostasis. The function and mechanism of action of muscle-derived FGF21 have recently gained attention due to the findings of considerably increased expression and secretion of FGF21 from skeletal muscle under certain pathological conditions. Recent reports regarding the ectopic expression of FGF21 from skeletal muscle and its potential effects on the musculoskeletal system unfolds a new chapter in the story of FGF21. In this review, we summarize the current knowledge base of muscle-derived FGF21 and the possible functions of FGF21 on homeostasis of the musculoskeletal system with a focus on skeletal muscle and bone.
Collapse
Affiliation(s)
- Hui Sun
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Matthew Sherrier
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hongshuai Li
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Khalafi M, Alamdari KA, Symonds ME, Nobari H, Carlos-Vivas J. Impact of acute exercise on immediate and following early post-exercise FGF-21 concentration in adults: systematic review and meta-analysis. Hormones (Athens) 2021; 20:23-33. [PMID: 33151509 DOI: 10.1007/s42000-020-00245-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE/OBJECTIVE The aim of this study was to quantify circulating fibroblast growth factor 21 (FGF-21) changes during and immediately after acute exercise and, based on body weight, to identify the subgroups exhibiting the largest response. METHODS The PubMed, Web of Science, and Cochrane Library electronic databases were searched up to December 2019 for studies published in English peer-reviewed journals. Studies that evaluated the effects of acute exercise on FGF-21 concentrations immediately after and 1 and 3 h post-exercise in adults were included. Random effects models were used for analyses, with data reported as standardized mean difference (SMD) and 95% confidence interval, and the risk of heterogeneity was evaluated. Subgroup analysis of subjects with normal weight and obesity/overweight was performed. RESULTS A total of seven studies involving 125 participants (age 35.95 (21-64) years and BMI 25.89 (21.30-35.46) kg/m2) were included. Overall, acute exercise increased FGF-21 (d = 0.18; 95% CI 0.01 to 0.35, p = 0.02) and this remained for 1 h post-exercise FGF-21 (d = 0.59; 95% CI 0.33 to 0.86, p = 0.001). Three hours after exercise, FGF-21 was restored to near baseline values (d = - 0.05; 95% CI - 0.34 to 0.22, p = 0.68). Acute exercise raised FGF-21 concentrations in normal weight participants (d = 0.57, p = 0.001) and tended to increase in overweight and obese participants (d = 0.79, p = 0.05) 1 h post-exercise. CONCLUSION Acute exercise increases circulating FGF-21, irrespective of body weight.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, 4199613776, Iran.
| | - Karim Azali Alamdari
- Department of Sport Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran.
| | - Michael E Symonds
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Jorge Carlos-Vivas
- Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport Sciences, University of Extremadura, 10003, Caceres, Spain
| |
Collapse
|
27
|
Effects of Exercise Intervention on Mitochondrial Stress Biomarkers in Metabolic Syndrome Patients: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052242. [PMID: 33668309 PMCID: PMC7956208 DOI: 10.3390/ijerph18052242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023]
Abstract
Metabolic syndrome (MetS) pathogenesis involves oxidative stress associated with mitochondrial dysfunction, which triggers integrated stress responses via various compensatory metabolic modulators like mitokines and hepatokines. However, the regulatory mechanisms underlying the exercise-derived benefits with respect to mitokines and hepatokines (potential MetS biomarkers) are unknown. Thus, we investigated the effects of exercise training on MetS biomarkers and their associations with clinical parameters. In this single-center trial, 30 women with MetS were randomly assigned to 12-week supervised exercise or control groups (1:1) and compared with 12 age-matched healthy volunteers. All participants completed the study except one subject in the control group. Expectedly, serum levels of the mitokines, fibroblast growth factor-21 (FGF21), growth differentiation factor-15 (GDF15), and the hepatokine, angiopoietin-like 6 (ANGPTL6), were higher in MetS patients than in healthy volunteers. Moreover, their levels were markedly attenuated in the exercise group. Further, exercise-mediated changes in serum FGF21 and GDF15 correlated with changes in the homeostasis model of assessment of insulin resistance (HOMA-IR) and appendicular lean mass (ALM), respectively. Additionally, changes in serum triglycerides and ANGPTL6 were correlated with changes in leptin. Aberrant mitokine and hepatokine levels can be rectified by relieving metabolic stress burden. Therefore, exercise training may reduce the need for the compensatory upregulation of MetS metabolic modulators by improving gluco-lipid metabolism.
Collapse
|
28
|
Płatek T, Polus A, Góralska J, Raźny U, Dziewońska A, Micek A, Dembińska-Kieć A, Solnica B, Malczewska-Malec M. Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects. Genes (Basel) 2021; 12:307. [PMID: 33670024 PMCID: PMC7926457 DOI: 10.3390/genes12020307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
We hypothesised that epigenetics may play an important role in mediating fibroblast growth factor 21 (FGF21) resistance in obesity. We aimed to evaluate DNA methylation changes and miRNA pattern in obese subjects associated with high serum FGF21 levels. The study included 136 participants with BMI 27-45 kg/m2. Fasting FGF21, glucose, insulin, GIP, lipids, adipokines, miokines and cytokines were measured and compared in high serum FGF21 (n = 68) group to low FGF21 (n = 68) group. Human DNA Methylation Microarrays were analysed in leukocytes from each group (n = 16). Expression of miRNAs was evaluated using quantitative PCR-TLDA. The study identified differentially methylated genes in pathways related to glucose transport, insulin secretion and signalling, lipid transport and cellular metabolism, response to nutrient levels, thermogenesis, browning of adipose tissue and bone mineralisation. Additionally, it detected transcription factor genes regulating FGF21 and fibroblast growth factor receptor and vascular endothelial growth factor receptor pathways regulation. Increased expression of hsa-miR-875-5p and decreased expression of hsa-miR-133a-3p, hsa-miR-185-5p and hsa-miR-200c-3p were found in the group with high serum FGF21. These changes were associated with high FGF21, VEGF and low adiponectin serum levels. Our results point to a significant role of the epigenetic regulation of genes involved in metabolic pathways related to FGF21 action.
Collapse
Affiliation(s)
- Teresa Płatek
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Urszula Raźny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Agnieszka Dziewońska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences, Jagiellonian University Medical College, 25 Kopernika Street, 31-501 Krakow, Poland;
| | - Aldona Dembińska-Kieć
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Małgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| |
Collapse
|
29
|
Wang N, Sun B, Guo H, Jing Y, Ruan Q, Wang M, Mi Y, Chen H, Song L, Cui W. Association of Elevated Plasma FGF21 and Activated FGF21 Signaling in Visceral White Adipose Tissue and Improved Insulin Sensitivity in Gestational Diabetes Mellitus Subtype: A Case-Control Study. Front Endocrinol (Lausanne) 2021; 12:795520. [PMID: 34912302 PMCID: PMC8667891 DOI: 10.3389/fendo.2021.795520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To study the discrepancy of the insulin sensitivity alteration pattern, circulating fibroblast growth factor (FGF21) levels and FGF21 signaling in visceral white adipose tissue (vWAT) of gestational diabetes mellitus (GDM) subtypes. METHODS 26 GDM women with either a predominant of insulin-secretion defect (GDM-dysfunction, n = 9) or insulin-sensitivity defect (GDM-resistance, n = 17) and 13 normal glucose tolerance (NGT) women scheduled for caesarean-section at term were studied. Blood and vWAT samples were collected at delivery. RESULTS The insulin sensitivity was improved from the 2nd trimester to delivery in the GDM-resistance group. Elevated circulating FGF21 concentration at delivery, increased FGF receptor 1c and decreased klotho beta gene expression, enhanced ERK1/2 phosphorylation, and increased GLUT1, IR-B, PPAR-γ gene expression in vWAT were found in the GDM-resistance group as compared with the NGT group. The circulating FGF21 concentration was negatively correlated with fasting blood glucose (r = -0.574, P < 0.001), and associated with the GDM-resistance group (r = 0.574, P < 0.001) in pregnant women at delivery. However, we observed no insulin sensitivity alteration in GDM-dysfunction and NGT groups during pregnancy. No differences of plasma FGF21 level and FGF21 signaling in vWAT at delivery were found between women in the GDM-dysfunction and the NGT group. CONCLUSIONS Women with GDM heterogeneity exhibited different insulin sensitivity alteration patterns. The improvement of insulin sensitivity may relate to the elevated circulating FGF21 concentration and activated FGF21 signaling in vWAT at delivery in the GDM-resistance group.
Collapse
Affiliation(s)
- Ning Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Haonan Guo
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingyu Jing
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Ruan
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengjun Wang
- Department of Endocrinology, 521 Hospital of Norinco Group, Xi’an, China
| | - Yang Mi
- The Second Department of Obstetrics, Northwest Women and Children’s Hospital, Xi’an, China
| | - Huan Chen
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lin Song, ; Wei Cui,
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Lin Song, ; Wei Cui,
| |
Collapse
|
30
|
Lin W, Zhang T, Zhou Y, Zheng J, Lin Z. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes 2021; 14:3281-3290. [PMID: 34295169 PMCID: PMC8291585 DOI: 10.2147/dmso.s317096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) regulates many crucial biological processes in human and mammals, particularly metabolic modulation and protective effect after injury. Therefore, determining complex regulatory mechanisms and elucidating the signaling pathway may greatly promote the prevention, diagnosis, and treatment of related injury and metabolic diseases. This review focused on the metabolic modulation and protective effect of FGF21 and summarized the molecular mechanisms and clinical research developments.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Yiyang Zhou
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China Email
| |
Collapse
|
31
|
Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejía JL, Zuffa S, Swann JR, Hansen LH, Vogensen FK, Hansen AK, Nielsen DS. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut 2020; 69:2122-2130. [PMID: 32165408 DOI: 10.1136/gutjnl-2019-320005] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Development of obesity and type 2 diabetes (T2D) are associated with gut microbiota (GM) changes. The gut viral community is predominated by bacteriophages (phages), which are viruses that attack bacteria in a host-specific manner. The antagonistic behaviour of phages has the potential to alter the GM. As a proof-of-concept, we demonstrate the efficacy of faecal virome transplantation (FVT) from lean donors for shifting the phenotype of obese mice into closer resemblance of lean mice. DESIGN The FVT consisted of viromes with distinct profiles extracted from the caecal content of mice from different vendors that were fed a low-fat (LF) diet for 14 weeks. Male C57BL/6NTac mice were divided into five groups: LF (as diet control), high-fat (HF) diet, HF+ampicillin (Amp), HF+Amp+FVT and HF+FVT. At weeks 6 and 7 of the study, the HF+FVT and HF+Amp+FVT mice were treated with FVT by oral gavage. The Amp groups were treated with Amp 24 hours prior to first FVT treatment. RESULTS Six weeks after first FVT, the HF+FVT mice showed a significant decrease in weight gain compared with the HF group. Further, glucose tolerance was comparable between the LF and HF+FVT mice, while the other HF groups all had impaired glucose tolerance. These observations were supported by significant shifts in GM composition, blood plasma metabolome and expression levels of genes associated with obesity and T2D development. CONCLUSIONS Transfer of caecal viral communities from mice with a lean phenotype into mice with an obese phenotype led to reduced weight gain and normalised blood glucose parameters relative to lean mice. We hypothesise that this effect is mediated via FVT-induced GM changes.
Collapse
Affiliation(s)
| | | | - Witold Kot
- Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Simone Zuffa
- Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | | | | | - Axel Kornerup Hansen
- Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
32
|
Guo C, Zhao L, Li Y, Deng X, Yuan G. Relationship between FGF21 and drug or nondrug therapy of type 2 diabetes mellitus. J Cell Physiol 2020; 236:55-67. [PMID: 32583417 DOI: 10.1002/jcp.29879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
Sedentary and high-calorie diets are associated with increased risk of obesity and type 2 diabetes mellitus, while exercise and diet control are also important nondrug treatments for diabetes. Fibroblast growth factor 21 (FGF21) is an important cytokine, which is mainly expressed in liver, fat and muscle tissue responding to nutrition and exercise, and plays an important role in the improvement of glucose and lipid metabolism. Due to the increasing serum FGF21 level in obesity and diabetes, FGF21 can be used as a predictor or biomarker of diabetes. A variety of clinical antidiabetic drugs can reduce the content of FGF21, possibly for the improvement of FGF21 sensitivity. In this paper, we reviewed the interactions between FGF21 and nondrug therapy (diet and exercise) for diabetes and explored the potential value of the combined application of clinical antidiabetic drugs and FGF21.
Collapse
Affiliation(s)
- Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
33
|
Rasmussen TS, Koefoed AK, Jakobsen RR, Deng L, Castro-Mejía JL, Brunse A, Neve H, Vogensen FK, Nielsen DS. Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations. FEMS Microbiol Rev 2020; 44:507-521. [DOI: 10.1093/femsre/fuaa020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Gut microbiome (GM) composition and function are linked to human health and disease, and routes for manipulating the GM have become an area of intense research. Due to its high treatment efficacy, the use of fecal microbiota transplantation (FMT) is generally accepted as a promising experimental treatment for patients suffering from GM imbalances (dysbiosis), e.g. caused by recurrent Clostridioides difficile infections (rCDI). Mounting evidence suggests that bacteriophages (phages) play a key role in successful FMT treatment by restoring the dysbiotic bacterial GM. As a refinement to FMT, removing the bacterial component of donor feces by sterile filtration, also referred to as fecal virome transplantation (FVT), decreases the risk of invasive infections caused by bacteria. However, eukaryotic viruses and prophage-encoded virulence factors remain a safety issue. Recent in vivo studies show how cascading effects are initiated when phage communities are transferred to the gut by e.g. FVT, which leads to changes in the GM composition, host metabolome, and improve host health such as alleviating symptoms of obesity and type-2-diabetes (T2D). In this review, we discuss the promises and limitations of FVT along with the perspectives of using FVT to treat various diseases associated with GM dysbiosis.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Anna Kirstine Koefoed
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Rasmus Riemer Jakobsen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Ling Deng
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Josué L Castro-Mejía
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 2nd floor - 1870, Frederiksberg, Denmark
| | - Horst Neve
- Institute of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Straße 1 - 24103, Kiel, Germany
| | - Finn Kvist Vogensen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark
| |
Collapse
|
34
|
Shabkhiz F, Khalafi M, Rosenkranz S, Karimi P, Moghadami K. Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: A randomised controlled clinical trial. Eur J Sport Sci 2020; 21:636-645. [PMID: 32345132 DOI: 10.1080/17461391.2020.1762755] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fibroblast growth factor 21 (FGF-21) and myostatin have been proposed to be potential therapeutic target for insulin resistance in age-related metabolic disorders including type 2 diabetes (T2D). Moreover, despite the potential metabolic effect of resistance training on insulin resistance, aging, and T2D; the effect of this type of exercise training on FGF-21 and myostatin in elderly men with and without T2D are unknown. Forty-four elderly men were assigned to either the RT training (RT; without T2D: 12, with TD2 = 10) or the control group (C; without T2D: 12, with TD2 = 10). The RT group performed 12-wk resistance training intervention, 3 days/wk, 10 repetitions with 70% 1RM. At the baseline, the elderly men with T2D had a higher FGF-21 (p = 0.002) and myostatin (p = 0.02) concentrations and lower muscle strength (p = 0.01) than the elderly men without T2D. RT resulted in significant decrease in FGF-21 and myostatin concentration and increase in muscle strength in both elderly men with and without T2D (P = 0.001, for all) as well as decrease in HOMA-IR in only elderly men without T2D (P = 0.001). There was no significant difference in the RT-induced FGF-21 reduction between elderly men with and without T2D (p = 0.77, p = 0.28, respectively), but, RT caused a larger reduction in circulating myostatin in elderly men without T2D than with T2D (P = 0.007). Taken together, our results demonstrated that 12 weeks of RT induced an overall significant reduction of FGF-21 and myostatin in elderly men with and without T2D; with higher reduction of myostatin in elderly men without T2D.
Collapse
Affiliation(s)
- Fatemeh Shabkhiz
- Faculty of Physical Education and Sport Sciences, Department of Exercise Physiology, Tehran University, Tehran, Iran
| | - Mousa Khalafi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Sara Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS, USA
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamilia Moghadami
- Department of pure and basic science, Hashtgerd Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
35
|
Abstract
FGF21 (fibroblast growth factor 21) is a regulator of metabolism and performs an important role in glucose and lipid metabolism and the maintenance of energy balance. FGF21 is principally expressed in the liver, but it can also be found in the pancreas, skeletal muscle, and adipose tissue. It is known that levels of serum FGF21 are significantly elevated in obese, insulin-resistant patients, and those with metabolic syndrome. Elevated levels of FGF21 in serum during the early stages of various metabolic diseases are considered a compensatory response by the organism. Therefore, FGF21 is considered a hormone in response to stress and an early diagnostic marker of disease. Diabetic cardiomyopathy is a special type of cardiac complication, characterized as a chronic myocardial disorder caused by diabetes. The pathological process includes increased oxidative stress, energy metabolism in myocardial cells, an inflammatory response, and myocardial cell apoptosis. A growing body of evidence suggests that FGF21 has the potential to be an effective drug for the treatment of diabetic cardiomyopathy. Here, we review recent progress on the characteristics of FGF21 in its protective role, especially in pathological processes such as suppressing apoptosis in the myocardium, reducing inflammation in cardiomyocytes, reducing oxidative stress, and promoting fatty acid oxidation. In addition, we explore the possibility that diabetic cardiomyopathy can be delayed through the application of FGF21, providing possible therapeutic targets of the disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Luo Yang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Xiongfeng Xu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Fengjuan Tang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Peng Yi
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Bo Qiu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Yarong Hao
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Division of Metabolic Syndrome, Department of Geriatrics, Renming Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
36
|
The Impact of Moderate-Intensity Continuous or High-Intensity Interval Training on Adipogenesis and Browning of Subcutaneous Adipose Tissue in Obese Male Rats. Nutrients 2020; 12:nu12040925. [PMID: 32230849 PMCID: PMC7231004 DOI: 10.3390/nu12040925] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023] Open
Abstract
This study compares the effect of two types of exercise training, i.e., moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) on the browning of subcutaneous white adipose tissue (scWAT) in obese male rats. Effects on fat composition, metabolites, and molecular markers of differentiation and energy expenditure were examined. Forty male Wistar rats were assigned to lean (n = 8) or obese (n = 32) groups and fed either a standard chow or high-fat obesogenic diet for 10 weeks. Eight lean and obese rats were then blood and tissue sampled, and the remaining obese animals were randomly allocated into sedentary, MICT, or HIIT (running on a treadmill 5 days/week) groups that were maintained for 12 weeks. Obesity increased plasma glucose and insulin and decreased irisin and FGF-21. In scWAT, this was accompanied with raised protein abundance of markers of adipocyte differentiation, i.e., C/EBP-α, C/EBP-β, and PPAR-γ, whereas brown fat-related genes, i.e., PRDM-16, AMPK/SIRT1/PGC-1α, were reduced as was UCP1 and markers of fatty acid transport, i.e., CD36 and CPT1. Exercise training increased protein expression of brown fat-related markers, i.e., PRDM-16, AMPK/SIRT1/PGC-1α, and UCP1, together with gene expression of fatty acid transport, i.e., CD36 and CPT1, but decreased markers of adipocyte differentiation, i.e., C/EBP-α, C/EBP-β, and plasma glucose. The majority of these adaptations were greater with HIIT compared to MICT. Our findings indicate that prolonged exercise training promotes the browning of white adipocytes, possibly through suppression of adipogenesis together with white to beige trans-differentiation and is dependent on the intensity of exercise.
Collapse
|
37
|
Yang BC, Wu SY, Leung PS. Alcohol ingestion induces pancreatic islet dysfunction and apoptosis via mediation of FGF21 resistance. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:310. [PMID: 32355754 PMCID: PMC7186649 DOI: 10.21037/atm.2020.02.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Disruption of β-cell insulin secretion and viability caused by excessive ethanol consumption increases type 2 diabetes mellitus (T2DM) pathogenesis risk. Fibroblast growth factor 21 (FGF21) plays a significant role in regulating lipid and glucose homeostasis. Recently, FGF21, best known for its role in lipid and glucose homeostasis regulation, and its obligate co-receptor β-klotho have been shown to inhibit ethanol ingestion and metabolism. It remains unclear whether heavy ethanol intake modulates islet FGF21 expression and function. This study investigated the relationship between ethanol exposure, FGF21, and islet function in vivo/ex vivo islet and in vitro cell models. Methods Mice were gavaged with 3.5 g/kg ethanol or saline for 1–3 weeks (long-term exposure). Human MIN6 cells and isolated islets were cultured and treated with 80 mM ethanol for 24 h (short-term exposure) to mimic excessive ethanol consumption. We applied the oral glucose tolerance test (OGTT), blood glucometry, enzyme-linked immunosorbent assay (ELISAs) for insulin and FGF21, glucose stimulated insulin secretion (GSIS) testing, reverse-transcription (RT)-polymerase chain reaction (PCR), and western blot experiments. Results Long-term ethanol treatment induced FGF21 resistance in mouse pancreatic islets. Moreover, ethanol exposure damaged insulin secretory ability and glucose homeostasis. In vitro and ex vivo experiments showed that short-term ethanol treatment upregulated the expression of FGF21 signaling pathway-related genes and proteins, without affecting β-cell survival or function. Conclusions Long-term ethanol consumption induces FGF21 resistance-mediated pancreatic β-cell dysfunction, and thus diabetes pathogenesis risk.
Collapse
Affiliation(s)
- Bao Chen Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shang Ying Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
39
|
Ramanjaneya M, Bensila M, Bettahi I, Jerobin J, Samra TA, Aye MM, Alkasem M, Siveen KS, Sathyapalan T, Skarulis M, Atkin SL, Abou-Samra AB. Dynamic Changes in Circulating Endocrine FGF19 Subfamily and Fetuin-A in Response to Intralipid and Insulin Infusions in Healthy and PCOS Women. Front Endocrinol (Lausanne) 2020; 11:568500. [PMID: 33101202 PMCID: PMC7554576 DOI: 10.3389/fendo.2020.568500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background: The fibroblast growth factors (FGF) 19 subfamily, also referred to as endocrine FGFs, includes FGF19, FGF21, and FGF23 are metabolic hormones involved in the regulation of glucose and lipid metabolism. Fetuin-A is a hepatokine involved in the regulation of beta-cell function and insulin resistance. Endocrine FGFs and fetuin-A are dysregulated in metabolic disorders including obesity, type 2 diabetes, non-alcoholic fatty liver disease and polycystic ovary syndrome (PCOS). Our study was designed to examine the response of endocrine FGFs and fetuin-A to an acute intralipid, insulin infusion and exercise in PCOS and healthy women. Subjects and Measurements: Ten healthy and 11 PCOS subjects underwent 5-h saline infusions with a hyperinsulinemic-euglycemic clamp (HIEC) performed during the final 2 h. One week later, intralipid infusions were undertaken with a HIEC performed during the final 2 h. After an 8 week of exercise intervention the saline, intralipid, and HIEC were repeated. Plasma levels of endocrine FGFs and fetuin-A were measured. Results: Baseline fetuin-A was higher in PCOS women but FGF19, FGF21, and FGF23 did not differ and were unaffected by exercise. Insulin administration elevated FGF21 in control and PCOS, suppressed FGF19 in controls, and had no effects on FGF23 and fetuin-A. Intralipid infusion suppressed FGF19 and increased FGF21. Insulin with intralipid synergistically increased FGF21 and did not have effects on lipid-mediated suppression of FGF19 in both groups. Conclusion: Our study provides evidence for insulin and lipid regulation of endocrine FGFs in healthy and PCOS women, suggesting that FGF family members play a role in lipid and glucose metabolism. Clinical Trial Registration: www.isrctn.org, Identifier: ISRCTN42448814.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Manjunath Ramanjaneya
| | - Milin Bensila
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ilham Bettahi
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tareq A. Samra
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Myint Myint Aye
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Meis Alkasem
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Monica Skarulis
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
40
|
Abstract
The incidence of muscle atrophy is increasing with each passing year, which imposes a huge burden on the quality of life of patients. It is a public health issue that causes a growing concern around the world. Exercise is one of the key strategies to prevent and treat various diseases. Appropriate exercise is conducive to compensatory muscle hypertrophy, to improve muscle strength and elasticity, and to train muscle coordination, which is also beneficial to the recovery of skeletal muscle function and the regeneration of muscle cells. Sequelae of paralysis of patients with limb dyskinesia caused by muscle atrophy will be significantly alleviated after regular exercise therapy. Furthermore, exercise therapy can slow down or even reverse muscle atrophy. This article aims to introduce the characteristics of muscle atrophy and summarize the role and mechanism of exercise in the treatment of muscle atrophy in the existing studies, in order to further explore the mechanism of exercise to protect muscle atrophy and provide protection for patients with muscular atrophy.
Collapse
Affiliation(s)
- Nana He
- Department of Cardiology, Huamei Hospital, (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Honghua Ye
- Department of Cardiology, Huamei Hospital, (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
41
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|
42
|
King SE, Nilsson E, Beck D, Skinner MK. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte 2019; 8:362-378. [PMID: 31755359 PMCID: PMC6948971 DOI: 10.1080/21623945.2019.1693747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
The incidence of obesity has increased dramatically over the past two decades with a prevalence of approximately 40% of the adult population within the United States. The current study examines the potential for transgenerational adipocyte (fat cell) epigenetic alterations. Adipocytes were isolated from the gonadal fat pad of the great-grand offspring F3 generation 1-year old rats ancestrally exposed to DDT (dichlorodiphenyltrichloroethane), atrazine, or vehicle control in order to obtain adipocytes for DNA methylation analysis. Observations indicate that there were differential DNA methylated regions (DMRs) in the adipocytes with the lean or obese phenotypes compared to control normal (non-obese or lean) populations. The comparison of epigenetic alterations indicated that there were substantial overlaps between the different treatment lineage groups for both the lean and obese phenotypes. Novel correlated genes and gene pathways associated with DNA methylation were identified, and may aid in the discovery of potential therapeutic targets for metabolic diseases such as obesity. Observations indicate that ancestral exposures during critical windows of development can induce the epigenetic transgenerational inheritance of DNA methylation changes in adipocytes that ultimately may contribute to an altered metabolic phenotype.
Collapse
Affiliation(s)
- Stephanie E. King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
43
|
Nielsen MH, Sabaratnam R, Pedersen AJT, Højlund K, Handberg A. Acute Exercise Increases Plasma Levels of Muscle-Derived Microvesicles Carrying Fatty Acid Transport Proteins. J Clin Endocrinol Metab 2019; 104:4804-4814. [PMID: 30933285 DOI: 10.1210/jc.2018-02547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/26/2019] [Indexed: 02/03/2023]
Abstract
CONTEXT Microvesicles (MVs) are a class of membrane particles shed by any cell in the body in physiological and pathological conditions. They are considered to be key players in intercellular communication, and with a molecular content reflecting the composition of the cell of origin, they have recently emerged as a promising source of biomarkers in a number of diseases. OBJECTIVE The effects of acute exercise on the plasma concentration of skeletal muscle-derived MVs (SkMVs) carrying metabolically important membrane proteins were examined. PARTICIPANTS Thirteen men with obesity and type 2 diabetes mellitus (T2DM) and 14 healthy male controls with obesity exercised on a cycle ergometer for 60 minutes. INTERVENTIONS Muscle biopsies and blood samples-obtained before exercise, immediately after exercise, and 3 hours into recovery-were collected for the analysis of long-chain fatty acid (LCFA) transport proteins CD36 (a scavenger receptor class B protein) and fatty acid transport protein 4 (FATP4) mRNA content in muscle and for flow cytometric studies on circulating SkMVs carrying either LCFA transport protein. RESULTS Besides establishing a flow cytometric approach for the detection of circulating SkMVs and subpopulations carrying either CD36 or FATP4 and thereby adding proof to their existence, we demonstrated an overall exercise-induced change of SkMVs carrying these LCFA transport proteins. A positive correlation between exercise-induced changes in skeletal muscle CD36 mRNA expression and concentrations of SkMVs carrying CD36 was found in T2DM only. CONCLUSIONS This approach could add important real-time information about the abundance of LCFA transport proteins present on activated muscle cells in subjects with impaired glucose metabolism.
Collapse
Affiliation(s)
| | - Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Andreas James Thestrup Pedersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
44
|
LEE SHUENYEE, BURNS STEPHENF, NG KENNETHKC, STENSEL DAVIDJ, ZHONG LIANG, TAN FRANKIEHY, CHIA KARLING, FAM KAIDENG, YAP MARGARETMC, YEO KWEEPOO, YAP ERICPH, LIM CHINLEONG. Fibroblast Growth Factor 21 Mediates the Associations between Exercise, Aging, and Glucose Regulation. Med Sci Sports Exerc 2019; 52:370-380. [DOI: 10.1249/mss.0000000000002150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Keuper M, Häring HU, Staiger H. Circulating FGF21 Levels in Human Health and Metabolic Disease. Exp Clin Endocrinol Diabetes 2019; 128:752-770. [PMID: 31108554 DOI: 10.1055/a-0879-2968] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human fibroblast growth factor 21 (FGF21) is primarily produced and secreted by the liver as a hepatokine. This hormone circulates to its target tissues (e. g., brain, adipose tissue), which requires two components, one of the preferred FGF receptor isoforms (FGFR1c and FGFR3c) and the co-factor beta-Klotho (KLB) to trigger downstream signaling pathways. Although targeting FGF21 signaling in humans by analogues and receptor agonists results in beneficial effects, e. g., improvements in plasma lipids and decreased body weight, it failed to recapitulate the improvements in glucose handling shown for many mouse models. FGF21's role and metabolic effects in mice and its therapeutic potential have extensively been reviewed elsewhere. In this review we focus on circulating FGF21 levels in humans and their associations with disease and clinical parameters, focusing primarily on obesity and obesity-associated diseases such as type-2 diabetes. We provide a comprehensive overview on human circulating FGF21 levels under normal physiology and metabolic disease. We discuss the emerging field of inactivating FGF21 in human blood by fibroblast activation protein (FAP) and its potential clinical implications.
Collapse
Affiliation(s)
- Michaela Keuper
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
Liu Q, Wang S, Wei M, Huang X, Cheng Y, Shao Y, Xia P, Zhong M, Liu S, Zhang G, Hu S. Improved FGF21 Sensitivity and Restored FGF21 Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats After Duodenal-Jejunal Bypass and Sleeve Gastrectomy. Front Endocrinol (Lausanne) 2019; 10:566. [PMID: 31543863 PMCID: PMC6728857 DOI: 10.3389/fendo.2019.00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
Objective: Bariatric surgery can profoundly improve glucose and lipid metabolism in diabetic rats. Fibroblast growth factor 21 (FGF21) is an important hormone with multiple metabolic beneficial effects. Alteration in serum FGF21 level after bariatric surgery has been reported with conflicting results. Here, we investigated the effect of bariatric surgeries on FGF21 expression and sensitivity. Methods: We performed duodenal-jejunal bypass (DJB), sleeve gastrectomy (SG) and sham surgery in diabetic rats induced by high fat diet and streptozotocin. Metabolic parameters, including body weight, food intake, glucose tolerance, and lipid profiles, were monitored. FGF21 levels in both serum and liver were measured after surgery. FGF21 signaling pathway including FGF receptor 1 (FGFR1), β-klotho (KLB), and phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) was detected in the liver and white adipose tissue (WAT). We also determined FGF21 sensitivity post-operatively by acute recombinant human FGF21 injection. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted immediately after FGF21 injection. Serum triglyceride (TG) and non-esterified fatty acid (NEFA) were measured and the mRNA levels of early growth response 1 (Egr1) and c-Fos in the liver and WAT were detected after FGF21 injection. Results: Improvements in glucose tolerance, insulin sensitivity, and lipid profiles were observed after bariatric surgeries along with ameliorated lipid metabolism in the liver and WAT. Serum and hepatic FGF21 levels decreased in both DJB and SG groups. FGFR1 and phosphorylated ERK1/2 levels increased in both DJB and SG groups 8 weeks after surgery. The expression of KLB was downregulated only in the WAT after DJB and SG. Significant alteration of OGTT and ITT were observed after acute FGF21 administration in DJB and SG groups. Serum TG and NEFA in DJB and SG groups also decreased after FGF21 administration. And increased mRNA levels of Egr1 and c-Fos were detected in the liver and WAT after DJB and SG surgeries. Conclusions: DJB and SG surgeries can downregulate hepatic expression of FGF21, restore FGF21 signaling pathway and improve FGF21 sensitivity in high-fat diet/streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Qiaoran Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuo Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Huang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Shao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Pingtian Xia
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- *Correspondence: Sanyuan Hu
| |
Collapse
|
47
|
Effect of carbohydrates versus carbohydrates plus proteins and antioxidants on oxidative stress and muscle damage induced by single bout resistance exercise. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Sabaratnam R, Pedersen AJT, Kristensen JM, Handberg A, Wojtaszewski JFP, Højlund K. Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Physiol Rep 2018; 6:e13723. [PMID: 29924476 PMCID: PMC6009776 DOI: 10.14814/phy2.13723] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Regular exercise plays an important role in the prevention and treatment of type 2 diabetes (T2D). The synthesis and secretion of myokines in response to contraction may contribute to the beneficial metabolic effects of exercise. However, some exercise-induced responses may be attenuated in T2D. Here, we investigated whether the effect of acute exercise on selected myokines are impaired in T2D. Skeletal muscle biopsies and blood samples were obtained from 13 men with T2D and 14 weight-matched, glucose-tolerant men before, immediately after and 3-h after acute exercise (60 min cycling) to examine muscle expression and plasma/serum levels of selected myokines. One-hour of exercise increased muscle expression of IL6, FGF21, ANGPTL4, CHI3L1, CTGF and CYR61, of which FGF21, ANGPTL4 and CHI3L1 increased further 3-h into recovery, whereas expression of IL6, CYR61, and CTGF returned to baseline levels. There was no immediate effect of exercise on IL15 expression, but it decreased 3-h into recovery. Plasma IL-6 increased robustly, whereas circulating levels of FGF21, ANGPTL4, IL-15, and CHI3L1 increased only modestly in response to exercise. All returned toward baseline levels 3-h into recovery except for plasma ANGPTL4, which increased further. No significant differences in these responses to exercise were observed between the groups. Our results demonstrate that muscle expression and circulating levels of selected known and putative myokines were equally regulated by acute exercise in patients with T2D and weight-matched controls. This suggests that the potential beneficial metabolic effects of these myokines are not impaired in patients with T2D.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Section of Molecular Diabetes & MetabolismInstitute of Clinical ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark
- Department of EndocrinologyOdense University HospitalOdense CDenmark
| | | | - Jonas M. Kristensen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Aase Handberg
- Department of Clinical BiochemistryAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Kurt Højlund
- Section of Molecular Diabetes & MetabolismInstitute of Clinical ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark
- Department of EndocrinologyOdense University HospitalOdense CDenmark
| |
Collapse
|
49
|
Fibroblast Growth Factor 21 Promotes C2C12 Cells Myogenic Differentiation by Enhancing Cell Cycle Exit. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1648715. [PMID: 29109955 PMCID: PMC5646352 DOI: 10.1155/2017/1648715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/30/2017] [Accepted: 08/06/2017] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor 21 (FGF21), a secretion protein, functions as a pivotal regulator of energy metabolism and is being considered as a therapeutic candidate in metabolic syndromes. However, the roles of FGF21 in myogenic differentiation and cell cycle remain obscure. In this study, we investigated the function of FGF21 in myogenesis and cell cycle exit using C2C12 cell line. Our data showed that the expression of myogenic genes as well as cell cycle exit genes was increased after FGF21 overexpression, and FGF21 overexpression induces cell cycle arrest. Moreover, cell cycle genes were decreased in FGF21 overexpression cells while they were increased in FGF21 knockdown cells. Further, FGF21/P53/p21/Cyclin-CDK has been suggested as the key pathway for cell cycle exit mediated by FGF21 in C2C12 cells. Also, we deduce that FGF21 promotes the initiation of myogenic differentiation mainly through enhancing cell cycle exit of C2C12 cells. Taken together, our results demonstrated that FGF21 promotes cell cycle exit and enhances myogenic differentiation of C2C12 cells. This study provided new evidence that FGF21 promotes myogenic differentiation, which could be useful for better understanding the roles of FGF21 in myogenesis.
Collapse
|